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Abstract: Expanding the travel mileage of power batteries is of great significance for electric 

vehicles (EVs). The solar battery pack is considered as a promising supplement to the battery 

management system (BMS) of EVs but integrating solar power into EVs remains a challenge. This 

paper proposes a BMS that coordinates the solar panels and the lithium battery system. The 

proposed BMS mainly involves three aspects. Firstly, an equivalent second-order resistance-

capacitance model is established and afterwards is identified by using an improved recursive 

least squares algorithm. Then, the maximum power prediction strategy is developed based on 

the advanced state of charge (SOC) algorithm and the available solar energy estimation algorithm. 

Thirdly, a multi-stage constant current charging strategy based on the adaptive genetic algorithm 

is designed to optimize the battery temperature rise and charging time simultaneously. The 

proposed BMS is validated by the experiment on a real-world solar-assisted EV. The results 

indicate that the proposed power prediction strategy can accurately estimate the available 

power for EVs. Compared with the widely-used charging method, the developed optimal 
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charging strategy reduces the charging time and temperature rise by 7%-11% and 36%-45%, 

respectively. 
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SOC state of charge PSO particle swarm optimization 

SOP state of power RC resistance capacitance 

SOH state of health AH ampere hour integration 

EKF extended Kalman filter OCV 0pen circuit voltage 

UKF unscented Kalman filter UCV ultimate current value 

PSO particle swarm optimization RC resistance and capacitor 

GA genetic algorithm CCCV constant current constant voltage 

PC pulse current MCC multi-stage constant current 
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1 Introduction 

  Climate change has promoted the decarbonization of transport sector via electrification 

globally. EVs are one promising and cost-effective solution due to their high energy conversion 

efficiency and low pollutant emissions [1]. Nevertheless, challenges remain for the battery 

systems, such as short endurance mileage, high replacement cost and high maintenance cost. 

Cooperating EV power with other clean energy is expected as an alternative to address those 

challenges [2], among which the sustainable solar energy plays a key role by deploying it as an 

auxiliary power source for EVs. The electricity generated by the photovoltaic system can either 

be directly utilized to power electric machines for releasing the burden of the original BMS [3] 

or been charged into the battery for later use so as to extend the EVs driving mileage [4, 5]. 

Therefore, the solar-assisted EVs could be an important solution for decarbonizing the transport 

sector. 

1.1 Literature review 

  The power battery pack and its management technology affect the overall performance of EVs. 

Significant research efforts have been spent on the BMS aiming for the accurate battery 

modelling and state estimation [6], peak power optimization [7], charging optimization and life 

safety assessment [8].  

  The SOC value characterises the available battery electricity, which determines the degree of 

safe driving and provides an important reference to other battery states, such as state of health 

(SOH) and state of power (SOP). The ampere-hour (AH) integration method based on 
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characteristic parameters was first adopted to estimate the battery SOC [9]. However, the 

accumulated error caused by the current integration function seriously affects the estimation 

accuracy. Therefore, the model-based SOC estimation methods have received increasing 

attention. In the past decades, Kalman filter method [10, 11], slide mode observer [12], H∞ filter 

and particle filter [13] have been widely utilized. G. L. Plett [14] adopted the first-order Taylor 

expansion to linearize the nonlinear battery model in the extended Kalman filter (EKF), however, 

the estimation accuracy of this method could be limited due to the segmented approximation. 

Thus, the unscented Kalman filter (UKF) was then employed to address the nonlinear error 

existing in the traditional EKF method [15]. To further address the uncertain status error and 

unknown noise in the UKF method, Peng et al. [16] introduced a forgetting factor to estimate the 

noise and performed the memory fading process. In [17], the EKF and adaptive UKF methods are 

further combined to estimate SOC and SOH values. However, the increasing estimation accuracy 

incurs the heavy computational burden which is challenging for the practical BMS. Therefore, the 

trade-off between accurate estimation of SOC in the low-battery mode and its executability is a 

pain point in existing studies. 

  The SOP value characterises the maximum charging and discharging power of a battery pack 

under the premise of safety, which is directly related to the acceleration and climbing 

performance of EVs. Two categories of SOP prediction methods are available, i.e., the 

experimental look-up table method and the model predictive method. The former method 

captures the peak charging/discharging power at a fixed SOC point by calculating the open 

circuit voltage and internal resistance under the hybrid pulse excitation [18]. However, this 
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method does not consider the polarisation current, resulting in the low prediction accuracy. The 

latter method obtains the ultimate currents with estimated SOC values, which constrains the cut-

off voltage for the charging/discharging processes. In [19], the aging of power battery pack is 

considered and the initial state error is well corrected with the joint estimation of SOC and SOP 

values. In [20], the Butler-Volmer equation model is proposed to constrain the voltage drop, 

which can acquire the predicted SOP value within 10s through a fixed current excitation. 

However, the heavy computational burden makes it hard to execute in practical vehicles. Xiong 

et al. [21] utilized the genetic algorithm to identify battery parameters and proposed a multi-

parameter constraint SOP method, which considered the internal resistance and hysteresis 

characteristics. The experimental results indicate the method is more accurate and reliable than 

the singe parameter restriction method. 

  Another important task of BMS is to optimize the charging process, which aims to improve the 

charging efficiency in the premise of charging safety. Currently, the widely used charging strategy 

includes the constant current constant voltage (CCCV) charging strategy [22], pulse current (PC) 

charging strategy [23], and multi-stage constant current (MCC) charging strategy [24]. The CCCV 

charging strategy is to charge the battery with the constant current and voltage mode, which has 

the clear logic and simple operation [22]. On this basis, the intermittent charging mode was 

developed to decrease the temperature rise of batteries [25]. The PC charging strategy would 

generate the positive pulse currents to charge the battery and generate the negative currents to 

discharge for depolarisation and higher charging peak currents. In this way, the total charging 

time was reduced by about 20% than the CCCV charging strategy [26]. In [23], the frequency-



6 
 

varied and duty-varied pulse charging mode was optimized considering the minimal impedance. 

