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The death toll and economic loss resulting from the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic are
stark reminders that we are vulnerable to zoonotic viral threats.
Strategies are needed to identify and characterize animal viruses
that pose the greatest risk of spillover and spread in humans and
inform public health interventions. Using expert opinion and sci-
entific evidence, we identified host, viral, and environmental risk
factors contributing to zoonotic virus spillover and spread in hu-
mans. We then developed a risk ranking framework and interac-
tive web tool, SpillOver, that estimates a risk score for wildlife-
origin viruses, creating a comparative risk assessment of viruses
with uncharacterized zoonotic spillover potential alongside those
already known to be zoonotic. Using data from testing 509,721
samples from 74,635 animals as part of a virus discovery project
and public records of virus detections around the world, we
ranked the spillover potential of 887 wildlife viruses. Validating
the risk assessment, the top 12 were known zoonotic viruses, in-
cluding SARS-CoV-2. Several newly detected wildlife viruses ranked
higher than known zoonotic viruses. Using a scientifically informed
process, we capitalized on the recent wealth of virus discovery data
to systematically identify and prioritize targets for investigation.
The publicly accessible SpillOver platform can be used by policy
makers and health scientists to inform research and public health
interventions for prevention and rapid control of disease outbreaks.
SpillOver is a living, interactive database that can be refined over
time to continue to improve the quality and public availability of
information on viral threats to human health.

emerging infectious disease | wildlife | zoonotic virus |
disease ecology | public health

We now live in an era in which threats posed by viral pan-
demics are a daily reality. A single lethal virus can emerge

suddenly and spread rapidly to every household and every
community without regard to national borders or to social and
economic standing. Recognizing the importance of emerging in-
fectious diseases (EIDs), the World Health Organization (WHO)
highlighted Disease X, a currently unknown pathogen capable of
causing a serious human epidemic, as a target for research and
development in their 2018 Blueprint of Priority Diseases (1).
However, despite increased investment in pandemic prevention
and knowledge gained from previous EID outbreaks, such as
severe acute respiratory syndrome coronavirus (SARS-CoV),
Ebola virus (Zaire ebolavirus), and Zika virus, we were unpre-
pared for the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) (2) that emerged and rapidly spread around the
world in 2019 to 2020 with a devastating death toll and an esti-
mated global economic loss of ∼28 trillion (3).
SARS-CoV-2 is one of many potential viral threats to humans.

There are just over 250 known zoonotic viruses—viruses that
have previously spilled over from animals to humans and caused

disease in people (4). While these viruses are of ongoing concern
to human health, as repeated Ebola epidemics demonstrate, the
yet to be identified viruses pose an equal if not more serious threat
to humanity. Approximately 1.67 million undescribed viruses are
thought to exist in mammals and birds, up to half of which are
estimated to have the potential to spill over into humans (5).
Virus discovery efforts have initiated the process of investi-

gating potential viral threats. Our team sampled wildlife at high-
risk human disease transmission interfaces in over 30 countries
(6), resulting in the discovery of hundreds of previously undetected
viruses (SI Appendix). Although interesting, virus discovery creates a
plethora of data without direction on where to focus efforts to pre-
vent viral spillovers that could lead to future epidemics and pan-
demics. A strategy is needed to evaluate viruses and identify those
that are most important for further investigation and surveillance.
The risk each virus poses to human health is not equal. Two

viruses may be nearly identical, one zoonotic and the other not.

