CIRED 2021 Conference

CIRED

20— 23 September 2021

Paper 0636

A BOTTOM-UP APPROACH FOR DISTRICT-LEVEL
DOMESTIC ENERGY DEMAND FORECASTING

Amin Amin"*, Monjur Mourshed’

ISchool of Engineering, Cardiff University, Cardiff, CF24 3AB, United Kingdom
2Department of Architecture, Faculty of Fine Arts, Helwan University, Cairo, Egypt
* AminA8 @ cardiff.ac.uk

Keywords: COMMUNITY ENERGY MODELLING, PHYSICAL-BASED MODELLING, ELECTRICAL

ENERGY DEMAND, DEMAND RESPONSE

Abstract

An accurate district electricity load is crucial to ensure the optimal design and operation of Distributed Energy System (DES).
Therefore, a bottom-up physics-based model of district-level thermal and electrical energy demand was developed in this research
for estimating sub-hourly energy demand of buildings at a community/district level to support the mitigation of peak energy
demand and to save energy and cost. The main factors influencing district energy demand considered in developing the model
include: building construction and materials, equipment and appliances, local microclimate, and social and occupancy behaviours.
A key feature of the model is the use of a sub-hourly updated weather forecast in order to improve prediction accuracy, and the
estimation of household electrical appliance demand based on occupancy patterns and time of use (ToU).

The model provides accurate predictions of the temporal electricity demand variations and the peak power load. The results of
the study are used for (i) analysing the impact of energy efficiency schemes and demand response on the grid; (ii) the planning
and operation of district-level low-voltage grid considering the flexibility offered by the houses.

1 Introduction

Domestic energy consumption accounts for 19% of the total
CO2 emissions in the UK, which has fallen by 17% between
1990 and 2019 [1]. The Government aims to achieve an 80%
reduction of greenhouse gas emissions by 2050 as commit-
ted through the Climate Change Act 2008 [2]. Increasing
decentralisation of energy infrastructure and the penetration of
intermittent renewable energy in the supply system, as well
as the rise in energy prosumers require pro-active demand-
side management for grid operational efficiency and stability
[3]. Considering the diversity of domestic buildings, detailed
district-level energy demand profiles are, therefore, critical
prerequisites for the design, expansion and management of
the electricity grid. Accurate prediction of high-resolution
(hourly/sub-hourly) household energy consumption profiles
are also essential for district-level grid balancing, energy effi-
ciency and the effective integration of distributed generation
and demand response strategies [4].

Real-time Energy and Environmental Forecasting and Sim-
ulation (REEFS) is a main functional component of the
TABEDE project, a 3-year project funded by the European
Commission’s Horizon 2020 program that aims to allow build-
ings to integrate energy grid demand response (DR) schemes.
REEFS provides predictions for weather, electricity demand
and generation profiles for buildings and neighbourhoods

through integrating data-driven models and physics-based sim-
ulation models [5]. REEFS-Simulation Environment (REEFS-
SE) is one of REEFS forecasting services that provides day-
ahead profiles for electricity load, use and generation rang-
ing from device to district level based on a detailed whole
building simulation program. In this research, we present a
bottom-up physics-based model of district-level thermal and
electrical energy demand that was developed in REEFS-SE for
estimating sub-hourly energy demand of buildings at a com-
munity/district level to support the mitigation of peak energy
demand and to save energy and cost.

2 Methodology

The simulation environment aims to develop a physics-based
forecasting model to predict the energy consumption from elec-
trical appliances and the total electricity demand for each unit
in the study area. The forecasting model is based on Ener-
gyPlus, which is recognised as one of the most popular and
comprehensive building energy simulation software for calcu-
lating the building thermal performance response to weather
[6]. The model includes two inputs that are required for running
the simulation: (i) the building energy model formatted as Input
Data File (IDF) that contains data related to building charac-
teristics, including building physics information, construction
materials, internal loads, schedules and occupancy profiles; (ii)
weather information for the location of the building in an Ener-
gyPlus Weather (EPW) format which usually represents the
typical meteorological year for the location.
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The key features of the model is the use of a sub-hourly
updated weather forecast in order to improve prediction accu-
racy, and the estimation of household electrical appliance
demand based on occupancy patterns and time of use (ToU).
The contribution of the household’s appliances to the daily
and peak demand is also considered. The modelling approach
is developed on real data of a part of Penarth Heights neigh-
bourhood and its grid topology in Vale of Glamorgan, Cardiff,
UK.

In this section, the key elements and steps taken to construct
the simulation environment are presented. These include the
number and type of houses, and the occupancy profiles in the
study area. Besides, the number, type and energy load profiles
of the electric appliances included in the model.