A significant finding was that the charging time was reduced only within the 0-0.2 SOC intervals, 

however, the battery polarisation value was hard to measure in real vehicles. The MCC method 

is to optimize the charging current according to different SOC values [24]. For instance, the 

particle swarm optimization (PSO) algorithm can optimize the charging ratio and charging time, 

in which the charging time was reduced by 57% but the charging efficiency was reduced by 0.5% 

than the CCCV method [27]. Similarly, the multiple-PSO method can optimize the charging time 

and charging loss, in which the optimal charging current in each SOC interval is calculated [28]. 

In general, with consideration of the charging characteristics, the charging order and charging 

current curve can be optimized to improve the charging performance of the battery pack. 

However, fewer studies have modelled the temperature rise in the charging process; 

uncontrollable temperature rise would cause the thermal runaway and possible safety accident. 

1.2 Knowledge gap and contributions 

  Seen from the literature review, research towards the battery pack of EVs should focus more 

on the driving mileage and cleaning applications. The solar panels could generate the electricity 

to power the electric machines or charge the battery to extend the EVs driving mileage. Besides, 

the solar panels generate zero pollutant emission, which is environmentally friendly to the future 

green travel. Accordingly, integrating the solar panels in the EVs provide a promising solution for 

the decarbonization of transport sector. However, existing research focuses on the battery 

applications, such as battery state estimation, battery charging optimization or battery life 

evaluation, little research has been executed to explore the potential of integrating the lithium 



7 
 

battery with the green solar energy. To fill this knowledge gap, this study for the first time models 

a solar-assisted battery system which is underpinned by considering the battery state estimation 

and optimal charging strategy. 

  Specifically, a second-order equivalent battery model is established, and characteristic 

parameters, including the resistance, capacitance and open circuit voltage, are identified by 

using the improved recursive least squares (RLS) algorithm. The joint EKF-AH algorithm is then 

applied to accurately estimate SOC values in whole intervals. On this basis, the maximum power 

point tracking (MPPT) algorithm is designed to model the solar generation which is utilized to 

predict the SOP value. The optimization of charging process is another importance issue of the 

proposed BMS. Considering the lessening of charging time benefits to the labour cost and work 

efficiency, the primary optimization objective adopts the charging time. Besides, the 

optimization of charging current also should consider the battery temperature in the charging 

process for the guarantee of battery health and charging performance. Accordingly, the multi-

stage constant current charging approach is designed to optimize the temperature rise and 

charging time simultaneously. More importantly, the proposed BMS is embedded into a real-

world solar-assisted EV experimental platform. The advantages of the modelled integrated 

battery system, joint maximum power prediction strategy, and the optimal charging strategy are 

validated.  

  Conclusively, this study contributes to the following points: 

  (1) This study for the first time explores the potential of integrating solar energy into EVs by 

both mathematical modelling and experimental validation. Synergistic energy management of 
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solar energy system and lithium-ion battery system turns out to benefit the electricity utilization 

in EVs, which implies a multi-sector integrated solution to extend travel mileage and contribute 

to deep decarbonization of transport sector. 

  (2) The synergetic strategy of SOC estimation and SOP prediction strategies were designed 

based on the improved second-order RLS parameter estimation algorithm. The electricity 

generated by the solar panels is estimated and the real-time SOC both take effect to estimate the 

maximum power of EVs. 

  (3) An efficient charging strategy towards the multiple objectives of temperature rise and 

charging time was deployed. An adaptive-weighted factor has been applied to coordinate both 

objectives and the online genetic algorithm (GA) is utilized to solve the optimal charging currents 

in real time. The hardware experiment has been implemented to validate its executability in a 

real-world solar-assisted EV. 

2 Proposed BMS and parameter identification 

2.1 Framework of the proposed BMS 

  This section describes the framework of the proposed EMS as shown in Fig. 1. Firstly, the 

offline experiment is implemented to explore the battery characteristics, which are expressed in 

Appendix A.1. Accordingly, a second-order equivalent resistance and capacitance (RC) battery 

circuits and solar panel circuit are modelled, and afterwards temperature rise model is 

established. On this basis, the improved RLS algorithm is developed to identify the battery 

parameters, such as the battery resistance, capacitance and open-circuit voltage. With the 
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battery model, the maximum available power of the solar-assisted EV is predicted in Section 3 

and the efficient charging strategy is thereby optimized in Section 4. Concretely, a novel EKF-AH 

algorithm is proposed to estimate the battery SOC, which is utilized to limit the SOP value of EVs 

and the available solar power is also coordinated to correct the final SOP values. Finally, the 

optimal charging strategy is proposed which aims at optimizing the temperature rise and 

charging time, simultaneously. To accelerate the solving process of the optimization, the adaptive 

GA approach is developed. 

  Fig. 2 illustrates the battery models and the solar panel characteristics. To improve the model 

accuracy, a second RC circuit is developed as shown in Fig. 2(a) and the single diode circuit 

model for solar panels are exhibits in Fig. 2(b). The layout of roof mounted solar panels is shown 

in Fig. 2(c). Then, the electric characteristics of solar panels under different radiation and 

intensities and temperatures are displayed in Fig. 2(d) and (e), respectively. The details 

Fig. 1 Framework of the proposed BMS. 



10 
 

associated with the sub-figures will be explained in the following sub-sections. 
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Fig. 2 Battery models and experimental results of solar panels. (a) Second-order RC battery equivalent circuit model; (b) Single diode 

circuit model of solar panels; (c) Roof mounted solar panel array design for the solar-assisted EV; (d) Solar panel characteristics under different 

radiation intensities; (e) Solar panel characteristics under different temperatures. 
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2.2 System model construction 

2.2.1 Battery equivalent circuit model 

  The equivalent battery circuit model adopts the voltage source to represent the 

thermodynamic equilibrium potential. In this study, we adopt the second-order RC model to 

construct the equivalent battery circuit as shown in Fig. 2(a), which has two RC circuits in 

parallel and exhibits bipolar characteristics to represent the charge transfer and diffusion 

process [29], where 𝑈𝑜𝑐  and 𝑅𝑜  represent the open-circuit voltage and internal resistance. 