Significance

The recent emergence and spread of zoonotic viruses, includ-
ing Ebola virus and severe acute respiratory syndrome coro-
navirus 2, demonstrate that animal-sourced viruses are a very
real threat to global public health. Virus discovery efforts have
detected hundreds of new animal viruses with unknown zoo-
notic risk. We developed an open-source risk assessment to
systematically evaluate novel wildlife-origin viruses in terms of
their zoonotic spillover and spread potential. Our tool will
help scientists and governments assess and communicate
risk, informing national disease prioritization, prevention, and
control actions. The resulting watchlist of potential pathogens
will identify targets for new virus countermeasure initiatives,
which can reduce the economic and health impacts of emerging
diseases.
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However, several factors about the virus, host (the organism in
which a virus can live and multiply), environment (the location and
ecology where the host lives), and related human behavior influence
the likelihood that a virus will become zoonotic and spread within
human populations (7, 8). Risk assessments, such as those used by

lenders, account for variances among risk factors in order to de-
termine a comparative risk score. Previous studies and tools using
this approach for viruses have been insightful but limited in scope by
focusing on narrow groups of viruses or few risk factors (7–9). Here,
we present an innovative relative risk assessment and interactive

Fig. 1. Expert opinion (n = 65) of the level of risk each factor included in the risk ranking assessment (n = 42) plays in the risk of a new virus spillover from
animals to humans.
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web application to systematically evaluate viruses of wildlife origin
in terms of their potential for zoonotic spillover and spread in
people (henceforth, “spillover risk”).
Using literature reviews and input from experts, we identified

risk factors that are most likely to contribute to spillover risk. We

then created a risk ranking framework and web tool called
SpillOver: Viral Risk Ranking (https://spillover.global) that uses
data for these risk factors to calculate a comparative “risk score”
for each virus, much like a credit report. We used SpillOver to
rank viruses detected during our viral discovery efforts and

Fig. 2. Schematic outline of the SpillOver risk ranking tool framework and website (https://spillover.global/).

Grange et al. PNAS | 3 of 8
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compared them with viruses that are already known to be zoo-
notic. The SpillOver tool also allows scientists, clinicians, policy
makers, and the public to input data or explore and customize
the output to their needs and interests while providing an
adaptive crowdsourcing platform for uploading viruses as they
are discovered.

Risk Ranking Methods
Selection of Risk Factors. We conducted an extensive literature review to
identify risk factors suggested to contribute to spillover risk. Since zoonotic
spillover risk inherently is characterized by the ability of an animal-sourced
virus to infect humans and cause disease, we looked for factors that covered
topics relating to the likelihood of virus transmission from animals to hu-
mans and the ability of the virus to cause disease and spread within human
populations. We identified 50 potential risk factors, including all those that
could be identified in the peer-reviewed literature, as well as those identi-
fied through our viral discovery field work and surveys (6). A selection of 150
experts from 20 countries were asked to evaluate each of these factors
in terms of influence on animal-origin virus spillover risk to humans
(SI Appendix).

Experts were identified from relevant literature, Google searches, and
conference attendance lists. The majority were affiliated with academic in-
stitutions (66%), and the remainder (33%) were from government and pri-
vate or international organizations/foundations (SI Appendix, Table S32). A
panel of 65 experts participated, each with a median of 19 y (interquartile
range 12 to 27 y) of experience in virology, epidemiology, ecology, public
health, molecular and microbiology, bioinformatics, and/or environmental
science (SI Appendix, Figs. S1 and S2). Experts assigned a Spillover Risk (op-
tions = high [3], medium [2], low [1], or not relevant for spillover [0]) to each
of the 50 identified risk factors and also characterized their own Level of
Expertise (options = novice [1], competent [2], proficient [4], expert [8], or
master [16]) for each risk factor (SI Appendix, Fig. S3 and Table S33).

Expectedly, opinion with regard to Spillover Risk varied among experts
(Fig. 1). To account for uncertainty, we calculated a weighted average score
for each risk factor from the sum of expert responses to Spillover Risk, ac-
counting for the Level of Expertise of each expert within each subject. If a
participant did not declare a Spillover Risk or Level of Expertise, a value of
zero or eight was assigned, respectively. A weighted average score (Risk
Factor Influence) was then calculated for each risk factor from the sum of
expert responses (i) using the following formula:

Risk  Factor   Influence(0 − 3) =
∑(Spillover   Risk  (0  −   3) × Level   of   Expertise  (1 − 16))i

∑Level   of   Expertise  (1 − 16)i .

