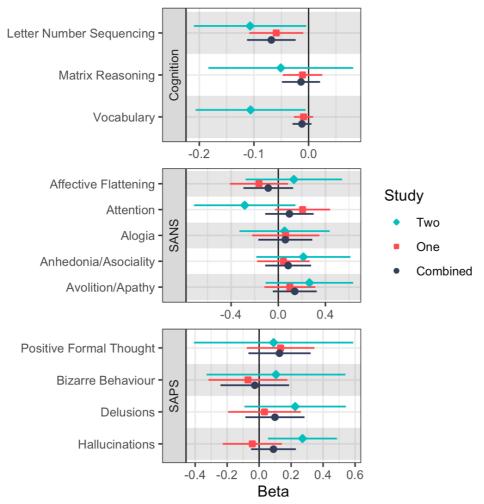
Study 3: ALPSAC cohort and genotyping

Individuals recruited via the wider ALSPAC sample ^{1, 2}. Briefly, Pregnant women resident in Avon, UK with expected dates of delivery 1st April 1991 to 31st December 1992 were invited to take part in the study. The initial number of pregnancies enrolled is 14,541 (for these at least one questionnaire has been returned or a "Children in Focus" clinic had been attended by 19/07/99). Of these initial pregnancies, there was a total of 14,676 foetuses, resulting in 14,062 live births and 13,988 children who were alive at 1 year of age. Participants were genotyped using the Illumina HumanHap550 guad chip genotyping platforms by 23andme subcontracting the Wellcome Trust Sanger Institute, Cambridge, UK and the Laboratory Corporation of America, Burlington, NC. Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees. Consent for biological samples has been collected in accordance with the Human Tissue Act (2004). The genome-wide data were subjected to quality control as follows: individuals were excluded on the basis of sex mismatches; minimal or excessive heterozygosity; individual SNP missingness (>3%). Population stratification was assessed by multidimensional scaling analysis and compared with Hapmap II (release 22) European descent (CEU), Han Chinese, Japanese, and Yoruba reference populations; all individuals with non-European ancestry were removed. SNPs with a minor allele frequency of <1%, a call rate of <95% or evidence for violations of Hardy-Weinberg equilibrium (P < 5E-7) were removed. Cryptic relatedness was measured/excluded as proportion of identity by descent (IBD > 0.1). Related subjects that passed all other quality control thresholds were retained during subsequent phasing and imputation. Nine thousand one hundred fifteen subjects and 500527 SNPs passed these quality control filters. We combined 477482 SNP genotypes in common between the sample of mothers and sample of children. We removed SNPs with genotype missingness above 1% due to poor quality (11396 SNPs removed) and removed a further 321 subjects due to potential ID mismatches, resulting in a data set containing 465740 SNPs. We estimated haplotypes using ShapelT (v2.r644) which utilizes relatedness during phasing. We obtained a phased version of the 1000 genomes reference panel (phase 1, version 3) from the Impute2 reference data repository (phased using Shapelt v2.r644, haplotype release date Dec 2013). Imputation of the target data was performed using Impute V2.2.2 against the reference panel (all polymorphic SNPs excluding singletons), using all 2186 reference haplotypes (including non-Europeans). After quality control, a total of 8365 individuals were genotyped and underwent SCZ-PRS calculations. Please note that the study website contains details of all the data that is available through a fully searchable data dictionary and variable search tool available at http://www.bristol.ac.uk/alspac/researchers/our-data/.


Supplementary Table 1. Effect sizes (Cohen's *d*), averaged across hemisphere for cortical thickness (_thickavg); cortical surface area (_surfavg) and volume for Schizophrenia (SCHZ, from ^{3, 4}) and Attention Deficits Hyperactivity Disorder (ADHD, from ^{5, 6}).

Region_of_interest	ADHD	SCHZ	
Accumbensarea	-0.15	-0.25	
Amygdala	-0.19	-0.31	
Caudate	-0.11	0.02	
Hippocampus	-0.11	-0.46	
Pallidum	0.00	0.21	
Putamen	-0.14	0.08	
ThalamusProper	-0.03	-0.31	
bankssts_thickavg	0.00	-0.3535	