𝑅1𝐶1 and 𝑅2𝐶2 are adopted to simulate the polarisation reaction, in which 𝑈1, 𝑅1, 𝐶1 denote 

the polarisation voltage, resistance and capacitance of cell electrochemistry, respectively, while 

𝑈2 , 𝑅2 ,  𝐶2  denote the concentration polarisation voltage, resistance and capacitance, 

respectively. 

  According to the equivalent principle, the equivalent formulation can be formed in Eq. (1). 
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  The output of RC circuits consists of two parts: one is the zero-state response produced by the 

external current excitation; another is the zero-input response determined by the initial state 

without the external excitation. The specific zero-state response is depicted in Eq. (2). 
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where 𝑈1,𝑘+1
𝑧𝑠  and 𝑈2,𝑘+1

𝑧𝑠  denote the zero-state response voltages in both RC circuits; ∆t is the 

control period; 𝜏1 and 𝜏2 are time constants. The zero-input response is formulated in Eq. (3). 
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  Therefore, the voltage response on the output terminals is the sum of zero-state response and 

zero-input response, see Eq. (4). 
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2.2.2 Solar panel model 

  The solar panels adopt the Me3-Si photovoltaic (PV) cell which is composed of semiconductor 

diodes. A solar circuit model is established based on the electronic characteristics [30], as shown 

in Fig. 2(b). Parameters of the Si PV cell are listed in Table 1. 

Table 1 Parameters of single Si PV cell. 

Parameters Values 

Packing factor 82.9% 

Efficiency 25% 

Size 125mm*125mm 

Short-circuit current 6.45A 

Open-circuit voltage 0.727V 
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Maximum power 3.89W 

Voltage at the maximum power point 0.64V 

Current at the maximum power point 6.08A 

  According to the Kirchhoff’s theorem, the output current of solar panels is depicted in Eq. (5a). 
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where 𝐼0  denotes the reverse saturation current of a solar cell under the condition of zero 

radiation; q=1.6×10-19C denotes the unit charge; A=1.2 is the correction factor; k=1.38×10-23J/K 

is the Boltzmann constant; T denotes the surface temperature of the PV cell. Substituting the Eq. 

5(b) into Eq. 5(a), the output current can be obtained as shown in Eq. (6). 
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  The photogenerated current 𝐼𝑝ℎ and reverse saturation current 𝐼0 can be solved with Eq. (7). 
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where 𝑇𝑟 = 298.15𝐾  denotes the reference operative temperature; 𝐼𝑠𝑐  denotes the short-

circuit current; 𝐺𝑟 is the actual radiation intensity and 𝐺𝑟0 = 1000𝑊/𝑚2 is the ideal radiation 

intensity; 𝐼𝑟𝑠  is the saturation current; 𝐸𝑔 = 1.1  denotes the forbidden width length of 

semiconductor materials. B=1.2 is the scaling factor. 



15 
 

  For the practical solar-assisted EV, if a solar panel array is composed of Ns solar panels in series 

and Np panels in parallel, the actual equivalent current can be calculated by Eq. (8). 

ph d pI I I I= − −  (8a) 
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  In this study, the actual vehicle has 10 sets of solar panel arrays, and each set is composed of 

32 solar cells connected in series. The roof structure and array design of the solar-assisted EV 

are shown in Fig. 2(c). 

  The characteristic curves of solar panels under different radiation intensities and 

temperatures are shown in Fig. 2(d) and Fig. 2(e), respectively. In Fig. 2(d), with the increase 

of radiation intensity, the short-circuit current and maximum power of solar panel arrays 

increase rapidly, which manifests that the maximum power of 1200W/m2 radiation intensity is 

twice that of 400W/m2. Meanwhile, with the radiation intensity increases, the voltage at the 

maximum power point increases slightly. In Fig. 2(e), as the temperature increases, the short-

circuit maintains almost stable, but the voltage at the maximum power point decreases and the 

maximum power is also reduced accordingly. According the experimental test, when the 

temperature of the solar panel array decreases by 10℃, its power increases by 8W, accounting 

for 6%-8%.  

  Based on the above analysis, the power generation of solar panels is greatly affected by the 

radiation intensity, but less affected by the temperature (only when the temperature difference 

is larger than 10 ℃ , the power generation is affected, such a situation is rare in practice). 
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Therefore, the short-term power generation prediction needs to consider the influence of 

radiation intensity on the solar power prediction algorithm while the impact of the temperature 

could be neglected. 

2.2.3 Battery temperature rise model 

  Since the heat dissipation requirement is significant in the dynamic charging process, the 

temperature rise is modelled. When the charging current is within a reasonable range, the 

lithium battery can be regarded as a mass point with a uniform surface temperature. Therefore, 

its heat model can be expressed by Eq. (9). 
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dT
mC Q Q Q

dt
= + −  (9) 

where m denotes the mass of a single cell; 𝑄𝑆, 𝑄0, and 𝑄𝐵 are the heat of reversible reaction 

with the entropy difference ∆S, the heat loss, and the transferred heat, respectively. 𝑇𝑐𝑒𝑙𝑙 and 

𝐶𝑐𝑒𝑙𝑙  are the battery temperature and heat capacity. The 𝑄𝑆 , 𝑄0 , and 𝑄𝐵  can be further 

formulated with the temperature difference between the battery surface and environment as 

shown in Eq. (10). 
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where 𝑇𝑎𝑚𝑏 denotes the environmental temperature; A is the surface area of batteries; and h 

represents the heat transfer coefficient. Substituting Eq. (10) with Eq. (9), the battery 
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temperature can be formulated by Eq. (11). 
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2.3 Parameter identification 

  This section develops an offline improved RLS algorithm to identify battery parameters in the 

second-order RC model. The details can be found in Fig. 3. In this study, hybrid pulse power 

characteristic (HPPC) condition is applied to test batteries as depicted in Fig. 3(a). Explicitly, 

stage a-b denotes the constant current charging condition which enables the battery to operate 

in different SOC intervals. Stage b-i denotes that the battery is statically placed for 1 h, during 

which the second-order time constant 𝜏2 . is identified. Stage i-j denotes the multi-ratio 

discharging conditions, in which the improved RLS algorithm [31] is utilized to identify the 

internal resistance 𝑅0 and first-order RC time constants 𝜏1. 
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Fig. 3 Parameter identification. (a) HPPC condition; (b) Flowchart of the improved offline RLS algorithm; (c) Identified parameters of lithium batteries 

under different temperatures; (d) Identification result validation under the HPPC condition at 45 ℃. 
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  In the stage of b-i, the slightly increasing voltage is closely related with the time constant 𝜏2. 