In addition to factors inherently linked to viruses already known to be
zoonotic, factors deemed as high contribution to spillover risk were fre-
quency and intimacy of human interaction with wild and domestic animal
hosts, mode of transmission, and host plasticity (Fig. 1 and SI Appendix, Fig.
S4). Seven risk factors including host mass, the percentage of host range in
protected areas, and virus phylogenetics (virus to human pathogens dis-
tance, virus to animal pathogens distance, virus distance to a virus that is
known to infect humans, virus distance to a virus that is known to infect
animals, virus distance to a virus that is not known to infect humans) were
assessed by experts as worthy of consideration but were eliminated due to
the insufficiency of available data sources. One risk factor “Virus associated
with unknown cause of illness in humans” was merged with the risk factor
“Severity of disease in humans.”

The Risk Factor Influence was used as basis for selection of factors for
inclusion in the risk assessment. Factors assessed by experts as having low or
no contribution to spillover risk, evidenced by a Risk Factor Influence score
of below two, were not included in the ranking with the exception of two
risk factors, virus segmentation and virus envelope, that were included in
the assessment due to the publication of a risk assessment supporting them
having an important role in human-to-human transmission of viruses (7).
The resulting risk assessment was based on 31 risk factors; however, meth-
odology and results for the 42 risk factors for which data are available can
be found in SI Appendix.

A Database of Wildlife-Origin Viruses. We then created a database of virus
detections in wildlife, confirmed by PCR and/or genetic sequencing and the
necessary metadata to characterize the viruses according to the risk factors
described above. Host species were limited to classes of Mammalia, Aves,
Reptilia, and Amphibia. The database contains 35,751 rows of unique

detections with metadata for 887 viruses from 19 virus families (viruses often
were detected in several animals at several locations and interfaces)
(SI Appendix).

Initially, virus detection data were collated from multiple sources, in-
cluding viruses detected during our viral discovery project, the National
Center for Biotechnology Information (NCBI) virus nucleotide database, and a
literature review of zoonotic viruses (SI Appendix). These data included,
when available, virus taxonomy; an identifier (i.e., accession number); host
species taxonomy; sample type in which the virus was detected; primary
disease transmission interface; and longitude and latitude where the animal
was sampled or at minimum, the country of detection.

Between 2009 and 2019, our team collected and tested 509,721 samples
from 74,635 wild animals at high-risk pathogen transmission interfaces in
28 countries (https://ohi.vetmed.ucdavis.edu/programs-projects/predict-
project). Consensus PCR protocols and Sanger/Next-Generation sequencing
were used to screen samples for viruses belonging to 15 viral families of
concern to human health (SI Appendix). The resulting dataset used in this
study comprises 855 unique viruses from 7,726 individual animals belonging
to 251 mammalian species (plus 30 identified only to genus) within 26
countries (SI Appendix). Of the viruses detected, 721 were newly discovered,
133 were previously identified in other animals prior to the project, and 6
were known zoonotic viruses. In addition, virus detection data for 38 In-
ternational Committee on Taxonomy of Viruses (ICTV)-recognized known
zoonotic viruses identified from wildlife (including the 6 detected by the
project) and the project-detected 133 previously identified viruses were
extracted from the NCBI virus nucleotide database server (https://www.ncbi.
nlm.nih.gov/labs/virus/vssi/#/) and characterized via a review of the literature
(SI Appendix).

