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In the past few years, huge advances have been made in techniques to analyse cells at an
individual level using RNA sequencing, and many of these have precipitated exciting
discoveries in the immunology of type 1 diabetes (T1D). This review will cover the first
papers to use scRNAseq to characterise human lymphocyte phenotypes in T1D in the
peripheral blood, pancreatic lymph nodes and islets. These have revealed specific genes
such as IL-32 that are differentially expressed in islet –specific T cells in T1D. scRNAseq
has also revealed wider gene expression patterns that are involved in T1D and can predict
its development even predating autoantibody production. Single cell sequencing of TCRs
has revealed V genes and CDR3 motifs that are commonly used to target islet
autoantigens, although truly public TCRs remain elusive. Little is known about BCR
repertoires in T1D, but scRNAseq approaches have revealed that insulin binding BCRs
commonly use specific J genes, share motifs between donors and frequently
demonstrate poly-reactivity. This review will also summarise new developments in
scRNAseq technology, the insights they have given into other diseases and how they
could be leveraged to advance research in the type 1 diabetes field to identify novel
biomarkers and targets for immunotherapy.

Keywords: type 1 diabetes, scRNAseq, immunology, lymphocytes, TCR - T cell receptor, BCR - B cell receptor
INTRODUCTION

It is widely accepted that in T1D “there remains a paucity of robust and accepted biomarkers that
can effectively inform on the activity of T cells during the natural history of the disease or in
response to treatment” (1). Furthermore, the phenotype and roles of autoreactive B cells in T1D
have received less attention than T cells (2–4). Whilst flow and mass cytometry approaches have
Abbreviations: AAB+, Autoantibody positive; DE cell, dual expressor cell reported to express both a TCR and a BCR’; DEG,
differentially expressed genes; GEX, gene expression; scRNAseq, single cell RNA sequencing.
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enabled many insights into cell phenotypes and antigen
specificity in type 1 diabetes [reviewed (5)], they allow
detection of a relatively small number of markers, limiting the
potential to discover truly novel biomarkers. In turn this limits
the ability to monitor the natural history of diabetes development
and patient responses to immunotherapy. In addition, although a
number of immunomodulatory agents are in clinical trials for
type 1 diabetes, these are generally non-specific in their actions
(for example targeting CD3 or CD20) (6), and there remains a
need to identify and target pathways that are perturbed
specifically in islet-antigen specific lymphocytes.

Traditional RNA sequencing involves taking all cells of
interest, and combining their RNA in a single sample before
sequencing. In contrast, single cell RNA sequencing isolates
individual cells, either through sorting into wells, or using
droplet based technology (7). Transcripts from each cell are
barcoded (a unique molecular identifier is also added to each
transcript to circumvent any amplification bias), before being
combined for sequencing. This allows quantification of the
expression of every gene in every individual cell, so that cell
phenotypes and heterogeneity can be fully elucidated. Of
particular interest to immunologists are scRNAseq methods
that allow sequencing across the V(D)J region of TCRs and
BCRs. This allows capture of the paired TCRa and b chains (or
paired heavy and light chains of BCRs) which is key to
determining antigen specificity (8, 9) and being able to
reconstitute the receptor in a cell line or to express it as a
secreted antibody. A single cell sequencing approach also avoids
much of the bias of bulk RNAseq of receptors (10).

There are a variety of methods used for scRNAseq [reviewed
(7)] although the 10x Genomics platform has come to dominate
the field, due to the relatively large number of cells that can be
sampled and options of combining, for example, protein
expression and V(D)J sequencing with standard gene
expression (GEX) data (11, 12). In parallel, there has been an
explosion in techniques to deal with the vast quantity of data
generated, perform quality control and extract meaningful
findings (13).

However, scRNAseq also comes with a number of caveats.
Firstly it is technically challenging and poor sample preparation
can lead to doublet formation in a similar manner to that seen in
flow cytometry, but in addition scRNAseq samples are
susceptible to contamination with RNA from dying cells and
the downstream clustering algorithms can also produce
seemingly novel cell populations which are in fact artefacts
(14). Secondly, the high cost can make it somewhat
inaccessible and limit sample numbers and sizes. Lastly, it
requires stringent statistical analysis to avoid type 1 errors,
preferably backed up by follow up experiments to verify
findings (13).