Thus, according to Eq. (3), the voltage rise can be formulated as Eq. (12). 
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where 𝑈𝑖 denotes the terminal voltage at point i; 𝑈𝑡 represents the initial terminal voltage and 

𝑈2 denotes the polarisation voltage with time constant 𝜏2. By selecting two points in the stage 

b-i, the time constant 𝜏2 can be solved by Eq. (13). 
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  Besides, in the constant current discharging stage a-b, the charge time is up to 20min, which 

means that the polarisation capacitance 𝐶1 and 𝐶2 are relatively stable. Thus, at the point b, 

the following equation is depicted as Eq. (14). 
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  With the above formulations, the sum of three internal resistances 𝑅∑  can be solved. 

Therefore, according to the above derivations, parameters including 𝜏2 and 𝑅∑, are obtained. 
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Eq. (15). 
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where 𝑈𝑏 = 𝑈2  and the SOC at the stage of i-j is regarded constant, therefore, 𝑈𝑜𝑐 = 𝑈𝑖 . By 

discretizing Eq. (15), the differential equation is formulated as Eq. (16). 
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where parameters 𝑎1, 𝑎2, and 𝑎3 are the coefficients, constituting the parametric matrix. The 

system matrix in the RLS is defined in Eq. (17). 
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 (17) 

  The execution of RLS algorithm is thereby described as following four major steps and the 

flowchart can be found in Fig. 3(b). 

Step (1): The system matrix is defined and initialized. The system matrix including gain matrix, 

parametric update matrix and covariance matrix θ(0) = 0.001 ∗ 𝑜𝑛𝑒𝑠(5,1) , P(0) = 106𝐼5×5 

and 𝑈2(0) = 0, should be initialized. The main recursive process is defined in Eq. (18). 

( ) ( )ky k k =  (18a) 

Gain matrix   
1

T( ) ( 1) ( ) ( ) ( 1) ( )K k P k k k P k k   
−

 = − − +   (18b) 

Parametric update  T( ) ( 1) ( ) ( ) ( 1ˆ ˆ ) (ˆ )k k K k y k k k    = − + − −
 

 (18c) 

Covariance matrix    T1
( ) ( ) ( 1) ( 1)P k I K k k P k


 = − − −   (18d) 
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Step (2): Battery model parameters of 𝑅0, 𝑅1 and 𝐶1 can be solved by Eq. (19). 
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Step (3): Second-order model parameters of 𝑅2 and 𝐶2 are solved by Eq. (20). 
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 (20) 

Step (4): The polarisation voltage 𝑈2(𝑘) in the 𝜏2 stage is updated. 

2
2 2

2 2

( )
( 1) ( ) 1 ( )

T R k T
U k U k I k

 

 
+ = − + 

 
 (21) 

  In the experimental test, the excitation current and identified parameters under four 

temperature conditions (15℃ , 25℃ , 35℃  and 45℃ ) are shown in Fig. 3(c). The electrical 

parameters vary significantly in the different temperatures and different SOC intervals. 

  Besides, the HPPC test condition is applied to validate the effectiveness of the identified model 

parameters. The actual battery terminal voltage and the predictive terminal voltage with the 

estimated parameters are illustrated in Fig. 3(d). The predictive voltage can always follow the 

actual voltage change with a little deviation. Even though this error slightly increases under the 

lower SOC conditions, the actual error still behaves lower than 20mV, which implies the designed 

offline RLS method is effective for the whole parameter identification. 
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3 Maximum power prediction strategy for EVs 

  The maximum power of a solar-assisted EV benefits to explore its ultimate driving ability 

under accelerating and climbing conditions. This section develops the maximum available power 

prediction strategy. Specifically, the battery SOC is preliminarily estimated by the advanced EKF-

AH algorithm, which is formulated as one important part of the SOP derivation. Afterwards, the 

available solar energy is obtained based on the predictive maximum power point tracking (MPPT) 

algorithm. Accordingly, the maximum power prediction strategy, also named SOP prediction 

strategy, is significantly introduced.  

3.1 SOC estimation using the EKF-AH algorithm 

  Since the SOP is constrained by the battery SOC, a highly accurate SOC estimation algorithm, 

named EKF-AH algorithm, is developed. The SOC estimation approach is developed in which the 

improved EKF approach toward second-order RC model is utilized to enhance the estimation 

accuracy and the ampere hour integration approach is utilized to address the model distortion 

problem in the lower SOC intervals. To simply this article, more details about the SOC estimation 

algorithm is described in Appendix A.2. 

3.2 Available solar power prediction 

  According to the power output characteristics of solar panels, the inflection point of the P-V 

curves denotes the maximum power point. The MPPT algorithm is designed to adjust the 

conduction frequency of power devices to modulate the output voltage of solar panels 

guaranteeing the maximum power output. In this study, we adopt the adaptive fixed voltage 
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optimization to track the maximum power point. The primary principle is to preliminarily 

determine the maximum power point, and then sample the power conditions at three points. 

Through simulating the characteristic curves, the maximum power point position can be solved. 

Through the hysteresis comparison method, the above maximum power point can be modified 

by comparing the real-time power and the estimated power. Finally, the real-time maximum 

power point of the solar panel array can be obtained cyclically. The details are expressed as below. 