Additional metadata necessary to characterize risk for each virus detection
were derived from 19 publicly available resources on the host [International
Union for Conservation of Nature (IUCN) Red List (10), Birdlife International
(11), Catalogue of Life (12), TimeTree (13), diet database (14)], the virus [ICTV
(15), ViralZone database (16), reference virology textbooks (17–19), pub-
lished human/zoonotic virus databases (7, 16, 20, 21), the NCBI nucleotide
database], and the environment [Land Degradation Assessment in Dryland
(LADA) land use systems (22), NASA Sedac Gridded population of the World
United Nations (UN) Adjusted population density v4 2015 (23), Global Grid
of Probabilities of Urban Expansion to 2030 (24), adapted history database
of the global environment (HYDE) land conversion 2005 (25, 26), Global
Forest Change 2017 (27)] (SI Appendix).

Virus Risk Assessment. The above data were used to qualitatively rank the
spillover risk of wildlife-origin viruses by calculating a relative Spillover Risk
Score for each virus (Fig. 2).

Each risk factor had multiple categorical Risk-Level options (e.g., DNA or
RNA for “Virus Genome” risk factor). These options were assigned a Risk-
Level Score on a scale between zero and five, with five being the riskiest,
based on scientific evidence and expert opinion. For example, the Risk Levels
for the risk factor “Livestock density” were high (5), medium (3), low (1),
none (0), or unknown (2.5). A central Risk-Level Score of 2.5 was assigned to
all Risk Levels categorized as unknown. Further details on Risk Levels for
each factor and justifications are provided in SI Appendix. For viruses with
more than one detection and thus, more than one row of data, the assess-
ment uses the principle of the worst case scenario (i.e., the most severe
possible outcome is assigned using the highest Risk-Level Score among all
rows for that virus). For example, a virus may have been detected in two
locations, one that had high livestock densities and the other that had low
livestock density. The assigned Risk Level for this virus’ risk factor would be
“High livestock density” or five. The highest risk score for each risk factor
was then combined with the expert assigned weight for that risk factor.
Using the livestock density example, the calculation would be

Virus Data  Risk =  
Risk  Factor   Influence × Risk-Level   Score

3
  =   (2.175) × (5)

3
 

=   3.624.

For each virus, a relative Spillover Risk Score was then calculated as the sum
of the 31 Virus Data Risk scores. Finally, virus ranking positions were
assigned in descending order according to each virus’ Spillover Risk Score,
thus relative spillover potential.

Development of the SpillOver: Viral Risk Ranking Tool. To provide a living
platform for ongoing ranking of spillover risk from newly discoveredwildlife-
origin viruses, we created the SpillOver: Viral Risk Ranking tool in a browser-
based application (https://spillover.global/) designed to increase accessibility
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to evidence-based risk ranking of viruses for scientists, policy makers, public
health managers, and communities, especially in areas with higher risk of
EIDs. SpillOver produces a detailed spillover risk report for each virus (Fig. 3),
and the “Risk Comparison” tool allows users to compare and contrast
ranked viruses and to filter viruses on a selection of key attributes, including
virus-specific factors, host species, and country of detection.

SpillOver is a crowdsourcing platform on which people can choose to
privately or publicly rank a new virus or add data to existing viruses using the
“Rank Your Virus” tool. Currently, the application is designed for wildlife-
origin viruses with host species in the classes Mammalia, Reptilia, Amphibia,
and Aves, and data can autopopulate for 26 virus families of concern to
human health (5). It is not intended for viruses that only infect humans,

Fig. 3. Virus spillover ranking estimate for PREDICT-CoV-35, including the contribution of a selection of risk factors and its associated data toward the overall
spillover risk assessment. Full details are in https://spillover.global.

Grange et al. PNAS | 5 of 8
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vector-borne viruses, or viruses of domestic species (animals that have been
domesticated to be kept as pets or used as food) origin. Users are encour-
aged to submit their data for public sharing, which are reviewed by website
administrators prior to integration. The minimum set of data required for
ranking a virus includes virus taxonomy with sequence or reference number
for quality control, host species, sample type, the estimated timeline of host
species divergence from humans (13), host longitude/latitude or nearest
town, and the primary high-risk disease transmission interface where the
host was sampled. Variables for other host, virus, and environmental factors
to complete the information on all 31 factors are autopopulated using data
sources detailed above. Users can further edit automated entries from these
publicly available datasets to improve accuracy of information. The inno-
vative design is fully customizable for future developments, such as adding
new risk factors and incorporating evolving scientific information to adjust
the weighting of existing variables.