Nevertheless, scRNAseq offers an exciting opportunity to
identify novel biomarkers that could be indicative of diabetes
progression in at risk individuals, and allow real-time
monitoring of clinical trials through tracking expression of
specific immuno-receptor sequences and cell phenotypes.
Furthermore, it has the potential to discover novel targets for
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immunotherapy of type 1 diabetes, through the identification of
genes that are differentially expressed in islet-antigen
specific lymphocytes.
USING scRNAseq TO IDENTIFY
BIOMARKERS FOR PROGRESSION TO
TYPE 1 DIABETES AND
PHENOTYPES IN T1D

scRNAseq’s potential is demonstrated in a paper by Kallionpää
et al. They revealed that high IL-32 expression in PBMCs was
strongly associated with seroconversion and progression to T1D,
contributed mainly by activated, highly differentiated, T cells and
NK cells. Interestingly insulin (INS), glucagon (GCG), and
REG1A were found to be upregulated in T1D and AAB+
individuals in the bulk RNAseq of PBMC but not in scRNAseq
(15). These genes are normally associated with the pancreas, but
expressed at the mRNA level in whole blood and lymph nodes at
much lower levels (www.genecards.org). For insulin in particular
this wider expression is thought to be involved in peripheral
maintenance of tolerance (16).

We can also glean insight into the immunology of T1D from
scRNAseq studies of the pancreas, as in T1D these will include
infiltrating immune cells. For example, the Vahedi group
performed scRNAseq of human pancreatic islet cells and found
particular enrichment of antigen-presenting cells and
macrophages in T1D (17). In a strong replication of Kallionpää
et al.’s findings, an analysis of differentially expressed genes
(DEG) in immune cells between healthy and type 1 diabetes
pancreas samples identified REG1B, REG1A, INS and REG3A
and IL-32 as highly differentially expressed (17). As with INS,
GCG and REG1A, REG1B and REG3A are highly expressed in
the pancreas but at lower levels in the blood and lymph nodes.
Furthermore REG genes are reported to be upregulated in the
pancreas not only in people that have T1D, but also those who
are autoantibody positive (18). They are upregulated in
inflammatory conditions and are thought to be important in
the survival of beta cells in T1D (18). An alternative explanation
for the association of these RNA transcripts with immune cells is
that RNA transcripts from dying beta cells are contaminating
other cell types during the scRNAseq process (19). A similar
scRNAseq analysis of the NOD mouse pancreas has also been
conducted (20) and scRNAseq has been used to characterise
hESCs differentiating into beta cells (21). Studies using
scRNAseq to investigate the human pancreas and T1D are
summarised in Table 1.

Closely related to scRNAseq is scATACseq, whereby the
DNA from individual cell nuclei is analysed to identify open or
accessible chromatin regions and hence predict which genes are
being expressed in each cell. Recently, Chiou et al. combined
scATACseq with bulk ATACseq and scRNAseq approaches to
link cis-regulatory elements (CREs e.g. gene promoters and
enhancers) in peripheral blood cells and pancreatic cells with
GWAS of diabetes risk (23). As would be expected this identified
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many CREs used in T cells and beta cells that had genetic variants
associated with T1D susceptibility. For example CREs that
controlled CTLA4 and CCR7 expression in T cells had variants
associated with T1D. Importantly, this paper also identified CREs
used in pancreatic cells that had polymorphisms associated with
T1D risk, particularly those used in acinar and ductal cells. They
were further able to map the T1D risk allele of rs7795896 to a CRE
used in ductal cells. The risk variant was associated with decreased
CFTR expression in ductal cells. Mutations in CFTR itself cause
cystic fibrosis, frequently associated with pancreatic exocrine and
endocrine abnormalities, but this is thisfirst demonstrationof a role
for it, and may other genes expressed in the exocrine pancreas, in
T1D pathogenesis. This paper also produced a reference map of
single-cell chromatin accessibility from T1D-relevant cells from
healthy donors (i.e. lymphoid, myeloid and pancreatic endocrine
and non-endocrine cells). Interestingly scRNAseq of the human
pancreas also identified multiple changes in gene expression in
ductal cells in T1D (17). In particular expression of MHC Class II
pathway and interferon alpha and beta pathway genes were
increased. Other developments in the field of epigenetics of T1D
and the interplay with environmental triggers [reviewed (36–38)]
have also started to yield evidence of pathogenic roles formolecules
such as BACH2, IL23A, IL6R and IL6ST in T cell function in T1D
(39). It will be of great interest to see how our understanding of
epigenetics in T1D develops at the single cell level.
scRNAseq OF TCRS

