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Abstract 

Among neuroretinal degenerations, glaucoma and age-related macular degeneration (AMD) 

have become the most frequent reasons for irreversible blindness globally. Among the causes 

of the elderly and senile dementia, Alzheimer’s disease (AD) has the leading position, the early 

ocular symptoms of which can potentially be a prognostic factor. The aim of this thesis was 

the early in vivo ligand-free detection of degenerative changes in the inner and outer retinal 

layers, which was possible using high-resolution optical coherence tomography (OCT) with 

the machine learning (ML) algorithms: support vector machine (SVM) and principal 

component analysis (PCA). 

Prior to the application of SVM and PCA for the classification of human OCT images, 

evaluation of the classifiers was performed in the classification of optical phantoms, the 

accuracy of which was in the range of 82-100%. This was the first attempt to measure the 

textural properties of various polystyrene and silica beads optical phantoms. 

To identify optical changes that characterise early apoptosis, OCT imaging of axotomised 

retinal ganglion cells (RGCs) in ex vivo retinal murine explants was performed. Substantial 

optical alterations in RGC dendrites in the early stages of apoptosis (up to 2 hours) were 

detected. ML algorithms correctly classified the retinal texture of the inner plexiform layer 

(IPL) of transgenic AD mice in all cases, indicating the potential for further investigation in in 

vivo animal and human studies. Not only the optical signature but also the transparency of 

the dissected murine retinal explants was investigated. Moreover, ML classification of 3xTg 

mice IPL layer was studied in terms of optical changes due to the RGD dendritic atrophy. 

ML classifiers’ accuracy in the detection of early and neovascular AMD was 93-100% for the 

texture of retinal pigment epithelium, 69-67% for the outer nuclear layer, 70% for the inner 

segment and 60-90% for the outer segment of photoreceptors. Classification of AMD stages 

and comparison with the age-matched healthy controls was carried out in the outer retina 

and RPE. 

Grey-level co-occurrence, run-length matrices, local binary patterns features were extracted 

from the IPL of the macula to classify glaucoma OCT images. The accuracy of linear and non-

linear SVMs, linear and quadratic discriminant analyses, decision tree and logistic regression 

was between 55-70%. Based on the classifiers’ precision, recall and F1-score, Gaussian SVM 
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outperformed other ML techniques. In this study, the observation of early glaucomatous 

subtle optical changes of human IPL was conducted. Also, the significance of various 

supervised ML algorithms was investigated. 

Understanding the optical signature of cumulative inherent speckle of OCT scans arising from 

apoptotic retinal ganglion cells and photoreceptors may provide vital information for the 

prevention of retinal neurodegeneration.  
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Chapter 1. General Introduction  

1.1. Optical coherence tomography 

Optical coherence tomography (OCT) is a biomedical and clinical cross-sectional 3-

dimensional in vivo imaging method for materials and biological systems (Schuman et al. 

1995; Drexler and Fujimoto 2008). The technology is based on low coherence interferometry 

and acquires the images by measuring the optical reflections from back scattered light (Huang 

et al. 1991; Drexler et al. 2001).  

Fluorescein angiography (FA), magnetic resonance imaging (MRI) and ultrasound may serve 

as alternative imaging technologies of OCT. If FA is an invasive method, that requires 

intravenous injection of dye to visualise the microvasculature of the fundus, MRI and 

ultrasound are non-invasive. However, both techniques have a lower axial and lateral 

resolution in comparison to OCT. 

OCT imaging has become one of the principal methods for imaging eye diseases in the last 30 

years due to its capability for detailed visualisation of the structure of the anterior and 

posterior eye, including retina and choroid (Huang et al. 1991; Schuman et al. 1995; Tudor et 

al. 2014). The main advantages of OCT are that it is non-invasive, has a fast acquisition time 

(seconds), and confers high accuracy and diagnostic precision (Fujimoto et al. 1995; Fercher 

1996; Drexler 2010; Tudor et al. 2014; Morgan et al. 2017). 

 

1.1.1. Basic principles 

The principle of OCT operation is similar to the performance of another medical imaging 

technology – ultrasonography (Culjat et al. 2010; Marchini et al. 2015). While ultrasound 

measures sound waves back-reflected from objects of various densities to produce images of 

the tissues (Chen et al. 2009; Culjat et al. 2010; Gazzard et al. 2015), OCT obtains directly time-

encoded signals and determines the quantity of backscattered light (Krauss and Puliafito 

1995; Drexler and Fujimoto 2008). This is the working procedure of the first clinical OCTs 

which analysed data in the time-domain (Time Domain, TD-OCT) (Pan et al. 1995; Drexler and 
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Fujimoto 2008) using a single photodetector and calculation of the time delay of echo back-

scattered waves from the sample (Fujimoto et al. 1995). 

By contrast, instead of using multiple reference beams from a moving mirror, spectral/Fourier 

domain OCT (SD-OCT/FD-OCT) acquires images by multiple detectors (Choma et al. 2003; 

Drexler and Fujimoto 2008). Therefore, the scanning speed is considerably increased to 27 

000 A-scans per second (Gabriele et al. 2011), reaching 100 000 A-scans per second in 

laboratory-based SD-OCT, which is 200 times faster than TD-OCT (de Amorim Garcia Filho et 

al. 2013). Another advantage of SD-OCT over TD-OCT is an increase in sensitivity, which of 20-

30dB higher in the spectral domain device (Choma et al. 2003). 

Laser light from a solid-state or superluminescent diode (SLD) source travels to an 

interferometer and is divided into two high-bandwidth light beams: one directed at the object 

(sample tissue) with the other goes to the reference arm of the OCT (Figure 1.1) (Drexler and 

Fujimoto 2008). The back scattered light beams from both OCT arms are then combined and 

registered as an axial A-scan (de Amorim Garcia Filho et al. 2013). Light travelled along with 

the object is collected as A-scans for further reconstruction to a B-scan (Figure 1.2a) (Swanson 

et al. 1993). Figure 1.2b depicts the fundus photography of the same patient and the green 

arrow shows the projection of the B-scan along the fovea. OCT produces two and three-

dimensional images with its averaging after a series of scans are accomplished by using the 

optical sectioning capability of OCT (Huang et al. 1991; Hee et al. 1995). 

 

1.1.2. OCT resolution 

OCT can provide images with an axial resolution in the range of 1 – 15µm (Drexler and 

Fujimoto 2008) with the coherence length of the light source in OCT determining the spatial 

resolution of the device (Morgner et al. 2000). Current commercially available OCT devices 

use a light source centred at a wavelength of approximately 840nm and their axial resolution 

is about 5μm (de Amorim Garcia Filho et al. 2013). 

At the same time, laboratory-based OCT with broadband light sources has an axial resolution 

from 10μm to 2μm (Gabriele et al. 2011). Ultrahigh-resolution OCT allows imaging of the 

biological tissue structure with the axial resolution of 2–3μm (Drexler et al. 2001). One of the 



3 
 

limitations for the lateral resolution of OCT devices (about 20μm) is the diffraction from the 

pupil (de Amorim Garcia Filho et al. 2013). 
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Figure 1.1. Lab-based OCT system structure. Coherent light from a laser source travels to the 
beam splitter (interferometer) and divided into two waves directing to both arms: 1. Moving 
mirror of reference arm; 2. Sample arm, which can be adjusted to scan in vivo human eye (PAT 
– patient) and ex vivo explants or in vitro samples (Micro – microscopy). Then reflected light is 
collected from both arms and directed to the detector. Created with BioRender.com 

a b 

 

 

Figure 1.2. OCT image acquired by OCT-1040nm with the corresponding fundus image. a – 
OCT image through the macula of a healthy retina. b – fundus photo of the same patient’s 
retina.  
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1.2. OCT anatomy of the retina 

The retina comprises a complex multi-layered network of nerve cells with a combined 

thickness of 0.4 mm (Malhotra et al. 2011; Garhart and Lakshminarayanan 2016). Retinal 

neurons are the sensory part of the visual system that perceives the light and colour signals 

from the external world (Smerdon 2000; Westwood 2009). There are 3 cell layers in the retina 

represented by retinal ganglion cells (RGCs), bipolar cells and photoreceptors – rods and 

cones (Polyak 1949) (Pellegrino de Iraldi and Jaim Etcheverry 1967; Sung and Chuang 2010; 

Tian et al. 2017). The fovea is characterized by a high density of cones and the absence of rods 

(Schultze 1866). The plexiform layers of the retina consist of axons and dendrites of the 

corresponding retinal neurons and also amacrine and horizontal cells called interneurons 

(Figure 1.3) (Boycott et al. 1975; Pascale et al. 2012; Purnyn 2013).  

The retinal ganglion cell complex (GCC) extends from the internal limiting membrane (ILM) to 

the inner nuclear layer (INL) (Kim et al. 2011). The inner plexiform layer (IPL) separates the 

INL from the retinal ganglion cells layer (GCL) and consists of a tangle of intricately branched 

and intertwining neuronal processes (Quigley et al. 1989; Tan et al. 2009). RGCs are located 

in the inner layers of the retina, the thickness of which decreases noticeably toward the 

periphery. The retinal nerve fibre layer (RNFL) consists of ganglion cell axons that exit the eye 

to form the optic nerve head (ONH) (Lee et al. 2015). 

The sizes of RGC somas vary with retinal eccentricity. Moreover, the most prominent 

specialization of retinal topography and the majority of ganglion cells are located in the foveal 

area (Stone and Johnston 1981; Dowling 1987; Wässle and Boycott 1991). To the periphery, 

on the contrary, the number of RGCs drops sharply. This reflects the fact that in fovea there 

is an almost one-to-one correspondence between photoreceptors and ganglion cells, on the 

periphery, there is a strong convergence of photoreceptors to bipolar cells and bipolar cells 

to one ganglion cell (Perry and Cowey 1985; Curcio et al. 1990). Also, due to the projection of 

signals to the various layers of the lateral geniculate nucleus (LGN), there are two types of 

RGCs: parasol cells projects to magnocellular and midget cells – to parvocellular layers of LGN. 
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Figure 1.3. The schematic structure of the retina. 3 layers of neurons with amacrine and 
horizontal cells. Layers: RNFL – retinal nerve fibre layer; GCL –ganglion cell layer; IPL – inner 
plexiform layer; INL – inner nuclear layer; OPL – outer plexiform layer; ONL – outer nuclear 
layer; PRL – photoreceptor layer; RPE – retinal pigment epithelium. Created with 
BioRender.com 
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Axons of RGCs remain unmyelinated in the retina because of the need to maintain 

transparency (Yang et al. 2013). In the ONH, they form nerve fascicles that pass through the 

lamina cribrosa (LC) (Morgan 2004). As they emerge from the LC, these nerve fibres acquire 

a myelin sheath, which dramatically increases the diameter of the post laminar optic nerve 

(Elkington et al. 1990). 

The LC is a sieve-like structure at the level of the sclera of the eye. In normal eyes, the LC is 

partly obscured by the axons of the retinal ganglion cells (RGCs)with only a small portion of 

LC visible using OCT (Morgan-Davies et al. 2004; Chauhan et al. 2013). Due to the pressure 

differences between the eye and the retrobulbar space, the LC provides structural and 

functional support to the axons of ganglion cells (Radius 1981; Zeimer and Ogura 1989). 

During glaucoma, the LC is the primary region of injury due to elevated IOP (Quigley et al. 

1989; Quigley 1993; Tian et al. 2017). 

The layered structure of the retina is visible in OCT images (Figure 1.4): RNFL and GCL are 

reflective and are seen as bright colours on a false-colour scale, whereas INL and ONL appear 

hypo-reflective, while IPL and OPL with axons and dendrites of retinal neurons are hyper-

reflective (Drexler et al. 2001). As can be seen in Figure 1.4, the OCT morphology of the retina 

correlates well with the tissue microscopy images. The contrast in the reflectivity of biological 

structures affects the resolution of the retina and it can be used for the differentiation of the 

normal and pathologic states of the organ (Toth et al. 1997).  
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Figure 1.4. Top – OCT image of the normal human macula (65 years), bottom – histologic 
micrograph of the normal macula (72 years). 1–10 bands in the micrograph correspond to 1. 
NFL – nerve fibre layer; 2. GCL –ganglion cell layer; 3. IPL – inner plexiform layer; 4. INL – 
inner nuclear layer; 5. OPL – outer plexiform layer; 6. ONL – outer nuclear layer; 7. ELM – 
external limiting membrane; 8. IS PR – inner segments of the photoreceptors; 9. OS PR – 
outer segments of the photoreceptors; 10. RPE – retinal pigment epithelium; P – foveal pit. 
Images reproduced with permission from (Vajzovic et al. 2012). 
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1.2.1. Cellular scattering contribution to OCT signal 

Scatterers of OCT light from the back-reflected retina can be multiple tissue components, 

including cell organelles, proteins, lipids and extracellular matrix constituents (Mourant et al. 

1998; Wang and Tuchin 2013). Generally, the scattering may depend on the morphological 

and optical properties of the sample (Ejofodomi 2014; Sun et al. 2020). Light distribution and 

the spatial variation of the refractive index of the materials influence the scattering and 

absorption coefficients (Beuthan et al. 1996). While the refractive index of the whole cell 

equals 1.38, a significant contribution to light scattering belongs to the membranous 

organelles, the index of refraction of which amounts to 1.48 (Beuthan et al. 1996) (Figure 1.5). 

For instance, the regions with the mitochondria provide 90% of scattering reflection (Gourley 

et al. 2005). The membrane of the cell and organelles contains phospholipid polymers, which 

are the sources of scattering (Beuthan et al. 1996; Mourant et al. 2000; van der Meer et al. 

2010).  

According to the Gladstone-Dale equation, the cellular refractive index 𝑛 is proportional to 

the local macromolecular mass density (1.1) (Barer and Tkaczyk 1954; Davies et al. 1954; Yi et 

al. 2016). 

𝑛 = 𝑛0 + 𝜌𝛼, (1.1) 

 

where 𝑛0 is the refractive index of water, ρ is the local mass density of macromolecules (g/ml), 

α is the refractive index increment (ml/g). For biological materials, this value is approximately 

0.17 ml/g (Cherkezyan et al. 2012). Due to the varied distribution of mass density, the local 

differences in refractive index backscattered light in detectable due to elastic scattering 

(Beuthan et al. 1996). 
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Figure 1.5. Scattering contribution of a cell. Individual organelles with phospholipid 
membrane have a higher refractive index than the overall index of refraction of the cell  
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1.3. Inner retina neurodegeneration 

Neurodegeneration of the inner retina is one of the major causes of the pathogenesis of most 

diseases affecting the ocular fundus (Wert et al. 2014). Such ophthalmic and neuronal 

diseases as glaucoma, diabetic retinopathy, multiple sclerosis, Alzheimer’s disease and 

Parkinson’s disease often lead to vision impairment and loss of function of RGCs (Blanks et al. 

1989; Kern and Barber 2008; Ozawa et al. 2011; Albrecht et al. 2012; van Dijk et al. 2012; 

Klistorner et al. 2017; La Morgia et al. 2017; Bevan et al. 2020; Catalani and Cervia 2020). In 

glaucoma, RGC apoptosis was reported by Kerrigan et al. (1997) after identifying TUNEL 

(terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (UTP)-biotin 

nick end-labelling) positive cells. 

 

1.3.1. RGC apoptosis 

Mitochondria are involved in multiple functions of the cell: generation of adenosine 

triphosphate, mineral homeostasis (especially Ca2+), reactive oxygen production, 

specialisation and maturation of the cell (Giorgi et al. 2012; Zorov et al. 2014; Xavier et al. 

2016). Due to the high energy-consuming nature of apoptosis, in the initiation of the cell 

death, mitochondrial fission is involved (Perfettini et al. 2005; Youle and Karbowski 2005) with 

associated changes in mitochondrial morphology (tiny spheres, reticular network) arising 

from the balance between fusion and fission (Chan 2006). This is a dynamic process that is 

mediated by mitochondrial proteins (Okamoto and Shaw 2005). Before caspase activation 

under the translocation of dynamin-related protein 1 (from the cytosol to mitochondria) the 

fragmentation of tubular mitochondria into numerous punctiform organelles begins in 

apoptotic cells (Figure 1.6) (Frank et al. 2001; Shim et al. 2016). 
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Figure 1.6. Mitochondrial fission during RGC degeneration. Created with BioRender.com 

 

1.3.2. Glaucoma 

Retinal neurodegeneration in glaucoma is often associated with a constant effect of increased 

intraocular pressure (IOP) (Frankfort et al. 2013). Multiple subcellular events of changing 

organelles’ morphology and function at the onset of the disease may lead to large structural 

irreversible changes in a more progressive stage of glaucoma (Almasieh et al. 2012; Morgan 

et al. 2017).  

Glaucoma is a group of diseases manifested by the excavation of the optic nerve head and 

deterioration of the visual field (Quigley and Broman 2006; Quigley 2011; Jonas et al. 2017), 

leading to irreversible blindness (Coleman 1999). An increase in the cup-to-disc ratio is a 

consequence of RGC axon damage (Quigley 2011). The common pathogenetic signs of the 

disease are a slow and imperceptibly progressive degeneration of the optic nerve (Foster et 

al. 2002), usually associated with a chronic increase of IOP (Armaly 1969; Sommer et al. 

1991a), loss of RGCs, RNFL thinning (Jonas et al. 2017), initiated by the apoptosis of RGCs 

(Garcia‐Valenzulela et al. 1994). 

The currently available treatments of glaucoma are mainly focused on the reduction of 

elevated IOP (Heijl 2015). However, the relationship between increased IOP and the onset of 

glaucoma is complicated. Furthermore, the clinical manifestations occur after significant 

glaucomatous damage of the retina. For that reason, the early detection of retinal damage is 

essential (Morgan et al. 2017). 

According to the state of the anterior chamber angle, there are two main morphological forms 

of glaucoma (Foster 2001; Quigley 2011): open-angle glaucoma and angle-closure glaucoma. 

Primary open-angle glaucoma (POAG) is a chronic, progressive irreversible optic neuropathy, 
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resulting in acquired atrophy of the optic nerve (loss of RGCs axons). The disease in the 

majority of cases is bilateral, usually asymmetric (Jonas et al. 1999). Even though the majority 

of patients with glaucoma have higher than normal intraocular pressures, some patients have 

normal or low IOP (Tanna 2015; Mallick et al. 2016). Other symptoms of POAG are halos 

around the sources of light, blurred vision, rarely eye pain and asymptomatic central vision 

loss in the later stages of the disease (Sommer et al. 1991a). In a gonioscopic observation, the 

angle of the anterior chamber is open (Prum et al. 2016b). The cupping of the optic nerve 

head is visualised by ophthalmoscopy; and a visual field test allows the detection of loss of 

visual sensitivity (Quigley 1993; Nilforushan et al. 2016).  

Primary angle-closure glaucoma (PACG) is a type of glaucoma with an acute raised eye 

pressure due to disruption of aqueous humour outflow by appositional or synechial closure 

of the angle of the anterior chamber (Foster 2001; Foster et al. 2002; Prum et al. 2016a; 

Wright et al. 2016). Although PACG is generally an acute, painful disease associated with 

vision impairment, more than 75% of patients do not have an urgent attack (Yip and Foster 

2006). Except for high intraocular pressure, mid-dilated pupil, red-eye, or nausea and 

vomiting, a non-specific headache, eye pain, or halos around lights are manifestations of the 

PACG (Coleman 1999; Prum et al. 2016a). 

The diagnosis of PACG requires a slit-lamp and gonioscopy lens to evaluate the angle of the 

anterior chamber to observe the trabecular meshwork (Alsbirk 1976; Coleman 1999). 

Gonioscopy mirrors within the lens enable the assessment of the width of the angle between 

the iris and the cornea at their junction; this is the region of outflow of intraocular fluid. This 

method allows the classification of the type of glaucoma: POAG or PACG. (Quigley 1993). 

Moreover, OCT also can be used to measure the angle of the anterior chamber for further 

differentiation (Ni Ni et al. 2014). 

Recently, glaucoma has become the most frequent cause of irreversible blindness throughout 

the world (Bourne et al. 2013; Tham et al. 2014), including developing countries (Cedrone et 

al. 2008). Both POAG and PACG are generally present in older people and these numbers are 

progressively increasing (Quigley and Broman 2006; Quigley 2011). POAG is seven times more 

prevalent than PACG in the United States, and worldwide (Sommer et al. 1991b). On the other 

hand, the number of angle-closure glaucoma is higher in Asia (Quigley 1996). IOP lowering 
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treatment decelerates the progression of both types of glaucoma (Heijl et al. 2002). However, 

there is a demand to stop the disease in the early stages. 

 

1.3.3. Alzheimer’s disease 

Apoptosis of RGCs may also occur in the early stages of Alzheimer’s disease (AD) (Obulesu and 

Lakshmi 2014; Bell et al. 2020). The pathogenesis of AD is based on the processes of 

accumulation and deposition of β-amyloid in the brain, which leads to dysfunction of synapses 

and death of neurons (Peña et al. 2006; Murphy and LeVine 2010). AD is one of the most 

common causes of dementia in the elderly and senile people (Prince 2015). The prevalence 

of AD is steadily increasing with age, and, according to “World Alzheimer Report 2015: The 

Global Impact of Dementia” the incidence of the disease will reach 131.5 million by 2050 

(Prince 2015). 

Recently, there has been significant progress in the development of diagnostic tools for the 

pathophysiological manifestations of AD. New laboratory and neuroimaging diagnostic 

methods are used, such as determining the level of β-amyloid, tau protein and 

phosphorylated tau protein in cerebrospinal fluid, Positron emission tomography (PET) with 

the radioactive analogue of thioflavin T – Pittsburgh substance or PiB, and fluorodeoxyglucose 

(18F-FDG) (Blennow 2004; Mosconi et al. 2010; Jia et al. 2011). 18F-FDG PET allows the 

assessment of the metabolic rate of various parts of the brain.  Moreover, the degree of 

atrophy of the cerebral cortex brain can be assessed using Magnetic resonance imaging (MRI) 

(Johnson et al. 2012). 

β-amyloid deposition and neurofibrillary tangles lead to the loss of synapses, progressive 

deficiency of neurotransmitters and neurons, which in turn may cause the atrophy of the 

affected areas of the brain (Serrano-Pozo et al. 2011). This complex cascade of events 

contributes to the development of clinical symptoms of dementia. 

Polymorphous amyloid is deposited on the walls of cerebral vessels and in the parenchyma 

of the brain in the form of the so-called “Senile plaques” (Cras et al. 1991; Murphy and LeVine 

2010). One of the hypotheses explaining the consequent death of neurons adjacent to these 

plaques is the activation of neuronal calcium channels (Shirwany et al. 2007). Hence, there 

might be an increase of intracellular calcium and the development of free radical oxidation of 
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neuronal membranes (Jadiya et al. 2019). Additionally, a direct toxic effect of β-amyloid on 

glial structures is also possible. For instance, microglia and macrophages are activated as a 

result of the direct toxic action of amyloid in the study of (Ling et al. 1992). 

According to the National Institute on Aging (NIA) at the National Institute of Health (NIH) and 

the Alzheimer's Association, it was proposed to distinguish three stages of AD: preclinical 

Alzheimer’s disease (asymptomatic), mild cognitive impairment (MCI) due to AD, and 

dementia due to AD (Jack et al. 2018). This classification improves the accuracy of diagnosis 

at all stages of the disease due to the focus on biomarkers of AD, that appear in an onset of 

the disease as a molecular neuropathological manifestation of the disease. 

Pathological biomarkers of AD – β-amyloid plaques and hyper-phosphorylated tau – play a 

major role in the pathogenesis of the disease (Shirwany et al. 2007; Serrano-Pozo et al. 2011; 

Grimaldi et al. 2018). These protein deposits have a toxic effect and cumulate in the CNS and 

retina, which lead to the loss of RGC (Chiasseu et al. 2017). AD biomarkers can be found in 

cerebrospinal fluid (Blennow 2004; Buerger et al. 2006; Tapiola et al. 2009). Also, the 

detection of proteins is available through brain imaging or post-mortem retina (James et al. 

2015; den Haan et al. 2018). Thus, there is a demand for effective and early diagnosis 

methods. Here, the eye as a window to the brain can be used for this purpose (Lim et al. 

2016). 

Three genes PS1M146 V, APPSwe and MAPTP301L are mutated in triple-transgenic (3xTg) AD 

mouse model, encoding presenilin 1, amyloid precursor protein and tau, respectively 

(Chiasseu et al. 2017). In the study of (Grimaldi et al. 2018), the neurotoxic proteins were 

detected in the retina of the 3xTg-AD mouse model at a pre-symptomatic early stage of the 

disease. In addition, an increase of early-phase RGC apoptosis and oxidative stress in the 3xTg-

AD mouse were detected by in vivo cSLO with fluorescent cell death marker labelling 

(Cordeiro et al. 2010).  

Moreover, microglial alterations in the 3xTg-AD retina were investigated in the study of 

(Edwards et al. 2014): Müller cells were positively reacted to glial fibrillary acidic protein 

(GFAP), whereas astrocytes were positive for S100. These glial markers showed the retinal 

glia activation in the retina of a mouse model of AD (Neves et al. 2017). 
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Along with the functional changes in AD, thinning of the retina, especially RNFL is observed 

(Hart et al. 2016; Neves et al. 2017). However, in the study of (Lim et al. 2015), the thicknesses 

of parafoveal RNFL, INL and IPL were increased. The thickening of these layers, according to 

the authors, is the result of the inflammatory process and aggregation of beta-amyloid drusen 

(Kayabasi and Sergott 2015; Lim et al. 2015). 

There is a demand for the broader application of OCT in the diagnosis of early retinal 

alterations of AD. Ophthalmic manifestations of AD may precede irreversible changes in the 

brain (Hart et al. 2016; Lim et al. 2016; Czakó et al. 2020), which increases the need for non-

invasive ligand-free detection of the disease. RGC apoptosis in the 3xTg-AD mouse model will 

be investigated in Chapter 4. 
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1.4. Outer retina neurodegeneration 

Apoptosis of photoreceptors may also cause irreversible changes in the tissue morphology 

(Remé et al. 2000). Age-related macular degeneration (Dunaief et al. 2002; Ding et al. 2009; 

Telegina et al. 2017), pigment dystrophies (Tso et al. 1994; Travis 1998), retinal detachment 

(Lo et al. 2011; Murakami et al. 2013) and other diseases are the consequences of retinal and 

RPE cell death (Huang et al. 2014; Wert et al. 2014).  