Data used for the current analyses were restricted to genetic evidence of
virus infection (e.g., PCR, genome sequencing) and exclude experimental
evidence of infection and serological studies of antibody response. However,
SpillOver does not rely on specific detection protocols or methods; instead,
we place the responsibility of robust virus data on the submitter. This ap-
proach facilitates future integration of all data-sourcing technologies, es-
pecially in high-risk countries where access to advanced methods may be
limited but where surveillance is most needed.

SpillOver Risk Ranking Results. Of 887 ranked viruses, the top 12 viruses were
all known zoonotic viruses, as expected (Table 1). SARS-CoV-2 ranked second
behind between known zoonotic viruses Lassa virus and Ebola virus. It may
seem surprising that SARS-CoV-2 did not rank in first position given it has
caused a pandemic (2). This slightly lower ranking is the result of much less
data being available for SARS-CoV-2, as well as the more frequent docu-
mentation of spillover events for known viruses. For example, the risk
ranking for SARS-CoV-2 is currently based solely on virus detections in zoo
tigers, lions, and mink (28, 29). At the time of publication, we do not yet
have key information about the natural wildlife host(s) that would have
allowed the tool to more accurately estimate the spillover risk of SARS CoV-
2, including number and range of host species, geographic distribution of
hosts, and types of environments in which the hosts live. The initial paucity
of data on SARS-CoV-2 reminds us how important it is to identify these data
ahead of virus spillover, so that ranking tools may be populated and refined
to create more comprehensive watchlists for surveillance and study. The
more we study SARS-CoV-2, the higher it will likely rank within the tool, but
the real goal is to collect and use such important data for novel viruses in
advance of a pandemic to enable prevention and preparedness. In fact, two
severe acute respiratory syndrome (SARS)-related coronaviruses detected in
bats during our surveillance were ranked highly by SpillOver, with SARS-
related betacoronavirus Rp3 in 15th and SARS-related bat coronavirus
RsSHC014 in 51st position (Table 1).

Several newly discovered viruses had higher spillover risk estimates than
some known zoonotic pathogens (Table 1 and SI Appendix, Fig. S4). Some
newly detected coronaviruses, including the Alphacoronavirus provisionally
named PREDICT_CoV-35 ranked within the top 20. Broad host and virus
geography combined with detection in bats at high-risk disease transmission
interfaces, including hunting and within human dwellings, suggests that
PREDICT_CoV-35 is of high public health relevance. Although these newly
detected coronaviruses have not yet been found in humans, spillover events
may be going unrecognized due to lack of diagnostic capabilities and
underreporting, as well as the propensity of coronaviruses to cause only mild
symptoms or asymptomatic cases.

A Global Resource for Zoonotic Threats. SpillOver is a comprehensive publicly
accessible risk assessment tool to systematically facilitate evaluation of novel
viruses in terms of their zoonotic spillover and pandemic potential. The
framework is not intended to predict the origins, impact, or timing of future
pandemics. However, the tool begins to address the need for platforms to
help interpret global infectious disease data on a broader scale (30). The
simple design of the SpillOver tool requires only a few pieces of readily
available information to be uploaded by the submitters of new viruses in
order to source a rich set of risk data on each virus from many publicly
available sources, producing comparative risk estimates.