Methods to Identify Antigen
Specific T Cells
As discussed above, there are many advantages of single cell
sequencing TCRs over bulk TCR repertoire sequencing. Before
the advent of large scale scRNAseq, many people in the type 1
diabetes field appreciated the importance of sequencing
Frontiers in Immunology | www.frontiersin.org 3
immunoreceptors on a single cell basis and linking this to
antigen specificity and affinity (40–42). As of 2017 there were
1655 clonotypes of known specificity for T1D autoantigens (41),
a number which has increased substantially with the advent of
higher throughput scRNAseq.

These have been identified through a numbers of methods.
HLA class I or class II multimers may be used to select antigen
specific T cells. This has the advantage of being able to select cells
from the peripheral blood but is limited by HLA restriction and
to known epitopes or mimotopes (43). In addition non-specific
binding may yield false-positive TCRs. Alternatively peripheral
blood T cells can be stimulated in vitro with islet peptide pools
and selected on the basis of upregulation of activation markers,
allowing wider specificities and HLA compatibilities, but with the
risk of bystander activation again resulting in false negatives. A
third approach is to sample T cells directly from the pLN or
pancreas, where islet-specific T cells will be massively enriched.
These cells can then either be stimulated in vitro with peptide
pools the TCRs re-expressed ex vivo to determine specificity.
Alternatively, TCR sequences can be compared to those in the
literature known to be islet antigen specific.

Diabetes Autoantigen- Specific Paired
TCRs in the Peripheral Blood
Eugster and colleagues performed an heroic effort to sequence
paired TCRs from 1650 T cells that either bound a GAD tetramer
or responded to GAD in vitro, by sorting single cells from the
peripheral blood and performing plate based scRNAseq (44).
GAD specific TCRs were highly heterogenous both within and
between donors, with no shared TCRs between donors, although
individual TCRa or TCRb chains were often shared. Moreover,
there was limited overlap between the TCRs identified by
tetramer binding and T cell activation methods, indicating that
epitope recognition and MHC usage by GAD specific TCRs was
likely to be broad (44).
TABLE 1 | human scRNAseq gene expression studies relevant to type 1 diabetes.

Paper Tissues Antigen
receptors

T1D status Citation Notes

Fasolino et al. Pancreas no Healthy donors, AAB+, T1D (17)
Kallionpää et al. PBMC no Healthy donors, AAB+ (15) Children <3 2/4 AAB+ rapidly developed T1D
Xin et al. Pancreas no Healthy donors, T1D (22) All islet cells sequenced, but analysis of beta cells only
Chiou et al. PBMC

pancreas
no Healthy donors, T1D (23) scATACseq of PBMCs and pancreas of healthy donors. Reanalysis of

healthy donor and T1D islet scRNAseq (22)
Cerosaletti et al. PBMC TCRs Healthy donors, T1D (24) Islet-reactive T cells
Fuchs YF et al. PBMC TCRs Healthy donors, T1D (25) Only one T1D sample
Culina S et al. PBMC TCRs Healthy donors, T1D (26) Sorted ZnT8 186-194 MMr+CD8+ T cells.
Heninger et al. PBMC TCRs Healthy donors, children who

later progressed to T1D
(27) GAD65- and proinsulin-responsive CD4+ T cells, limited genes

sequenced in scRNAseq
Ahmed R, et al. PBMC TCRs,

BCRs
T1D (28) Single donor

Hao Y et al. Pancreas no Healthy children-older adults (29) (12) Combines multiple previous scRNAseq datasets to make a reference
dataset and app, AzimuthUnspecified (30)