 

1.4.1. Photoreceptor and RPE apoptosis 

The RPE plays a major role in the homeostasis of the neural retina and particularly 

photoreceptors (Fuhrmann et al. 2014). For instance, RPE cells absorb light photons that pass 

through the retina due to the presence of melanosomes (Herman and Steinberg 1982; 

Burgoyne et al. 2015). This absorption minimises the back scattering of light to the inner 

tissues (Prieto et al. 2005; Strauss 2005). While the products of photoreceptors’ metabolism 

are ingested by RPE cells with further production of lipofuscin (Herman and Steinberg 1982; 

Katz et al. 1986; Kennedy et al. 1995) the accumulation of lipofuscin may lead to RPE 

dysfunction and contribute to age-related retinal degeneration (AMD) (Dorey et al. 1989), 

which recently was mathematically detected by using combined OCT and fundus 

autofluorescence in the study of (Nafar et al. 2020). 

RPE cells envelop the distal tips of photoreceptors’ outer segments (OS) (Lai et al. 1982), 

where the visual pigments are located (Young 1967). Through isthmus OS is connected with 

the inner segment (IS) of photoreceptor, that accommodates cell organelles: mitochondria, 

Golgi apparatus and endoplasmic reticulum. Nucleus and axonal synaptic terminals of 

photoreceptors are present in the cell body (De Robertis and Lasansky 1958). 

Mitochondria in photoreceptors are mainly located in the IS (Figure 1.7) and mediate 

intercellular communication through mitochondria:plasma membrane tethers and factors 

regulating the cristae alignment (Meschede et al. 2020). According to Beuthan et al. (1996), 

membranous organelles have a great potential for the scattering of light due to the presence 

of the phospholipid bilayer. If mitochondria play the role of the scatterer in the IS of 

photoreceptors, nuclei may also contribute to the optical signature of the ONL of the retina. 
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Understanding the cellular and subcellular mechanisms of apoptosis may allow us to predict 

the changes in the OCT scans. 

 

 

Figure 1.7. Photoreceptors: a – retinal structure scheme; b – rod and cone photoreceptors; c - 
mitochondria:plasma membrane tethers, which is the way of intercellular interaction. Created 
with BioRender.com 
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Other sources of light scatter include drusen and reticular pseudodrusen (Spaide and Curcio 

2010; Greferath et al. 2016), usually located in the basal and apical sides of the RPE (Peng et 

al. 2003; Paavo et al. 2017). Formation of drusen in the subretinal or sub-RPE areas is the 

earliest sign of AMD (García-Layana et al. 2017). The genesis of drusen is complex and multiple 

constituent materials include lipid and other metabolic product depositions, inflammatory 

and proliferative immune cell proteins, and degenerated RPE cell debris (Velez-Montoya et 

al. 2014). Drusen can be detected using retinal colour photography (Kirkpatrick et al. 1995). 

Automated detection of the drusen was achieved by (Rapantzikos et al. 2003), however, 

classification of the drusen subtypes has not been performed. 

 

1.4.2. Age-related macular degeneration 

AMD is a chronic multifactorial progressive disease that affects the macula and leads to loss 

of central vision (Marshall 1987). The symptoms of AMD are complex and irregular (Bressler 

et al. 1988). In the early stages of the disease, patients are relatively asymptomatic (Milam et 

al. 2000). However, as the disease progresses, there may be manifestations such as sudden 

loss of vision, which cannot be corrected with glasses and the appearance of a grey or dark 

spot in front of the eye (positive scotoma) (Bressler et al. 1988; Klein 1991). 

AMD occupies one of the leading positions among the causes of blindness and low vision 

worldwide (la Cour et al. 2002). Age, genetic and ethnic predispositions, smoking, excessive 

solar exposure, arterial hypertension, unbalanced diet and disorders in lipid metabolism can 

be considered as risk factors for the onset of AMD (Smith et al. 2001). 

Despite the numerous studies devoted to AMD, the aetiology of the disease remains unclear. 

As an example of the ageing process, the incidence of AMD is directly dependent on age. An 

essential role in the pathogenesis of AMD has been attributed to oxidative stress (Beatty et 

al. 2000). The former consists of damage to the tissues of the eye due to the imbalance in the 

system of formation of free radicals and antioxidant protection (Tokarz et al. 2013; Lambert 

et al. 2016). The toxic effect of free radicals is realised through damage to the lipids and 

proteins of the cell membrane and transmembrane glycoproteins (Ding et al. 2009). 

Multiple factors determine the retinal sensitivity to the products of oxidative stress and free 

radicals. Firstly, the combined action of constant light and oxygen exposure to the retina 
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creates ideal conditions for the synthesis of free radicals (Jarrett and Boulton 2012). Also, a 

considerable amount of polyunsaturated fatty acids contained here are highly sensitive to 

oxidation (Saccà et al. 2018). 

Depending on symptoms and pathogenesis, there are 2 types of AMD, which can be also 

accepted as the stages of the disease: dry and wet (Bird et al. 1995; Adler et al. 1999; la Cour 

et al. 2002; Handa et al. 2019). In AMD, damage begins in the RPE and Bruch's membrane 

(Bonilha 2008; Bhutto and Lutty 2012). Due to ageing, products of ocular metabolism 

accumulate under the RPE and form drusen (Johnson et al. 2003; Ebrahimi and Handa 2011; 

Bowes Rickman et al. 2013; Brown et al. 2018). 

As drusen accumulate, they can trigger inflammatory processes in the retina, with the 

production of vascular endothelial growth factor (VEGF) (Saint-Geniez et al. 2009; Stefánsson 

et al. 2011; Jiang et al. 2012; Kauppinen et al. 2016).  VEGF promotes pathological 

neovascularisation from the choroid under the retina (Cabral et al. 2017; Yeo et al. 2019). At 

this stage, the dry form turns into the wet form of AMD (or neovascular AMD, n-AMD). 

The endothelium of the newly formed choroidal vessels are weak and the plasma of the blood 

transfer to the intercellular space, causing retinal oedema (Julien et al. 2008; Campochiaro 

2015; Daruich et al. 2018). These vessels can rupture at any time and cause haemorrhage 

under the retina or between layers, which have an additional damaging effect on the 

photoreceptors of the retina (Bhutto and Lutty 2012; Sun and Smith 2018). Furthermore, a 

haemorrhage can provoke the formation of scar tissue, which will lead to the irreversible loss 

of central vision (Coco and Sala-Puigdollers 2014). 
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1.5. Texture and texture analysis of OCT scans 

Apoptosis of retinal cells induces a cascade of irreversible functional and morphological 

alterations in the early aetiopathogenesis of neurodegenerative diseases (Adler et al. 1999; 

Nickells 1999; Remé et al. 2000; Dunaief et al. 2002; Guo et al. 2005; Lo et al. 2011; Almasieh 

et al. 2012; Ahmad 2017; Bell et al. 2020). The role of membranous organelles, especially 

mitochondria is high in cell death and they have been shown to generate an optical signal in 

OCT images (Tso et al. 1994; Okamoto and Shaw 2005; Perfettini et al. 2005; Youle and 

Karbowski 2005; Zhang et al. 2019). Hence, these scatterers may help to detect retinal 

degeneration in pre-clinical stages of glaucoma, AD and AMD. 

A number of optical techniques have been deployed to identify mitochondria-rich regions in 

the cells. These include a thresholding approach and texture-based segmentation (Pasternack 

et al. 2011; Mohammad et al. 2018). Threshold-based technology was used in the study of 

Pasternack et al., and they concluded that the mitochondria are the likeliest source of the 

changes in optical scatter in the first three hours of programmed cell death (Pasternack et al. 

2010). The reason for these changes might be the structural and functional alterations in 

mitochondria.  

For the purpose of detection of the earliest changes in RGC apoptosis,  studies have included 

in vivo detection of apoptosis by Positron-emission tomography (PET) with marker 18F-

labelled NST-732 (ApoTrace®) (Aloya et al. 2006), confocal scanning laser ophthalmoscopy 

(cSLO) using fluorescent annexin A5 (Ahmad 2017; Yap et al. 2018) and in vivo confocal 

neuroimaging (ICON), that allows monitoring the morphology and function of RGC (Prilloff et 

al. 2010). It has been suggested that programmed cell death can be quantified using the 

Detection of Apoptotic Retinal Cells (DARC) method in which fluorescently labelled protein 

Annexin-A5 binds to the apoptotic membrane phospholipid phosphatidylserine (Cordeiro 

2007; Galvao et al. 2013; Yap et al. 2018). However, since this technique cannot quantify the 

number of remaining RGCs it is unclear how DARC can determine the proportion of dying 

cells.  Moreover, DARC requires external ligands and intravenous injections at every patient 

visit, which may be impractical and unfavourable.  

Labelling of externalised phosphatidylserine in apoptosis of photoreceptors was conducted in 

the study of Mazzoni et al. (2019). Here, they used Bis(zinc(II)-dipicolylamine (Zn-DPA) with 



22 
 

Texas-red (PSVue-550) to label the dying rods and cones. Also, the contribution of RPE 

apoptosis in the pathogenesis of AMD is significant (Wang et al. 2012), which was 

characterised by in vivo morphometry and multispectral autofluorescence (Granger et al. 

2018). 

All the named studies and other approaches of in vivo observation of retinal cell apoptosis, 

however, are dependent on using external ligands, which may be toxic or cause inflammatory 

reactions. Consequently, there is a great demand for diagnostic methods that can detect and 

quantify retinal neuron apoptosis on a subcellular level without exogenous ligands to label 

cells. For visualisation in clinical conditions of RGC, photoreceptors and RPE cell degeneration, 

it is necessary to use ultrahigh-resolution OCT imaging. However, OCT is used mainly for the 

assessment of the morphology of tissues, its thickness values and presence of signs and 

symptoms of diseases: oedema, neovascularization, drusen, tissue detachments and others 

(Toth et al. 1997; Unterhuber et al. 2005; Tan et al. 2009; Zweifel et al. 2010; Cheour et al. 

2013; Leuschen et al. 2013).  

The most common computational method of OCT scan analysis is the segmentation of the 

retinal layers and local anatomical pathological structures (Rapantzikos et al. 2003; Haeker et 

al. 2007; Garvin et al. 2009; Baumann et al. 2010; Kajić et al. 2010; Zhang et al. 2012; Lee et 

al. 2018). The measurement of retinal layer thickness and segmentation techniques relies on 

the detection of the boundary of layers, which is facilitated by the removal of image noise. 

The noise has little value with lower resolution forms of OCT. With high-resolution devices, 

however, it is likely that an increasing component of this signal is not noise but reflects the 

subcellular changes in optical scattering. These alterations can be investigated using texture 

analysis of OCT images (Gossage et al. 2003; Anantrasirichai et al. 2013; González-López et al. 

2015). 

Texture is a measure of regional variations in brightness, intensity and surface roughness of a 

small location of an image (Oberholzer et al. 1996; Gossage et al. 2003). The texture of an 

image demonstrates the spatial variation of pixel intensities (Nailon 2010) and each region in 

an image may have a constant unique texture. The former is true if a set of local statistics and 

other structural properties are constant, slightly varying, or approximately periodic (Chen, 

Pau and Wang, 1993).  
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Texture analysis is the characterisation of image properties by their features (Evennett et al. 

1993). The aim of this analysis is the recognition of homogeneous regions of an image using 

textural properties (Davies 2005). This method is frequently used in classification 

(Bhattacharjee et al. 2011; Anantrasirichai et al. 2013), segmentation (Kajić et al. 2010; 

González-López et al. 2015) and synthesis (Costantini et al. 2008) of OCT images. The purpose 

of a classification method in image processing is to categorise different image regions into 

distinct groups or classes (Dong et al. 2017). The technique provides unique information on 

the spatial variation of pixels (texture) (Pietikainen 2000) and produces a classification map 

of the input image. Then each uniform textured region is identified with the texture group or 

class it belongs to. 

Apart from that, texture analysis has been used to establish boundaries between different 

image regions (segmentation) and generate highly complex and realistic looking 2D and 3D 

surfaces of images (synthesis) (Pentland 1984; Mirmehdi et al. 2009). 

Techniques of pixel variation analysis can be divided into 3 groups: statistical approaches, 

spectral technologies and structural technologies. The majority of statistical methods for 

texture analysis are based on histograms of image regions and their moments (Ramola et al. 

2020). Examples of these features are coarseness and contrast. The goal of spectral 

techniques is to detect texture periodicity, orientation, etc., based on the power spectrum of 

a region (Humeau-Heurtier 2019). Spectral features extract the data of an image with more 

complete respect to texture characteristics in comparison to the statistical approach.  

Pattern primitives and placement rules to describe the texture are used in structural 

technologies (Gossage et al. 2003). While in the first-order statistical texture analysis the 

frequency of a particular grey-level at a random image position is measured, co-occurrences 

between neighbouring pixels are calculated in the second-order statistics. Therefore, 

expanding the number of variables requires higher-order statistical texture analysis (Nailon 

2010). 

Although the current available OCT system may not provide cellular and subcellular 

resolution, analysis of textural parameters has a promising future to measure aspects of 

cellularity in biological tissues. In the experimental chapters of this thesis, examples of 

textural feature analysis of OCT scans acquired in vitro, ex vivo and in vivo are provided.  
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1.6. Hypothesis and Aims  

This thesis aims to investigate the early subtle optical changes of retinal neurodegeneration 

that occur in the apoptotic retina, glaucoma, age-related macular degeneration and 

Alzheimer’s disease (AD) using high-resolution optical coherence tomography.  

Early retinal apoptosis and analysis of retinal degeneration in AD will primarily be conducted 

in an ex vivo model of retinal axotomy in mouse retinal explants and triple transgenic AD 

mouse models respectively. Additionally, the OCT image datasets of in vivo human macula 

will be utilised to assess texture associated with RGC dendropathy in glaucoma and also 

apoptosis of photoreceptors with RPE cells in early and advanced stages of AMD. Texture 

analysis of OCT images will be achieved using machine-learning tools. 

The principal hypothesis of this thesis is that the combined use of OCT imaging and machine-

learning algorithms will enable the detection of early subtle optical changes that can act as 

surrogates for biological processes in neuronal degeneration. This thesis will therefore 

address 4 key aims and hypotheses presented as separate experimental chapters. 

1. Different types of phantoms with varying concentrations of matrix material and scatterers, 

size and refractive indices of the particles generate distinctive textures. Chapter 3 contains 

the results of the analysis of the textures of various types of OCT phantoms using principal 

component analysis and support vector machine (SVM). The phantom classification technique 

not only allows to detection of these optical differences in phantoms but also can be then 

used for the classification of the OCT scans in further experimental and clinical studies. This 

was the first attempt to measure the textural properties of various polystyrene and silica 

beads optical phantoms. 

Aim: To prepare various types of phantoms and to evaluate the performance of machine 

learning classifications: support vector machine (SVM) and principal component analysis. 

2. After the validation of the SVM classifier accuracy, texture analysis of ex vivo OCT scans was 

carried out to monitor the early optical alterations of retinal ganglion cell apoptosis. The 

texture of the inner plexiform layer (IPL) of retinal explants changes after the transection of 

the optic nerve due to cell death. Also, the texture of the IPL layer of the 3xTg Alzheimer’s 

disease mouse model is different from the texture of the IPL layer of the control animals. The 



25 
 

results of these studies are stated in Chapter 4. Not only the optical signature but also the 

transparency of the dissected murine retinal explants was investigated. Moreover, ML 

classification of 3xTg mice IPL layer was studied in terms of optical changes due to the RGD 

dendritic atrophy. 

Aim: To analyse the texture of the IPL layer of mice retinal explants and detect the alterations 

of RGC dendrites in the first hours after axotomy. Moreover, the second aim of the chapter is 

to detect the textural differences of AD-related RGC dendrites neurodegeneration. 

3. In Chapter 5, the texture of outer retinal layers of in vivo OCT scans of early and neovascular 

age-related macular degeneration were analysed. The outer nuclear and photoreceptor layer 

can describe the condition, viability and health of photoreceptors, whereas RPE is responsible 

for the retinal pigment epithelium. Due to the multiple factors, but predominantly because 

of apoptosis of photoreceptors and RPE cells, the texture of the outer retinal layers may 

change in age-related macular degeneration. Classification of AMD stages and comparison 

with the age-matched healthy controls was carried out in the outer retina and RPE. 

Aim: To analyse the texture of the soma and dendrites of the photoreceptors (outer nuclear 

layer, inner and outer segments of photoreceptors) and RPE cells of healthy and AMD patients 

(early and neovascular stages). 

4. It is possible to detect the optical changes in the inner layers of the retina driven by 

apoptosis (at early stages) with alterations of mitochondria (number and morphology). These 

changes cause modifications in the light scattering properties of the tissue and they can be 

diagnosed by OCT. The most vulnerable retinal layer in the onset of glaucoma is the IPL, which 

corresponds to the dendritic tree of the retinal ganglion cell. As it was demonstrated 

previously in the murine explant study, the axotomy causes changes in the IPL of the tissue. 

Hence, the aim of Chapter 6 is to investigate the optical signature of glaucomatous IPL and 

compare it with healthy human participants. In this study, the observation of early 

glaucomatous subtle optical changes of human IPL was conducted. Also, the significance of 

various supervised ML algorithms was investigated. 

Aim: To detect the optical changes of the IPL in glaucoma and to evaluate the performance 

of each machine learning classifier.  
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Chapter 2. General Methods 
 

2.1. Phantom preparation 

The matrix of the phantom is the artificial media that mimics the intracellular space and 

cytoplasm of tissues and cells, respectively. Hence, the physical and chemical features must 

be equivalent to the liquid biological structures. Furthermore, it stores other chemicals 

(scatterers) with higher than media refractive index, that fills the area as the cell and nuclei 

membranes, as well as the organelles. 

For the preparation of the OCT phantoms, a range of polymer materials with refractive indices 

that were close to those seen in the retina was selected: gelatin solution with polystyrene 

beads (PBs) and silica microparticles (SiO2). These combinations are the most frequently used 

mixtures for optical phantom fabrication purposes (Nivetha and Sujatha 2017). They not only 

provide favourable optical properties but also transparency of samples. The selection of 

particles has also had a purpose to mimic organelles in terms of size and refractive index. 

Hydrogel polymer gelatin (Sigma-Aldrich) served as a mechanical support matrix, whereas 

microspheres based on polystyrene (Sigma-Aldrich) and silicon dioxide (Sigma-Aldrich) were 

the light scatterers in the transparent media. The size of microparticles ranged from 0.38μm 

to 5μm. 

Figure 2.1 illustrates the general procedure of phantom fabrication, the principle of 

fabrication of which was adopted for all agents. Preparation of a 2% gelatin solution by adding 

bovine gelatin to heated (60o) distilled water to a concentration of 2%. The solution was then 

agitated using a vortex mixer periodically 5 times (1 min of mixing after 5 min of break) before 

cooling to room temperature. After that various volumes and sizes of PBs or SiO2 (see Chapter 

3) was added to the medium with further vortex agitation to ensure the random dispersion 

of microparticles and to avoid the clumping of either gelatin or the 

microspheres/microparticles. 

To ensure both OCT and microscopy imaging of phantoms in a hydrated state, prepared 

phantoms were placed on a 14 mm (diameter) glass-bottomed 35 mm petri dish with (MatTek 
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Corporation, USA) to enable imaging from the top and bottom of phantom samples (see 

Section 2.4.2 below), respectively. 

 

Figure 2.1. The preparation procedure of the optical phantoms and OCT scanning. Created 
with BioRender.com 

 

  

Imaging (microscopy and OCT)

The mixture was pipetted into 35 mm dish

Note: the gelatin/polystyrene sample was kept hydrated

Micro beads were added to the gelatin solution

monodispersed degassed

The solution was cooled down to the room temperature (20°C)

2% gelatin solution was prepared by mixing

0.1g gelatin 5ml of hot distilled water (up to 60°C)
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2.2. Animal retina dissection 

To study the main early pathogenetic pathway of most neurodegenerative diseases, 

enucleation and dissection of the murine eye were carried out. Transection of the optic nerve 

(i.e., axons of RGCs) may cause damage to the viability of RGCs, which starts from the 

dendrites (or else IPL in an OCT image). Thus, it allowed studying the earliest stages of 

apoptosis, which lies on the basis of glaucoma and AD. 

All experiments conducted in this thesis were in accordance with Home Office regulations and 

the ARVO statement for use of Animals in Ophthalmic and Vision Research. 15 months old 

and older C57BL/6 mice and 3xTg mouse models were sacrificed by cervical dislocation 

(Schedule 1 Appropriate Methods of Humane Killing, United Kingdom Animal Scientific 

Procedures Act 1986). 

After the enucleation, mice eyes were placed in Hank’s balanced salt solution (HBSS, Life 

Technologies) for further dissection. A puncture of the limbus was performed to cut the outer 

eye layers, eliminate the lens, and dissect out the retina. The retina was transferred onto a 

petri-dish and 4 cuts were made in order to flatten the retina. The flat-mounted retina with 

ganglion cell layer up was visualized using OCT and the attached microscope module. 
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2.3. OCT imaging 

The components of the spectral domain custom-developed research OCT device used for the 

acquisition of optical scans are shown in Figure 2.2. The light source 1-M-ASE-HPE-S (NP 

Photonics, Tucson, AZ, USA) had a central wavelength of 1040nm and a spectral bandwidth 

of 70nm (Figure 2.3). It was connected via 2x2 optical fibre coupler (FC; FOBC-2-64þ/100-20-

L-H64f-2; AFW Technologies, Hallam, Victoria, Australia) to sample and reference arms (Figure 

2.4). Sample arm or imaging head included an achromatic off-axis parabolic reflector to 

collimate the fibre output beam to approximately 2mm diameter (RC02APC-P01; Thorlabs, 

Ely, UK), close-coupled 2D (XY) optical scanners (6210HBM60/6102103R; Cambridge 

Technology Division, GSI Group GmbH, Muenchner, Germany) and a broad-band near-

infrared (NIR) telecentric scan lens (LSM02BB; Thorlabs). The reference arm comprised a 

polarization controller (PC; FPC560, Thorlabs), a second reflecting collimator (not shown; 

RC08APC-01; Thorlabs), an adjustable aperture (Ap), a precision NIR retroreflector (RR; 1 

Arcsec Gold, Edmund Optics, York, UK) and a glass compensation block (CB; LSM02DC; 

Thorlabs) to correct for NIR dispersion in the scan lens. Reflected light from the sample and 

reference arm was combined in a spectrometer (Figure 2.5). 

The sample and reference arms comprised fibres that were looped through a three-paddle 

polarization control to maximize fringe visibility. There are two inter-changeable sample 

arms: the patient module for imaging the human retina of a participant in vivo (OCT-PAT) and 

the microscopy stage module for tissue explants or chemical samples ex vivo or in vitro (OCT-

M). OCT-PAT has achromatic doublet transfer optics and short pass dichroic mirror, whereas 

OCT-M consists of a 10x telecentric scan lens (Thorlabs LSM02-BB) giving a lateral resolution 

of ~10µm in air and a field of view of 4.7mm. 

The beams from the sample and reference arms were focused and spatially dispersed by 2 

spherical dielectric coated mirrors and a grating (1200 lines per mm, 36° blaze angle). Then, 

the backscattered light was detected by a line scan camera Goodrich SU-LDH-1.7 (UTC 

Aerospace Systems, Arlington, VA, USA) (1024 pixel) operating at 47,000 acquisitions per 

second with a peak quantum efficiency of 70%. 
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Figure 2.2. Schematic of the OCT-1040nm. Amplified Spontaneous Emission light source has 
the central wavelength of 1040nm with a spectrum range of 1000-1070nm. 2x2 fibre coupler 
divides the coherent light to the sample (Imaging microscope) and reference arms. Then 
reflected light is collected in a spectrometer for further transfer to the detector (camera and 
PC). Created with BioRender.com 

 

 
 

Figure 2.3. The optical spectrum of the light source with a central wavelength of 1040nm 
and a spectral bandwidth of 70nm.   
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Figure 2.4. OCT-1040nm system components: 1 – Chin rest for a patient head; 2 – 
Spectrometer, polarisation control and reference arm; 3 – Galvanometer control box; 4 – The 
PC and monitor 

 

 

Figure 2.5. OCT-1040nm system components (top view): 1 – Reference arm (aperture power 
control lever, retroreflector and length control knob); 2 – three paddle polarisation control; 3 
– fibre output from 1040nm ASE light source; 4 – fibre optics to the sample arm; 5 – fibre 
optics to the detectors 
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2.4. Microscopy imaging 

Images of phantom preparations and mouse axotomised retinal explants were acquired using 

an inverted bright-field microscope (Olympus-IX71) with an x20 air objective (NA 0.7) with a 

DP70 digital camera (Olympus) and the SPOT Basic image capture software (version 5.5). 

Phantom micrographs were used to measure the dispersion of beads in the medium (see 

Section 3.2.2), whereas the retinal explants were imaged to assess the clarity and opacity of 

the tissues undergoing apoptosis (see Section 4.2.3). 

 

2.4.1. Phantom microscopy 

Once the samples were prepared, the phantoms (see Table 3.1) were transferred into the 

35mm culture dishes. The images of the phantoms were acquired by an Olympus-IX71 

(images at 15 fps) and were digitized by the camera, which can capture 1280x1024, 10-bit 

(1024 intensity/grayscale values) images. The glass-bottomed 35mm dish was used for the 

placement of the samples as it allowed visualization of the phantoms for both OCT and 

Olympus-IX71 (Figure 2.6: a, b, c and d).  

 

2.4.2. Retinal explant microscopy 

After the dissection, 2 flat-mounted mouse retinas were placed on the calibration slide with 

the grid lines (Figure 2.6e) to calculate the modulation transfer function (MTF) to monitor the 

clarity/opacity of the retinal tissue. The purpose of the latter is to ensure that the retinal 

explant remains clear and transparent throughout the session.  