The ability of SpillOver to meaningfully rank animal–human transmission
risk from wildlife-origin viruses is inherently limited by the data available, or
lack thereof, for each virus, especially when a novel virus is initially identi-
fied. If we are to use the tool to its full utility and continue to improve it over
time, the paucity of collated, validated public virus information must be
rectified. The fact that many attributes are unknown for newly detected

viruses could cause an initial under- or overestimate of spillover risk since we
have to assign a central or “unknown value” to some of these variables until
more data become available: for example, whether or not the virus has the
capability to infect human cells, the mode(s) of transmission, and the full
host and geographic range. In addition to simply too few detections of
viruses, limiting our ability to rigorously assess their host and geographic
scope and associated risk factors, we most often identified inconsistent
reporting of host species and the location of sampling, as well as non-
standardized naming of viruses in public datasets. Therefore, we advocate
for the improvement of data reporting for viruses, as well as an expansion of
large-scale viral detection and characterization to improve the available
data for risk ranking efforts.

Making those viruses that may rank highly available to responsible vi-
rologists to further assess receptor binding and other virological risk factors is
also crucial, as we could not yet incorporate some likely important virological
risk factors into the tool because there are almost no publicly available data
on such parameters for anything beyond those viruses that have already
made many people sick. While the ranking includes a wide range of risk
factors judged to be important by the global experts, there remain com-
plexities and undocumented risk factors that are not yet incorporated. In fact,
insufficient evidence or availability of broad-scale data prevented inclusion
of several risk factors in this study that may have influence on virus spillover
and spread, such as the role virus phylogeny, host mass, and remoteness of
host home ranges. Additionally, data deficiencies in vector distributions and
knowledge relating to competent hosts limited our ability to estimate rel-
ative risk in a meaningful way for vector-borne viruses.

The power of this tool lies in the fact that it is open source and
adaptable—the more virus detection data that are entered, the more robust
the rankings. New risk factors can and will be added when evidence in the
peer-reviewed literature provides insight into newly identified risk factors.
Therefore, we hope future virus detections in animals will be reported into
the system so that risk comparisons can be refined. The authors also commit
to regular review of publicly available resources to incorporate new dis-
coveries into the SpillOver database.

Existing tools to rank influenza virus strains are increasingly being used by
public health communities and researchers (e.g., the Centers for Disease
Control and Prevention Influenza Risk Assessment Tool). Because there is a
disproportionate availability of diverse and high-quality data for influenza
viruses, we have intentionally not included them in this ranking of viruses
for which much less is known. The goal of the SpillOver tool is to identify
those viruses that should be prioritized for surveillance and studied as in-
tensively as influenzas have been. Knowledge regarding existing and novel
subtype and strain diversity and how those vary and impact the potential
risk for zoonotic emergence, disease, and spread is already being generated
for influenza viruses. In the future, however, the foundations on which the
SpillOver tool has been developed could be duplicated and customized with
virus-specific risk factors within a group of related and well-studied viruses
for a deeper dive into cross-species transmission risk.

Collaboration Is Key to Success. Despite the propensity of viruses to influence
ecosystems and especially, the health of hosts within them, data on virus
diversity and transmission characteristics are lacking relative to cellular
pathogens. We aimed to begin to address this gap in knowledge by con-
ducting virus detection and discovery in regions forecasted to be hot spots for
emergence of disease. In addition to expanding the general knowledge of
our world, virus discovery efforts have the potential to allow characteristics of
viruses, hosts, environmental factors, and their associated interactions to be
analyzed and acted upon to target surveillance, improving cost-effectiveness,
as well as epidemic preparedness and prevention activities to reduce impacts
of spillover events. As more and more viruses are discovered, we must es-
tablish a scientific dialogue that will result in tools that can be used to pri-
oritize these activities, informed by data on spillover risk and the potential
for further amplification and spread in humans. We ranked known zoonotic
viruses in relation to a large body of novel virus findings and built a “straw”

tool to begin this dialogue. The impact of the tool on public health will be
dependent on global participation and collaboration. By crowdsourcing and
integrating additional virus discovery data from scientists around the world
into the SpillOver database and with continued risk ranking refinement, we
could advance regional and global understanding of animal-origin viruses
and be better prepared to prevent future viral spillovers that could lead to
the next pandemic by investing in mitigation activities for the most risky
viruses at the most likely locations and interfaces. Without such efforts, we
are doomed to wait for the next Disease X and once again, be ill prepared.