Unspecified (31)
Healthy controls and T2D (32)
Healthy controls and T2D (33)
Unspecified (34)
Healthy controls (35)
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Cerosaletti et al. performed scRNAseq of islet-reactive TCRs
from the peripheral blood (identified by ex vivo response to
stimulation with islet-peptide pools). They found that T cells
from T1D had higher numbers of identical CDR3, which had
arisen by clonal expansion (i.e. T cells with identical TCRa and
TCRb chains, that have arisen by division of a parent cell), rather
than convergent recombination (24). By re-expressing the TCRs
in cell lines it was found that many of these TCRs in people with
T1D were IGRP specific (24). It was further shown that donors
with T1D had large clonal expansions of IGRP-reactive T cells in
the peripheral blood and frequently used a specific shared TCRa
chain, which was paired with different beta chains in each donor
(45). Preferential usage of TRAJ53 and TRAV29 and TCRa
chains bearing the motif SGGSNYKLTF were identified in single
cell TCR sequencing of people with T1D. When a bulk
sequencing approach was taken, a particular TCRa chain
bearing this motif was highly enriched in the memory CD8+
T cells of autoantibody positive people and those with T1D
compared to controls. Clones bearing the motif were also shown
to directly kill IGRP- peptide bearing cells (45). T cell clones
bearing both IGRP (24, 45) and hybrid insulin peptide-
responsive TCRs are persistent over time (46). However, others
have examined TCR repertoires in children progressing to
diabetes and shared TCRs were not seen either between
children or within the same child over time, indicating high
diversity in the peripheral blood at this age (27).

Diabetes Autoantigen- Specific Paired
TCRs in the Pancreas and Pancreatic
Lymph Nodes
Early work examined T cells from the pancreatic lymph nodes
(pLN) of people with T1D and found high clonal expansions
(47). Additionally there were many T cells that shared a TCRb
but had divergent TCRa. Many clonally expanded CD4+ T cells
recognised insulin A1-15 in the context of DR4 (47). Pathiraja
et al. grew out CD4+T cells from the pancreatic islets of a donor
with T1D using anti CD3 and cytokine stimulation. Over 25% of
these clones had TCRs that responded to proinsulin peptides
restricted by HLA-DQ8 or the HLA-DQ8 transdimer and 30% of
clones used TRBV5–1*01 (48). Whilst it is difficult to make direct
comparisons to frequencies of islet-reactive T cells in the
peripheral blood (26), it is clear that in the peripheral blood
frequencies are much lower [around 0.01-0.05% of T cells in
people with T1D (3, 44, 49)]. Most T cells isolated from the
pancreas had unique clonotypes, whilst the majority of in vivo
clonally expanded T cells were specific for proinsulin (48). It has
also been found that ZnT8- reactive T cells were present at
similar frequencies in the blood of healthy controls and people
with T1D, but were enriched in the pancreas of the latter (26).
Single cell sequencing of TCRs found a public ZnT8 specific
CDR3B in the peripheral blood, and enriched in the pancreas of
people with T1D, although the full TCRb had divergent
sequences due to different gene usages. ZnT8 reactive T cells
also showed a bias towards TRBV19 and TRAV12-2 usage (26).

Seay et al. also found sharing of CDR3s between donors in the
pancreas, with a TCRb with homology to a known GAD reactive
Frontiers in Immunology | www.frontiersin.org 4
TCR found in 7/18 T1D donors (50). Furthermore a shared
CDR3b chain was found in all people with T1D in the
conventional T cell compartment, whilst in healthy controls it
was predominantly in the Treg compartment (50). Interestingly
TCR sequencing of GAD-responsive CD4+IL-13+ T cells from
patients who had received injected GAD Alum found that they
often used a highly public TCRb (TCRa sequencing was not
available) (51).

Direct capture of pancreatic T cells by the Nakayama group
enabled single cell TCR sequencing and confirmed infiltration of
proinsulin specific cells into the pancreas in T1D. Of the
hundreds of TCRs sequenced, most were present only on a
single cell, indicating a diversity of response even years after
diagnosis. Clonal expansions were more likely in CD8+ T cells
and these clones were found in multiple islets from the same
donor, indicating in vivo migration. Furthermore, across three
donors it was noted that whilst there were no identical TCRs,
there were identical TCRa sequences and TCR subunits (52).
When the TCRs were re-expressed, the B9-23 reactive TCRs
isolated from the pancreas induced much higher IL-2 secretion
compared to control B9-23 TCRs isolated from peripheral blood
(52) which may indicate the former have a higher affinity for
B9-23. Moreover, only the pancreas-derived TCRs were capable
of a response to whole proinsulin presented by APCs (52).