 



34 
 

 

 

d    e  

Figure 2.6. Imaging scheme of the phantom: a – optical coherence tomography; b – inverted 
research microscope; c – semi-transparent optical phantom in a dish can be imaged using 
OCT (red ray) and microscopy (blue ray); d – 35 mm dish (No. 1.5 Coverslip, 14 mm Glass 
Diameter, Uncoated to a thickness of 1-2 mm, MatTek); e – 0.01 mm stage micrometre 
microscope camera calibration slide. 
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2.5. Refractometry  

The refractive indices (RIs) of phantom constituents were measured by the Direct Reading 

Abbe Refractometer Model 60/70 (Bellingham & Stanley Ltd) (Figure 2.7a). This consisted of 

a spectral lamp unit with a sodium bulb that provides a monochromatic light that passes 

through the samples. 

Phantom gels were prepared, and their RIs were measured to assess their optical and physical 

properties. The refractive index of each sample was determined by recording a reading from 

the instrument’s graduated scale graticule (Figure 2.7b) which was then converted to the Brix 

scale using conversion tables (Considine and Frankish 2014). The RI range of the equipment 

was 1.300 to 1.740.  

.  
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a 
 

b 
 

 

 

Figure 2.7. Abbe Refractometer Model 60/70 (a) and its graticule scale with the range of 
refractive index 1.300-1.740 
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2.6. Image processing and analysis of textural features 

Back-reflected light from the sample and reference arms was acquired by the OCT device as 

spectral data in the ‘FD1 file’, which was then converted to TIFF image files by OCT1_FD1 

software (Cardiff University, UK, version 2.3), which also performed dispersion compensation. 

Removal of anomalous B scans, image registration and alignment was achieved using ImageJ 

macro (version 1.51).  

Then, random volumes of interests (VOIs) were selected using random number generator 

software (Diplodock, Russia, version 2.1) to maximize the randomness of the VOI selection. 

The software selected random numbers of x and y coordinates within the 3D OCT image. The 

z dimension corresponded to the thickness of the layer of interest (Figure 2.8: a, b), therefore 

depending on the investigated retinal layer (IPL in glaucoma and AD; outer layers in AMD) and 

its thickness, VOIs had various dimensions. In the example of mice IPL, the cuboidal VOI size 

was 30×30×30 pixels in x, y, z (Figure 2.8: c, d). The procedure was performed in ImageJ. VOI 

selection ensured a reduction of the time-cost of the analysis, rather than analysis of the 

whole OCT scan. 

For the analysis of texture, grey-level co-occurrence matrix (GLCM), grey-level run-length 

matrices (GLRM), local binary pattern (LBP) and greyscale histogram parameters were 

extracted from the selected VOIs. Texture analysis scripts were adapted from Anantrasirichai 

et al. (2013). All computations were processed in MATLAB R2017b (MathWorks, USA) and 

code scripts are provided in Appendix 1. 

 

2.6.1. Grey-level co-occurrence matrix 

The grey-level co-occurrence matrix (GLCM) is the spatial histogram of the image, that shows 

the relationship between each intensity tone caused by alterations between grey levels i and 

j (Figure 2.8e). These levels are located at a particular distance d and are displaced by a 

particular angle θ. For quantification of the distributions of image grey-scale values 

probability density functions sθ (i, j |d,θ) (Rogowska et al 2003) were calculated using ImageJ. 

Here, in this study, the distance d was equal to 1 pixel, whereas the directions were taken 

from θ = (0o, 45o, 90o, 135o). 
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Five textural features were then computed from each GLCM, including energy or angular 

second moment (ASM), inertia (or contrast), entropy, inverse difference moment and 

correlation giving a total of 20 GLCM properties for each region (Table 2.1). The regularity of 

local greyscale distribution is measured by energy by summing the square of each value in the 

matrices of GLCM. Inertia provides higher weights to sθ (i, j |d,θ) values that represent 

regions of high contrast (Gossage et al. 2006). The sum of each sθ (i, j |d,θ) value multiplied 

by the log of the sθ (i, j |d,θ) gives us entropy, where the randomness is evaluating. Inverse 

difference moment parameter measures the local minimal changes and correlation calculate 

the joint probability of occurrence. The latter is higher in regions with uniform grey-scale 

values. 

Previously, GLCM has been applied for image classification of microscopy (Yogesan et al. 

1996), ultrasound (Basset et al. 1993) and OCT images (Gossage et al. 2003) for the 

classification of normal and pathologic tissues. 

 

 

Feature Equation* Higher in… 

Angular 
second 
moment 

𝐴𝑆𝑀 =  ∑ ∑[𝑆𝜃(𝑖, 𝑗|𝑑)]2

𝐿−1

𝑗=0

𝐿−1

𝑖=0

 
in homogeneous scenes 
because sθ (i, j |d,θ) 
contains only a few but 
relatively high values 

Entropy 
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  ∑ ∑ 𝑆𝜃(𝑖, 𝑗|𝑑) log(𝑆𝜃(𝑖, 𝑗|𝑑))

𝐿−1

𝑗=0

𝐿−1

𝑖=0

 
in regions that contain a 
wide variety of intensity 
distributions 

Correlation  
𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  

∑ ∑ (𝑖 − 𝜇𝑥)(𝑗 −  𝜇𝑦)𝑆𝜃(𝑖, 𝑗|𝑑)𝐿−1
𝑗=0

𝐿−1
𝑖=0

𝜎𝑥𝜎𝑦
 

in images with uniform 
grey-scale values 

Inverse 
difference 
moment 

𝐼𝐷𝑀 =  ∑ ∑
1

1 + (𝑖 − 𝑗)2
𝑆𝜃(𝑖, 𝑗|𝑑)

𝐿−1

𝑗=0

𝐿−1

𝑖=0

 
in images with lower 
contrast values 

Inertia 
𝐼𝑛𝑒𝑟𝑡𝑖𝑎 =  ∑ ∑(𝑖 − 𝑗)2𝑆𝜃(𝑖, 𝑗|𝑑)

𝐿−1

𝑗=0

𝐿−1

𝑖=0

 
in regions of high 
contrast (with large 
intensity differences 
being in close proximity) 

*where Sθ (i, j |d,θ) is the i-th and j-th GLCM elements for the distance d = 1 and L is the 
number of grey levels in the image. 

Table 2.1. Grey-level co-occurrence matrix features 
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Figure 2.8. Example of image processing and VOI selection: a – OCT scan of mouse retinal explant; b – a volume of interest (VOI) cube image. c, 
d – schematic views of the 3D cube, voxel size is 30×30×30 pixels; e – extraction of grey level of each pixel for further GLCM texture analysis  
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2.6.2. Grey-level run-length matrices 

Grey-level run-length matrices (GLRM) texture analysis has been applied in various studies to 

CT scans (Podda and Giachetti 2005) and  MR images (Molina et al. 2016). GLRM compute the 

number of occurrences of a run with a particular length and grey level in a chosen direction. 

GLRM properties are calculated by subsampling grey levels in a coarser range of n values and 

computing the runs of equal levels with lengths from 1 to m along a given direction (Figure 

2.9). Then these runs are stored in a run-length m×n matrix (Podda and Giachetti 2005). 

Frequently used GLRM features, which were extracted from VOIs, include short-run emphasis 

(SRE), long-run emphasis (LRE), run-length non-uniformity (RLNU), grey-level non-uniformity 

(GLNU) and run percentage (RPC) (Galloway 1975; Anantrasirichai et al. 2013). SRE measures 

the fine texture, while LRE is used for the measurement of coarse texture. Also, GLRM 

measures the similarity of the grey level values (GNU) and the run lengths (RNU). The number 

of short runs is measured by RPC.  

All five features were extracted from four axes: horizontal, vertical and two diagonals.  
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Figure 2.9. Demonstration of the GLRM feature extraction. After the VOI selection (column 1), extraction and normalization of voxel grey levels 
were performed (column 2), as demonstrated by a simplified matrix containing grey levels ranging from 1 to 4. Then, histogram, GLRM were 
calculated based on the grey level distribution of voxels (column 3) and GLRM features were derived from the matrix (column 4) 
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2.6.3. Local binary pattern 

The data of texture orientation and coarseness can be derived from the local binary pattern 

(LBP) by labelling the pixels of a scan using a threshold of the local pixel neighbourhood (Ojala 

et al. 2002). In a study of Anantrasirichai et al. (2013), LBP properties demonstrated significant 

benefits for the classification performance with the addition of other textural features. 

For the calculation of LBP features, the target window of an image was divided into several 

sub-regions. The grey value of the neighbourhood or reference pixels was then compared to 

the central or index pixel of a circle. Namely, if the reference pixel is greater or equal to the 

index pixel, then it is labelled as “1”, if less – then it labels as “0”. Thus, in LBP, the average 

sum of image intensity is computed for each local cell (2.1) (Dey et al. 2018). The results of 

the local spatial patterns were given in binary format. 

LBPPR = ∑P-1
P=0 s (gp - gc) ,  (2.1) 

where gc is the grey value of index pixel, gp – the grey value of reference pixels and  

s(x) = 1, if x ≥ 0 

s(x) = 0, if x < 0 

Sampling points in the cell of this particular size (R=1 pixel) equals eight (P=8). This process is 

followed by the calculation of the local and global (sum of local) histograms (Figure 2.10). 59 

uniform patterns were extracted; each pattern is considered as a feature, therefore 59 LBP 

features were selected.  
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a 

 

 

b 

 

 

Figure 2.10. LBP histogram generation (a) and example of image greyscale matrix with 
values of R=1 and P=8 for a local descriptor (b). Created with BioRender.com  
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2.7. Machine learning algorithms 

Extracted features were collected in comma-separated values (CSV) files as a 

multidimensional matrix, which was then imported to MATLAB Simulink (MathWorks) 

classification learner tool. The software enabled training and validation of the dataset for 

further classification of the test dataset. 

Since the number of potential combinations of various features is large, it is a challenging 

decision to choose the optimal set of features for texture analysis (Bolón-Canedo and 

Remeseiro 2020). Moreover, due to the time-cost, the use of an extensive number of feature 

types is not needed (Blum and Langley 1997). One of the solutions to this issue is the 

application of feature selection, which is used in the training phase, as it will save the most 

relevant texture analysis variables (Blum and Langley 1997; Bolón-Canedo and Remeseiro 

2020). There are many possible advantages of feature selection: improving the prediction, 

data understanding and visualization, cost-effectiveness, decreasing the number of 

measurements and saving time for segmentation of new images later after the training phase 

(Hira and Gillies 2015).  

Data reduction 

To reduce the dimensionality and select the most descriptive features, principal component 

analysis (PCA) was utilized in all experimental chapters. PCA is a vector space transform 

method, which has several functions. The main purposes of this technique are the reduction 

of the high-dimensional data sets for further analysis in lower dimensions and PCA-based 

representation (Abdi and Williams 2010). PCA computes the eigenvalue decomposition of the 

covariance matrix of the image without matrix-to-vector conversion (Qiao and Chen 2011). 

Then, a small number of eigenvectors, that have the largest eigenvalues, can represent the 

initial data set. 

PCA operates by searching the axes that account for the largest number of variances in the 

dataset which are orthogonal to each other, whereas the neural network autoencoder is 

trained to copy its input to its output. In other words, the method maps the input information 

to a space of reduced dimension with further mapping the latent representation to the 

output. Thus, the compression of data is carried out by decreasing the reconstruction error. 
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So, in comparison to PCA, the properties of the latent vectors in the neural network 

autoencoder are different and the network itself might need to be tuned for the specific task 

to perform better in the hidden layers. 

Bayesian dimensionality reduction technique compares simulated and observed summary 

statistics to overcome the problem of computationally intractable likelihood functions. 

Therefore, in order to minimize the loss of valuable information, the Bayesian method 

requires calculations based on vectors of summary statistics, rather than full data sets, which 

requires a high computational cost to determine Bayes optimal hypothesis in the general 

case. Also, another drawback of this method is that it requires initial knowledge of multiple 

probabilities.  

For the purpose of analysis of multidimensional data, the n-dimensional PCA (nD-PCA) was 

suggested by (Hongchuan and Bennamoun 2006). Data with a great number of dimensions is 

evaluated as a higher-order tensor by Higher-Order Singular Value Decomposition. nD-PCA 

extends the PCA method to a higher dimensional data set. However, the data cannot be 

represented efficiently due to the compression of the latter on one mode subspace. Another 

drawback of PCA is that the method does not work well with non-linear or discontinuous data. 

 

2.7.1. Support vector machine 

A support vector machine (SVM) is a supervised learning technique that separates the data 

by composing a set of hyperplanes into various classes and constructs a maximal margin in 

the border of the classes (Noble 2006). The original multi-dimensional space can be mapped 

into a much higher-dimensional space, presumably making the separation easier in that 

space. This margin avoids misclassification in the multidimensional feature space of the 

training data set (Awad and Khanna 2015). 

There are multiple similarities and differences between SVM and neural networks (NNs), 

which are the most applied classification tools. Both methods are parametric and can 

approximate non-linear decision functions. However, due to the dependency of NN on the 

number of observations, it can operate poorly if there is not processed the entire training 

dataset. In contrast, SVM identifies the decision boundary based on the sole support vectors. 
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Hence, in terms of time-cost, SVM is better and faster. In neural networks, the training is 

executed repeatedly to get a higher accuracy of the classification, which makes it hard to 

decide when to stop the procedure of training (Barzilai 2020). On the other hand, SVM trains 

the whole dataset simultaneously, which provides the best solution and reduces the cost of 

classification (Noble 2006; Awad and Khanna 2015). Also, the SVM method guarantees the 

convergence to a global minimum regardless of their initial configuration in comparison to 

NN. 

In the cases of the higher-order polynomial order maps, non-linear kernels can be applied 

(Figure 2.11). For instance, in the study of Anantrasirichai et al. (2013), the examples of these 

kernels (polynomial, splines and radial basis) functions were tested and compared in the 

classification performance. Similarly, in the final experimental chapter of this thesis, Gaussian 

SVM and quadratic SVM were used and comparative results on their performances were 

provided. 

 

 

Figure 2.11. Linear and non-linear SVMs. Created with BioRender.com 
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2.7.2. Discriminant analyses 

Discriminant analysis is a method to identify the linear combinations of observed variables 

that maximize the grouping of samples into separate classes. Measured variables play a role 

in the predictor variables to classify the response variable.  

In general, linear discriminant analysis (LDA) is considered a tool for the dimensionality 

reduction of multidimensional data (Phinyomark et al. 2012). Moreover, this method is also 

used for data visualization (Jieping and Qi 2005). However, LDA has a strong potential and has 

already demonstrated robust classification results (Florian and Nicholas 2008; Pablo et al. 

2010; Garcia-Martin et al. 2012). 

If all the classes have the same covariance matrix, then the discriminant function can be 

divided by the linear decision boundary of the LDA (𝑥). Otherwise, the covariance matrices 

are not equal, then we can consider using the quadratic discriminant analysis (QDA). Hence, 

QDA has the quadratic decision boundary (𝑥). 

𝛿𝑘(𝑥) =  𝑥𝑇 ∑  𝜇𝑘
−1 −  

1

2
𝜇𝑘

𝑇 ∑  𝜇𝑘
−1 +  log 𝜋𝑘   (2.2) 

 

𝛿𝑘(𝑥) =  −
1

2
log | ∑ |𝑘 −  

1

2
(𝑥 − 𝜇𝑘)𝑇 ∑ (𝑥 − 𝜇𝑘)−1

𝑘 +  log 𝜋𝑘 , (2.3) 

where ∑-1 is the covariance matrix and  𝜇𝑘  is the mean vector. 

Discriminant analysis technically is similar to principal component analysis with the main 

difference from PCA is the ability to predict unknown data based on the values of measured 

variables in that sample. Another difference is that PCA detects the linear combinations of 

the measurements that maximize variance when LDA aims to find the linear combinations of 

the measurements that best describe the separation between the groups. Thus, PCA does not 

require to know the groups of interest a priori after the segregation of groups, while in LDA, 

the groups of interest are known a priori. 
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2.7.3. Logistic regression 

The similarity of logistic regression to linear regression is that the logistic regression finds an 

equation that predicts an outcome for a binary variable, Y, from one or more response 

variables, X. However, in logistic regression, the response variables can be categorical or 

continuous.  

In the cases where the number of classes is two (k=2), logistic regression was applied. This 

machine learning tool works well for binary classification and differs from linear regression by 

its cost function (Figure 2.12). The latter is called a sigmoid function 𝜎(𝑧) =  
1

1+𝑒−𝑧. Hence, 

the hypothesis for the logistic regression has the following equation 2.4. 

 

ℎ𝜃(𝑋) =
1

1+ 𝑒−(𝛽0+ 𝛽1𝑋) (2.4) 

 

 

Figure 2.12. Difference between cost functions of the linear and logistic regressions. (Plots 
created with BioRender.com) 

 

Although in comparison to SVM, logistic regression operates relatively faster, classification 

accuracy is lower to some degree. Moreover, logistic regression is built simpler for 

complicated relationships between variables. Hence, this method is not recommended to 

predict the decision boundary in nonlinear cases. 
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2.7.4. Decision tree 

One of the most popular classification algorithms is the Decision tree (DT). The name of the 

classifier came from its structure: DT has root, internal and leaf nodes (Figure 2.13). If the root 

node is the input data, then the leaf node is the outcome, whereas each internal root is a 

feature. 

 

Figure 2.13. Decision tree scheme with 2 levels: Level one – Internal node; Level two – leaf 
node. The root node is the beginning of a tree and is considered as Level 0. 

  

DT can be utilized to construct the automated prediction model and be used as a classification 

tree, where each internal node contains a set of attributes, or classification rules (i.e., decision 

rules). DTs with continuous, infinite possible outcomes are called regression trees. 

Bagging, Random Forest and Boosted trees can be used for the improvement of classification 

accuracy of DT. Among the advantages of DT can be listed: the prediction cost declines with 

each additional data point; can be applied for both categorical and numerical data; can model 

problems with multiple outputs.  
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2.8. Classifier performance evaluation 

Classification accuracy is the most common indicator of the machine learning algorithms’ 

performance, which is the ratio of the number of correct predictions to the total number of 

input samples (2.5) (Jiao and Du 2016). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒
  (2.5) 

Additionally, other evaluation metrics were also applied to compare supervised machine 

learning tools: precision, recall and F1 score in Chapter 6. Precision is the ratio between the 

true positive outcome to the total number of predicted as positive as shown in equation 2.6, 

whereas the recall computes the number of the actual positive sample (2.7). And the 

equilibrium between precision and recall can be calculated and it gives us F1 score (2.8). The 

main advantage of this score over the accuracy is that it includes the values of false results as 

well as the confusion matrix of outcomes. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
=  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  (2.6) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
=  

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
   (2.7) 

 

𝐹1 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (2.8) 

 

Among other evaluation tools for the classifier performance, can be listed confusion matrices 

(CMs), Receiver Operating Characteristic curve (ROC) and area under the ROC curve (AUC). 

CM is a summary of predicted or classified results in a specific table layout. This table indicates 

the performance metrics of the ML algorithms for binary and multi-class classification cases. 

Detailed table layout results can be then used to calculate the accuracy, precision, recall and 

F1 score. 

ROC curve can be drawn by plotting the true positive (TP) against the false positive (FP). AUC 

is the single-valued metric used for evaluating the performance: the higher the AUC, the 

better the performance. ROC and AUC can be applied used to compare and evaluate different 

classification algorithms and when the dataset is imbalanced. 
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Chapter 3. Textural feature analysis of OCT phantoms 
 

3.1. Introduction 

Depending on the size, concentration and refractive index of the medium and scatterers, 

phantoms generate specific textures which can confer useful optical properties about a 

structure (Yasaka et al. 2017; Abadi et al. 2019). The texture of OCT images arises from a  

combination of signal, noise and speckle due to the use of the laser as a light source and 

interference with multiple forward and backward scattering photons (Schmitt et al. 1999). 

The relative contribution of speckle as a signal component has been a topic of debate (Schmitt 

et al. 1999; Dubose et al. 2018). Due to the influence of speckle on quality and the 

performance of earlier OCT devices, where the axial resolution was lower and motion artifacts 

more of a problem, it has routinely been considered as a type of noise with a little value, 

which is attenuated or removed using specifically designed filters (Ma et al. 2018). This 

approach has been strengthened by the view that OCTs can best function by providing 

information on the thickness of retinal layers (Kafieh et al. 2013). 

Schmitt has identified two types of speckle: ‘chance’ speckle and ‘inherent’ speckle (Schmitt 

et al. 1999). ‘Chance’ speckle arises from multiple scattered photons, the width of which 

corresponds to one pixel. This type of speckle is random and can be removed by averaging 

during the OCT scan acquisitions. However, a larger ‘inherent’ speckle is consistent and 

located (on average) within the same region in multiple OCT images. This speckle originates 

from the wavefronts from multiple scatterers, located in the same focal volume (Schmitt et 

al. 1999). Cumulatively these speckle components may produce the specific optical texture of 

each tissue and have a characteristic pattern (Gossage et al. 2006). 

Even though OCT provides a wide range of advantages, significant limitations arise from the 

spectral bandwidth of the source of a coherent light source (Fujimoto et al. 1995). 

Furthermore, the optical aberrations of the imaging system (which include those of the eye) 

are significant and prevent clinical imaging systems do not support isotropic resolutions 

(without resorting to adaptive optics to enhance lateral resolution). The axial resolution of 

the machine is determined by the full width at half maximum (FWHM) of the light source and 

not by the aberrations of the optic system; for a light source of our research-based OCT with 
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a 1040nm central wavelength and the FWHM of 70nm, the axial resolution is approximately 

7µm in air (NP photonics 1-M-ASE-HPE-S). The lateral resolution for ocular imaging is 

aberration limited and is approximately 10-15μm (Jonnal et al. 2016). 

Fourier-domain OCT measures the phase of the Fourier transform of the spectral interference 

between the back-reflected light from the sample and a reference arms (Leitgeb et al. 2003). 

The phase is an estimate of structural information about the sample refractive index within 

the implicit coherence gating enforced by the limited spectral bandwidth of the light source 

(Uttam and Liu 2015). Although current light sources do not permit consistent identification 

of subcellular structures with interference-based non-invasive optical imaging technologies, 

speckle components are likely derived from changes from back-reflected light that correlate 

with subcellular changes. To test this hypothesis, these changes can be modelled by the 

fabrication of phantoms comprising optical scattering agent with dimensions that 

approximate subcellular organelles mitochondria, apparatus Golgi, endoplasmic reticulum 

and lie in the range of 1-5µm. 

Cellular events in apoptosis largely affect the morphological and optical properties of the cell 

(Frank et al. 2001; Almasieh et al. 2012). The main organelles that contribute to the scattering 

of OCT light are mitochondria, endoplasmic reticulum and Golgi apparatus, which have the 

higher RI (n=1.48) than the entire averaged RI of the cell (n=1.38) (Beuthan et al. 1996). The 

latter is lower due to the cytoplasm and extracellular matrix, in which RI is close to the water 

and 2% gelatin solution in this case.   
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3.1.1. Hypothesis 

 

The application of PCA and SVM algorithms may allow the segregation of phantoms with 

varying optical textures derived from scatterers with these dimensions. These machine 

learning tools can be optimised using these phantoms as ground truths. In this study, 

texture analysis for the discrimination of optical phantoms with different concentrations, 

sizes and refractive indices of scatterers (polystyrene beads and silica microparticles) was 

applied. 

In this chapter, the following hypothesis will therefore be tested:  

Different types of phantoms with uniformly dispersed scatterers, with varying sizes and 

refractive indices of the particles, generate distinctive optical textures which can be 

detected by texture analysis of OCT derived images. 

Texture analysis of OCT image datasets derived from phantoms of different types of 

phantoms, of a size similar to subcellular organelles (varying sizes and refractive indices), 

enables the detection of distinct optical scatter-derived signatures.  

 

3.1.2. Aims 

• To analyse the texture of various optical phantoms that are within the range of the 

optical properties of the human retina  

• To develop phantom classification methods that can discriminate the phantoms using 

OCT images 

• To validate the accuracy of SVM classification of phantoms based on texture analysis, 

with and without PCA 
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3.2. Methods 

3.2.1. Phantom preparation 

Phantom preparation was undertaken as described in Section 2.1. Four groups of phantom 

types were prepared (Table 3.1): various gelatin solution concentrations (2%, 5% and 10%); 

different sized polystyrene beads (PBs) i.e., 0.38µm, 1µm, 2µm and 5µm; a different volume 

of 1µm PBs (5µl, 10µl, 20µl, 30µl, 40µl and 50µl) and phantoms with different refractive 

indices of scatterers (PBs=1.57; SiO2=1.43).  

 

Table 3.1. Groups and types of phantoms  

 

The choice of the scattering particles was dictated by the refractive indices of membranous 

organelles. Moreover, the size of scatterers was also selected to correlate with the size of 

Phantom groups No Phantom types Number of OCT 

scans 

Phantoms without scatterers 

Different concentrations 

of gelatin solution 

1 2% gelatin solution (2% GS) 10 

2 5% gelatin solution 10 

3 10% gelatin solution 10 

Phantoms with scatterers 

Different size of 

scatterers: PBs 

4 2% GS + 0.38µm 50µl PBs 10 

5 2% GS + 1µm 50µl PBs 10 

6 2% GS + 2µm 50µl PBs 10 

7 2% GS + 5µm 50µl PBs 10 

Different volume of 

scatterers: PBs 

8 2% GS + 1µm 5µl PBs 10 

9 2% GS + 1µm 10µl PBs 10 

10 2% GS + 1µm 20µl PBs 10 

11 2% GS + 1µm 30µl PBs 10 

12 2% GS + 1µm 40µl PBs 10 

13 2% GS + 1µm 50µl PBs 10 

Different refractive index 

of scatterers 

14 2% GS + 1µm 50µl PBs 10 

15 2% GS + 1µm 50µl SiO2 10 
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these organelles. Since the size of isolated mitochondria ranges from 0.25 to 3μm (Bereiter-

Hahn 1990; Beuthan et al. 1996; Rafelski and Marshall 2008; Wiemerslage and Lee 2016), 

depending on its state and participation in cellular events, the PBs size was in these 

dimensions. In the studies of Gourley, the diameter of the individual typical normal and 

diseased mitochondria differs and equals 600–700 nm (Gourley et al. 2005) and 750–830 nm 

(Gourley and Naviaux 2005), respectively. In abnormal mitochondria the diameter is enlarged, 

the protein concentration is decreased. Hence, the optical density also declines, which leads 

to the decrease of the optical properties of the organelle (Gourley et al. 2005). 