(1) Before connecting the loads to solar panels, open circuit voltage is measured, and the 

preliminary estimation of the maximum power point is calculated by 𝑉𝑠𝑒𝑡1 = 𝑘 × 𝑉𝑜𝑐. The MPPT 

devices regulate the power switches to set the output voltage 𝑉𝑠𝑒𝑡1 and then sample the output 

current, so that the output power of the first point can be calculated accordingly. 

(2) The second and third points are determined by adding small disturbance variables. Two 

disturbance variables 𝑉𝑠𝑒𝑡1 − ∆𝑉  and 𝑉𝑠𝑒𝑡1 + ∆𝑉  on the left and right sides of 𝑉𝑠𝑒𝑡1  are 

determined, and then the MPPT devices would track these two voltages and calculate their 

output powers as the second and third points. 

(3) The maximum power point is stimulated with the Newton interpolation method in Eq. (22). 

( ) ( ) ( )( ) ( )( )( )0 0 1 0 0 1 2 0 1, , ,N x f x f x x x x f x x x x x x x= + − + − −  (22a) 
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
 =


− −
= =

− −
 −
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 (22b) 

  Based on the P-V curve in Fig. 2. Three sample points are calculated with Eq. (22a) for the 

stimulated curves. Thus, the stimulated maximum power point is obtained by 𝑑𝑁(𝑥) 𝑑𝑥⁄ = 0. 
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Fig. 4 Predictive solar power results and the SOP prediction algorithm. (a) Original solar power results; (b) Solar power results with variant voltage 

and radiation intensity; (c) Joint SOC/SOP prediction algorithm; (d) SOP results in the discharging process; (e) SOP results in the charging process. 
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(4) The MPPT device regulates the operative voltage to the calculated maximum voltage point, 

i.e. 𝑉𝑠𝑒𝑡 = 𝑉𝑚𝑎𝑥, and the maximum power 𝑃𝑚𝑎𝑥  can be determined accordingly. 

  The original generation power using the above approach without being connected into the 

lithium battery is illustrated in Fig. 4(a), in which the MPPT can quickly track the maximum 

power and stabilise at 124W. To explore the effect of the dramatical voltage change and solar 

radiation variation on the MPPT strategy, a group of variable loads and stepped solar radiation 

intensity command are applied at 0.2s and 0.3s, respectively as depicted in Fig. 4(b). Compared 

with the original power curve in Fig. 4(a), the connection of battery pack significantly impacts 

the fluctuation of tracking power at the start stage of t=0.05s. When the loads at t=0.2s are 

applied, the battery voltage decreases dramatically from 27.5V to 22.5V. Although the MPPT can 

again optimize to maintain at the maximum power point of solar panels as much as possible, the 

output power of MPPT device has been reduced from 121.06W to 117.64W, which implies that 

the MPPT boosting efficiency has been pulled down. The experimental results show that the 

booster efficiency of MPPT device is reduced from 97.24% to 94.10% due to the dramatical 

change in the terminal voltage. When the solar radiation intensity is reduced by 200 W/m2, the 

output power of MPPT is decreased to 95W and the booster efficiency is only 91.57%. 

  The above analysis implies that the fixed voltage optimization method can track the maximum 

power point. However, the booster efficiency of MPPT would be pulled down, which would 

impact the accurate prediction of SOP state of batteries. To accurately predict the effective output 
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power of MPPT, the following modification is adopted in this study. Since the duration of the peak 

power is relatively short, the temperature change can be regarded as a constant in a single 

control period and only the radiation intensity is considered. The final predictive power selects 

the minimum predictive power within a continuous duration. Therefore, the power prediction 

correction for L sampling periods at current time k can be processed according to Eq. (24). 

max, .

1

min
L

l i

k L k k L

i

P E S+ +

=

 
=  

 
  (24) 

where 𝐸𝑘.𝑘+𝐿
𝑖   denotes the radiation intensity at timeslot i, and η  denotes the generation 

efficiency of solar panels, and S is the effective area of the solar panel. 

  Another important issue is to address the dramatical voltage drop. When the battery voltage 

is pulled down to the cut-off voltage, the generated voltage of solar panel would also be pulled 

down, and the boosting efficiency would be affected. Therefore, the predictive power of solar 

panels under the condition of the cut-off voltage of batteries can be formulated by Eq. (25). 

( )max, max, 1 2minsout l

k L k L rP P P + += −  (25) 

where 𝑃𝑚𝑎𝑥.𝑘+𝐿
𝑙  denotes the peak generation power of solar panels during the timeslots ∆t =

L × 𝑇𝑠  and 𝑃𝑟  is the current generation power. 𝜆1  represents the factor on the generation 

power of solar panels when the battery voltage drops to the cut-off voltage. 𝜆2 represents the 

booster efficiency of MPPT. According to the experimental validation, the values of 𝜆1 and 𝜆2 

are determined as 0.91 and 0.93, respectively. 

3.3 Maximum power prediction 

  The proposed available maximum power prediction mainly contains two sections: 1) SOP 
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derivation based on the SOC estimation, and 2) the correction of SOP considering solar panels. 

3.3.1 SOP derivation based on SOC estimation 

  The SOP prediction algorithm includes the terminal voltage estimation, SOC constraints, and 

maximal current constraints. To make the terminal voltage estimation more accurate, the 

second-order RC model to estimate the terminal voltage as defined by Eq. (26). 

( ), 1, 2,,L k L OC k L N k L k L i k LU U z Q U U R i+ + + + += − − −  (26) 

where 𝑧𝑘 denotes the battery SOC, which is the function of current 𝑖𝑘. Through the decoupling 

control of battery SOC and open circuit voltage, the terminal voltage at any timeslot is estimated. 