2.1 Building information

The network of the study neighbourhood is composed of a sin-
gle MV/LV transformer to which three feeders are connected.
One single grid feeder was selected for the simulations in order
to maintain sufficient computing time. The feeder comprises
121 units distributed over eight dwelling archetypes, includ-
ing terraced houses and apartment buildings that enable a fair
representation of district-level electricity demand. Clustering
techniques to identify building archetypes depending on fea-
ture identification variables such as building area, shape, type,
orientation and occupancy number to reduce the number of
simulations. Detail dwelling physics information, including
areas, number of rooms, counts and number of units within
these dwellings, are listed in Table 1. Meanwhile, the construc-
tion properties and materials were derived according to the new
Part L of the 2010 building regulations (England and Wales)
for the conservation of fuel and power in new and existing
dwellings [7].

Table 1 Dwelling archetypes modelled in the simulation
environment

Type Archetype ID Room Area  N.D.* Units
[m?]
House The Maritime HSO03 3 62 6 6
The Mulberry ~ HS04 3 76 10 10
The Verve HS05 3 88 7 7
The Phoenix HS06 4 126 14 14
HA** HAO1 2 62 1 1
HA02 2 62 19 19
HAO03 2 62 4 4
HAO04 3 76 9 9
HAO06 4 126 7 7
Apartment HA** APT_C 12 45-64 1 12
Baron House APT B 2 53-62 6 24
Vantage House APT_F 1-2 45-53 1 8
Total 121

* N.D. = Number of dwellings
** HA = Housing Association

2.2 Occupancy and schedules

The occupancy number and behaviours play important roles to
decide the energy consumption pattern. There are three main
types of household in Vale of Glamorgan, Cardiff, distributed
on 32.3% for a single person household, 35.2% a couple with-
out children and around 32.5% for two adults with children
[8]. The number of occupants for each unit is estimated based
on the number of rooms and the household type distribution, as
shown in Table 2. On the other hand, the presence of occupants
reflects on the time of use of residential appliances. There-
fore, daily occupancy profiles in the district are derived based
on active occupancy patterns from the BRE Domestic Energy
Model (BREDEM) [9] and from the UK Time of Use Survey
2015 [10]. Occupancy behaviour scenarios were assigned to
units according to daily concluded occupancy profiles and the
probability of occupancy state adopted from Argon et al. [11],
as shown in Figure 1.

Table2 Occupancy distribution by household type

Archetype Occ.!  Units Rate  Household
[%] Size Rate [%]

APT_F, APT_C, APT_B 1 11 9.1 1 323
APT_F, APT_C,APT_B, 2 57 47.1 2 352
HAOI1, HA02, HAO3
HAO04, HS03, HS04, HS05 3 32 26.4 3 14.8
HAO06, HS06 4 21 174 +4 17.7
Total 121 100 100
1 Number of Occupants
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Fig. 1 Probability of occupancy states in the UK residential
houses for weekdays and weekends

2.3 Electrical load modelling

The individual electrical appliance loads and numbers in each
unit are the key elements for estimating the district electricity
demand since heating systems among the district archetypes
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are based on gas boilers. A multi-step process has been fol-

2500
. . —— washing machine
lowed to address these estimates based on an electrical load dishwasher
. . . . . 2000 —
scenario for domestic appliances, as shown in Figure 2, as _ cloth dryer
follows: Z 1500
)
2 1000
[e]
List of electrical o 500
appliances Penetration Update devices
¢ rate [%] o] 1
Leading appliances oad base 2 4 6 8 10 12 14 16

brands

|

scenario

Occupancy profile

Update schedules

Power load profiles

Building energy model
(IDF)

Fig. 2 Schematic diagram for generating the scenario of the

appliances’ ownership

+ First, penetration rates for a list of common electrical
devices including hot, cold, wet, brown, and miscellaneous
appliance groups in residential houses have been estimated
according to household ownership rates for domestic appli-
ances in the UK [12, 13], as illustrated in Figure 3. Then, an
ownership scenario for the simulation environment is gen-
erated by distributing those domestic appliances across the

121 units.

+ Secondly, groups of different appliances energy information
for each appliance were set according to leading appliances
brands in the UK market. After that, power load profiles
were calculated based on the rated power and energy con-
sumption for each appliance in those groups. Figure 4 illus-
trates different power load profiles for a washing machine,
dishwasher and cloth dryer randomly selected from wet

appliances group.
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Fig. 4 Examples of power load profiles for different wet
appliances

Finally, daily power load profiles for electrical appliances at
district units are developed basis on the usage frequency and
period adopted from the BRE Energy follow-up survey Report
[13] and active probabilities adopted from the UK Time of Use
Survey scenarios [14], as shown in Figure 5. In that way, each
unit has a full set of electrical load profiles aligned with the
appliances and devices it contains. Meanwhile, the information
for lighting power was set according to CIBSE SLL Lighting
Guide LG09: Lighting for communal residential buildings [15].
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Fig. 5 Activities of electrical appliances in the UK residential
houses

2.4 Weather information

Weather data is a key input required for adequate building ther-
mal simulations, which significantly influences on the whole
building energy performance. Most of the available weather
data files (EPW) describe typical meteorological conditions
that might include uncertainties due to use an old period or one-
period of records for generation and missed weather variances
of recent years [16].
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The EPW file contains 29 weather variables measurements,
among which nine important variables were used in the simu-
lations. These key variables can be sorted into four groups: (1)
outdoor air conditions: dry-bulb temperature, dew-point tem-
perature, relative humidity, and atmospheric pressure; (2) solar
radiation: direct normal solar radiation and diffuse horizontal
solar radiation; (3) sky radiation: horizontal infrared radiation;
and (4) wind conditions: wind direction and wind speed.