 

3.2.2. Particle dispersion calculation 

Even though OCT devices have a relatively high axial resolution, a microscopy investigation of 

the phantoms was performed to ensure the random monodispersion of the particles. The 

calculation of the microparticle distribution was quantified by computing the nearest 

neighbour index (NNI) using the R programming language (R Core Team version 3.5.0). To 

calculate the NNI (3.1), the nearest neighbour distance (NND), area of the pattern (a) and the 

number of particles (n) in this area were computed.  

𝑁𝑁𝐼 =  
𝑁𝑁𝐷

0.5 √
𝑎

𝑛

  (3.1) 

Phantoms of various PBs volumes (10µl, 20µl, 30µl, 40µl and 50µl) were prepared and 

microscopy images were acquired (example of 10µl PBs phantom in Figure 3.1a). Then, the 

cropping, colour-coding and threshold of the image were processed in ImageJ (Figure 3.1b) 

for the calculation of the pattern area and the number of PBs particles. NND and NNI were 

computed using (3.1) in R programming (Figure 3.1c). 

 

3.2.3. Phantom OCT imaging and image processing 

Ten OCT image datasets were acquired from each sample within the depth range of 1000µm, 

providing a total of 150 scans with the size of 512×512×1024 pixels in x, y, z, respectively. The 

air-gel interface on the top of the sample was located higher than the first Z0 scan (in z 

coordinate), thereby removing the effect of this large change in refractive index (Figure 3.2a). 

The scans were converted to an 8-bit resolution image with 0-255 greyscale levels. From each 
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OCT image dataset, five 3-dimensional volumes of interest (VOIs) with the size of 30×30×30 

pixels were randomly selected (Figure 3.2b) for further feature extraction and image 

classification (Figure 3.2c). 

 

3.2.4. Texture analysis and classification 

For the purpose of texture analysis, the five most relevant GLCM texture features (see Table 

2.1) were extracted using the ImageJ plugin, which has been used to calculate image texture 

parameters as described previously (Haralick et al. 1973). GLCM features were then imported 

into Simulink MATLAB R2017b (MathWorks) for classification using SVM with and without the 

utilization of PCA. 

Application of PCA and SVM for phantom classification was chosen due to their high accuracy, 

ability to perform binary and multi-class classification and to operate with non-linear data. 

SVM outperformed other supervised machine learning tools in Chapter 6. 

A 5-fold cross-validation was applied to estimate the skill of the model, avoid overfitting and 

evaluate the training dataset. The unseen test dataset was then evaluated with the generated 

codes. Data analysis were repeated 10 times and averaged values were accepted. 
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a

 

b 

 

c 

 

Figure 3.1. Image processing of microscopy image (a) captured of a 2% GS + 1µm 10µl PBs phantom, which underwent thresholding and was 
cropped using ImageJ (b); c – simulation of the distribution of the beads in R plot, from where NND, area of the pattern and the number of 
particles in this area were counted for the NNI calculation. 
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a b 

 
 

 

c 

 

Figure 3.2. Image processing and data preparation for the classifier: a – OCT scan of 
phantom (scale bar – 10µm) and an extracted  VOI cube (magnified); b – schematic view of 
the 3D cube, voxel dimensions 30×30×30 pixels; c – extraction of grey level of each pixel for 
further calculation of grey-level co-occurrence matrix features 
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3.3. Results 

3.3.1. Gelatin matrix 

Among various hydrogel-based chemicals, gelatin was selected as a suitable medium for 

scatterers. However, there was a debate concerning the correct concentration to use due to 

the varying characteristics of the gelatin solutions in different concentrations of solid states 

of chemicals. OCT scans were acquired to determine if there was clustering of gelatin powder 

in the solution, which may cause unwanted scattering and alterations to the optical properties 

of the phantom. “Clumping” image artefacts were higher with the increase of the solid 

hydrogel constituents in 5% and 10% gelatin solutions (Figure 3.3). 

 

a

 

b

 

c

 

Figure 3.3. OCT images of various gelatin solution concentrations: a - 2% gelatin; b - 5% 
gelatin; c - 10% gelatin. Top plain layer – the surface of the phantom, bottom – the surface 
of the MatTek glass coverslipped bottom, these transitions of materials contribute to the 
back-reflected light due to a difference in RI. The clumping of gelatin powder in the solution 
is shown in the arrow. The axes correspond to the three dimensions x, y and z of 3D rendered 
OCT images 

 

  



60 
 

Not only the relative adhesion of molecules grows by the increase of the concentration of 

solid gelatin solution, but also the refractive index of the phantom medium (Vulprecht et al. 

2020). Refractometry studies revealed that 2% gelatin solution has the closest RI to that of 

water (Figure 3.4), and hence the cytoplasm and intercellular matrix. Due to preferable 

mechanical and optical properties, 2% gelatin solution was therefore chosen as the standard 

medium for further preparations of phantoms. 

 

 

Figure 3.4. Comparison of refractive indices of gelatin solutions and water. Here: G10 – 10% 
gelatin solution (1.3464); G5 – 5% gelatin solution (1.3372); G2 – 2% gelatin solution 
(1.3341); H2O – water (1.3321), at λ=589nm 
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3.3.2. Scattering particles 

After 2% gelatin was selected as a matrix medium, phantoms were prepared with scatterers 

of various sizes, concentrations and refractive indices. The quality of the preparation and the 

dispersion of the particle was inspected visually by microscopy. Examples of microscopy 

images of 2μm PBs are illustrated in Figure 3.5. Microscopic observations of all types of 

phantoms confirmed monodispersion and also the absence of air bubbles and the clumping 

of solid gelatin in the samples. 

 

    

Figure 3.5. Micrographs of the phantoms: images (at different magnification) of samples 
containing 2μm polystyrene beads in 2% gelatin. 

 

For further validation, the ability of OCT-1040 to detect scattering particles was tested. The 

examples of thresholded 3-D volumetric OCT images of the monolayered phantoms with 5µm 

and 1µm PBs beads are demonstrated in Figures 3.6 a and b, respectively. In comparison, the 

2% gelatin phantom without any beads looks “empty” with a high backscattering of the 

phantom and coverslip surfaces (Figure 3.6c). 

 

a b 
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a

 

b

 

c

 

Figure 3.6. Monolayer PBs phantoms: a - 5µm PBs; b - 1µm PBs; c - test control phantom. In 

the test phantom without scatterers, three layers of light reflection are visible between the 

surfaces of the sample and the coverslip. The surface of the phantom is indicated with a red 

arrow; the top and bottom surfaces of the coverslip are shown with white arrows 

 

3.3.3. Spatial distribution of scatterers 

While the visual inspection of particle distribution is useful for initial quality assurance, 

quantitative indices of particle dispersion were used following the nearest neighbour index. 

NNI is a tool to precisely measure the spatial distribution of particles and investigate the 

regularity of dispersion. Three main outcomes according to the NNI value: regular, random 

and clustered dispersion (Figure 3.7) were recorded. NNI measures the spatial distribution 

from 0 (clustered pattern) to 1 (randomly dispersed pattern) to 2.15 (regularly dispersed 

/uniform pattern). Table 3.2 summarises the NNI values of the phantoms of different volumes 

of 1µm PBs (Figure 3.8). The values in all samples were close to 1, which demonstrated the 

random allocation of scattering particles.  
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a 

 

b 

 
c 

 

e 

 
d 

 

f 

 
Figure 3.7. Thresholded and colour-coded 3D OCT scans of 1µm PBs phantoms with different 
concentrations: a- 50µl PBs; b - 40µl PBs; c - 30µl PBs; d - 20µl PBs; e - 10µl PBs; f - 5µl PBs. X, 
Y and Z scales correspond to the length, width and height of images in µm.  
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Figure 3.8. Nearest neighbour index graph. Created with BioRender.com 

 

Sample NND Area No of PBs per 

pattern 

NNI 

50µl PBs 50.65879 1792000 168 0.981003 

40µl PBs 46.65486 1792000 174 0.919459 

30µl PBs 37.53487 1792000 218 0.827988 

20µl PBs 49.77891 1792000 139 0.878402 

10µl PBs 55.97415 1792000 105 0.856925 

Table 3.2. Nearest neighbour index of 1µm PBs phantoms of various volumes of the 
scatterers 

 

 

  



65 
 

3.3.4. Classification of phantoms 

 

Different sizes of scatterers 

OCT phantoms with 1µm, 2µm and 5µm diameter of scatterers were classified correctly in 

almost all cases using SVM with and without PCA. Three clusters of scatters were separated 

in feature space when using the most discriminating features selected by PCA being contrast 

and entropy at 0 degrees as shown in Figure 3.9.  

 

 

Figure 3.9. Three separable clusters in the scatter plot of the phantoms with the size of 
PBs≥1µm. The most descriptive GLCM features (Contrast0 and Entropy0 – features in 0 
degrees between the index and reference pixels) were selected by PCA, forming a 2-

dimensional feature space. Here: • – correct and × – incorrect classification 

 

5µm PBs could still be discerned as discrete entities although collectively they generated 

differences in the overall texture of the phantom. 93% of the phantoms were classified 

correctly, whereas the rest of the phantoms were categorised incorrectly as 2µm PBs (yellow 

× in the left cluster, Figure 3.9). The incorrect classification was especially noted between 

phantoms of PBs of closer sizes, with only 87% of 1µm and 81% of 2µm PBs segregated 

properly, giving a total classification accuracy of 87%. 
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The level of discrimination was significantly reduced with submicron PBs (0.38µm) supporting 

lower levels of discrimination, where only 27% of 0.38µm PBs were detected correctly from 

the phantoms of the micron dimension. This demonstrated the resolution limit of the OCT 

device. Consequently, the sensitivity of the classifier was dropped from 87% and submicron 

(0.38µm) polystyrene beads had no discernible effect on the optical properties of the 

phantom. The scans from these phantoms were notably free of single-pixel speckle and 

random noise (Figure 3.10). OCT image thresholding was achieved using ImageJ automatic 

computing of a value cutoff.  
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a 

 

 
b 

 
 
c 

 
 

 
d 

 

Figure 3.10. OCT B scans and their thresholded images of 0.38µm (a), 1µm (b), 2µm (c) and 5µm (d) PBs phantoms 
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Different refractive indices of scatterers  

Due to the different refractive indices of PBs (1.57) (Jones et al. 2013) and SiO2 (1.43) (Kischkat 

et al. 2012), the SVM classifier with and without PCA correctly detected the texture of PBs 

phantoms relative to silica samples in all cases. The principal component scores of each 

scattering particle type for the 3 components are plotted in X, Y and Z dimensions (Figure 

3.11a). According to the type of scatterers (PBs=red, SiO2=blue), segregation of the clusters 

into different types along the components can be detected. To illustrate the distribution of 

the groups along with individual components, plots I, II and III are projected in Figure 3.11b.  

 

 

Figure 3.11a. Principal component analysis of the different refractive indices of scatterers. 
The 3-component solution that included 95% of the variance within the data 
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I 

 
 
II 

 
III 

 
Figure 3.11b. The distribution of the groups along with individual components of PCA: I – the 
2D plot of 1st and 2nd principal components; II – 1st and 3rd principal components; III – 2nd 
and 3rd principal components  
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Different volumes of PBs scatterers 

The texture of different PBs volumes was detected accurately in 86.7% of cases with PCA and 

SVM, while 99.9% was achieved with SVM only. These are the overall classification accuracies 

in the detection of phantoms with various volumes of the PBs scatterers. In the classification 

of these types of phantoms, contrast and angular second moment (ASM) properties 

discriminated the most benefit to the classification performance during the feature selection 

process. An example of this is illustrated in Figure 3.12a: clusters of various phantom types 

were separable in the feature space, except for 20µl and 30µl of scatterers in 2% gelatin 

solution. 

 Figure 3.12b shows the similarity of textures generated by these two phantoms: 60% of 30µl 

PBs was classified as 20µl PBs sample, whereas 30% of 20µl PBs was selected as 30µl PBs 

phantoms. In contrast, 99-100% of phantoms with 5µl and 10µl PBs, 96-97% of 40µl and 50µl 

PBs were accurately detected by combined SVM+PCA classifier. 
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a 

 
 
b 

 
 

Figure 3.12. Different volumes of scatterers: a - clusters in the feature space: two most 
discriminating GLCM features – contrast and angular second moment (ASM) – demonstrated 
better classification performance. Here: • – correct and × – incorrect classification; (b) - 
confusion matrix. Here, 5, 10, 20, 30, 40 and 50 are the volumes of PBs in the gelatin solution 
in microlitre (µl). 
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3.4. Discussion 

Due to the potential change of number and density of organelles in apoptosis, the evaluation of 

texture of varying volumes of PBs was carried out. The classification accuracy was about 87-99%, 

which indicates that the SVM classifier could detect the difference in the volume of scatterers in 

phantoms. No matter the concentration of PBs in gelatin, NNI calculation showed the uniform random 

distribution of particles in the medium, which is important due to the influence of mass density on the 

RI, according to the Gladstone-Dale equation (Chapter 1). 

SVM classification showed that different types of scatterers and varying sizes of the same material can 

be discriminated against based on their optical textures. Classification accuracy of algorithms was 

between 81-93%. Nevertheless, the phantoms containing under resolution scatterers (0.38µm) 

changed the accuracy of SVM without PCA from 87% to 82.5%. Also, the classification of phantoms 

with 20µl and 30µl of PBs in 2% gelatin solution demonstrated interesting results. In the repeat 

experiments and analysis, it was clear, that the textures from these two types of phantoms were 

similar. The volume of the particulate mixtures in the standard medium is the other big issue of 

phantom preparation. The density of the scatterers and their distribution may give a specific textural 

picture. There should be conducted further studies on the density and volume of mitochondria and 

corresponding phantoms should be prepared.  

Although gelatin has suitable mechanical and optical properties to act as an optical OCT 

phantom, these mixture solutions are not stable at room temperature. Also, it is important to 

ensure the random monodispersion of the particles. Otherwise, the clumped solid gelatin 

clusters or the scatterers may increase the regional refractive index and affect the power of 

back-reflected OCT light. These homogenous microbeads may not represent the exact 

delicate structure of elongated tubular or single punctiform mitochondria, and all these 

physical and optical parameters are a close estimate and approximate modelling of the main 

contributors of OCT scattering, especially in cellular degeneration. More robust studies with 

the use of biological phantoms are needed to demonstrate the changes during apoptosis. 

The limitation of the OCT resolution cannot allow monitoring the cellular pathogenesis 

without the ultrahigh-resolution broadband light source, adaptive optics techniques, special 

complex image processing, analysis of texture and application of mathematic pixel 

computational learning algorithms. OCT image as a greyscale texture may consist of spectral 

and statistical information, that can be analysed and extracted as valuable information in the 
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early pathogenesis of various diseases. Nevertheless, with the available OCT with 70nm 

spectral band, non-isotropic resolution, extraction of only GLCM features, it was possible to 

achieve the high-accuracy classification of phantoms. 

In summary, the study confirmed the utility of texture analysis in the discrimination of the 

phantoms of various sizes, concentrations and refractive indices of microparticles. Although 

the OCT device does not have cellular and subcellular resolution, speckle from backscattered 

light may show the characteristic texture of each phantom type. “Reading” of this speckle is 

possible by the application of texture analysis using machine learning classification tools.  
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Chapter 4. Optical detection of neurodegeneration in mouse retinal explants 
 

4.1. Introduction 

Lesion of RGC axons may cause the programmed cell death of neurons (Grafstein and Ingoglia 

1982; Berkelaar et al. 1994). Intracranial and intraorbital transection of the optic nerve may 

cause the apoptosis of RGCs, which are likely the result of damaged axonal transport 

(Grafstein and Ingoglia 1982). Furthermore, impaired cell viability and homeostasis, as well as 

the dysfunction of the cellular trophic support system are also drivers of RGC degeneration 

(Nadal-Nicolás et al. 2015). 

In axotomized RGC, nuclei are fragmented and clumped, making positive to peroxidase 

“apoptotic bodies”, which indicate the fragmentation of DNA and cytochemical alterations 

characteristic to apoptosis (Berkelaar et al. 1994). Besides, chromatin condensation was 

revealed along with internucleosomal fragmentation in a study by Quigley et al. (1995). 

Despite the fact that the RGC cell death leads to the loss of control of the organelles 

(mitochondria, endoplasmic reticulum (ER), Golgi, etc.) and maintenance of the cellular 

environment (DePina and Langford 1999; Munemasa and Kitaoka 2013), the earliest stages 

of RGC degeneration is unclear. According to the study of Williams et al. (2013), the 

degeneration of RGC dendrites starts earlier than serious axon degeneration in DBA/2 J mice 

due to the influence of the complement cascade on dendritic atrophy. Hence, the RGC dies 

by a caspase-dependent mechanism, where caspases activate apoptosis through initiators 

(caspase-2, -8, -9 and -10) and executioners (caspase-3, -6 and -7) (Fan et al. 2005; Kumar 

2006; Thomas et al. 2017) 

Atrophy of RGC dendrites causes the loss of synapses with underlying bipolar cells (Lee et al. 

2012). This leads to the dysfunction of RGC in the earliest stages of apoptosis, the action 

potential of which was tested on the pattern (PERGs) and flash (FERG) electroretinograms in 

DBA/2 J mice (Howell et al. 2007; Saleh et al. 2007). 

Bevan et al. (2020) measured the RGC dendritic degeneration in amyloid overexpressing 

(3xTg-AD) and knock-in (APPNL-G-F) mouse models, which corresponded with synaptic 
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dysfunction and deposition of beta-amyloid. These changes in RGC dendrites preceded 

irreversible cell loss (Williams et al. 2013). 

Since the functional and morphological alterations in early apoptosis occur in the dendrites 

of RGC, evaluating the optical properties of the retinal IPL layer using OCT is proposed. The 

texture of this layer may change due to the events at the subcellular level, which are which 

have been proposed to be the source of OCT light scattering (Beuthan et al. 1996; Mourant 

et al. 2000; van der Meer et al. 2010). Even if OCT cannot allow visualizing the individual 

organelles, large multi-pixel speckle signals may carry information of the morphology, which 

can be described using texture analysis to extract and describe these events. The diagnosis of 

AD-related retinal symptoms, particularly the detection of the early signs, utilizing state-of-

the-art high-resolution ligand-free imaging methods may allow the screening and monitoring 

of patients at high risk of AD development. 

In this chapter, textural feature changes of RGC early neurodegeneration were monitored 

using high-resolution OCT and supervised machine learning algorithms (SVM and PCA+SVM). 

Also, for the first time, transparency of the murine retinal explants after the enucleation and 

dissection was investigated to exclude the optical changes due to the opacification of the 

tissue. Another novelty of this chapter is the observation of IPL optical differences of 

transgenic AD-mouse model from healthy controls (C57BL/6). 
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4.1.1. Hypotheses 

• The texture of the inner plexiform layer (IPL) of retinal explants changes after 

transection of the optic nerve (ON) due to apoptosis. These texture-associated 

changes can be detected in the first hours after axotomy using machine learning 

classifiers: principal component analysis (PCA) and support vector machine (SVM). 

• The texture of the IPL layer of the 3xTg Alzheimer’s disease (AD) mice model is 

different from the texture of the IPL layer of the control (C57BL/6) mice. 

 

4.1.2. Aims 

• To analyse the texture of the IPL layer of murine retinal explants 

• To detect the optical alterations of RGC dendritic degeneration in the first hours after 

axotomy 

• To detect the textural differences of AD-related dendritic neurodegeneration 
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4.2. Experimental design 

Figure 4.1 illustrates the stages of the experiments conducted using mice retinal explants. 

 

 

Figure 4.1. For the evaluation of retinal explants and ensuring the transparency of tissues, 
microscopy of samples was performed to quantify the modulation transfer function (MTF). 
Other retinal explants were imaged using OCT-1040 in four time-series (time 0 – immediately, 
30 mins, 60 mins and 120) after axotomy. The texture of OCT scans was analysed using GLCM 
features. Texture analysis was also carried out on the IPL layer of transgenic AD mice. The 
scheme was created with BioRender.com 

 

4.2.1. Analysis of retinal explants post axotomy 

The retinal explants of C57BL/6 mice (age P15 and above) were dissected as described in 

Section 2.2. Five C57BL/6 retinal explants of 5 mice were used to model retinal axotomy: two 

of them were used to assess the transparency of tissues after axotomy (Experiment 1) and 

three explants were utilized to monitor RGC death over 2 hours (Experiment 2). In the post 

dissection and imaging periods, tissues were kept in HBSS (Life Technologies). The imaging of 

explants in OCT and microscopy was conducted as described in Sections 2.3 and 2.4. 
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4.2.2. Retinal transparency post axotomy: analysis of the modulation transfer function 

Two retinal explants of C57BL/6 were visualized using the Olympus-IX71 microscope (Section 

2.4.2) in order to inspect the tissues and measure the modulation transfer function (MTF). 

MTF detects the amount of contrast in the target object, maintained by the camera through 

identifying the transmitted spatial frequency 𝜈 content. MTF can be computed as the 

normalized modulus of the fast Fourier transform (FFT) of the point spread function (PSF) 

(Williams 2002). The summation of a line of overlapping PSFs forms the line spread function 

(LSF). Hence, MTF is inherently associated with the FFT of the LSF of the spatial distance 𝑥 

(equation 4.1). 

𝑀𝑇𝐹(𝜈) = |𝐹𝐹𝑇{𝐿𝑆𝐹(𝑥)}| =  
1

√2𝜋
∫ 𝐿𝑆𝐹(𝑥)𝑒−𝑖2𝜋𝜈𝑥𝑑𝑥

∞

−∞
  (4.1) 

LSF is the first derivative of the edge spread function (ESF). And ESF, in turn, is the profile of 

the image of an edge (Boreman 2001). In other words, ESF is built from a set of parallel LSFs, 

which end at the edge position. 

Using the pixel intensity ranges from the microscopy images of the samples, the modulation 

transfer ratios and depth of images were calculated using equations 4.2 and 4.3, respectively. 

Hence, the MTF was defined as the ratio of the contrast of the image with the tissue to the 

contrast of the micrograph of the calibration slide. 

𝑀𝑇𝐹 (𝑓𝑥) =  
𝑀𝐼(𝑓𝑥)

𝑀𝑂(𝑓𝑥)
,   (4.2) 

where MI(fx) and MO(fx) are the modulation depths of the images of the grid lines with and 

without the retinal explant, respectively. Equation (4.2) was expanded as equation (4.3). 

𝑀𝐼(𝑓𝑥) =  
(𝐼𝑚𝑎𝑥−𝐼− 𝐼𝑚𝑖𝑛−𝐼)

(𝐼𝑚𝑎𝑥−𝐼+ 𝐼𝑚𝑖𝑛−𝐼)
   

𝑀𝑂(𝑓𝑥) =  
(𝐼𝑚𝑎𝑥−𝑂− 𝐼𝑚𝑖𝑛−𝑂)

(𝐼𝑚𝑎𝑥−𝑂+ 𝐼𝑚𝑖𝑛−𝑂)
,  (4.3) 

where 𝐼𝑚𝑎𝑥−𝐼  and 𝐼𝑚𝑖𝑛−𝐼  are the maximum and minimum intensity of the image with the 

retinal explant (I – image); 𝐼𝑚𝑎𝑥−𝑂  and 𝐼𝑚𝑖𝑛−𝑂  are the maximum and minimum intensity of 

the image without the retinal explant (O – object). 

In order to measure the maximum and minimum intensity of the image with a retinal explant, 

dissected tissues were placed on the stage micrometre calibration slide (Muhwa Scientific, 

China). The slide plays the role of the calibration test target and consisted of a 1 mm scale 
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containing black and white line pairs (Figure 4.2a), marking 0.01mm divisions (Figure 4.2b). 

Also, the image of the slide without retinal explant was acquired to measure the 𝐼𝑚𝑎𝑥−𝑂  and 

𝐼𝑚𝑖𝑛−𝑂.  

a 

 

 

 b

 

Figure 4.2. Modulation transfer function measurement: a – line edges before (top) and after 
addition of tissue sample (bottom); b – calibration slide and its schematic view. Created with 
BioRender.com 
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4.2.3. Retinal atrophy post axotomy: texture analysis of RGC dendritic tree 

OCT acquisition from three C57BL/6 mice explants (2 images from each retina) was performed 

at four time points, giving a total number of scans 24 (Figure 4.1). All OCT scanning of C57BL/6 

retinal explants for the time series was performed in the same location of the tissue without 

moving the sample and coverslip to ensure the consistency of data collected. 10 random VOIs 

within the IPL region were selected from each OCT scan, summing 240 VOIs in total. The 

dimensions of VOIs were 30×30×30 pixels in x, y and z scales. Then five GLCM features were 

extracted and imported to PCA and SVM classifiers. Texture analysis was performed in 

Simulink MATLAB R2017b (MathWorks) software. The details of image processing, feature 

extraction from the IPL and analysis are provided in Sections 2.6 and 2.7. 

To assess whether data dimensionality reduction with PCA prior SVM or direct application of 

SVM works well with the monitoring of the textural changes in dying RGC, both were used. 

Linear SVM, as well as Gaussian SVM, had higher than LDA, QDA, DT and LR classifiers (Chapter 

6). 