Recently the Nakayama group has reconstructed individual
TCRs from the pancreas of people with T1D. TCRs were selected
for re-expression on the basis of clonal expansion or V gene
usage previously associated with proinsulin C19-A3 specificity,
and were found to recognise epitopes across preproinsulin and
presented by a variety of MHC class II (53). Many TCRs
recognised peptides in the region of B9-23, but others, (many
from clonally expanded cells) recognised peptide right across
from the signal peptide to the A chain. Furthermore, these TCRs
recognised peptides in the context of diverse MHCII, although a
preference was shown for DQ (53). Even with these constraints
of the selection criteria in this study, this single cell approach
showed a diversity of peptide and MHCII specificity that would
have been missed using tetramers.

New Avenues for scRNAseq of TCRs
Taken together, the evidence suggests that T cells with TCRs with
higher affinity for diabetes autoantigens are more likely to be
found in the pancreas than in the peripheral circulation. This
represents a major challenge in T1D research as in other
autoimmune diseases it is relatively straightforward to obtain
samples from the site of autoimmune attack (54). For example in
psoriatic arthritis, extraction of viable T cells directly from the
affected joints enabled sequencing of paired TCR receptors and
scRNAseq profiling of cells phenotypes (55). Even in the
pancreas, clonal expansion is modest and whilst CDR3
sequences specific for many diabetes autoantigens are shared
between donors, there is not yet evidence of truly public TCRs
with identical TCRa and b chains. However, more widespread
use of the VDJdb repository (56), IEDB (57) and the JDRF/
nPOD CloneSearch might allow enriched motifs to become
apparent across different experiments, although this would still
October 2021 | Volume 12 | Article 751701
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be limited by HLA restriction. To further complicate the picture,
scRNAseq has demonstrated that islet antigen –reactive T cells
(24) and HIP reactive T cells in particular (58) sometimes
express two TCRa chains, which are known to contribute to
autoimmunity (59, 60).

Phenotypes of Antigen-Specific
T Cells: Combining TCR Sequencing
With Gene Expression
Combining TCR sequencing (or selection based on autoantigen
reactivity), with scRNAseq has the potential to give further insights
into T cell function. This has not always been straightforward to
demonstrate, for example analysis of IGRP- specificT cells from the
peripheral blood did not show a distinctive gene expression (GEX)
pattern in response to stimulation (25). Similarly scRNAseq of
ZnT8 reactive cells from the peripheral blood of people with T1D
showed similar GEX profiles to healthy controls, indicating that
these peripheral T cells may not be playing a driving role in T1D,
although T1D patients had higher expression of aryl hydrocarbon
receptor (AHR) and aurora kinase A (AURKA) and lower
expression of RORA (26).

The approach was more successful for Heninger et al, who
demonstrated that proinflammatory responses to diabetes
autoantigens were dominant in children who progressed to
autoantibody positivity, whilst regulatory T cell responses were
seen in those who didn’t (27). An algorithm based on gene
expression in response to autoantigens enabled identification of
which children would later progress to autoantibody positivity.
As this group developed autoantibodies the GEX profiles of their
CD4+ T cells changed towards increased expression of Th1 genes
(27). These findings suggest that biomarkers of T1D
susceptibility may allow identification of at risk children prior
to seroconversion (61).

In addition, Cerosaletti et al. used islet peptide pools to stimulate
T cells from the peripheral blood in vitro and characterised those
that activated by scRNAseq. They did not observe a significant level
of differentially expressed genes between healthy controls to those
from people with T1D. However, when they focussed on cells from
people with T1D that were highly clonally expanded (termed T1D-
E cells), they found that these cells did have a unique transcriptional
profile compared to islet reactive T cells from healthy controls or
those frompeoplewithT1D that were not clonally expanded. T1D-
E cells preferentially expressed genes associated with T cell
activation and leukocyte differentiation (24). These experiments
demonstrate how focussing on antigen specificity can enhance
findings from scRNAseq.
scRNAseq OF BCRS