Considering the length of this paper, the derivation of the estimation of terminal voltage has been 

attached in Appendix A.3. 
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 (27) 

  The upper and lower cut-off terminal voltages is marked as 𝑈𝐿,𝑚𝑎𝑥  and 𝑈𝐿,𝑚𝑖𝑛 , and the 

corresponding maximum allowable currents in the charge and discharge processes 𝐼𝑚𝑖𝑛,𝑘+𝐿
𝑐ℎ𝑔,𝑉

 

and 𝐼𝑚𝑖𝑛,𝑘+𝐿
𝑑𝑖𝑠,𝑉  can be obtained by Eq. (28). 
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(28b) 

  The SOC constraints is to limit the overcharge or over-discharge conditions. When the SOC 

approaches to the safety threshold, the maximal charging and discharging currents are depicted 

by Eq. (29). 
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(29b) 

where 𝑖𝑚𝑖𝑛,𝑘+𝐿
𝑐ℎ𝑔,𝑍

 and 𝑖𝑚𝑎𝑥,𝑘+𝐿
𝑑𝑖𝑠,𝑍  denote the maximum charging and discharging currents with SOC 

constraints, respectively. 𝑍𝑚𝑖𝑛  and 𝑍𝑚𝑎𝑥   represent the lower and upper boundaries of SOC 

values, respectively. Considering that when the SOC is lower than 0.1, the battery model is not 

accurate, the value of 𝑍𝑚𝑖𝑛 and 𝑍𝑚𝑎𝑥  are determined as 0.1 and 1, respectively. Honestly, this 

value can be adjusted according to the practical application. 

  In summary, the peak current can be determined by Eq. (30), among which constraints of Eq. 

(28) and Eq. (29) is utilized. 
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where 𝑖𝑚𝑖𝑛  and 𝑖𝑚𝑎𝑥  represent the minimum and maximum charging and discharging 

designed limits. 𝑖𝑚𝑖𝑛
𝑐ℎ𝑔

 and 𝑖𝑚𝑎𝑥
𝑑𝑖𝑠  are the maximum continuous charging and discharging currents, 

respectively. Accordingly, the continuous peak power can be expressed by Eq. (31) with the 

terminal voltages and allowed peak currents. 
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(31b) 

where 𝑃𝑚𝑖𝑛
𝑐ℎ𝑔

 and 𝑃𝑚𝑎𝑥
𝑑𝑖𝑠  denote the maximum charging and discharging power. Substituting Eq. 

(27) into Eq. (31), the real-time peak power can be predicted by Eq. (32). 
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(32b) 

  According to the above derivations, the illustration of SOP prediction is depicted in Fig. 4(c). 

The details are described by six major steps as follows.  

Step (1): The parameters regarding the battery voltages, currents and the temperature are 

initialized and used in the look-up tables. 
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Step (2): Update the model deviation time. 

Step (3): Calculate the Kalman gain in the EKF algorithm. 

Step (4): Based on the priori terminal voltage, calculate its posterior value with Kalman gain and 

then get the SOC and polarisation voltage Up. 

Step (5): Calculate the peak currents constrained by single cell voltage and SOC. 

Step (6): Calculate the peak power with Eq. (31) and finish the joint SOP prediction and SOC 

estimation. 

3.3.2 SOP Correction based on the generation power of solar panels 

  Theoretically, the power battery pack relates to the solar panel array in parallel. The peak 

current of power battery pack should be the integration of all parallel cell units by Eq. (33). 
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where 𝑃𝑚𝑖𝑛,𝑚𝑜𝑑
𝑐ℎ𝑔

 and 𝑃𝑚𝑎𝑥,𝑚𝑜𝑑
𝑑𝑖𝑠  represent the peak charging and discharging power of battery 

pack, respectively. 𝑛𝑝  denotes the number of parallel connections of cells. According to the 

description in Section 3.1, the total peak power of battery pack can be expressed by Eq. (34). 

min,mod

max,mod

max,

max,

 +

+

sout

bat k L

dis sout

ba

chg c

t k

h

is

L

g

d

P P

P P

P

P

+

+

 =


=

 
(34a) 

(34b) 

where the peak charging power of battery pack 𝑃𝑚𝑖𝑛,𝑚𝑜𝑑
𝑐ℎ𝑔

 behaves negative. 𝑃𝑏𝑎𝑡
𝑐ℎ𝑔

 denotes the 

allowed maximum power when the braking energy is recovered, which is the sum of maximum 

solar panel array power 𝑃𝑚𝑎𝑥,𝑘+𝐿
𝑠𝑜𝑢𝑡  and the allowed peak charging power 𝑃𝑚𝑖𝑛,𝑚𝑜𝑑

𝑐ℎ𝑔
. 
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  The experimental results of SOP prediction with multiple parameters are shown in Fig. 4(d) 

and (e). As illustrated in Fig. 4(d), the discharge of batteries enables the SOC decreases and 

thereby the available peak charging power is increased. However, at time 7885-9882s, the 

predictive current exceeds the designed value; therefore, the predictive peak power remains 

constant. Then, the terminal voltage constraints start to work and enables the predictive current 

decrease, resulting in the decrease of peak discharge power. The predictive discharging power is 

illustrated in Fig. 4(e). At the start stage of 0-6408s, the predictive charge currents keep stable 

and after then, the voltage constrains the peak discharge power. When the SOC approaches to 

0.1, the predictive current with the SOC constraints drops dramatically, which enables the 

discharge power to quickly decrease to avoid the over-discharge conditions. 

4 Optimal charging strategy 

  Another significant role of the proposed BMS is to optimize the charging process. Since the 

lessening of charging time benefits to the labour cost and charging efficiency, the optimization of 

charging time is selected as one important objective. Nevertheless, the pursuit of lessening 

charging time will inevitably cause a large charging current, which would incur the 

uncontrollable temperature rise, affecting the charging performance and damaging the lithium 

battery. Thus, the temperature rise is also regarded as the second objective. Generally, this 

section aims at optimizing the charging current in the multi-stage charging strategy to reduce 

the charging time in the premise of maintaining the controllable temperature rise. Concretely, 

the designed charging strategy divides different charging intervals according to the different SOC 

values. Corresponding charging current in each interval is optimized by the adaptive GA 
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approach.  