 

4.2.4. Analysis of RGC dendritic atrophy in Alzheimer’s disease 

The 3xTg mice model was used for the analysis of the degeneration of the RGC dendritic tree 

in AD. For Experiment 3, 20 OCT images were acquired from seven 12 months old 3xTg-AD 

mice (The Jackson Laboratory, strain 34830-JAX: B6; 129-Tg (APPSwe, tauP301L)1Lfa 

Psen1tm1Mpm/Mmjax) and three 15 months old C57BL/6J (B6/J Control, in house colony) and 

200 VOIs in total (10 VOIs from each) were randomly divided into training (100), validation 

(50) and test (50) datasets. Similar procedures of VOI selection, feature extraction and image 

classification were applied as in the study of retinal atrophy post axotomy (Section 4.2.1.2). 
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4.3. Results 

4.3.1. Transparency of the retinal explants 

Since the transparency of retinal explants may change after dissection or during culture and 

thereby affect the results of texture analyses, the opacification of the tissues was assessed by 

computing the MTF. Generally, the MTF is used for the evaluation of the imaging performance 

of an optical system. However, here, the MTF was utilized to characterize the propagation of 

the modulated lights through the retinal explant. 

Images taken by microscopy of the graticule, with and without the mice retinal tissue, are 

presented in Figure 4.3a. Also, the greyscale pixel value graph representations of the en face 

images are illustrated (Figure 4.3b).  

a – Calibration slide micrographs 
without explant with explant 

  

b – Greyscale value plots 

  

Figure 4.3. Microscopy images (a) and greyscale plots (b) of the calibration slide with and 
without mouse retinal explant  



82 
 

The greyscale plot has a sinusoidal shape with approximately the same modulation. The 

maximum intensity (Imax) of both images with and without the retinal tissue is 255, whereas 

their minimum intensities (Imin) differ: 57 for the image without explant and 138 for the image 

with explant. 

Time series micrographs were also taken (Figure 4.4) and their mean, maximum and minimum 

intensity values were measured as well (Table 4.1). Using (4.1) and (4.2), modulation features 

were calculated and the summary of the modulation depth of the objects 𝑀𝑂(𝑓𝑥) and 

𝑀𝑇𝐹(𝑓𝑥) the ratio is provided in Table 4.2, considering the modulation depth of the image 

𝑀𝐼(𝑓𝑥) = 0.635 (from Table 4.1). 

 

 

Time 0 Time 30 Time 60 Time 120 

    

Figure 4.4. Microscopy images of the calibration slide with the tissue explants in the different 
time points 

 

Table 4.1. Greyscales mean and range of intensities, computed from the images of Figure 4.3 
for the reference image and Figure 4.4 – for the time points. 

 

 

 Reference image 

(without tissue) 

Time 0 Time 30 Time 60 Time 120 

Mean grey-

level 

179.41 237.74 238.25 241.55 239.45 

Imin 57 181 184 179 186 

Imax 255 255 255 255 255 
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 Time 0 Time 30 Time 60 Time 120 

𝑀𝑂(𝑓𝑥) 0.159 0.157 0.182 0.178 

𝑀𝑇𝐹 (𝑓𝑥) 0.250 0.247 0.287 0.281 

Table 4.2. Summary of the modulation depth of the objects and MTF values, calculated using 
(4.1) and (4.2). Here, MTF values of Time 60 and 120 are higher than the MTF of Time 0 and 
30 
 
ESF, LSF and MTF relationships and the result of the computations are provided in Figure 4.5. 

the x-axis of the MTF plot is the normalized modulation factor against frequency input 

(cycles/pixel). Spread and modulation transfer functions values remained stable, and 

opacification of retinal explants did not occur after dissection. Transparency of post axotomy 

eyes was relatively constant over the 2-hour time period of analyses. 



84 
 

 

Edge spread functions 

 

 

Line spread functions 

 

 

Modulation transfer functions 

 
Figure 4.5. Edge and line spread functions and MTFs. Left: theoretically perfect system; right: same functions 
for images with and without the retinal explants. All functions were unchanged and there were no signs of 
secondary opacification of tissues during 2 hours of post dissection 
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4.3.2. Texture analysis of post axotomy RGC dendritic tree  

OCT images of the retinal explants from C57BL/6 mice rats were inspected before feature 

extraction and texture analysis. A clear view of the morphology of the murine retina was 

observed (Figure 4.6). All layers of the retina were visible and the selection of random VOIs 

of the IPL was a straightforward process. The size of the volume of interest was small to avoid 

regions with prominent blood vessels. 

OCT scans were acquired immediately after the transection of the ON (at time 0), and at 30 

minutes, 60 minutes and 120 minutes following axotomy (Figure 4.7). Coverslip position was 

observed in the regions of abrupt pixel intensity transition. 

Initially, GLCM-based texture analysis was performed at times 0 and 60 minutes after 

axotomy to test the classifier for the detection of the optical changes of apoptosis. A clear 

classification result was achieved with 2 distinct clusters (Figure 4.8a): the accuracy of the 

detection of time 0 explants from time 60 was 100% with and without PCA. Results suggest 

that the classifier operated correctly and that there could be detected changes associated 

with early retinal degeneration. 

Then, the same analysis was applied for the detailed observation of the early and late stages 

of the RGC dendritic tree atrophy (data from 30 minutes and 120 minutes were added) 

together with the above-mentioned time points (time 0 and 60 minutes). Due to the interclass 

misclassification within time points of early stages (time 0 and 30 minutes) and similar in the 

time periods of late stages (1 and 2 hours). In Figure 4.8b, two groups of clusters in the feature 

space were formed. Potentially it indicates that the texture of these groups can be similar 

(Figure 4.8b) as we noted the similar MTF values in time 60 and time 120 in Table 4.4. The 

classification rate of SVM was 86.3%, SVM and PCA equals 81.9% (Table 4.3). 

One of the explanations of the worse performance of SVM with PCA can be the result of the 

loss of some spatial information which is important for classification due to the dimensionality 

reduction. The confusion matrix in Table 4.3 depicts different accuracy of SVM with/without 

PCA: true positive rates are 75-96% with SVM only and 70-93% in the combinative application 

of both algorithms. Although, combining PCA with SVM intelligently can improve the SVM 

performance, in some cases it can degrade the SVM accuracy, which depends on whether the 



86 
 

SVM has had enough data in enough learning, test, and validation sets, to be sure it is not 

overtrained. 

After the transection of the optic nerve, the cluster representing images in time 30 minutes 

shifted slightly right and top in Figure 4.8b. In contrast, in time 60 and 120, the clusters in 2D 

feature space shifted more to the same direction from the control position (time 0) and the 

border between early and late stages of apoptosis is clearly visible. 
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a 
 

b 

 

 

Figure 4.6. 3D rendered OCT image of a mouse retinal explant at time 0, RGC side up (a) with a schematic view of the retinal layers (b). RNFL – 
retinal nerve fibre layer; GCL – ganglion cell layer; IPL – inner plexiform layer; INL – inner nuclear layer; OPL – outer plexiform layer; ONL – outer 
nuclear layer; PR – photoreceptor layer; ELM – external limiting membrane; IS/OS – the junction between the photoreceptor outer and inner 
segments; RPE – retinal pigment epithelium. 
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a 

 

b 

 

c 

 

d 

 

Figure 4.7. Time series of OCT images of the mice retinal explants: a – time 0 (after axotomy); b – 30 minutes after axotomy; c – 60 minutes after 
axotomy; d – 120 minutes after axotomy. 
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a 

 

 

b 

 

Figure 4.8. a – Texture analysis of early apoptosis in retinal explants, only time 0 and time 60 
results shown. The accuracy of the classification was 100% with and without PCA. b – Texture 
analysis of apoptosis in retinal explants in time points: time 0, 30 minutes, 60 minutes and 120 
minutes. Here: • – correct and × – incorrect classification 
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SVM classification 

 

Timepoints 

Predicted class (% correct) 
True 
positive 
rate 

False 
negative 
rate time 0 30 mins 60 mins 120 mins 

Tr
u

e 
cl

as
s 

time 0 75% 25% 0% 0% 75% 25% 

30 mins 23% 77% 0% 0% 77% 23% 

60 mins 0% 0% 97% 3% 97% 3% 

120 mins 0% 0% 4% 96% 96% 4% 

PCA and SVM classification 

  
Predicted class (% correct) 

  

Tr
u

e 
cl

as
s 

time 0 70% 30% 0% 0% 70% 30% 

30 mins 28% 72% 0% 0% 72% 28% 

60 mins 0% 0% 92% 8% 92% 8% 

120 mins 0% 0% 7% 93% 93% 7% 

Table 4.3. Classification summary 
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4.3.3. Optical detection of neurodegeneration of RGC dendrites in AD mice 

Next, this method was used to quantify neurodegeneration in the RGC dendrites of the 3xTg-

AD mouse model retinal ex-vivo explants. To determine if neuronal degeneration occurring in 

retinal ganglion cells and their dendrites can also be detected following analysis of OCT 

images after processing of back-reflected light, the IPL layer in retinal explants of 3xTg-AD 

mouse and C57BL/6 (black6 or B6) were analysed immediately after ON transection.  

Results acquired after the GLCM-based feature analysis indicated that the texture of the IPL 

layer of 3xTg-AD mice differed from that of the control C57BL/6 group mice. In Figure 4.9, the 

most descriptive GLCM features (Contrast0 and Entropy0 – features in 0 degrees between the 

index and reference pixels) were selected by PCA. The resultant 2-dimensional feature space 

classification resulted in 2 clusters (control and 3xTG) and demonstrated 100% accuracy of 

the classifier in both scenarios: with and without PCA. 

 

Figure 4.9. Texture analysis results of 3xTg-AD mice (n=7) and C57BL/6 (black6 or B6)(n=3) of 
IPL layer in retinal explants, OCT scans were acquired immediately after the transection of ON. 
The accuracy of the SVM classification was 100% with and without PCA. All VOIs were 
classified accurately, hence there are only sing “•” in the plot. Here: 3 – 3xTg; 6 – C57BL/6.  
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4.4. Discussion 

Retinal explants in culture maintained their optical clarity for at least 2 hours after transection 

of the ON (i.e., the duration of the experiments in this chapter), indicating that any potential 

changes of the texture are unlikely to have arisen due to opacification of the samples. In 

general, the health and viability of RGC are dependent on the environmental conditions: pH, 

temperature, medium contents, sterility and oxygenation. OCT scanning may stimulate 

and/or accelerate RGC death (Bull et al. 2011). Although studies on the MTF support the 

theory of the optical changes of retinal neurodegeneration, these measurements should be 

performed in retinae for a longer time period post axotomy to show how and when 

opacification may happen which is presumably irreversible. 

Potentially, the onset and early stages of retinal degenerative diseases are connected with 

the atypical function and abnormal morphology of the cell and its organelles. In Chapter 3, 

the benefits of using GLCM features and SVM as a machine learning tool to detect and 

discriminate subtle textural changes of OCT images were shown. Irregularities in OCT 

phantoms and biological tissues can be detected by texture analysis which attempts the 

recognition of homogeneous regions within the image using texture properties. Refractive 

indices, sizes and shapes of the various structures of the cell differ from each other and these 

contrasts are the subject for OCT light scattering. 

This study showed that OCT imaging and analysis of textural features can be utilized to 

compute the early degeneration of neuronal tissue. Since the injury of the ON is reported to 

cause RGC death (Thanos 1988; Berkelaar et al. 1994; Garcia‐Valenzulela et al. 1994; Quigley 

et al. 1995; Nadal-Nicolás et al. 2015), the axotomy model was used to monitor the optical 

changes in the IPL layer. This has been done based on the assumption, that the transection of 

the ON of C57BL/6 mice initiated apoptosis of the retinal ganglion cells, which usually starts 

in the dendritic terminals (Thanos 1988; Nadal-Nicolás et al. 2015). Hence, the optical changes 

of early apoptosis were first detected in the inner plexiform layer using OCT (Tudor et al. 

2014). Further studies on the optical alterations of GCL and RNFL layers will be needed to 

understand the nature and pathogenesis of RGC apoptosis. 

Optical alterations were subtle and only pixel differences in the backscattered light were 

measurable. As a tool for the mathematical quantification of biological changes, SVM and PCA 
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were utilised. Semi-automated texture analysis enabled the detection of the early cellular 

events preceding apoptosis, even if the identification of individual organelles was impossible. 

Therefore, the analysis of texture in the OCT image was the next step for measuring the 

integrity of the retina. Complex use of OCT and statistical texture analysis of the image 

enabled the classification of biological tissues of the same types (Gossage et al. 2003). Lab-

based ultra-high-resolution OCT-1040 allowed us to acquire the scans of ex vivo murine 

explants without the removal of speckle. 

It is challenging to detect the exact scattering source, and this was beyond the scope of this 

chapter. Nevertheless, it was demonstrated previously that the organelle network, 

particularly mitochondria, might be a possible source of OCT signal changes in the study of  

(Tudor et al. 2014). The shift of the cluster in the later stages of apoptosis (60 and 120 

minutes) in 2-dimensional space (from 20D after PCA dimensionality reduction) 

demonstrated a change of the optical signature during the cell death process.  

In addition, cellular nuclei and their components may also contribute to the backscattering of 

light in programmed cell death (Gavrieli et al. 1992). Similar apoptotic changes, initiated by 

the administration of staurosporine, were investigated in RGC-5 cell culture for in vitro 

detection of early apoptosis using ultra-high resolution OCT (Tudor et al. 2014).  

Detection of apoptosis, particularly in its early stages, is a vital aim in many diseases. The non-

invasive, ligand-free and non-toxic way of this procedure became clinically preferable (Tudor 

et al. 2014; Morgan et al. 2017). Ultrasound, X-ray, computed and MRI tomography allows 

the acquisition of high-quality images. These scans can be then processed and analysed using 

machine learning tools. The latter helps to calculate neuronal health, viability and death. 

Therefore, it is possible and potentially useful to study further stages of apoptosis in 12 and 

24 hours, and late cellular death in the first 7 days after axotomy. Also, the health of the other 

retinal layers (GCL, RNFL) corresponding to the RGC body and axons was not studied in this 

chapter. Moreover, the viability of bipolar and photoreceptor cells can be investigated for the 

subject of textural changes. In addition, among the other limitation of this study is the lack of 

histological and histochemical investigations of axotomized retinal explants in the first hours 

of apoptosis. 
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Application of the texture analysis in the detection of neurodegeneration of murine retinal 

OCT in-vivo can be studied. Furthermore, the diseases with cellular and subcellular alterations 

(glaucoma, AD, AMD and others) can be modelled in animal studies and the texture signature 

might be calculated using this semi-automated and other types of machine learning 

techniques.  

The OCT-1040 system allowed the visualisation of all the retinal layers of the explants due to 

its high axial resolution, which is determined by the spectral bandwidth of the light source. 

For future work, the neurodegeneration of the retina can be computed for the other layers, 

including the compartments of retinal ganglion cells and photoreceptors.  

For the purpose of in vivo studies in humans, the OCT device system should be modified: the 

numerical aperture of lenses would be decreased and the complex use of adaptive optics. The 

latter improves the transverse resolution. However, there are some limitations for the human 

eye: cataract, vitreal haemorrhage or other media opacities and movement artefacts. The 

next step for the application of the texture analysis of the neurodegeneration is in vivo 

detection of the optical signature in glaucoma and macular degenerations.  

To conclude, optical changes of apoptosis and the mathematical description of biological 

changes in apoptosis and AD-related RGC neurodegeneration are described in this chapter. 

Detection of these changes without ligand was the aim of this study; OCT imaging and 

machine learning classifiers allowed us to observe the texture associated with optical 

alterations within the first hours of RGC death and dendrite degeneration in AD mice retina. 
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Chapter 5. Texture analysis of outer retinal layers in macular degeneration 
 

5.1. Introduction 

Age-related macular degeneration (AMD) is a complex disease with multiple pathogenetic 

factors and variable clinical symptoms (Holloway and Verhoeff 1929; Brown et al. 2019). AMD 

is the leading cause of irreversible vision loss in the industrialized world and disease with a 

substantial global economic burden (Velez-Montoya et al. 2014). 

Degeneration of RPE leads to photoreceptor (PR) cell death. With apoptosis as the most likely 

driver, the number of TUNEL (transferase dUTP nick end labelling) positive cells have been 

shown to be higher in post-mortem human retinas with AMD compared with healthy controls 

(Dunaief et al. 2002).  The close relationship between the homeostasis of photoreceptors and 

RPE cells, as supported by mitochondrial activity has elegantly been shown by studies 

demonstrating the changes in mitochondrial shape in AMD and a reduction in the levels of 

TOMM20 (translocase of outer mitochondrial membrane 20), and essential component of 

mitochondrial membrane transport (Brown et al. 2019). Mitochondrial DNA disorders in AMD 

have been reported (Karunadharma et al. 2010; Terluk et al. 2015) that are similar to those in 

Alzheimer's disease and Parkinson's disease (Giannoccaro et al. 2017; Tang et al. 2019; 

Theurey et al. 2019). 

Although a broad range of imaging techniques have been developed to detect AMD, colour 

fundus photographs and OCT remain gold standard methods (Kanagasingam et al. 2014).  The 

source of reflectivity changes in OCT images from eyes with AMD is a topic of active debate. 

Machine learning has emerged as a powerful method for the identification of subtle optical 

changes, drusen classification and the grading of disease severity when applied to OCT 

images.  For instance, multi-scale textural features and shape parameters were extracted 

from OCT scans to train and segregate different macular conditions: macular hole, macular 

oedema and AMD (Liu et al. 2011). 

Due to the location of the alterations in the outer retina, RPE and choroid, recent studies have 

been designed to detect the early changes in vivo and ligand-free. Ravenscroft et al. (2017) 

demonstrated the potential of the long-wavelength OCT to scan the choroid as a route to the 
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detection of early macular pathology. Their automated convolutional neural network method 

for the supervised machine learning classification generated a promising outcome for the 

detect choroidal signs of AMD (Ravenscroft et al. 2017). 

In Chapter 4, the optical alterations of dying retinal cells of axotomized RGC and in transgenic 

rodent model were investigated, demonstrating that subtle changes in optical scatter likely 

driven by subcellular changes could be detected with OCT.  In this chapter, the possibility that 

these techniques can be applied to the analysis of the photoreceptor/ RPE interface for the 

detection (ligand-free) of early and neovascular AMD was investigated. 

Early AMD detection may change the treatment protocol and enhance the role of preventive 

measures. Also, correct management of modifiable risk factors can minimize the onset of the 

disease via increasing the viability and metabolism of the cells of the retina and RPE. The 

atrophic alterations of early AMD may generate the specific textural signature in the outer 

retina, which can be detected by high and ultrahigh-resolution OCT with combinative use of 

texture-based machine learning, which was achieved in this chapter and results of ML 

classification is provided. 
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5.1.1. Hypothesis 

OCT texture of the outer retinal layers may change in age-related macular degeneration due 

to the multiple factors, but predominantly because of the apoptosis of photoreceptors and 

RPE cells. These changes can be detected using machine learning classifiers: principal 

component analysis (PCA) and support vector machine (SVM). 

 

5.1.2. Aims 

• To extract the grey-level co-occurrence matrix and local binary pattern textural 

features from the soma and dendrites of the photoreceptors and RPE cells. 

• To analyse the texture of the outer nuclear layer (ONL), photoreceptor layer inner (IS 

PRL) and outer (OS PRL) segments, retinal pigment epithelium (RPE) in healthy and 

AMD patients. 

• To obtain the optical signature of early and neovascular AMD. 

• To assess the classification accuracy of the novel classifier. 
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5.2. Methods 

5.2.1. OCT dataset 

3D OCT image datasets acquired in 20-degree scans centred on the macula were kindly 

provided by Dr Ashley Wood and Dr Louise Terry, School of Optometry and Vision Sciences, 

Cardiff University. The same research-based OCT-1040 was used for the acquisition of scans. 

This OCT imaging system has been previously described in Section 2.3. These clinical images 

of patient eyes were obtained using the OCT sample arm adjusted to the PAT head, which 

stands for “patient”. The broadband spectrum of Amplified Spontaneous Emission 1-M-

ASEHPE-S (NP Photonics, Tucson, AZ, USA) with long-wavelength light source allowed 

penetrating the deeper layers of neuronal retina and choroid (Ravenscroft et al. 2017). 

The dataset consisted of 60 OCT retinal scans; 20 healthy controls and 40 acquired from 

patients with diagnosed AMD. The latter was categorized into two groups of 20 scans each: 

early AMD and neovascular AMD (nAMD). The classification of the disease was categorized 

using the diagnostic features of Table 5.1, which was adapted from the International 

Classification and Grading System for the classification of AMD (Bird et al. 1995). 

The OCT images used in this chapter are 3D stacks of size 512×512×1024 pixels in x, y and z, 

respectively. Due to the outer retinal localization of the pathology, ONL, IS PRL, OS PRL and 

RPE layers were studied in this investigation. From each layer, 5 volumes of interest (VOIs) 

were randomly selected (Table 5.2). VOI selection was achieved according to the normal 

retinal layers’ thicknesses. Therefore, the 3D volumetric dimensions of VOI of ONL and RPE 

layers were 30x30x30 pixels (in x, y, z), whereas 15x15x15 pixels were the sizes of VOI for 

inner and outer segments of PRL (Figure 5.1). 
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Condition Diagnostic features 

Early age-related maculopathy (ARM) 

Drusen with or without associated pigment 

and/or focal 

hypopigmentation of the RPE 

La
te

 A
M

D
 

Dry AMD Area of geographic atrophy ≥ 175µm in diameter 

Wet AMD 

One or more of the following: 

• RPE detachment 

• SubRPE/Subretinal neovascular membrane 

• Disciform scar 

• Subretinal haemorrhage 

• Hard exudates 

Table 5.1. Diagnostic criteria for the classification of AMD according to the International 
Classification and Grading System for the classification of AMD (Bird et al. 1995) 

 

Group Number of scans Retinal layers of 

interest 

Number of VOIs 

nAMD or wet AMD 20 images ONL 100 VOIs 

IS PRL 100 VOIs 

OS PRL 100 VOIs 

RPE 100 VOIs 

early AMD 20 images ONL 100 VOIs 

IS PRL 100 VOIs 

OS PRL 100 VOIs 

RPE 100 VOIs 

control 20 images ONL 100 VOIs 

IS PRL 100 VOIs 

OS PRL 100 VOIs 

RPE 100 VOIs 

Total 60 images  1200 VOIs 

Table 5.2. Number of OCT scans and selected volumes of interest (VOIs) 
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Figure 5.1. OCT scan sample with retinal cells scheme. VOIs were selected from the outer nuclear layer (ONL), retinal pigment epithelium (RPE), 
inner and outer segments of the photoreceptor layer (IS PRL and OS PRL).  
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5.2.2. Texture analysis and machine learning 

Selected VOIs underwent texture analysis using grey-level co-occurrence matrix (GLCM) and 

local binary pattern (LBP) features (Figure 5.2), as described in detail in Sections 2.6.1 and 

2.6.3. 20 GLCM and 59 LBP features were extracted from all VOIs and then imported into the 

classifiers (PCA+SVM and SVM only). Before the classification, all extracted VOIs were 

randomly divided into training (600), validation (300) and test (300) datasets. Results of 

previous chapters highlighted the diagnostic potential of the classifiers. The same tools were 

applied to human in vivo OCT images which supported a feature space with greater 

dimensions. 

IPL texture analysis for human OCT was performed for glaucoma patients in Chapter 6 using 

PCA+SVM and only SVM. Also, in the study of Anantrasirichai (2013), high-accuracy SVM-

based texture classification of glaucoma patients was achieved. Ternary (multi-class) 

classification of 2 stages AMD patients and age-matched healthy controls were also the 

subject of choice in favour of SVM. 

The classifiers were run to test the datasets, consisting of all 1200 VOIs from 20 healthy 

control eyes, 20 eyes with early AMD and 20 eyes with neovascular AMD. 10 OCT images from 

each group (50%) were randomly selected for the training of the classifier, whereas the rest 

30 images were included in the test dataset. Analysis with various random training and testing 

data was reiterated 10 times. 

 

5.2.3. Greyscale histogram analysis 

A separate analysis of the greyscale distribution calculation was carried out in the selected 

VOIs. A grey-level histogram maps each greyscale of a scan to its frequency. For 8- bits OCT 

B-scan the range of grey levels equals from 0 to 255 and the total number of pixels amounts 

to 512×1024 (Figure 5.3). 

The two most descriptive statistical measures of greyscale histogram (mean and standard 

deviation) features were analysed and compared. For the comparison of mean values, the 

extension of independent two-samples t-test – one-way analysis of variance (ANOVA) – was 

performed with R Statistics 3.5.3. P<0.05 was considered statistically significant. 
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Figure 5.2. The study design: the volume of interest (VOI) selection, feature extraction, texture analysis and OCT image classification: n – number of scans/VOIs, 
k – number of classes; ONL – outer nuclear layer, IS PRL – the inner segment of photoreceptor layer, OS PRL – the outer segment of photoreceptor layer, RPE – 
retinal pigment epithelium; GLCM – grey-level co-occurrence matrix, LBP – local binary pattern, ML – machine learning, PCA – principal component analysis, 
SVM – support vector machine. 
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Figure 5.3. Example of macula OCT image stack with the grey-level histogram. Histogram 
analysis shows the distribution of the number of pixels (y-axis) according to the pixel intensity 
value (x-axis) in the volume of interest 
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5.3. Results 

All scans were inspected for quality, and examples of OCT images of different classes are 

depicted in Figure 5.4. Neovascular membranes, hard exudates and other severe signs of AMD 

were present in patients with nAMD. By contrast, these were not apparent in patients with 

early AMD. The average age of patients with nAMD was 80 years (age range: 67-92 y.o.), 

compared with 74 years for early AMD (age range: 57-87 y.o.) and 73 years for healthy 

controls (age range: 59-88 y.o.). The mean axial eye length for all patients was 23.47 mm. 

Visual acuity was 0.34 for nAMD, 0.17 for the early AMD and 0.10 for healthy participants. 

Table 5.3 demonstrates the average values of the classification summary as per cent 

agreement between classifier and ground truth. PCA eliminated the redundant data and 

eigenvectors with high values were selected for the reduction of the dimensionality. 

However, this did not always increase the accuracy of the classifier. In several cases, the SVM 

accuracy was higher with the inclusion of PCA than without.  