Early Work to Determine
Antibody Sequences
Early interest in autoantibodies in T1D, before the advent of
scRNAseq, focussed on isolating GAD-specific B cells from
people with T1D (62) and sequencing the BCRs from clones,
which provided evidence that GAD autoantibodies have
Frontiers in Immunology | www.frontiersin.org 5
frequently undergone somatic maturation and are therefore
from antigen-experienced B cells (63, 64). Similarly IA-2
specific antibodies sequenced from B cells from people with
T1D also show evidence of somatic mutation (65–67). Anti-
insulin antibodies have been sequenced from people with T1D,
but may have arisen in response to injected insulin rather than
endogenous insulin (68, 69) [reviewed (70)]. BCR sequencing
combined with phenotyping of B cells has given great insight into
B cell response in other autoimmune diseases (71) and in
response to vaccinations (72) and in B cell lymphoma (73). Yet
without the equivalent of a tetramer approach to identifying
autoreactive B cells, phenotyping and characterisation of the
BCR has lagged behind T cell research in T1D.

Identifying Islet-Reactive BCRs in the
Periphery, Pancreatic Lymph Nodes
and Pancreas
Smith et al. developed an approach to isolate insulin reactive B
cells from the peripheral blood of people with T1D, by flow
cytometric sorting B cells that bound insulin conjugated to
fluorescent tags. The authors were then able to sequence BCRs
from individual cells. They demonstrated that insulin binding
BCRs preferentially used JH6 gene segments which have
previously been associated with autoreactivity and were biased
towards use of positively charged amino acids in the CDR3
region (74). When re-expressed as antibodies, BCRs from
anergic naive IgD+, IgM− B cells demonstrated binding at
levels thought to induce anergic B cell responses, whilst those
from naïve B cells bound weakly and would likely be ignorant of
insulin under physiological conditions (74).

scRNAseq has been used to characterise a novel lymphocyte
population that express both TCRs and BCRs (28). It is suggested
that these “dual expressors” (DE) are increased in frequency in
type 1 diabetes and that in people with type 1 diabetes there is a
public BCR which can stimulate insulin-reactive CD4+ T cells.
However, this work remains controversial as others have been
unable to replicate the enrichment of DE in T1D nor the specific
public BCR sequence (75). This highlights the importance of
good quality control at every step of scRNAseq experiments.

Isolation of CD19+IgG+ B cells from pancreatic lymph nodes
from autoantibody positive donors and single cell sequencing of
their BCRs demonstrated that no clonally expanded B cells were
identified in the pLN. Antibodies were reconstructed from BCR
sequencing, although very few of these were found to be specific
for IA2 (none were specific for GAD and insulin was not tested)
(76). Seay et al. also sorted and single cell sequenced the BCRs
from pancreatic LNs. They found an enrichment of insulin
binding motifs in pLN from people with T1D compared to
controls (50). They also observed sequence overlap with
autoreactive BCRs cloned from precursor (early immature) B
cells from healthy donors previously published by Wardemann
et al. (77). Wardemann et al. observed that not only are many
BCRs from healthy donor precursor B cells insulin reactive, they
are often also polyreactive to other autoantigens for example
dsDNA, ssDNA or nuclear proteins (77). This polyreactivity has
also been noted for both IgM and IgG insulin antibodies (68).
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Similarly Smith et al. demonstrated that all of their high affinity
insulin binding BCRs were also reactive to LPS and chromatin
(74). Polyreactive antibodies have been postulated to play a key
role in the healthy immune system but are also implicated in a
variety of autoimmune diseases (78, 79). It therefore appears that
autoreactive B cells in T1D may span a wide range of phenotypes
and the antibodies produced may often be polyreactive, however
the limited number of studies make it difficult to draw
firm conclusions.
FUTURE PERSPECTIVES ON scRNAseq
IN TYPE 1 DIABETES