The SpillOver tool is an essential first step that begins to address the
burden of uncertainty raised while new viruses are being discovered. By
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creating a comprehensive watchlist of the top potential pathogens, our tool
helps scientists and governments assess and communicate risk from an
evidence-based perspective, informing national-level zoonotic disease pri-
oritization, prevention, and action frameworks such as enhanced surveil-
lance of people and wildlife at key locations and interfaces. After high-risk
viruses have been characterized, further investigation can distinguish

candidates for Disease X (1), assess likely relative impacts, and mitigate
spillover risk in advance of devastating consequences. These investigations
will require collaboration among experts in virology, epidemiology, ecology,
computing technologies, synthetic biology, sociology, politics, and user in-
tention to improve data sourcing in order to develop preventive and con-
trolling countermeasures, including the prioritized development of vaccines

Table 1. A virus spillover risk ranking comparison of the top 50 wildlife viruses in the spillover database, including viruses known to be
zoonotic and those with unknown zoonotic potential, which were detected in a broad-scale virus discovery effort in Africa and
Southeast and South Asia from 2009 to 2019

Risk ranking position Risk ranking score*

Virus

Virus Genus Family Detection in hosts

1 91.18 Lassa virus† Mammarenavirus Arenaviridae Regional
2 87.14 SARS-CoV-2† Betacoronavirus Coronaviridae Semiglobal
3 87.00 Ebola virus† Ebolavirus Filoviridae Regional
4 86.49 Seoul virus† Hantavirus Bunyaviridae Global
5 86.49 Nipah virus† Henipavirus Paramyxoviridae Semiglobal
6 86.38 Hepatitis E virus† Orthohepevirus Hepeviridae Global
7 85.70 Marburg virus† Marburgvirus Filoviridae Regional
8 85.04 SARS-CoV† Betacoronavirus Coronaviridae National—large
9 84.78 Simian immunodeficiency virus† Lentivirus Retroviridae Semiglobal
10 84.69 Rabies virus† Lyssavirus Rhabdoviridae Global
11 84.61 Lymphocytic choriomeningitis virus† Mammarenavirus Arenaviridae Global
12 83.99 Simian foamy virus† Spumavirus Retroviridae Global
13 80.98 Coronavirus 229E (bat strain) Alphacoronavirus Coronaviridae Regional
14 80.01 Rousettus bat coronavirus HKU9 Betacoronavirus Coronaviridae Global
15 79.71 SARS-related betacoronavirus Rp3 Betacoronavirus Coronaviridae National—large
16 78.97 European bat lyssavirus 1† Lyssavirus Rhabdoviridae Regional
17 78.81 Andes virus† Hantavirus Bunyaviridae National—small
18 78.63 Murine coronavirus Betacoronavirus Coronaviridae Global
19 78.57 Puumala virus† Hantavirus Bunyaviridae Regional
20 78.03 Chaerephon bat coronavirus/Kenya/KY22/2006 Alphacoronavirus Coronaviridae Regional
21 77.32 Coronavirus PREDICT_CoV-35 Alphacoronavirus Coronaviridae Semiglobal
22 77.21 Borna disease virus† Bornavirus Bornaviridae Semiglobal
23 76.42 Longquan Aa mouse coronavirus Betacoronavirus Coronaviridae Semiglobal
24 76.14 Monkeypox virus† Orthopoxvirus Poxviridae Semiglobal
25 75.78 European bat lyssavirus 2† Lyssavirus Rhabdoviridae Regional
26 75.51 Laguna Negra virus† Hantavirus Bunyaviridae Regional
27 75.05 Eidolon bat coronavirus/Kenya/KY24/2006 Betacoronavirus Coronaviridae Regional
28 74.65 Cowpox virus† Orthopoxvirus Poxviridae Regional
29 74.64 Coronavirus PREDICT CoV-24 Betacoronavirus Coronaviridae Semiglobal
30 74.60 Macaque Foamy virus Spumavirus Retroviridae Global
31 73.80 Rodent coronavirus Alphacoronavirus Coronaviridae Regional
32 73.36 Sin Nombre virus† Hantavirus Bunyaviridae Regional
33 73.23 Human mastadenovirus G Mastadenovirus Adenoviridae Semiglobal
34 72.94 Coronavirus PREDICT CoV-22 Betacoronavirus Coronaviridae Semiglobal
35 72.91 Reston virus† Ebolavirus Filoviridae Semiglobal
36 72.49 Bombali virus Ebolavirus Filoviridae Regional
37 72.46 Coronavirus HKU1 Betacoronavirus Coronaviridae National—small
38 72.17 Kenya bat coronavirus/BtKY56/BtKY55 Betacoronavirus Coronaviridae Regional
39 72.08 Paramyxovirus PREDICT PMV-10 Unassigned Paramyxoviridae Regional
40 71.73 Bat coronavirus 1 Alphacoronavirus Coronaviridae Semiglobal
41 71.64 BtVs-BetaCoV/SC2013 Betacoronavirus Coronaviridae National—large
42 71.54 Australian bat lyssavirus† Lyssavirus Rhabdoviridae National—large
43 71.37 Bat coronavirus Hipposideros/GhanaKwam/20/