It is notable that LBP features had a higher discriminative value than GLCM for the 

classification of AMD. Nevertheless, the combined use of GLCM and LBP textural properties 

increased the performance of both classifiers.  Table 5.3 demonstrated that the classification 

accuracy increased for the detection of optical changes in the outer retinal layers. Thus, 

diagnostic accuracy was higher in RPE than OS PRL. Similarly, accuracy was greater for the OS 

PRL compared with the IS PRL and the   IS PRL was greater than the ONL. This progression 

matches the known pathological sequence in AMD and confirms the RPE layer as the primary 

pathological site for AMD. Among all classes, nAMD had the highest accuracy for SVM and 

SVM+PCA classifiers – 94%, whereas the detection rate of the early AMD was 91% and for 

healthy participants, it averaged 92.5%. SVM classification of GLCM and LBP features of 

control vs early AMD vs nAMD is presented in Table 5.4. 

According to the table, SVM with PCA was higher than the only SVM in one case, when LBP 

features were imported to compare the texture of the outer nuclear layer (66.3% versus 59%) 

and both classifiers’ accuracy was equal (70%) in one case, when GLCM and LBP parameters 

were added in the texture analysis of IS PRL. All other models showed better performance of 

SVM without data dimensionality reduction. This may occur because the new feature space 

is a linear combination of original features, which may indicate that there is a loss of valuable 
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textural information. Also, it may depend on the way the pattern vector has been defined. 

One of the solutions to improve the PCA+SVM performance is to modify the elements of the 

pattern vector and monitor whether it affects the classification by either of the techniques. 

Analysis of the greyscale histogram analysis did not identify any significant differences 

between the disease groups.  A comparison of greyscale histograms of four retinal layers 

between groups is shown in Figure 5.5. The distribution curves shift to the left in Figure 5.5: 

A and B and nAMD curves were different in OS PRL and RPE in terms of intensities at peak 

(Figure 5.5: C and D), which may support the high SVM classification in this class of data.
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a b c 

 

 

  

Figure 5.4. OCT scan examples representing the classification groups (k=3): a – healthy control; b – early AMD; c – neovascular AMD (nAMD) 
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Retinal layer Textural features Classification accuracy 

SVM SVM+PCA 

ONL GLCM 48.6% 34.3% 

LBP 59.0% 66.3% 

GLCM+LBP 69.3% 67.6% 

IS PRL GLCM 57.9% 52.1% 

LBP 56.7% 53.3% 

GLCM+LBP 70% 70% 

OS PRL GLCM 63.5% 56.7% 

LBP 73.3% 56.7% 

GLCM+LBP 90% 60% 

RPE GLCM 72.2% 57.9% 

LBP 80% 73.3% 

GLCM+LBP 99% 93.3% 

Table 5.3. Classification summary on the level of different retinal layers 

 

Groups  control  early AMD nAMD 

control 100% 73% 86% 

early AMD 73% 100% 77% 

nAMD 86% 77% 100% 

Table 5.4. SVM classification of GLCM and LBP features 
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A 

 

B 

 

C 

 

D 

 

Figure 5.5. Histograms of grey values for comparison of greyscale histogram parameters between study groups. 
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5.4. Discussion 

In this chapter, SVM and SVM+PCA classifiers provided high classification accuracy for the 

detection of AMD and the discrimination of early and late disease changes. The data confirm 

the feasibility of using these machine learning tools for the semi-automated classification of 

AMD disease stage, based on outer retinal layers’ appearance. Discrimination accuracy was 

substantially lower for the ONL and IS PRL, consistent with our current knowledge of AMD 

pathogenesis in that it is initiated in the PR-RPE interface(Adler et al. 1999; Dunaief et al. 

2002; la Cour et al. 2002). 

Classification accuracy was higher for the detection of textural differences in OS PRL and RPE, 

corresponding to the outer segment of the photoreceptor and retinal pigment epithelium. 

Accuracy was greatest for patients with nAMD. Since the early and severe OCT changes 

usually appear in these layers and choroids, the analysis indicated that textural indices of 

damage can be detected using machine learning techniques.  

Visual processing and the regeneration of photosensitive pigments requires an immense 

amount of energy, which is mainly contributed by mitochondria. Mitochondrial pathology has 

been reported in the outer retina in a number of inherited conditions. In experimental 

models, mitochondrial fragmentation has been observed in the inner segment of 

photoreceptor and RPE layers in the mice with knocked out mitochondrial antioxidant 

enzyme – manganese superoxide dismutase or MnSOD encoded by Sod2 (Brown et al. 2019). 

The integrity of the outer retina is contingent on the regulation of metabolic demands and 

the ability of mitochondria to supply appropriate levels of ATP (Kanow et al. 2017). Metabolic 

stress will manifest as changes in mitochondrial migration and fragmentation in the RPE, 

choriocapillaris and other support retinal cells such as the Muller cells (Stone et al. 2008). All 

these changes are likely to contribute to the observed changes in the optical texture/contrast 

distribution in the outer retina.  

Mitochondria along with the other membranous organelles play a major role in the scattering 

of light. Thus, the high accuracy of the classification in the mentioned layers can be attributed, 

in part, to pre-apoptotic or apoptotic processes, whereas the optical signature of the outer 
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segment of the PR layer can be generated mainly from the reticular pseudodrusen (RPD) 

(Rabiolo et al. 2017). 

Feature extraction and selection is influenced by the quantity and quality of parameters. A 

limited feature set may not describe the entire texture, whereas more parameters may 

include redundant data and result in classifier overfitting.  For AMD, both early and late, the 

local binary pattern features outperformed the parameters of the grey-level co-occurrence 

matrix; classification accuracy increased with the inclusion of more features. 

In this chapter, 8 sampling points were used for the radius of 1 pixel for LBP analysis. However, 

the LBP descriptor can be extended to a wider circle with a longer radius (Ammar et al. 2018), 

which can be used in a further detailed study of textural features. LBP is broadly used for 

pattern detection and recognition techniques (Lemaître et al. 2016; Mishra and Bhatnagar 

2020).  

The study does not attempt to identify the source of OCT backscattering given the complexity 

of the change in AMD. Other groups have confirmed the value of texture analysis. For example 

Hierarchical Texton Mining techniques to classify the AMD stages using texture analysis of 

choroidal OCT scans has been proposed in the study of (Ravenscroft et al. 2017). Alterations 

in the morphology of choroidal vasculature due to the severity of AMD may cause changes in 

the shape and texture of the choroidal region of OCT images. These pathological signs were 

detected by texture recognition using learnable feature extractors. 

 

The present study is limited by a relatively small dataset. Although the results of the chapter 

have promising performance, it is critical that the algorithms are trained using substantially 

larger datasets, which would limit the risk that ML approaches would behave unpredictably.  

Even with the limited dataset, my analysis demonstrated the potential for texture-based 

analysis of the outer retinal layers for the detection of subtle retinal degeneration.  The early 

detection AMD will support timely intervention on and reduce the risk of permanent vision-

threatening damage.  
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Chapter 6. Machine learning tools for the optical detection of glaucoma 
 

6.1. Introduction 

RGC death caused by apoptosis is the main reason for vision loss in glaucoma, which is 

characterized by disruption of cell organelle (Figure 6.1) (Kerrigan et al. 1997; Okisaka et al. 

1997). Numerous studies demonstrated the vital role of mitochondria in programmed cell 

death and its morphological changes (Nickells 1999; Okamoto and Shaw 2005; Chan 2006; 

Xavier et al. 2016; Williams et al. 2017; Tribble et al. 2019), which may affect the optical 

alterations of the tissue (Beuthan et al. 1996; Mourant et al. 1998; Gourley et al. 2005; 

Pasternack et al. 2010; Haseda et al. 2015). 

Experimental glaucoma models demonstrated an early dendritic degeneration of RGC 

apoptosis, where the distal dendrites suffer more than primary and secondary processes 

(Williams et al. 2013; Williams et al. 2016; Della Santina and Ou 2017). This leads to the loss 

of synapses with interneurons: bipolar and amacrine cells. Only then during or after the loss 

of RGC axons, the clinical manifestation of glaucoma may occur. At this stage, morphological 

changes are irreversible. 

In Chapter 3, the complex use of OCT-1040 and texture analysis was shown in detecting the 

subtle optical differences in OCT phantom with particle size and refractive index that was 

close to mitochondrial. Then, Chapter 4 illustrated the ex vivo monitoring of RGC dendritic 

degeneration in axotomized retinal explants. Also, in the same chapter, textural differences 

of IPL of healthy and transgenic Alzheimer’s disease mice models were shown. 

Machine learning classification of in vivo human OCT dataset was conducted in Chapter 5 for 

AMD patients. Thus, all these studies lead to the aim of this study which is to detect the optical 

changes of glaucoma in RGC dendrites using OCT and texture analysis. Various types of 

supervised texture-based machine learning tools were applied to compare their 

performances in the classification of glaucoma. Also, the impact of PCA on ML algorithms in 

terms of classification improvement was evaluated. It was also shown that the combinative 

extraction of GLCM, GLRM and LBP provides better determination of the textural differences 

of glaucomatous and healthy IPL. 
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Figure 6.1. The order of morphological changes of the RGC apoptosis. Reversible glaucoma pathogenesis starts from the alteration of 
morphology and number of mitochondria, which leads to loss of synapses with underlying bipolar cells and loss of dendrites. The constant effect 
of IOP and progressive degeneration of RGC leads to the loss of axons, which is clinically manifested as vision impairment and have irreversible 
nature. Images reproduced with permissions from (Harwerth et al. 1999; Jakobs et al. 2005; Williams et al. 2016; Della Santina and Ou 2017; 
Williams et al. 2017) 
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6.1.1. Hypothesis 

The OCT texture of the inner plexiform layer (IPL) may change in glaucoma due to the 

dendritic neurodegeneration. These subtle optical alterations can be determined using the 

various supervised machine learning tools: linear and non-linear kernel support vector 

machines, logistic regression, linear and quadratic discriminant analyses and decision tree 

classifier. All these classifiers will be assessed with and without principal component analysis. 

 

6.1.2. Aims 

• To extract the textural features from the IPL of healthy and glaucomatous OCT images. 

• To detect the optical changes of the IPL in glaucoma. 

• To evaluate the performance accuracy, precision, recall and F1 score of each classifier 

and compare the best in the case of glaucoma classification. 
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6.2. Methods 

6.2.1. OCT dataset, texture analysis and machine learning 

I am grateful to Ryan Bartlett (School of Optometry and Vision Sciences, Cardiff University) 

for OCT image acquisition and processing of raw FD1 file format to .tiff image format from 

glaucoma patients and healthy controls using OCT-1040 (see Section 2.6).  

All further image processing, feature extraction, machine learning classification, coding the 

programs were conducted by me (Figure 6.2). 40 OCT scans, 20 acquired from the participants 

with early and moderate glaucoma (diagnosed by a glaucoma specialist) and 20 age-matched 

controls were investigated. The images were centred on the macula and acquired using 

20°scans. Fundus photographs were collected and used to exclude any other retinal diseases. 

After the inspection of the OCT images, 10 random volumes of interests (VOIs) were selected 

manually from the IPL layer of each image using ImageJ. The dimensions of each VOI were 

30x30x30 pixels (x, y, z). 400 3D VOIs then underwent the feature extraction procedure, which 

was achieved using MATLAB (MathWorks) as described in Section 2.6. Apart from GLCM and 

LBP parameters, grey-level run-length matrix (GLRM) features were also investigated. The 

data on the related length of a particular pixel in a specific direction can be derived from 

GLRM features (Conners and Harlow 1980). In this chapter, for the GLRM matrix production, 

four spatial angles were taken: 0o, 45o, 90o and 135o. All features were imported to the 

classification tools: linear and non-linear SVMs, logistic regression, linear and non-linear 

discriminant analyses, and decision tree (Figure 6.2). Then, the performance of classifiers was 

evaluated using classification accuracy, precision, recall and F1 score as described in Section 

2.8. 

Inspection of the OCT scans was carried out and then followed by image processing. Selected 

VOIs, therefore, were imported to MATLAB for the extraction of 131 features (Table 6.1). 

After the preparation of the dataset matrix (400×131), the classification algorithms were run. 

Coding scripts are attached in Appendix 1. 
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Figure 6.2. Algorithm of the OCT scans analysis process. After the selection of VOIs, textural features (GLCM, GLRM and LBP) and thickness parameters of IPL 
were extracted for ml-based classification. The performance of algorithms was evaluated using accuracy, precision, recall and F1 score. Here: GLCM – grey-
level co-occurrence matrix; LBP – local binary pattern; GLRM – grey-level run-length matrix; L SVM – linear SVM; G SVM – Gaussian SVM; Q SVM – quadratic 
SVM, LR – logistic regression; LDA – linear discriminant analysis; QDA – quadratic discriminant analysis; DT – decision tree. 
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Group of features Features Total number 

LBP Uniform Patterns 59 

GLCM Angular Second Moment (ASM) or Energy 7 × 4 = 28 

Correlation 

Contrast or inertia 

Entropy 

Cluster shade 

Inverse Difference Moment (IDM) 

Homogeneity 

GLRM Short Run Emphasis (SRE) 11 × 4 = 44 

Long Run Emphasis (LRE) 

Grey-Level Nonuniformity (GLN) 

Run Length Nonuniformity (RLN) 

Run Percentage (RP) 

Low Gray-Level Run Emphasis (LGRE) 

High Gray-Level Run Emphasis (HGRE) 

Short Run Low Gray-Level Emphasis (SRLGE) 

Short Run High Gray-Level Emphasis (SRHGE) 

Long Run Low Gray-Level Emphasis (LRLGE) 

Long Run High Gray-Level Emphasis (LRHGE) 

Total  131 

Table 6.1. List of features used in the classification study 
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PCA and linear SVM were applied based on relatively high classification accuracy in the cases 

of phantom, explant and AMD detection and classification. Here, the number of classifiers 

was increased for the purpose of further larger studies on glaucoma classification. Literature 

data show that other machine learning techniques may also have a decent efficient 

performance. For instance, linear and quadratic discriminant analyses (Fleming et al. 2013; 

Choi et al. 2016), logistic regression (Chen et al. 2006) and decision tree (Sugimoto et al. 2013) 

were also used in the OCT image classification. 

 

6.2.2. Retinal layer segmentation 

For the retinal segmentation, several stages of the image processing software were used 

(Figure 6.3). Firstly, spectral data from the raw OCT converted to ‘.tiff’ image files in the 

OCT1_FD1 program. Then, anomalous B scans were removed with image registration and 

alignment in the ImageJ. Also, noise reduction and removal of the eye movement artefacts 

were conducted on this program. Then, the OCT en face images were orientated using the 

fundus photographs. The next step was the automated retinal layer segmentation of the 

macula OCT images in 11 distinct layers, identifying 12 boundaries using the Iowa reference 

algorithm OCT Explorer 3.1 (The University of Iowa) (Figure 6.4).  
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Figure 6.3. Algorithm of the OCT image processing with software in brackets 

 

 

 

Figure 6.4. The screenshot of the cross-sectional OCT image of the retina cantered at the 
macula. Retinal layers segmentation was performed using OCT Explorer software. Retinal 
surfaces (left): 1. ILM; 2. RNFL-GCL; 3. GCL-IPL; 4. IPL-INL; 5. INL-OPL; 6. OPL-HFL (Henle fibre 
layer); 7. BMEIS (Boundary of myoid and ellipsoid of inner segments); 8. IS/OSJ (IS/OS 
junction); 9. IB_OPR (Inner boundary of Outer segment PR/RPE complex); 10. IB_RPE (Inner 
boundary of RPE); 11. OB_RPE (Outer boundary of RPE) 

  

Raw OCT 
dataset (FD1 

files)

Image 
processing 

(OCT1_FD1_
V22)

Registration 
macro 

(ImageJ)

Retinal layer 
segmentatio

n (OCT 
Explorer)

Macula 



119 
 

6.3. Results 

Segmentation of 3 inner retinal layers of ganglion cell complex, where the axon (RNFL), cell 

body (RGC) and dendrites of RGC (IPL) are located, was conducted. These layers are important 

in glaucoma pathogenesis, as the early cellular and molecular alterations occur here.  

Moreover, the OCT Explorer software calculated the Early Treatment Diabetic Retinopathy 

Study (ETDRS) thickness maps for 9 subfields (Figure 6.5).  Each of these subfields in the 

macular thickness map specifies the number of regions: 1 mm (fovea), 3 mm (inner ring), and 

6 mm (outer ring) distance from the fovea and shows superior, inferior, nasal and temporal 

regions of the macula. The mean thickness of IPL was measured using the Iowa Reference 

Algorithms. The average thickness over grids is calculated in microns. 

Then, the thickness values of all 9 regions (Figure 6.5) and 2 rings (inner and outer) 

corresponding to the dendrites of RGCs were added as the thickness features for the classifier. 

So, apart from textural features (GLCM, GLRM and LBP), IPL layer thicknesses were considered 

as a separate group of features (below). The thickness measurements of the inner retinal 

layers are shown in Table 6.2. It can be noted the decrease of the thickness of all GCC complex 

in the foveal area for the patients with glaucoma.      

 b 

 

Figure 6.5. a – the screenshot of the thickness of the retinal layers. Macular thickness map 
using ETDRS circles (1mm, 3mm, and 6mm) demonstrating the mean thickness in each of the 
9 grids; b – schematic view of regions 1-9. Created with BioRender.com 
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Retinal 
layer 

Group Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8 Region 9 
Inner 
Ring 

Outer 
Ring 

RNFL 
  

Control 16.05 20.72 28.18 25.73 27.14 20.85 37.14 43.20 36.16 25.44 34.34 

Glaucoma 7.30 18.92 29.77 24.71 26.94 20.56 44.69 50.94 42.85 25.08 39.76 

GCL 
  

Control 15.72 37.42 40.61 41.82 40.77 26.08 22.27 32.01 23.36 40.15 25.93 

Glaucoma 18.06 49.05 51.66 52.80 52.64 33.14 25.91 34.74 27.05 51.54 30.21 

IPL 
  

Control 27.87 41.44 42.63 40.47 39.59 38.72 31.64 34.94 30.22 41.03 33.88 

Glaucoma 25.31 39.86 42.96 39.04 40.14 43.31 37.23 40.06 35.78 40.50 39.10 

GCC 
  

Control 59.65 99.58 111.53 108.55 104.29 85.65 91.05 104.89 89.75 105.99 92.84 

Glaucoma 50.67 107.83 124.39 116.54 119.71 97.01 107.83 125.74 105.68 117.12 109.06 

Table 6.2. Average thickness values (in μm) of inner retinal layers, corresponding to RGC dendrites (IPL), axon (RNFL) and body (GCL). IPL 
thickness values were used as a separate group of features for glaucoma classification. Regions and rings are stated in Figure 6.5 
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Firstly, classification algorithms were run only with textural features and all classifiers had 

similar efficiency. The summary of their performances is provided in Table 6.3. It should be 

noted that the SVM had higher rates of accuracy, precision, recall and F1 score without the 

data dimensionality reduction. Also, QDA has a similar accuracy level. Regardless of the 

negative influence of PCA for SVMs and quadratic discriminant analysis, the values of logistic 

regression, linear discriminant analysis and decision tree were slightly increased. 

As it was demonstrated in previous chapters, PCA did not increase the classification 

performance of linear SVM. The same trend occurred in this study, which can be explained 

that PCA treated the features of a large variance as important features. However, in most 

cases, the features with a large variance may have nothing to do with the prediction target, 

which means the production of a lot of useless features and elimination of useful features 

after PCA application. 

Nevertheless, analysis of principal components helped to improve the classification accuracy 

of logistic regression, LDA and DT. These models operated better with an eigenvalue 

decomposition, which produced the eigenvalues and eigenvectors for representing the 

amount of variation of the imported textural data. 

Among SVMs, the Gaussian kernel showed the highest accuracy, and it was further used to 

test the influence of each group of features and the input of the retinal IPL thickness as a 

classification parameter (Tables 6.4 and 6.5). Among the textural parameters, the major 

contribution to the classification was provided by the run-length matrix. GLRM also increased 

the accuracy of GLCM and LBP to 68.5 and 69.3, respectively, when they were imported 

collectively.  

Then, after the measurement of inner retinal layers’ thicknesses, they were included as a 

group of features to test whether they can influence the performance of the SVM classifiers 

(as they were selected as a suitable and most efficient tool for texture-based glaucoma 

detection). Interesting to note that thickness measurement of IPL as an individual group of 

features has higher accuracy, but it decreased the Gaussian SVM accuracy when it was used 

with the textural properties. Moreover, classifier accuracy with PCA was elevated only with 

the case of the inner plexiform layer thickness. 
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Algorithm 

Without PCA With PCA 

Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score 

Linear SVM 65.3% 0.651 0.652 0.652 60.3% 0.608 0.602 0.605 

Gaussian SVM 70.3% 0.635 0.667 0.650 58.8% 0.686 0.677 0.682 

Quadratic SVM 65% 0.650 0.646 0.648 61.8% 0.618 0.615 0.617 

Logistic 

regression 

60% 0.600 0.600 0.600 61.3% 0.615 0.615 0.615 

Linear 

discriminant 

analysis 

58.3% 0.582 0.580 0.581 60.8% 0.610 0.606 0.609 

Quadratic 

discriminant 

analysis 

64.8% 0.650 0.646 0.648 54.8% 0.550 0.585 0.567 

Decision tree 59.3% 0.592 0.589 0.591 60.8% 0.607 0.607 0.607 

Table 6.3. Classification summary for all textural features (GLCM, GLRM and LBP) and all classifiers
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 Accuracy, % 

Features Gaussian SVM Gaussian SVM+PCA 

GLCM 64.8 53.0 

GLRM 67.5 60.8 

LBP 62.5 57.8 

GLCM + GLRM 68.5 62.0 

GLCM + LBP 64.8 50.2 

GLRM + LBP 69.3 57.0 

GLCM + GLRM + LBP 70.3 58.8 

IPL thickness 72.5 80.0 

GLCM + GLRM + LBP + IPL thickness 54.3 50.5 

Table 6.4. Classification summary for Gaussian SVM with a separate group of features and 
their combinations: the accuracy percentage is for the discrimination of normal and 
glaucoma cases   

 

Groups  control  glaucoma 

control 100% 70.3% 

glaucoma 70.3% 100% 

Table 6.5. Gaussian SVM classification of GLCM, GLRM and LBP features 
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6.4. Discussion 

In vivo detection of textural differences between healthy and early glaucomatous human 

retina was the goal of the study. As the early changes of glaucoma characterised by RGC 

apoptosis, during cell death, some structural changes occur. Consequently, they lead to 

optical changes that can be detected by OCT. The backscattered light from the tissue 

generates speckles and may produce specific OCT image patterns. 

In this chapter, textural features of glaucomatous OCT images were extracted and then used 

as discriminative information for machine learning tools. Especially, among feature groups, 

GLRM was the most valuable and it increased the role of LBP and GLCM parameters. But, the 

complex use of all 131 features resulted in the higher accuracy of all classifiers (Table 6.4). 

Comparison between machine learning tools showed that support vector machines, 

especially Gaussian SVM, outperformed other methods. The impact of PCA was different for 

each classification technique. For instance, PCA was lowering the accuracy of SVMs, which 

can be the result of the elimination of valuable features. Moreover, it can be concluded that 

SVM is capable of managing the high-dimensional dataset better without prior reduction of 

dimensions. 

Nevertheless, PCA improved the classification performance of logistic regression, linear 

discriminant analysis and decision tree. In these cases, the first and second principal 

components served as better variables by separating the correlations between features and 

eliminating outliers. To sum up, all the implemented tools had similar performance, excluding 

SVMs. 

Retinal layers’ thickness measurement is one of the common reasons to use OCT in clinical 

settings. For this purpose, segmentation of the same dataset was carried out. The thickness 

values of IPL were used as a group of features separately and together with textural features. 

It can be noted that isolated thickness values had higher accuracy, but they decreased when 

was used with GLRM, GLCM and LBP. This needs further study and determination of 

segmentation role in glaucoma classification. 

Although accuracy, precision, recall, F1 score and confusion matrix are the most common tools 

for the evaluation of classifier performance, greater analysis for significance and computation 
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of such parameters as sensitivity and specificity, confidence intervals and error bars are 

needed. 

Future work should be performed with multiple OCT images. This can show the applicability 

of machine learning classifiers for the detection of glaucoma using optical dendritic 

degeneration changes. Also, further studies are needed to use the visual field data of patients 

for the purpose of demonstrating the optical differences in the same retina but different 

regions. For instance, the regions with already degenerated RGCs against the healthy parts of 

the retina, which could modify the strategy of VOI selection. 

Even though the OCT system that was used in this project does not have a cellular resolution, 

texture analysis shows promise in being able to quantify the subtle textural shifts in tissue. 

Since the speckle size is a function of the resolution of the system, it may be possible to 

perform texture analysis of subcellular components using ultrahigh-resolution OCT systems. 
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Chapter 7. General Discussion 
 

This chapter provides an overview of the results obtained in the experimental chapters, with 

a focus on the texture analysis of optical phantoms, murine retinal explants, human AMD and 

glaucoma OCT images. Also, study progress, limitations and the proposed future direction of 

investigations are stated. 

 

7.1. OCT resolution and texture analysis 

OCT device performance is predominantly determined by its image resolution (axial and 

transverse). Also, data acquisition sensitivity (dynamic range) and specificity (light speed and 

digitization resolution) play a major role in the OCT system operation (Drexler and Fujimoto 

2008). Among medical in vivo imaging techniques, OCT has one of the highest values of axial 

resolution and it is characterised by the wavelength of the coherent light (Figure 7.1). OCT 

axial resolution, in comparison to confocal microscopy, is not dependent on the depth of field 

and numerical aperture (NA). However, light source bandwidth can affect the axial resolution 

(Swanson et al. 1993): the broader the spectral bandwidth (∆λ) and the lower the wavelength 

(λ) of the light source, the better the longitudinal resolution (7.1). 