New Single Cell Methods and
Analysis Tools
scRNAseq is beginning to give fascinating insights into type 1
diabetes and new approaches may yield further discoveries. The
first of these is spatial transcriptomics (80). In this technique,
indexed oligos capture RNA from either fresh-frozen or
formalin-fixed, paraffin-embedded tissue sections. This allows
determination of gene expression on a level that is fast
approaching single cell resolution. It has already been used to
give insights into cell interactions in other diseases such as
rheumatoid arthritis, where infiltrating leukocytes interact with
target cells (81, 82). Spatial transcriptomics therefore has great
potential to unravel lymphocyte interactions with beta cells in
the pancreas and to give insight into different patterns of
immune cell infiltration (2). In both type 1 (23) and type 2
diabetes (83) scATACseq has recently been used to link GWAS
to epigenetic regulation of gene expression. New methodologies
enabling combination of ATACseq, and CITEseq with
scRNAseq in the same experiment will also contribute to the
field (84). New analysis tools such as CellPhoneDB give the
ability to map interactions between subsets of cells, based on
DEG in scRNAseq datasets, which would allow identification of
novel interactions between immune cells and beta cells in the
pancreas (85, 86). This may become increasingly important as we
begin to understand the role of beta cell stress and signalling in
type 1 diabetes (6) as well as the involvement of other pancreatic
cells in diabetes development (23). CellPhoneDB has been used
to identify crosstalk between T cells and epithelial cells in
ulcerative colitis (87) whilst in rheumatoid arthritis scRNAseq
has revealed interaction pathways between B cells, fibroblasts
and monocytes (88). Additionally, recent work from the Satija
lab has brought together previously published scRNAseq datasets
of pancreatic cells, including immune cells from healthy
pancreatic samples (12), which will facilitate this type of
analysis. This would be further enhanced were there a unified
repository for T1D scRNAseq datasets, similar to those for
COVID-19 (89).

Technological and Analytical Approaches
to Enhance Immunoreceptor Sequencing
We have seen how combining GEX with V(D)J sequencing has
increased insights into T1D. The recent development of DNA
Frontiers in Immunology | www.frontiersin.org 6
barcoded multimers will allow now the determination of T cell
antigen specificity in scRNAseq experiments (90, 91), whilst
conjugation of whole proteins or large folded protein
fragments to DNA barcodes will facilitate identification of
antigen specific B cells (92).

Computational approaches to determine the likely interaction
of an immunoreceptor with target antigen also have the potential
to revolutionise the search for antigen specific TCRs and BCRs.
Approaches such as tcrdist (93), GLIPH (94) and immune
receptor network generation for BCRs (95) enable BCR and
TCR sequences to be mapped and visualised, and those that differ
by only one or two amino acids are assumed to target the same
antigens. NetTCR (96) and TCRex (97) use neural networks and
machine learning algorithms to cluster TCRs predicited to bind
the same epitope. Recent advances such as ICON and TCRAI
leverage scRNAseq technology along with oligo labelled
dextramers. They utilise the paired TCRa and TCRb
transcripts to build libraries of antigen specific receptors, with
a neural network to predict antigen specificity of TCRs. However,
many of these approaches have been validated using viral or
tumour antigens with well-defined epitopes. As we have seen in
the sections above, whilst there definitely are peptide sequences
from diabetes autoantigens that are widely recognised, the
immune response also targets diverse sequences in different
individuals. Furthermore, auto-antigenic TCRs tend to bind
pMHC with lower affinity than TCRs targeting pathogens (98,
99) as high affinity self-reactive TCRs are generally deleted in the
thymus. It is not clear how this lower affinity and lack of public
TCRs may impact upon the usefulness of computational
approaches for T1D.

Biomarkers in Clinical Trials
In 2019, it was demonstrated that teplizumab could delay
progression to T1D in high risk individuals (100). Further work
confirmed a correlation between fold change in C-peptide and
change in frequency of CD8+KLRG1+TIGIT+ T cells (101).
scRNAseq of T cells from the clinical trials of teplizumab and
other immunotherapies inT1Dcould offer an amazing opportunity
to identify all biomarkers predictive of successful treatment. For
example, scRNAseq studies have shown a variety of phenotypic
markers induced in vitro with anti-CD3 antibodies in human
PBMC, including a variety of interleukin receptors and markers
of regulation and exhaustion including FOXP3, CTLA4,
TNFRSF18, LAG3 and PDCD1 (102). In contrast, anti-CD3/
CD28 stimulation of PBMC analysed with scRNAseq and
CITEseq, showed phenotypes strongly associated with activation
(although memory subsets also upregulated senescence) (103).