  Two sub-objectives of the temperature rise and charging time are considered in this strategy 

as defined in Eq. (35a) subject to a series of constraints of Eq. (35b). Thus, the overall 

optimization objective is the weighted-sum of the two sub-objectives.  
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where α  and β  denote the weighted factors corresponding to the charging time and 

temperature rise; they satisfy α + β = 1. t denotes the charging duration and ∆T denotes the 

temperature rise, which has been modelled in Section 2.3. 𝑈𝑚𝑎𝑥 = 4.2𝑉 is the upper cut-off 

voltage of batteries; 𝐼𝑚𝑎𝑥 = 1𝐶  denotes the allowed peak current; 𝑇𝑚𝑎𝑥 = 45℃  denotes the 

maximum allowed temperature; 𝑆𝑂𝐶𝑓𝑖𝑛𝑎𝑙 = 90%  is the final charging SOC. In this study, the 

allowed charging SOC range in the optimization is 0-90% and each SOC interval adopts 10%. 

  Since the charging time and temperature rise during each charging interval vary with the 

optimization processing, the weighting factor of α  and β  should be adaptively regulated. In 

this study, the ultimate current value (UCV) is selected as the criteria to allocate the weighted 

factors since the UCV can represent the internal characteristics of batteries. The UCV can be 

calculated with the maximum terminal voltage as expressed by Eq. (36). 
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where 𝑈𝑂𝐶(𝑆𝑂𝐶) , 𝑈1(𝑆𝑂𝐶) , 𝑈2(𝑆𝑂𝐶)  and R(𝑆𝑂𝐶)  represent the open-circuit voltage, 

polarization voltage 1, polarization voltage 2, and the battery internal resistance. Considering 

the parametric model in Section 2, the UCV in each SOC interval can be obtained. The UCV can 

reflect the charging time. The UCV can be changed proportionally to characterize the value of α 

in the corresponding SOC intervals. Accordingly, the final weighting factor has been determined 

by Eq. (37). 
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  After obtaining the objective and adaptive weighting factors, the charging current in each 

interval can be optimized by using GA[32]. Briefly, the total GA based charging algorithm is 

depicted as the following major steps. 

Step (1): Determine the objectives and constraints with Eq. (35); 

Step (2): Determine the adaptive weighting factors with Eq. (37); 

Step (3): Code the charging current ratio with the binary coding. The charging current ratio is 

limited within 0.2-1.0C and its accuracy selects 0.001C. In this way, the o.1C is regarded as a 

population, in which 100 individuals are included. 

Step (4): Design the fitness function. To uniformly measure the both objectives, the 

normalization of two objectives is executed as defined by Eq. (38). 
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where 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 are the minimum and maximum charging time; ∆𝑇𝑚𝑖𝑛 and ∆𝑇𝑚𝑎𝑥 are 

the minimum and maximum temperature rise, which corresponds to the temperature rise with 

1.0C and 0.2C charging currents. Therefore, the fitness function is defined by Eq. (39). 
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  The boundary of fitness function ranges between 0 and 2. 𝐹𝑜𝑏𝑗𝑚𝑎𝑥
  and 𝐹𝑜𝑏𝑗𝑚𝑖𝑛

  are the 

maximum and minimum values of the objective. 

Step (5): Genetic operation. The genetic operation includes three functions, such as selection, 

crossover and mutation. In this study, the random selection is applied and the multipoint 

crossover algorithm is utilized. The mutation is to generate a new individual to avoid the local 

optima. 

So far, the desired charging current in the multi-stage conditions can be obtained with the 

proposed charging strategy. In the practical charging process, the charger of electrical grid and 

solar panels are coordinated to complete the charging task. During every control period, the total 

desired charging current can be calculated. With the sampled current provided by the solar 

panels, remaining charging current is provided by the grid charger.  

5 Results and discussions 

  The proposed BMS was comprehensively validated using the practical experimental platform, 
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which combined the photovoltaic cells with the lithium multi-pack battery in a solar-assisted EV 

as shown in Fig. 5. The corresponding prediction and optimization strategies are programmed 

in the BMS control unit. On this basis, the maximum power prediction strategy and the optimal 

charging strategy are respectively evaluated and validated. 
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Fig. 5 Experimental platform of the solar-assisted EV. (a) Framework of the BMS; (b) The sub-system controllers; (c) The solar-assisted EV; (d) The signal 

acquisition system. 
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5.1 Experimental setup 

  In the experiment, the BMS adopts the dual-loop communication network in which two sets 

of CAN networks are used for the communication between the master BMS controller and slaver 

controllers, as shown in Fig. 5(a) and (b). Explicitly, the external CAN network is responsible for 

the BMS communication with the battery charger, electrical signal sample, and power up-down 

management. The internal CAN network enables the BMS to communicate with the battery ECU. 

As for the physical structure, a solar-assisted EV is equipped with the signal acquisition system 

as shown in Fig. 5(c) and Fig. 5(d). Both the lithium battery and the solar panels provide 

electricity to the driving motors of the EV. The battery pack and solar panels are connected in 

parallel to provide the electricity to the variable resistant load. The voltage and current signals 

of solar panels, output current of MPPT, battery voltage, are sampled with the electrical sensors, 

which are transferred to digital signals for the algorithm utilization. The available solar energy 

is collected with the light transmitter devices and the radiation intensity is thereby determined 

and utilized in the MPPT algorithm. Accordingly, all sample information is monitored by the PC 

master with CAN networks.  

5.2 Validation of the maximum power prediction strategy 

  To test the adaptability of solar panels and MPPT system, a group of variant loads is set up as 

presented in Table 2. A group of loads operates for 400s with the separative 10s standing time 

(Step 3), during which the power battery is charged with solar panels. Besides, the hybrid 

discharging mode with different discharge power is available in other durations, which enlarges 
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the power output of multi-pack battery and amplify the variation trend of the battery SOC.  