∆𝑧 =  
2 ln 2

𝜋

𝜆2

∆𝜆
  (7.1) 

In contrast, NA is important for the transverse resolution of OCT (higher NA increases the 

transverse resolution), as well as the focus spot size (𝑑) and focal length (𝑓) of the objective 

lens (Equations 7.2 and 7.3). The latter determines the depth of focus 𝑏  in Figure 7.1, which 

is the 1/e2 beamwidth of a Gaussian beam. 
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Figure 7.1. OCT system resolution scheme. Created with BioRender.com 

 

∆𝑥 =  
4𝜆

𝜋

𝑓

𝑑
  (7.2) 

𝑏 =  
𝜋∆𝑥2

2𝜆
  (7.3) 

The OCT system that used in these studies is a lab-based custom device with a long-

wavelength light source. The central wavelength of the spectrum is 1040nm, which improves 

the penetration depth. However, the light source bandwidth is ≈70nm. Ideally, broad and 

ultrabroad-bandwidth sources (c. 150nm and higher) could be used for the acquisition of 

images with submicron axial resolution (Drexler et al. 2001; Unterhuber et al. 2005), which 

can provide more valuable information about the cellular and subcellular processes of 

neurodegeneration. On the positive side, using a 1040nm wavelength light source is a trade-

off between axial resolution and penetration of the light, therefore, transverse resolution. 
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Even though OCT devices may have ultra-broadband light sources with high axial and 

transversal isotropic resolutions with AO technology, without the development of image 

processing and extraction of all valuable information from already existing OCT systems, 

achievements are still small. The texture of OCT images is least investigated and, therefore, is 

mostly ignoring a vital source of information about the microstructure of tissues. To assess 

whether the texture of known objects could be discriminated, phantoms were prepared, and 

their textural features were extracted. 
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7.2. Phantom study: Feasibility of SVM and PCA to classify phantoms based on OCT-

derived GLCM features 

Innovations in the field of photonics triggered the rapid development of OCT in the last two 

decades. Despite the dramatic progress of the OCT systems, there were few advancements in 

the improvement of standardized test methods to assess the function of OCT technology. 

Phantoms are artificial models for the evaluation of the imaging devices they can be used to 

provide quality assurance and calibration to standardised controls to support comparison 

between OCT devices. Moreover, phantoms can imitate the subcellular structures 

(mitochondria, endoplasmic reticulum, Golgi apparatus) of the retinal ganglion cell and are 

essential for the validation of OCT-based texture analysis. 

In Chapter 3, the results of the texture analysis of OCT phantoms were provided. Optical 

differences were shown in terms of various concentration, size and refractive indices of 

scatterers and volume of matrix material solution. Machine learning classification tools on 

the basis of support vector machine (SVM) and principal component analysis (PCA) could 

discriminate various types of phantoms with a high classification accuracy (80-99%). For the 

purpose of analysis of multidimensional data, the n-dimensional PCA (nD-PCA) was suggested 

by (Hongchuan and Bennamoun 2006). nD-PCA extends the PCA method to a higher 

dimensional data set. However, the data cannot be represented efficiently due to 

transforming the original dataset in terms of eigenvectors.  

Light scatterers were chosen as phantoms based on their ability to imitate membranous 

organelles, which have a high scattering coefficient and play a vital role in cell death. Not only 

the size (1-5μm) but also their refractive indices (1.43-1.57) and density (various volumes) in 

the cytoplasm were considered. Besides, to ensure the uniform dispersion of beads, their 

spatial distribution was quantified using nearest neighbour distance measurement. However, 

polystyrene and silica microbeads are homogenous spheres, whereas the organelles have a 

more complicated structure. OCT subcellular phantoms should be directed at recreating the 

structure of a cell in future studies. This may enable the imitation of cellular pathologies and 

then they can be tested on OCT technologies. Also, OCT with adaptive optics will allow 

precisely visualising the optical changes in chemical and biological samples. 
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GLCM  features have been extracted for image classification of microscopy (Yogesan et al. 

1996), ultrasound (Basset et al. 1993) and OCT images (Gossage et al. 2003) for detection of 

normal and pathologic tissues. In this study, only GLCM features were extracted, ignoring the 

other textural properties: grey-level run-length matrices, local binary patterns, wavelet 

transform and grey-level difference matrices. According to the studies of (Conners and 

Harlow 1980; Gossage et al. 2003), GLCM texture analysis provides better feature 

discrimination. Additionally, for better, faster and accurate operation of the classifier, the 

minimum number of features has to be applied, free from noise, discarded irrelevant and 

redundant data (Wu et al. 2012). 

As this was the first study in this thesis, few numbers of textural features were used. Further 

studies can be undertaken with the same groups of phantoms, but with more parameters 

(GLRM and LBP). Although this may increase the accuracy of classification, overfitting issues 

should also be considered. Nevertheless, the performance of the OCT device and supervised 

learning classifiers were evaluated showing the ability to visualise the microparticle phantoms 

and classify them on the basis of their textural differences. Hence, it was determined that 

both tools could be further applied for the texture-based classification of OCT images in 

experimental and clinical studies. 

 

  



131 
 

7.3. Explant study: Feasibility of using OCT image-derived texture features to detect 

early retinal neurodegeneration in models of retinal axotomy and Alzheimer’s disease 

Studies on the early neuronal degeneration of axotomized retinal ganglion cells (RGCs) 

demonstrated that the subcellular apoptotic changes may start in the dendritic tree of the 

neurons (Thanos 1988; Morgan et al. 2017; Tribble et al. 2019). Optical detection of these 

alterations is possible using OCT and, for that reason, mathematical computations of 

biological processes is provided in Chapter 4. 

Following the dissection of the murine eye and transection of the optic nerve, it was possible 

to monitor the optical signature of the inner plexiform layer (IPL) of tissues within 2 hours of 

retinal dissections. The explant model is useful in that the onset of RGC degeneration is 

initiated with the optic nerve section which is performed as part of the explant preparation. 

The results of the GLCM-based texture analysis suggest that the SVM classifier was able to 

discriminate the subtle pixel-level optical changes of the early dendritic degeneration of dying 

RGCs. The dendritic degeneration of the axotomized RGCs was histologically demonstrated in 

the study of (Tudor et al. 2014). 

Retinal neurodegeneration in Alzheimer’s disease (AD) was demonstrated in the study of 

Grimaldi et al. (2018). In a similar way, the optical signature of the IPL of transgenic 3xTg-AD 

mouse model explants was studied. Our classification algorithm was able to detect textural 

differences between control and AD mice models. GLCM features, especially contrast and 

entropy, were chosen by PCA as the most descriptive values. The texture of IPL of all 

transgenic mice retinae was different than the healthy IPL of C57BL/6 mice.  

As we consider the eye as a “mirror to the brain”, it will be a huge contribution to 

neuroscience, whether in vivo ligand-free non-invasive techniques may detect AD prior to its 

clinical manifestation. Whereas the main shortcomings of ligand-based methods, e.g. Annexin 

V (Aloya et al. 2006), the brain positron emission tomography with the radioactive Pittsburgh 

Compound B (PitB) (Mathis et al. 2012), are toxic and not applicable for the screening and 

monitoring of AD. With the clinical application of OCT with detailed textural analysis of the 

vulnerable high-risk group of patients and the intake of Capsaicin and other neuroprotectors, 

there will be a chance to prevent the disease. 
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Among limitations, the study could also be undertaken for in vivo investigation of 

glaucomatous or AD-related IPL dendritic degeneration. Also, cell culture experiments could 

demonstrate apoptosis of retinal ganglion cells and their textural signature could be studied. 

Histological observation of dying RGCs could be done to demonstrate the mechanism of cell 

death. Nevertheless, these questions were outside the scope of this PhD and have been 

stated in the study of (Tudor et al. 2014), where the transparency of dissected tissue was not 

investigated. Calculation of spread and modulation transfer functions revealed the absence 

of secondary opacification in the explants. Transparency of post axotomy eyes was relatively 

constant over the 2-hours. 

These ex vivo studies provide useful evidence to support in vivo human OCT studies, especially 

in the investigation of the early diagnosis of diseases associated with retinal destruction. 

Glaucoma and macular degenerations can be the candidates, in the first instance, due to their 

irreversible manifestations and absence of radical treatment. 
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7.4. Human studies: Feasibility of machine learning classification tools for use in early 

detection of retinal neurodegeneration in AMD and Glaucoma 

After the confirmation of the SVM classifier feasibility on in vitro and ex vivo studies on the 

artificial retinal samples and animal retinal explants, this algorithm was applied to study the 

optical changes of in vivo human retinal OCT images. Among a huge variety of neuronal 

degenerative diseases, two most common and causing vision-related socio-economic burden 

worldwide diseases were chosen: glaucoma and age-related macular degeneration. 

 

On the basis of glaucoma, RGC apoptosis is the key element of disease pathogenesis (Guo et 

al. 2005; Huang et al. 2019; Zhang et al. 2019). This can be the result of impaired axonal 

transport, direct and indirect pressure influence from intraocular fluid and vitreous and 

vascular ischemia of the retina (Quigley et al. 1995; Osborne et al. 2001; Chidlow et al. 2011; 

Mroczkowska et al. 2012; Fahy et al. 2016; Maddineni et al. 2020). Moreover, RGC death is 

controlled by specific genes, activated in the apoptotic cell: tumour-suppressor p53 protein, 

which enhances pro-apoptotic gene Bax and inhibits the antiapoptotic gene BCL-2 (Nickells 

1999). 

Several studies showed that programmed cell death has an early onset from the dendritic 

tree (Morgan et al. 2017; Tribble et al. 2019). Despite the popular theory of the initiation of 

the RGC axonal damage from the optic nerve head in glaucoma (Johnson et al. 2003), Williams 

et al. (2013) diolistically demonstrated the evidence of the prolonged atrophy of RGC 

dendrites preceding the injury of the neuron body and axon. Hence, the primary regions of 

interest for OCT imaging are IPL and GCL, where the dendrites and bodies of RGC are located. 

Even though the described pathogenesis of the programmed cell death can be visualised 

under microscopy, due to the limited resolution and the noise from back-reflected light, OCT 

cannot provide the morphology of individual subcellular structures. Individual RGC was 

imaged in vivo in the study of (Rossi et al. 2017) with a custom confocal adaptive optics 

scanning light ophthalmoscopy (AOSLO). 

Textural features of OCT images can distinguish the difference between healthy and 

glaucomatous tissues (Anantrasirichai et al. 2013). Thus, if apoptosis can be detected by OCT, 
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this would allow diagnosing the disease in the early stages of the disease (Figure 7.2Figure ), 

which can help to start early treatment avoiding irreversible RGC loss. Hence, the prevention 

of RGC death and early regenerative treatment (neuroprotection and neuronal rehabilitation) 

should be the main purposes of future work. 

The texture of IPL was already investigated in Chapter 4, but in an animal model and to study 

the early apoptosis of RGC. Here, the idea remains the same in terms of the mitochondrial 

and other organelle changes prior to cell death. Subcellular structures may cumulatively 

generate the optical signature of the disease and the machine learning classification 

algorithms demonstrated these differences. This optical signature is produced by the 

summation of subtle textural alterations of pixel intensities (Tudor et al. 2014). 
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Figure 7.2. Strategy scheme of the early detection of glaucoma and its potential prevention. Cellular and subcellular optical changes of RGC pre-
apoptosis can be detected using UHR-OCT in the stage of dendritic degeneration in the IPL layer. This allows monitoring the RGC viability and 
helps to decide the glaucoma treatment and prevention strategy 
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Changes in OCT image texture were analysed using GLCM, GLRM and LBP features and various 

machine learning classifiers techniques. Not only SVMs, but other methods (discriminant 

analyses, decision tree, logistic regression) were able to classify glaucoma and control group 

OCT images. Gaussian kernel SVM outperformed linear and quadratic SVMs, as well as other 

supervised machine learning classifiers. Among the textural features, the grey-level run-

length matrix illustrated the highest value for classifiers. Nevertheless, the combined use of 

all features had higher power for the classification. In the study of Anantrasirichai et al. (2013), 

linear SVM outperformed non-linear SVM and complex use of all features showed the highest 

classification accuracy. 

 

Studies on RGC apoptosis was followed by the study of outer retinal layers degeneration. OCT 

in the detection of AMD signs plays a major role: various types of drusen, RPE degenerations 

and neovascular exudates can be easily detected and classified using machine learning tools 

(Do et al. 2012; Leuschen et al. 2013; Stehouwer et al. 2016; Saha et al. 2019). However, there 

has not been implemented in the current clinical diagnostic guidelines the texture analysis of 

the OCT images of AMD patients. The latter may help to determine the early subtle optical 

changes in the structure of the photoreceptors and retinal pigment epithelium cells. 

The results of Chapter 5 suggest that the SVM-based classification may distinguish healthy 

outer retinal layers from early and neovascular AMD. GLCM and LBP features were extracted 

from the outer nuclear layer, inner and outer segments of the photoreceptor layer 

corresponding to the body and dendrite of photoreceptors. Moreover, the texture of the RPE 

was investigated and this layer was the most prominent in terms of the optical alterations. 

Classifiers’ accuracy reached 93-100% for the detection of AMD in the RPE layer, whereas this 

value was in the range from 60% to 90% for other outer retinal layers. This confirms that the 

RPE cells are one of the earliest cell classes affected by AMD. 

Near-infrared autofluorescence imaging with AOSLO detected the pattern changes of the 

hexagonal mosaic of RPE in the early preclinical stages of AMD (Vienola et al. 2020). In the 

study of (Golestaneh et al. 2018), cultured human RPE cells from AMD patients were 

morphologically and functionally damaged, which can be explained by the cumulation of 
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products of metabolism (lipids and glycogen) and organelle alterations (fragmentation of 

mitochondria and increase in autophagosomes). These changes were not presented in the 

healthy human RPE cultures, which supports the theory of dysfunctional autophagy as a 

fundamental mechanism contributing to the pathophysiology of AMD. OCT-1040 has been 

also applied to detect AMD symptoms not only in neural retina and RPE but also in 

choriocapillaris and choroids interface in the study of Unterhuber et al. (2005). 

For the classification of AMD, the combined use of GLCM and LBP features outperformed the 

separate extraction of each textural property. Well-timed and early detection of AMD cellular 

and subcellular manifestations open new avenues for the development of novel treatment 

strategies, which may reverse the flow of the disease and prevent vision impairment.  

 

7.5.  Other limitations  

OCT is state-of-the-art technology in clinical medicine, especially in ophthalmology. 

Nevertheless, in the diagnosis of a human eye, there may be shadows and artefacts, limiting 

the image quality. Also, the axial resolution of the OCT system might be affected by water 

absorption in the anterior chamber and the vitreous. Hence, contrast and image penetration 

depth decrease. In general, the absorption coefficient of water (intraocular fluid and vitreous 

body) equals 0.04mm−1 for the spectral range of 950-1130nm. Therefore, with average axial 

eye length (24-25mm) and due to forward-backwards light travel the loss of signal-to-noise 

ratio amounts to ~9dB (Hariri et al. 2009). Notwithstanding, this loss in the murine eye is less 

(~2dB) and can be ignored as a limiting factor in small animal retinal OCT. 

Due to the inhomogeneities in the refractive index of the tissue structures, light reflects back 

at various angles (Schmitt et al. 1994; Schmitt 1999). There are two groups debating sides on 

the nature of speckle: if one cohort thinks this is a source of optical information about the 

microscopic structures of the tissue, whereas the other group categorize the speckle as a 

noise (Schmitt et al. 1999). Hence, in the process of noise filtering, some valuable data can be 

removed. Consequently, this can lead to the misinterpretation of the OCT results. The strategy 

of efficient noise reduction is one of the goals of the improvement of image processing. 
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Moreover, averaging the tissue spatial properties of the scans s the signal-carrying speckle 

together with signal-degrading one (Schmitt 1999). To avoid this issue, there is a demand for 

effective speckle reduction techniques. It requires widening the source bandwidth and 

numerical aperture (NA) of the objective (Schmitt 1999). 

 

The application of machine learning algorithms enhanced recently in medicine, especially in 

the early diagnosis of pathologies. Especially this trend is progressing faster in ophthalmology 

due to the highly technological basis of the field  (Bajwa et al. 2015). Glaucoma, AMD, diabetic 

retinopathy and other common socially significant diseases can be detected early with the 

methods of automatic detection of signs (Abràmoff et al. 2008; Kucur et al. 2018; Zhongyang 

and Yankui 2019; Bisneto et al. 2020; González-Gonzalo et al. 2020), which also can be served 

as a screening tool for the tremendous amount of data (Antal and Hajdu 2014; Ting et al. 

2017; Grzybowski et al. 2020). 

Particularly, supervised machine learning tools demonstrated the effectiveness in the 

performance of binary classification of diseased and healthy participants (Kucur et al. 2018; 

Bajwa et al. 2019). This type of learning is based on the training of the system from input data 

(OCT scans) and iteratively improve its operation for the detection of correct output (accurate 

diagnosis). In the studies of this thesis, there was performed binary (glaucoma and healthy) 

and ternary (early AMD, neovascular AMD and healthy) classifications of human OCT images. 

Moreover, there was conducted the classification of OCT images of early apoptosis of murine 

retinal explants, where the number of classes was four: time 0, time 30 minutes, time 60 

minutes and time 120 minutes after the transection of the optic nerve. 

After the repetitive training of the program with the increasing amount of input data, the 

effectiveness of the classifier improves. When new unseen data is imported into the system, 

the supervised learning tool can identify the correct diagnosis. Hence, in the studies with the 

involvement of machine learning techniques, there should be as much data as possible. 

Consequently, the validity of the technique is dependent on the size and quality of the training 

dataset (LeCun et al. 2015). 
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Due to the multi-layered structure of retinal, shadows and artefacts from the adjacent layers, 

an automatic approach to detect the region and volume of interest is challenging. Hence, the 

classifier is semi-automatic in this study. The selection of VOIs is needed by a human expert 

to avoid these issues. 

 

7.6. Conclusions and future work 

I have demonstrated the utility of texture analysis methods and their suitability for machine 

learning approaches in the detection of subcellular changes. With advances in OCT light 

sources, scanning speeds and the ability to process signals in near real-time there is 

considerable scope for the application of the techniques described in this thesis. It is likely 

that the power of this technique will increase with white light lasers and faster acquisition 

times (less image misalignment). 

The trend in medicine is to prioritize the organ-preserving methods of diagnosis and 

treatment. The emerging opportunities for new technical solutions served as an incentive for 

the development of non-invasive highly permissive methods for the investigation of the 

biological tissues’ structure. OCT can perform a resolution of 1 – 15μm and the coherence 

length of the light source in OCT determines the spatial resolution of the device. 

The progress should not only focus on the technical improvement of OCT scanning but also 

the enhancement of image post-processing, extraction and understanding of all valuable 

information of acquired data and application of machine learning algorithms. In the 

consecutive studies of this PhD, there was demonstrated the possibilities of subtle image 

speckle-containing information on phantoms, retinal tissues of animals and humans. Texture 

analysis may be a vital technique for the early detection and prevention of retinal and brain 

neurodegeneration. 

OCT evaluation of mouse retinal explant was performed ex vivo. For further studies, there is 

a demand for the detection of neurodegeneration of murine retinal OCT in vivo. Furthermore, 

the diseases with cellular and subcellular alterations (glaucoma, AD, AMD and others) can be 
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modelled in animal studies and the texture signature might be calculated using this semi-

automated and other types of machine learning techniques. 

 

For the purpose of in vivo studies in humans, there should be applied several changes in the 

OCT device: numerical aperture of lenses would be decreased and complex use of adaptive 

optics. The latter improves the transverse resolution. However, there are some limitations for 

the human eye: cataract, vitreal haemorrhage or other media opacities and movement 

artefacts. 
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Appendices 

Appendix 1. Programming scripts and functions  

Find all features features 

 

function features = findAllfeatures(cubeImg, bitsperpixel, 

mask, listfeature) 

addpath(genpath('./')); 

  

  

if (nargin<3) || (isempty(mask)) 

    mask = ones(size(cubeImg)); 

end 

if nargin<4 

    listfeature = 1:6; %listfeature = [1 2 5]; 

end 

  

if sum(size(cubeImg)==1)>0 

    addMat = (size(cubeImg)==1)*2 + 1; 

    cubeImg = repmat(cubeImg, addMat); 

end 

  

% ------------------------------------------------------------

------------- 

% I. Intensity level distribution 

% ------------------------------------------------------------

------------- 

if sum(listfeature==1) 

     

    % 1) mean 

    meanCube = mean(cubeImg(mask(:)>0)); 

    % 2) variance 

    varCube = var(cubeImg(mask(:)>0)); 

    % 3) skewness 

    skewCube = skewness(cubeImg(mask(:)>0)); 

    % 4) kurtosis 

    kurtCube = kurtosis(cubeImg(mask(:)>0)); 

    % 5) entropy 

%     entropyCube = entropy(cubeImg(mask(:)>0)); 

else 

    meanCube = []; 

    varCube = []; 

    skewCube = []; 

    kurtCube = []; 

    entropyCube = []; 

end 

  

% ------------------------------------------------------------

------------- 

% II. Run length measures 
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% ------------------------------------------------------------

------------- 

if sum(listfeature==2) 

     

    %  1) Short Run Emphasis (SRE) 

    %  2) Long Run Emphasis (LRE) 

    %  3) Gray-Level Nonuniformity (GLN) 

    %  4) Run Length Nonuniformity (RLN) 

    %  5) Run Percentage (RP) 

    %  6) Low Gray-Level Run Emphasis (LGRE) 

    %  7) High Gray-Level Run Emphasis (HGRE) 

    %  8) Short Run Low Gray-Level Emphasis (SRLGE) 

    %  9) Short Run High Gray-Level Emphasis (SRHGE) 

    %  10) Long Run Low Gray-Level Emphasis (LRLGE) 

    %  11) Long Run High Gray-Level Emphasis (LRHGE) 

  % runLengthStat = findRunLengthProp(cubeImg, bitsperpixel); 

else 

    runLengthStat = []; 

end 

  

% ------------------------------------------------------------

------------- 

% III. Co-occurrence matrix 

% ------------------------------------------------------------

------------- 

if sum(listfeature==3) 

     

    % 1) angular second moment or energy 

    % 2) correlation 

    % 3) contrast or inertia 

    % 4) entropy 

    % 5) Cluster Shade 

    % 6) inverse difference moment 

    % 7)Stat = []; 

    glcmStat = findGLCMProp(cubeImg); 

else 

    glcmStat = []; 

end 

     

  

% ------------------------------------------------------------

------------- 

% IV. Wavelet transform 

% ------------------------------------------------------------

------------- 

if sum(listfeature==4) 

  

% 1) mean and variance (2 levels) 

% 2) kurtosis measures (2 levels) 

% 3) fractal dimension 
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%     [cwtParameters,cwtglcmStat,cwtrunLengthStat] = 

findCWTProp(cubeImg, 2, bitsperpixel, 1); 

else 

    cwtParameters = []; 

    cwtglcmStat = []; 

    cwtrunLengthStat = []; 

end 

  

  

% ------------------------------------------------------------

------------- 

% V. Local Binary Pattern Histogram 

% ------------------------------------------------------------

------------- 

if sum(listfeature==5) 

    LBPhist = findLBPhist(cubeImg); 

else 

    LBPhist = []; 

end 

  

% ------------------------------------------------------------

------------- 

% VI. Granulometry 

% ------------------------------------------------------------

------------- 

if sum(listfeature==6) 

%    Granhist = findGranulometry(cubeImg); 

else 

    Granhist = []; 

end 

  

% ------------------------------------------------------------

------------- 

% All features; 

% ------------------------------------------------------------

------------- 

features = [meanCube varCube skewCube kurtCube entropyCube 

runLengthStat glcmStat cwtParameters cwtglcmStat 

cwtrunLengthStat LBPhist Granhist]; 

%features = [LBPhist]; 
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GLCM features 

function glcmStat = findGLCMProp(cubeImg) 

  

  

% 1) angular second moment or energy 

energyCube = []; 

% 2) correlation 

correlateCube = []; 

% 3) contrast or inertia 

contrastCube = []; 

% 4) entropy 

entropyCube = []; 

% 5) Cluster Shade 

clusterCube = []; 

% 6) inverse difference moment 

invertDiffMomentCube = []; 

% 7) Homogeneity 

homoCube = []; 

  

for k = 1:size(cubeImg,3) 

    glcm = graycomatrix(cubeImg(:,:,k),'Offset',[0 1;-1 1;-1 

0;-1 -1]); 

    out = GLCM_Features1(glcm); 

    energyCube = [energyCube out.energ]; 

    correlateCube = [correlateCube out.corrm]; 

    contrastCube = [contrastCube out.contr]; 

    entropyCube = [entropyCube out.entro]; 

    clusterCube = [clusterCube out.cshad]; 

    invertDiffMomentCube = [invertDiffMomentCube out.idmnc]; 

    homoCube = [homoCube out.homom]; 

end 

reCubeImg = permute(cubeImg, [1 3 2]); 

for k = 1:size(reCubeImg,3) 

    glcm = graycomatrix(reCubeImg(:,:,k),'Offset',[0 1;-1 1;-1 

0;-1 -1]); 

    out = GLCM_Features1(glcm); 

    energyCube = [energyCube out.energ]; 

    correlateCube = [correlateCube out.corrm]; 

    contrastCube = [contrastCube out.contr]; 

    entropyCube = [entropyCube out.entro]; 

    clusterCube = [clusterCube out.cshad]; 

    invertDiffMomentCube = [invertDiffMomentCube out.idmnc]; 

    homoCube = [homoCube out.homom]; 

end 

reCubeImg = permute(cubeImg, [3 2 1]); 

for k = 1:size(reCubeImg,3) 

    glcm = graycomatrix(reCubeImg(:,:,k),'Offset',[0 1;-1 1;-1 

0;-1 -1]); 

    out = GLCM_Features1(glcm); 

    energyCube = [energyCube out.energ]; 

    correlateCube = [correlateCube out.corrm]; 
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    contrastCube = [contrastCube out.contr]; 

    entropyCube = [entropyCube out.entro]; 

    clusterCube = [clusterCube out.cshad]; 

    invertDiffMomentCube = [invertDiffMomentCube out.idmnc]; 

    homoCube = [homoCube out.homom]; 

end 

  

energyCube(isnan(energyCube)) = []; 

correlateCube(isnan(correlateCube)) = []; 

contrastCube(isnan(contrastCube)) = []; 

entropyCube(isnan(entropyCube)) = []; 

clusterCube(isnan(clusterCube)) = []; 

invertDiffMomentCube(isnan(invertDiffMomentCube)) = []; 

homoCube(isnan(homoCube)) = []; 