In the future, a deeper understanding of TCRs and BCRs has
the potential to better quantify the risk of progression in
autoantibody positive people. Monitoring the abundance and
phenotypes of lymphocytes bearing specific CDR3 sequences or
using specific V genes may also prove useful in monitoring
immunotherapies, particularly antigen specific immunotherapies,
where phenotypic changes in whole lymphocyte populations may
not be so obvious (1, 104–106). In addition, BCRs also have the
potential to be used in CAR-Treg cell immunotherapy as has been
demonstrated in the NOD mouse (107).
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A Computational Approach to Move
Beyond scRNAseq
scRNAseq has demonstrated its great potential to identify novel
biomarkers both inT1Dand other autoimmune diseases.However,
it is both technically challenging and expensive. Therefore it is
crucial that researchers should be able to translate findings from
scRNAseq intomore accessible diagnostic andmonitoring tests, for
example using standardised flow cytometry or qPCR panels as is
starting to happen in cancer research (108, 109). Similarly in IBD, a
machine learning approach allowed identification of a CD8+ T cell
signature that could predict prognosis. These biomarkers were then
developed into a commercially available whole blood qPCR test to
facilitate personalised therapy (110).

In T1D, recent advances in computational analysis are beginning
to allow discrimination of changes in cell subsets frombulk RNAseq.
Mehdi et al. identified a peripheral blood transcriptomic signature
that predicted autoantibody development (111). Of the DEG
identified, many were associated with the ubiquitin-proteasome
pathway, DC and T cell function and were potentially targets of
drugs approved for other conditions (111). Xhonneux et al. (112),
demonstrated from transcriptomics of whole blood that they could
undertake “digital cytometry”, by mapping groups of genes back to
cell types. Children who developed autoantibodies against insulin
first, had a signature of increasedNKcells andCD4+memoryT cells.
In contrast, those who first developed autoantibodies to GAD had a
reduced percentage of CD4+ memory T cells and NK cells, but
increased activated NK cells. Harmonizome (113) was used to
identify a G protein–coupled receptor, GPR171, predicted to
control the immune signature found in IAA+ children (112).
Adding gene expression information to predictive models,
increased their accuracy in predicting later T1D development in
children under 18 months (112).

DISCUSSION

The first papers to analyse lymphocytes from type 1 diabetes
using scRNAseq have provided fascinating insights into
phenotypes involved in driving the disease and identified new
potential targets for immunotherapy, such as IL-32 (15, 17).
scRNAseq of TCRs involved in T1D has revealed that
autoantigen specific TCRs have a wide range of targets and
that whilst single chains or CDR3s are often shared between
donors, it is rare to see TCRs with both chains identical in
multiple donors; hence public TCRs remain elusive. In the
peripheral blood, diabetes autoantigen reactive cells do not
always have distinct phenotypes in healthy donors compared
to those with T1D (25, 26), and enrichment of islet reactive cells
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is much more pronounced in the pancreas and pancreatic lymph
nodes. Combining TCR sequencing with T cell phenotyping has
led to a deeper understanding of islet antigen-specific cells in the
peripheral blood (24, 27). A key challenge, for which scRNAseq
is ideally suited, will be to develop methods to identify which
T cells in the periphery are truly involved in beta cell destruction,
and which are simply able to bind islet antigen multimers but are
not capable of either trafficking to the islets or contributing to
beta cell killing. Looking to the future, it is clear that combining
antigen specificity with scRNA phenotyping and new
computational approaches, such as those that can give insight
into interactions between islet cells and infiltrating lymphocytes,
have the potential to revolutionise the field.

Relatively few papers have tackled single cell sequencing (or
indeed bulk sequencing) of BCRs repertoires in T1D, but those
available suggest that these BCRs have unique properties and are
often polyreactive (50, 74, 77). New approaches to identify islet-
antigen specific B cells with scRNAseq (92) will therefore have
much to contribute to our knowledge of how islet autoantibodies
develop and are involved in disease progression.

scRNAseq is ideally suited to identifying subtle phenotypic
differences between cohorts and has demonstrated promise in
identifying differentially expressed genes in people that will later
progress to autoantibody positivity and T1D (27). Developing this
approachwill be key to identifying at-risk individuals andmatching
them to a novel immunotherapy that is appropriate for their stage
and phenotype of disease (100, 101, 114, 115). Furthermore, new
analytical approaches will enable scRNAseq findings to be
translated into new immunotherapies and biomarkers to monitor
effectiveness of those already in clinical trials.
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