udalanteriorcingulate_thickavg	-0.04	-0.1355	
caudalmiddlefrontal_thickavg	-0.05	-0.34	
cuneus_thickavg	0.02	-0.2145	
entorhinal_thickavg	-0.08	-0.1765	
frontalpole_thickavg	0.01	-0.2105	
fusiform_thickavg	-0.10	-0.5135	
inferiorparietal_thickavg	0.01	-0.355	
inferiortemporal_thickavg	-0.03	-0.444	
insula_thickavg	-0.05	-0.407	
isthmuscingulate_thickavg	0.03	-0.3085	
lateraloccipital_thickavg	0.03	-0.3365	
lateralorbitofrontal_thickavg	-0.03	-0.378	
lingual_thickavg	-0.02	-0.3675	
medialorbitofrontal_thickavg	0.00	-0.2375	
middletemporal_thickavg	-0.02	-0.4115	
paracentral_thickavg	-0.05	-0.2345	
parahippocampal_thickavg	-0.06	-0.281	
parsopercularis_thickavg	-0.04	-0.3995	
parsorbitalis_thickavg	-0.02	-0.329	
parstriangularis_thickavg	0.01	-0.357	
pericalcarine_thickavg	-0.01	-0.0815	
postcentral_thickavg	-0.02	-0.271	
posteriorcingulate_thickavg	-0.03	-0.304	
precentral_thickavg	-0.11	-0.33	
precuneus_thickavg	-0.03	-0.3025	
rostralanteriorcingulate_thickavg	-0.01	-0.151	
rostralmiddlefrontal_thickavg	0.00	-0.3375	
superiorfrontal_thickavg	0.00	-0.411	
superiorparietal_thickavg	0.01	-0.214	
superiortemporal_thickavg	0.00	-0.439	
supramarginal_thickavg	-0.02	-0.3905	
temporalpole_thickavg	-0.12	-0.241	
transversetemporal_thickavg	0.01	-0.2575	
bankssts_surfavg	-0.07	-0.1755	
caudalanteriorcingulate_surfavg	-0.09	-0.142	
caudalmiddlefrontal_surfavg	-0.13	-0.161	
cuneus_surfavg	-0.06	-0.1625	
entorhinal_surfavg	-0.07	-0.1235	
frontalpole_surfavg	-0.05	-0.0955	
fusiform_surfavg	-0.12	-0.218	
inferiorparietal_surfavg	-0.11	-0.1885	
inferiortemporal_surfavg	-0.10	-0.2065	

insula_surfavg	-0.12	-0.1175
isthmuscingulate_surfavg	-0.09	-0.053
lateraloccipital_surfavg	-0.11	-0.164
lateralorbitofrontal_surfavg	-0.12	-0.1645
lingual_surfavg	-0.07	-0.158
medialorbitofrontal_surfavg	-0.11	-0.144
middletemporal_surfavg	-0.10	-0.2055
paracentral_surfavg	-0.04	-0.102
parahippocampal_surfavg	-0.08	-0.121
parsopercularis_surfavg	-0.08	-0.1485
parsorbitalis_surfavg	-0.08	-0.1835
parstriangularis_surfavg	-0.12	-0.136
pericalcarine_surfavg	-0.08	-0.12
postcentral_surfavg	-0.10	-0.1845
posteriorcingulate_surfavg	-0.13	-0.121
precentral_surfavg	-0.08	-0.1905
precuneus_surfavg	-0.10	-0.1465
rostralanteriorcingulate_surfavg	-0.11	-0.1575
rostralmiddlefrontal_surfavg	-0.12	-0.1935
superiorfrontal_surfavg	-0.15	-0.222
superiorparietal_surfavg	-0.13	-0.18
superiortemporal_surfavg	-0.11	-0.1955
supramarginal_surfavg	-0.09	-0.131
temporalpole_surfavg	-0.11	-0.0995
transversetemporal_surfavg	-0.06	-0.1595

Supplementary Figure 1 / Table 2. Association between SCZ-MRS and Wechsler Adult Intelligence Scale (WAIS-IV) subsets and global factors for the Scale for the Assessment of Positive and Negative Symptoms (SANS, SAPS). All estimates are adjusted for covariates within sample. Error bars represent 95% confidence intervals of the beta estimate. Combined effects were estimated via fixed-effect meta-analysis.

COMBINED						
TRAIT	PHENOTYPE	BETA	SE	PVAL	P _{BON}	
Cognition	Letter Number Sequencing	-0.068	0.023	0.003	0.032	
Cognition	Matrix Reasoning	-0.014	0.018	0.434	1.000	
Cognition	Vocabulary	-0.012	0.009	0.169	1.000	
SANS	Affective Flattening	-0.085	0.108	0.429	1.000	
SANS	Attention	0.094	0.105	0.367	1.000	
SANS	Alogia	0.059	0.117	0.610	1.000	
SANS	Anhedonia/Asociality	0.084	0.099	0.398	1.000	
SANS	Avolition/Apathy	0.140	0.095	0.141	1.000	
SAPS	Positive Formal Thought	0.128	0.099	0.199	1.000	
SAPS	Bizarre Behaviour	-0.027	0.109	0.806	1.000	
SAPS	Delusions	0.099	0.094	0.295	1.000	
SAPS	Hallucinations	0.090	0.072	0.210	1.000	

Supplementary References

- 1. Boyd A, Golding J, Macleod J, et al. Cohort Profile: the 'children of the 90s'--the index offspring of the Avon Longitudinal Study of Parents and Children. *International journal of epidemiology* Feb 2013;42(1):111-127.
- 2. Fraser A, Macdonald-Wallis C, Tilling K, et al. Cohort Profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. *International journal of epidemiology* Feb 2013;42(1):97-110.
- **3.** van Erp TG, Hibar DP, Rasmussen JM, et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. *Mol Psychiatry* Apr 2016;21(4):547-553.
- 4. van Erp TGM, Walton E, Hibar DP, et al. Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. *Biological psychiatry* Nov 1 2018;84(9):644-654.
- 5. Hoogman M, Bralten J, Hibar DP, et al. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. *Lancet Psychiatry* Apr 2017;4(4):310-319.
- 6. Hoogman M, Muetzel R, Guimaraes JP, et al. Brain Imaging of the Cortex in ADHD: A Coordinated Analysis of Large-Scale Clinical and Population-Based Samples. *Am J Psychiatry* Jul 1 2019;176(7):531-542.