2008
Betacoronavirus Coronaviridae Regional

44 71.24 Coronavirus PREDICT CoV-68 Betacoronavirus Coronaviridae Regional
45 71.14 Mamastrovirus 1 Mamastrovirus Astroviridae Semiglobal
46 71.13 Dobrava-Belgrade virus† Hantavirus Bunyaviridae Regional
47 71.06 Scotophilus bat coronavirus 512 Alphacoronavirus Coronaviridae Regional
48 80.00 Paramyxovirus PREDICT PMV-13 Unassigned Paramyxoviridae Semiglobal
49 70.98 Paramyxovirus PREDICT PMV-15 Unassigned Paramyxoviridae Regional
50 70.96 Coronavirus PREDICT CoV-16 Betacoronavirus Coronaviridae Regional

*Out of a maximum score of 155 from 31 risk factors.
†Zoonotic virus.
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and targeted multivalent therapies, as well as public health interventions.
Specifically, changing human behavior at interfaces for the riskiest viruses
can limit interactions with wildlife and may make the most immediate im-
pact. By learning to live safely with wildlife, we not only can mitigate future
disease outbreaks in humans but also, can conserve species that are essential
to our life on the planet.

New initiatives including the WHO Research and Development (R&D)
Blueprint (1), the Coalition for Epidemic Preparedness Innovations (31), the
Trinity Challenge (https://www.thetrinitychallenge.org/), and proposed collabo-
rative efforts among the International Barcode of Life’s program BIOSCAN, the
Earth Biogenome Project, and the Global Virome Project (32) are making strides
forward by building vaccine technology and collaborative networks to address
virus threats. SpillOver will complement these programs by providing a resource
for collating massive global datasets across multiple disciplines (virology, epide-
miology, ecology, etc.) and producing a meta-analysis that can focus research
and future countermeasure development, which together could reduce the
economic and public health impacts of Disease X.

The research protocol was approved by the University of California Animal
Care and Use Committee (permit nos. 17504 and 19300).

Data Availability. All datasets along with the R code and R package de-
pendencies needed to fully replicate and evaluate these analyses have
been deposited in Open Source Framework (https://osf.io/mb6qn/?view_
only=f6326d48d7d941afa7af02714819a1a2) (33).
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