  

energyCube = mean(energyCube); 

correlateCube = mean(correlateCube); 

contrastCube = mean(contrastCube); 

entropyCube = mean(entropyCube); 

clusterCube = mean(clusterCube); 

invertDiffMomentCube = mean(invertDiffMomentCube); 

homoCube = mean(homoCube); 

  

% out put 

glcmStat = [energyCube correlateCube contrastCube entropyCube 

clusterCube invertDiffMomentCube homoCube]; 
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LBP features 

function LBPhist = findLBPhist(cubeImg) 

  

% if cubeImg contains zeros 

if sum(cubeImg(:)==0) 

     for k = 1:size(cubeImg,2) 

         curLine = cubeImg(:,k,:); 

         ind = curLine(:,1,1)==0; 

         if (ind(1)==1) 

             [~,lastindx] = max(ind(1:end-1)-ind(2:end)); 

             getind = min(length(ind),lastindx + (lastindx:-

1:1)); 

             cubeImg(1:lastindx,k,:) = curLine(getind,:,:); 

         end 

         if (ind(end)==1) 

             [~,firstinx] = max(ind(end:-1:2)-ind(end-1:-

1:1)); 

             getind = max(1,length(ind)-firstinx:-

1:length(ind)-2*firstinx+1); 

             cubeImg(end-firstinx+1:end,k,:) = 

curLine(getind,:,:); 

         end 

         % double check 

         curLine = cubeImg(:,k,:); 

         ind = curLine(:,1,1)==0; 

         if (ind(1)==1) 

             [~,lastindx] = max(ind(1:end-1)-ind(2:end)); 

             getind = min(length(ind),lastindx + (lastindx:-

1:1)); 

             cubeImg(1:lastindx,k,:) = curLine(getind,:,:); 

         end 

         if (ind(end)==1) 

             [~,firstinx] = max(ind(end:-1:2)-ind(end-1:-

1:1)); 

             getind = max(1,length(ind)-firstinx:-

1:length(ind)-2*firstinx+1); 

             cubeImg(end-firstinx+1:end,k,:) = 

curLine(getind,:,:); 

         end 

     end 

end 

  

LBPhist = zeros(1,59); 

for k = 1:size(cubeImg,3) 

    I = cubeImg(:,:,k); 

    LBPhist = LBPhist + extractLBPFeatures(I); 

end 

LBPhist = LBPhist/numel(cubeImg); 
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Textural feature extraction 

  

forflattedimage = 1; 

  

  

mainfolder = 'C:\Users\mukhi\Desktop\Code_OCT_UoB\'; 

files = dir([mainfolder,'*.tif']); 

  

mainfoldercube = 'C:\Users\mukhi\Desktop\Code_OCT_UoB\'; 

% if forflattedimage 

    subfolderF = 'flat\'; 

% else 

    subfolder = 'non flat\'; 

% end 

channel1 = ddeinit('excel','original' ); 

channel2 = ddeinit('excel','despeck' ); 

channel3 = ddeinit('excel','enhance' ); 

channel1F = ddeinit('excel','original_flatten' ); 

channel2F = ddeinit('excel','despeck_flatten' ); 

channel3F = ddeinit('excel','enhance_flatten' ); 

  

diseaseIndex = [1 2 3 8 9 10 14 15 19 20]; 

controlIndx = [4 5 6 7 11 12 13 16 17 18 21 22 23 24]; 

row = 1931; 

% for fnum = 24%[controlIndx diseaseIndex ] 

%      

%     % ------------------------------------------------------

------- 

%     % input name 

%     % ------------------------------------------------------

------- 

%     fname = [mainfolder,files(fnum).name]; 

% %     if forflattedimage == 0 

% %         flat = ''; 

% %     else 

% %         flat = '_flatten2'; 

% %     end 

%     % ------------------------------------------------------

------- 

%     % output name 

%     % ------------------------------------------------------

------- 

%     flat = '_flatten2'; 

%     opNameEnhanceF = [files(fnum).name(1:end-

4),flat,'_Enhance_cube2']; 

%     opNameOriginalF = [files(fnum).name(1:end-

4),flat,'_cube2']; 

%     opNameDespeckF = [files(fnum).name(1:end-

4),flat,'_despeck_cube2']; 

%     opNameEnhance = [files(fnum).name(1:end-

4),'_Enhance_cube2']; 
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%     opNameOriginal = [files(fnum).name(1:end-4),'_cube2']; 

%     opNameDespeck = [files(fnum).name(1:end-

4),'_despeck_cube2']; 

%      

%     for rad = [1.5 2.5]%1:3 

%         for k = 1:(rad*8) 

%              

%             % original image non flat 

%             

load([mainfoldercube,subfolder,'original\',opNameOriginal,'_',

num2str(rad),'_',num2str(k),'.mat']); 

%             cubeImg = cubeImg/(2^16); 

%             if ~isempty(cubeImg) 

%                 features = findAllfeatures(cubeImg, 16, 

cubeImg>0); 

%                 rc = ddepoke(channel1, 

['r',num2str(row),'c1'], 

[opNameOriginal,'_',num2str(rad),'_',num2str(k)]); 

%                 rc = ddepoke(channel1, 

['r',num2str(row),'c2:c',num2str(length(features)+1)], 

features); 

%                  

%                 % despeck image 

%                 

load([mainfoldercube,subfolder,'despeck\',opNameDespeck,'_',nu

m2str(rad),'_',num2str(k),'.mat']); 

%                 cubeImg = cubeImg/(2^16); 

%                 features = findAllfeatures(cubeImg, 16, 

cubeImg>0); 

%                 rc = ddepoke(channel2, 

['r',num2str(row),'c1'], 

[opNameDespeck,'_',num2str(rad),'_',num2str(k)]); 

%                 rc = ddepoke(channel2, 

['r',num2str(row),'c2:c',num2str(length(features)+1)], 

features); 

%                  

%                 % despeck image 

%                 

load([mainfoldercube,subfolder,'enhance\',opNameEnhance,'_',nu

m2str(rad),'_',num2str(k),'.mat']); 

%                 cubeImg = cubeImg/(2^16); 

%                 features = findAllfeatures(cubeImg, 16, 

cubeImg>0); 

%                 rc = ddepoke(channel3, 

['r',num2str(row),'c1'], 

[opNameEnhance,'_',num2str(rad),'_',num2str(k)]); 

%                 rc = ddepoke(channel3, 

['r',num2str(row),'c2:c',num2str(length(features)+1)], 

features); 

%                  

%                 % flatted image 
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%                 % ------------------------------------------

--------------- 

%                 

load([mainfoldercube,subfolderF,'original\',opNameOriginalF,'_

',num2str(rad),'_',num2str(k),'.mat']); 

%                 cubeImg = cubeImg/(2^16); 

%                 features = findAllfeatures(cubeImg, 16, 

ones(size(cubeImg))); 

%                 rc = ddepoke(channel1F, 

['r',num2str(row),'c1'], 

[opNameOriginalF,'_',num2str(rad),'_',num2str(k)]); 

%                 rc = ddepoke(channel1F, 

['r',num2str(row),'c2:c',num2str(length(features)+1)], 

features); 

%                  

%                 % despeck image 

%                 

load([mainfoldercube,subfolderF,'despeck\',opNameDespeckF,'_',

num2str(rad),'_',num2str(k),'.mat']); 

%                 cubeImg = cubeImg/(2^16); 

%                 features = findAllfeatures(cubeImg, 16, 

ones(size(cubeImg))); 

%                 rc = ddepoke(channel2F, 

['r',num2str(row),'c1'], 

[opNameDespeckF,'_',num2str(rad),'_',num2str(k)]); 

%                 rc = ddepoke(channel2F, 

['r',num2str(row),'c2:c',num2str(length(features)+1)], 

features); 

%                  

%                 % despeck image 

%                 

load([mainfoldercube,subfolderF,'enhance\',opNameEnhanceF,'_',

num2str(rad),'_',num2str(k),'.mat']); 

%                 cubeImg = cubeImg/(2^16); 

%                 features = findAllfeatures(cubeImg, 16, 

ones(size(cubeImg))); 

%                 rc = ddepoke(channel3F, 

['r',num2str(row),'c1'], 

[opNameEnhanceF,'_',num2str(rad),'_',num2str(k)]); 

%                 rc = ddepoke(channel3F, 

['r',num2str(row),'c2:c',num2str(length(features)+1)], 

features); 

%             end 

%              

%             row = row + 1; 

%         end 

%     end 

% end 

  

row = row+2; 

for fnum = 9:24%[controlIndx diseaseIndex ] 
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    % --------------------------------------------------------

----- 

    % input name 

    % --------------------------------------------------------

----- 

    fname = [mainfolder,files(fnum).name]; 

%     if forflattedimage == 0 

%         flat = ''; 

%     else 

%         flat = '_flatten2'; 

%     end 

    % --------------------------------------------------------

----- 

    % output name 

    % --------------------------------------------------------

----- 

    flat = '_flatten2'; 

    opNameEnhanceF = [files(fnum).name(1:end-

4),flat,'_Enhance_cube2_60']; 

    opNameOriginalF = [files(fnum).name(1:end-

4),flat,'_cube2_60']; 

    opNameDespeckF = [files(fnum).name(1:end-

4),flat,'_despeck_cube2_60']; 

    opNameEnhance = [files(fnum).name(1:end-

4),'_Enhance_cube2_60']; 

    opNameOriginal = [files(fnum).name(1:end-4),'_cube2_60']; 

    opNameDespeck = [files(fnum).name(1:end-

4),'_despeck_cube2_60']; 

     

    for rad = [1.5 2.5 3.5]%1:3 

        for k = 1:((rad-0.5)*8) 

             

            % original image non flat 

            

load([mainfoldercube,subfolder,'original\',opNameOriginal,'_',

num2str(rad),'_',num2str(k),'.mat']); 

            cubeImg = cubeImg/(2^16); 

            if ~isempty(cubeImg) 

                features = findAllfeatures(cubeImg, 16, 

cubeImg>0); 

                rc = ddepoke(channel1, 

['r',num2str(row),'c1'], 

[opNameOriginal,'_',num2str(rad),'_',num2str(k)]); 

                rc = ddepoke(channel1, 

['r',num2str(row),'c2:c',num2str(length(features)+1)], 

features); 

                 

                % despeck image 
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load([mainfoldercube,subfolder,'despeck\',opNameDespeck,'_',nu

m2str(rad),'_',num2str(k),'.mat']); 

                cubeImg = cubeImg/(2^16); 

                features = findAllfeatures(cubeImg, 16, 

cubeImg>0); 

                rc = ddepoke(channel2, 

['r',num2str(row),'c1'], 

[opNameDespeck,'_',num2str(rad),'_',num2str(k)]); 

                rc = ddepoke(channel2, 

['r',num2str(row),'c2:c',num2str(length(features)+1)], 

features); 

                 

                % despeck image 

                

load([mainfoldercube,subfolder,'enhance\',opNameEnhance,'_',nu

m2str(rad),'_',num2str(k),'.mat']); 

                cubeImg = cubeImg/(2^16); 

                features = findAllfeatures(cubeImg, 16, 

cubeImg>0); 

                rc = ddepoke(channel3, 

['r',num2str(row),'c1'], 

[opNameEnhance,'_',num2str(rad),'_',num2str(k)]); 

                rc = ddepoke(channel3, 

['r',num2str(row),'c2:c',num2str(length(features)+1)], 

features); 

                 

                % flatted image 

                % --------------------------------------------

------------- 

                

load([mainfoldercube,subfolderF,'original\',opNameOriginalF,'_

',num2str(rad),'_',num2str(k),'.mat']); 

                cubeImg = cubeImg/(2^16); 

                features = findAllfeatures(cubeImg, 16, 

ones(size(cubeImg))); 

                rc = ddepoke(channel1F, 

['r',num2str(row),'c1'], 

[opNameOriginalF,'_',num2str(rad),'_',num2str(k)]); 

                rc = ddepoke(channel1F, 

['r',num2str(row),'c2:c',num2str(length(features)+1)], 

features); 

                 

                % despeck image 

                

load([mainfoldercube,subfolderF,'despeck\',opNameDespeckF,'_',

num2str(rad),'_',num2str(k),'.mat']); 

                cubeImg = cubeImg/(2^16); 

                features = findAllfeatures(cubeImg, 16, 

ones(size(cubeImg))); 
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                rc = ddepoke(channel2F, 

['r',num2str(row),'c1'], 

[opNameDespeckF,'_',num2str(rad),'_',num2str(k)]); 

                rc = ddepoke(channel2F, 

['r',num2str(row),'c2:c',num2str(length(features)+1)], 

features); 

                 

                % despeck image 

                

load([mainfoldercube,subfolderF,'enhance\',opNameEnhanceF,'_',

num2str(rad),'_',num2str(k),'.mat']); 

                cubeImg = cubeImg/(2^16); 

                features = findAllfeatures(cubeImg, 16, 

ones(size(cubeImg))); 

                rc = ddepoke(channel3F, 

['r',num2str(row),'c1'], 

[opNameEnhanceF,'_',num2str(rad),'_',num2str(k)]); 

                rc = ddepoke(channel3F, 

['r',num2str(row),'c2:c',num2str(length(features)+1)], 

features); 

            end 

             

            row = row + 1; 

        end 

    end 

end 

  

%% scaling 

  

% data = ddereq(channel3,'r3c128:r1154c148'); 

% scaling1 = min(data,[],1); 

% scaling2 = 1./(max(data,[],1)-min(data,[],1)); 

% zerosind = (max(data,[],1)==min(data,[],1)); 

% scaling2(zerosind) = 0; 

% data = (data - 

repmat(scaling1,size(data,1),1)).*(repmat(scaling2,size(data,1

),1)); 

% channel1a = ddeinit('excel','enhance_scale'); 

% rc = ddepoke(channel1a, 'r3c128:r1154c148', data); 
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SVM training 

 

clear all 

  

datatype = 2; %1='original_scale', 2='despeck_scale', 

3='enhance_scale', 4='original_flatten_scale', 

5='despeck_flatten_scale', 6='enhance_flatten_scale'}; 

numGluacoma = 10;       % number of glaucoma OCT images  

numControl = 14;        % number of normal OCT images 

numPoints1 = 48; 

numPoints2 = 32; 

numPoints = numPoints1 + numPoints2; 

trainingRatio = 1/2; 

numIter = 1;% 500; 

usePCA = 0; 

layerConsider = [1 1 0 0 0]; % RNFL CGG IPL INL OPL 

numthickness = sum(layerConsider); 

  

% feature group 

rangefeature{1} = 1:147; 

rangefeature{2} = 1:5; % intensity level distribution 

rangefeature{3} = 6:16; % run length measures 

rangefeature{4} = 17:23; % co-occurrence matrix 

rangefeature{5} = 24:67; % wavelet 

rangefeature{6} = 68:126; % LBP 

rangefeature{7} = [127:134 139:142 145:147]; % Granulometry 

rangefeature{8} = [rangefeature{5} rangefeature{6}]; % wavelet 

+ LBP 

rangefeature{9} = [rangefeature{2} rangefeature{6}]; % 

intensity + LBP 

rangefeature{10} = [rangefeature{2} rangefeature{5}] ; % 

intensity + wavelet 

rangefeature{11} = [rangefeature{4} rangefeature{6}]; % co-

occurrence matrix + LBP 

rangefeature{12} = [rangefeature{4} rangefeature{5}] ; % co-

occurrence matrix + wavelet 

rangefeature{13} = [rangefeature{2} rangefeature{6} 

rangefeature{5} ]; % intensity + wavelet + LBP 

rangefeature{14} = [rangefeature{4} rangefeature{6} 

rangefeature{5} ]; % co-occurrence matrix + wavelet + LBP 

rangefeature{15} = [1:134 139:142 145:147]; 

namefeature{1} = 'layer only'; 

namefeature{2} = 'intensity level'; 

namefeature{3} = 'run length'; 

namefeature{4} = 'co-occurrence'; 

namefeature{5} = 'wavelet'; 

namefeature{6} = 'LBP'; 

namefeature{7} = 'Granulometry'; 

namefeature{8} = 'wavelet + LBP'; 

namefeature{9} = 'intensity + LBP'; 

namefeature{10} = 'intensity + wavelet'; 
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namefeature{11} = 'co-occurrence + LBP'; 

namefeature{12} = 'co-occurrence + wavelet'; 

namefeature{13} = 'intensity + wavelet + LBP'; 

namefeature{14} = 'co-occurrence + wavelet + LBP'; 

namefeature{15} = 'all texture'; 

  

totalFeatureGroup = length(rangefeature); 

totalData = numGluacoma+numControl; 

diseaseIndex = [1 2 3 8 9 10 14 15 19 20]; 

controlIndx = [4 5 6 7 11 12 13 16 17 18 21 22 23 24]; 

indexRe = [controlIndx diseaseIndex]; 

  

load dataStoreAdd.mat      % There are 6 datatypes, each has 

1920 samples, each sample has 147 texture features 

load thicknessAllLayer.mat % There are 5 retinal layers 

(weight by RNFL) of 24 OCT images, each image has 80 values 

%load thickness 

  

results = zeros(480,3); 

for it = 1:numIter 

    it 

    row = 1; 

     

     

    % create random index for choosing which OCT images will 

be used for 

    % training and the rest for testing. The selection is done 

for glaucoma 

    % and mormal eye separately so that the training and 

testing datasets 

    % will have both glaucoma and normal 

    numTrainControl = round(trainingRatio*numControl); 

    inxControl = []; 

    while length(inxControl)<numTrainControl 

        moreind = numTrainControl - length(inxControl); 

        temp = randi(numControl,1,numTrainControl); 

        inxControl = unique([inxControl 

temp(1:min(length(temp),moreind))]); 

    end 

    numTrainControl = length(inxControl); 

    numTrainGluacoma = round(trainingRatio*numGluacoma); 

    inxGluacoma = []; 

    while length(inxGluacoma)<numTrainGluacoma 

        moreind = numTrainGluacoma - length(inxGluacoma); 

        temp = randi(numGluacoma,1,numTrainGluacoma); 

        inxGluacoma = unique([inxGluacoma 

temp(1:min(length(temp),moreind))]); 

    end 

    numTrainGluacoma = length(inxGluacoma); 

    numTrain = numTrainControl + numTrainGluacoma; 
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    % run through different features 

    % --------------------------------------------------------

------------- 

    % using weights from RNFL layer or not 

    for useWeight = [1 0] 

        % using thickness of NFL or not 

        for NFL = [1 0] 

            % using thickness of GCC or not 

            for GCC = [1 0] 

                % using thickness of IPL or not 

                for IPL = [1 0] 

                    % index all thicknest that will be used. 

                    layerConsider = [NFL GCC IPL 0 0]; 

                    numthickness = sum(layerConsider); 

                    % should apply PCA or not 

                    for usePCA = [1 0] 

                        % test all combinations of texture 

features 

                        for featuregroupnum = 

1:totalFeatureGroup 

                             

                            % read feature values 

                            % --------------------------------

--------- 

                            % Read texture features 

                            data = dataStore{datatype};  

                            % Select only those we want 

                            data = 

data(:,rangefeature{featuregroupnum}); 

                            [~, numFeature] = size(data); 

                            % control 

                            if numFeature>0 

                                dataTemp = 

data(1:numControl*numPoints,:); 

                            end 

                            dataControl = zeros(numControl, 

numFeature +numthickness); 

                            for k = 1:numControl 

                                if numFeature>0 

                                    if useWeight 

                                        wtcur = 

weightbyRNFL{controlIndx(k)}; 

                                    else 

                                        wtcur = 

ones(size(weightbyRNFL{controlIndx(k)}));%   % 

                                    end 

                                    wtcur = repmat(wtcur',[1 

numFeature]); 

                                    datacur = dataTemp((k-

1)*numPoints + (1:numPoints),:); 
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                                    % reorder samples to match 

to the position on RNFL to the weights can be applied 

correctly 

                                    datacur = [datacur(1:8,:); 

datacur(49:49+11,:); datacur(9:9+15,:);  datacur(61:61+19,:); 

datacur(25:25+23,:)]; 

                                    

dataControl(k,1:numFeature) = mean(datacur.*wtcur); 

                                end 

                                temp = 

[mean(thickRNFL{controlIndx(k)}) 

mean(thickGCC{controlIndx(k)}) ... 

                                    

mean(thickIPL{controlIndx(k)}) mean(thickINL{controlIndx(k)}) 

mean(thickOPL{controlIndx(k)})]; 

                                temp(layerConsider==0) = []; 

                                

dataControl(k,numFeature+1:end) = temp; 

                            end 

                            % glaucoma 

                            if numFeature>0 

                                dataTemp = 

data(numControl*numPoints + (1:numGluacoma*numPoints),:); 

                            end 

                            dataGluacoma = zeros(numGluacoma, 

numFeature+numthickness); 

                            for k = 1:numGluacoma 

                                if numFeature>0 

                                    if useWeight 

                                        wtcur = 

weightbyRNFL{diseaseIndex(k)}; % 

                                    else 

                                        wtcur = 

ones(size(weightbyRNFL{diseaseIndex(k)})); % 

                                    end 

                                    wtcur = repmat(wtcur',[1 

numFeature]); 

                                    datacur = dataTemp((k-

1)*numPoints + (1:numPoints),:); 

                                    % reorder samples to match 

to the position on RNFL to the weights can be applied 

correctly 

                                    datacur = [datacur(1:8,:); 

datacur(49:49+11,:); datacur(9:9+15,:);  datacur(61:61+19,:); 

datacur(25:25+23,:)]; 

                                    

dataGluacoma(k,1:numFeature) = mean(datacur.*wtcur); 

                                end 

                                temp = 

[mean(thickRNFL{diseaseIndex(k)}) 

mean(thickGCC{diseaseIndex(k)})  ... 
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mean(thickIPL{diseaseIndex(k)}) 

mean(thickINL{diseaseIndex(k)}) 

mean(thickOPL{diseaseIndex(k)})]; 

                                temp(layerConsider==0) = []; 

                                

dataGluacoma(k,numFeature+1:end) = temp; 

                            end 

                             

                            % get training and testing data 

                            % --------------------------------

--------------------------------- 

                            Training = 

[dataControl(inxControl,:); dataGluacoma(inxGluacoma,:)]; 

                            dataControl(inxControl,:) = []; 

                            dataGluacoma(inxGluacoma,:) = []; 

                            Testing  = [dataControl; 

dataGluacoma]; 

                             

                            % labels 

                            Group = ones(numTrain,1); 

                            Group(1:numTrainControl) = -1; 

                            Gtest = ones(totalData-

numTrain,1); 

                            Gtest(1:(numControl-

numTrainControl)) = -1; 

                             

                            if usePCA %usePCA 

                                shiftdata = mean(Training); 

                                [coef,score,latent] = 

princomp(Training - repmat(shiftdata,[numTrain 1])); 

                                dimchoose = 

(cumsum(latent)./sum(latent))<0.9999; 

                                Training = score(:,dimchoose); 

                                % testing 

                                scoretesting = (Testing - 

repmat(shiftdata,[totalData-numTrain 1]))*coef; 

                                Testing = 

scoretesting(:,dimchoose); 

                            end 

                             

                                                       

                            % perform linear svm 

                            % --------------------------------

------------- 

                            SVMModel = fitcsvm(Training,Group, 

'Standardize',true); 

                            % testing 

                            predict_label = 

predict(SVMModel,Testing); 
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                            accTestLin = 

mean(predict_label==Gtest); 

  

                            % perform rbf svm 

                            % --------------------------------

------------- 

                            SVMModel = 

fitcsvm(Training,Group,'KernelFunction','rbf', 

'Standardize',true); 

                            % testing 

                            predict_label = 

predict(SVMModel,Testing); 

                            accTestRBF = 

mean(predict_label==Gtest); 

                             

                            % perform polynomial svm 

                            % --------------------------------

------------- 

                            SVMModel = 

fitcsvm(Training,Group,'KernelFunction','polynomial','Standard

ize',true); 

                            % testing 

                            predict_label = 

predict(SVMModel,Testing); 

                            accTestPOLY = 

mean(predict_label==Gtest); 

                             

                            results(row,:) = results(row,:) + 

[accTestLin accTestRBF accTestPOLY]; 

                            row = row + 1; 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

results = results/numIter; 
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FFT for MTF 

clc 

clear 
  

signal_original = load('Image4(40x)_cropped_text.txt'); 

FO = fft(signal_original); 

subplot(2, 1, 1); 

plot(abs(FO)); 

xlabel('Frequency') 

ylabel('Magnitude'); 

title('FFT of the slide without explant'); 

axis tight; 
  
  

signal = load('LE_0_cropped_text.txt'); 

N = length (signal); 

fs = 62.5; 

fnyquist = fs/2; 

F = fft(signal); 

subplot(2, 1, 2); 

plot(abs(F)); 

xlabel('Frequency') 

ylabel('Magnitude'); 

title('FFT of the slide with explant'); 

axis tight 
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FFT for MTF (time series) 

clc 

clear 
  

signal_zero = load('LE_0_cropped_text.txt'); 

F_zero = fft(signal_zero); 

subplot(2, 2, 1); 

plot(abs(F_zero)); 

xlabel('Frequency') 

ylabel('Magnitude'); 

title('FFT of Time 0'); 

axis tight; 
  

signal_thirty = load('LE_30_cropped_text.txt'); 

F_thirty = fft(signal_thirty); 

subplot(2, 2, 2); 

plot(abs(F_thirty)); 

xlabel('Frequency') 

ylabel('Magnitude'); 

title('FFT of Time 30'); 

axis tight; 
  

signal_sixty = load('LE_60_cropped_text.txt'); 

F_sixty = fft(signal_sixty); 

subplot(2, 2, 3); 

plot(abs(F_sixty)); 

xlabel('Frequency') 

ylabel('Magnitude'); 

title('FFT of Time 60'); 

axis tight; 
  

signal_final = load('LE_120_cropped_text.txt'); 

F_final = fft(signal_final); 

subplot(2, 2, 4); 

plot(abs(F_final)); 

xlabel('Frequency') 

ylabel('Magnitude'); 

title('FFT of Time 120'); 

axis tight; 

 