Real-time and historical data for weather parameters
required to run energy simulations were retrieved from a local
automatic weather station (AWS) installed at the district loca-
tion in Penarth. Meanwhile, forecast data are obtained from
a weather API online service in 15-min time resolution. An
algorithm to accommodate the meteorological data was used
to update the EPW file with the forecast and the real-time data
stored in the database.

2.5 Energy forecasting model

The development of the simulation-based forecasting model
has multi-step processes to predict electricity demands at
device level up to district level, as illustrated in Figure 6.
The energy model is being operated through algorithms to
collects building information, including building type, orien-
tation, and the number of occupants based on the input (plot
number/node label). After that, the model generates occu-
pancy profiles and operation schedules of electrical appliances
according to pre-defined occupant behaviour scenarios, and
electrical load scenarios, respectively. Then, it detects IDF(s)
of the required building(s) from the archived IDFs database
for district archetypes, and updates occupancy profiles, elec-
trical appliances ownership and operation schedules based on
the scenario of electrical appliances.

On the other hand, the model allows accommodating an
algorithm to collect real-time and forecasts for weather vari-
ables for the location of the building(s)/district from the
weather API (REEFS). Then, it estimates the missing parame-
ters through mathematical models. After that, this weather data

..............................

is used to update the EPW file and determine the run period
for the simulation. The results of the simulation environment
include predictions for the next 24-hour electricity profiles
for each unit, including: (i) the total electricity demands; (ii)
the power load for all electrical appliances; (iii) PV panel
generation profile (if installed).

3 Results

Multiple forecasting simulations for a daily electricity load pro-
file for district residential units have been performed, for a
weekday, using the developed framework. Figure 7 illustrates
the simulation environment results of 24-hour predictions for
electricity loads of individual residential units with a 15-min
time resolution, and the average daily electricity load profile
for domestic households within the study area. It shows that
two high demand periods are due during the morning-time (6
to 9 am) when occupants wake up and get ready to go out,
and when people come back home at the night-time (6 pm to
midnight).
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Fig. 7 An example of daily electricity load forecasts, for a
weekday, for 121 residential units. The dashed line represents
the average electricity load profile for domestic households in
the Penarth district

In order to validate the simulation environment forecast-
ing approach, statistical comparisons have been performed
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Fig. 6 A schematic diagram for the simulation-based forecasting model for district electricity loads in REEFS Simulation
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between the forecast data and the typical household electricity
consumption data according to the UK Household Electricity
Survey (HES) that was undertaken to monitor the electrical
power load and energy consumption based on a sample of
251 households []. The average annual consumption from the
HES data for all household types is 71 kWh per meter square,
while the averages based on dwelling types are 75, 66 and 77
kWh per meter square for terraced, detached houses and flats,
respectively.

Table 3 summaries statistical indicators for the simulation-
based forecasting model outputs. The average daily electricity
power demands from the forecasting model are about 12.5
KWh, while ranges between 10.4 to 12.4 KWh based on HES
data calculations. The total electricity demand for the 121 units
is 829.8 kWh. The simulation-based model gives a high fore-
casting accuracy on scales of building and district level, which
ranges from 0.79 up to 0.99 for individual indicators and from
0.85 to 0.97 for the whole district demand.

Table 3 Electricity demand forecasts validation

Indicator ~ Results HES! Accuracy

Area Household Area Household
Min 6.48 6.53 7.16 0.99 0.91
Max 21.71 19.91 21.35 0.79 0.98
Mean 12.57 10.49 12.41 0.80 0.99
Total 829.80 717.98 852.55 0.85 0.97

1 Calculation based on average annual consumption per meter square based

on household and dwelling types

4 Conclusion

A domestic electricity demand forecasting model based on
detailed physical model simulations has been presented. In
this study, key factors that influence the household electric-
ity consumption in the UK have been investigated, including
the appliance ownership and usage pattern and periods data.
The simulation model maps occupant activities to the appliance
use and stochastically generates individual appliance operation
schedules with a 15-min time resolution, which was developed
based on national appliance ownership statistics, individual
appliance electricity consumption and Time-of-Use data.

The model provides accurate predictions of the temporal
electricity demand variations and the peak power load. The
results of the study are used for (i) analysing the impact of
energy efficiency schemes and demand response on the grid;
(ii) the planning and operation of district-level low-voltage grid
considering the flexibility offered by the houses.

Overall, the modelling framework demonstrates an effective
method of domestic electricity use forecasting with the capabil-
ity to scale down to individual buildings and appliances level
that would be useful for stakeholders involved in buildings
energy demand, decision-makers and grid management.
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