  The power loads, solar generation power, and battery power are presented in Fig. 6. The open-

circuit voltage is set as 24.4 V and the entire test condition includes 17 single cycles (one cycle is 

displayed in Table 2). From the view of Fig. 6(b), the power of solar panels is stable almost 

without fluctuations when the SOC is larger than the allowance value 0.1, which manifests that 

the generation power of solar panels is not affected by the variant loads. After then, the generated 

power shows a larger fluctuation, which is caused by the variant battery voltage with lower SOC 

value less than 0.1. Overall, the average generated power of panels is 91.2 W and the average 

boosting efficiency of MPPT device is up to 94.29%. The converted energy is 602.7 kJ, and the 

battery output energy is 231.2 kJ. The battery pack provides 27.8% of total consumed energy 

while the solar panels fulfil 72.2% energy demands. 

  To validate the effectiveness of the proposed predictive generation power algorithm of solar 

panels, we make a comparison with the actual measured generation power as presented in Fig. 

6. The predictive generated power can well follow the change of the actual generated power and 

the predictive error is lower than 2W, which is profited from that the proposed predictive 

algorithm is not significantly affected by the variant battery voltage.  

Table 2 Variable load description of one cycle. 

Step Power (W) Time (s) 

1 110 120 

2 120 60 

3 0 10 

4 120 100 

5 145 100 

6 0 10 
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  The change of SOC value and the resulting SOP value are illustrated in Fig. 7. From the Fig. 

7(a), the initial SOC is sampled as 0.222, and after 17 operating cycles, the final SOC is lower than 

0.017, which indicates that the battery pack is approaching to the full discharge. The peak 

generated power of solar panels shown in Fig. 7(b) is lower than the predictive generated power 

due to the impact of the peak voltage drop. The predictive peak charging power of the battery 

pack is presented in Fig. 7(c) and (d). Considering that excessive peak currents in the lower 

battery state would impair the battery pack, when the battery SOC decreases less than 0.1, the 

peak operating power would be constrained as zero in the SOP predictive algorithm. When the 

battery SOC value varies between 0.222 and 0.1, the predictive power in the SOP algorithm tends 

Fig. 6 SOP results of the battery system. (a) Measured load; (b) solar-generated power; (c) battery power; (d) 

comparison of the predictive and generated powers; (e) predictive power error between predictive and generated 

powers. 
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to decrease, which results in the increase of peak power for the battery pack and the solar panels 

as shown in Fig. 7(e) and (f), respectively. After comprehensively considering the maximal 

power, the increasing peak power of battery pack would promote the discharging limit, 

extending the travelling distance of the traditional EVs. 

5.3 Validation of the optimal charging strategy 

  The accuracy and adaptability of the designed multi-stage constant current charging 

algorithm are validated as well. Two different charging situations of charging ratios and initial 

SOC values are particularly studied. Meanwhile, the traditional single constant current charging 

mode is utilized as a benchmark for comparison purpose. 

5.3.1 Impact of charging ratios on the charging performance 

  Three different charging ratios, i.e. 0.3C, 0.5C and 0.8C, are setup and the charging 

Fig. 7 The predictive results of the battery power and the total BMS. 
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performance is listed in Table 3. It is seen that the designed multi-stage constant current 

charging mode in the 0.3C charging ratio condition would decrease the total charging time by 

1062s and reduce the temperature rise by 1.39℃, which indicates that the charging performance 

is improved. Furthermore, the charging time in the 0.5C and 0.8C conditions is improved by 7.14% 

and 11.21%, respectively. The maximum temperature rises in the 0.5C and 0.8C conditions have 

been improved by more than 35%, which implies that the temperature rise has been effectively 

controlled by the designed charging strategy. With the increase of charging ratios from 0.3C to 

0.8C, the charging time is reduced but the temperature rise has been effectively optimized. This 

is because the designed charging strategy can dynamically regulate the charging currents and 

further constrain the battery polarisation voltage. The different charging current in the adjacent 

SOC regions can well optimize the heat produced by the battery properly. Compared with the 

benchmark, the proposed multi-stage constant current charging mode significantly reduces the 

energy depletion and further protect the battery pack. 

5.3.2 Impact of initial SOC values on charging performance 

  To validate the adaptability of charging strategy, three different initial SOC values, 10%, 40%, 

and 60%, are adopted to simulate the random charging behaviours. In this test, the charging ratio 

Table 3 Charging performance evaluation of different charging ratios. 

Charging 

ratios 

Traditional constant current 

mode 

Designed multi-stage constant 

current mode 
Optimization 

Charging time 
Temperature 

rise 
Charging time 

Temperature 

rise 

Charging 

time 

Temperature 

rise 

0.3C 11693s 3.94℃ 10631s 2.55℃ 9.08% 35.27% 

0.5C 7292s 7.51℃ 6717s 4.45℃ 7.14% 40.75% 

0.8C 4568s 9.76℃ 4056s 6.05℃ 11.21% 38.01% 
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0.5C is employed. The preparatory works starts from charging the battery to the targeted initial 

SOC values with 10%, 40% and 60%, respectively. Then, all pack batteries are placed for 1h to 

stabilize the battery temperature. Then, the battery is charged to 90% of SOC values with the 

designed charging strategy, and the results regarding the electrical parameters and temperature 

rise are depicted in Fig. 8 and Table 4, respectively. From Fig. 8(a), the charging ratio can be 

adaptively regulated in adjacent SOC intervals, and the final battery voltage approaches to about 

4.2V, which indicates that the designed multi-stage charging mode can effectively handle the 

charging task in the premise of the controllable temperature rise. In addition, from the charging 

curves with different initial SOC values, the charging current can be adaptively adjusted, which 

 

 

Fig. 8 Optimal charging results under different initial SOC values. (a) Initial SOC=10%; (b) initial SOC=40%; 

(c) initial SOC=60%. 
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also implies that the designed charging strategy is robust to different initial battery states.  

  Table 4 quantifies the advantages of the designed optimal charging strategy. Compared with 

the benchmark, the designed optimal multi-stage charging strategy achieves less charging time 

by 6.62%~9.70% and the maximal temperature rise can be reduced by over 40%. With the 

increase of initial SOC, the total charging time and temperature rise have been significantly 

improved. According to these results, the proposed charging strategy can charge the battery 

much faster with lower temperature rise than the traditional strategy, implying less energy loss. 

6 The way forward 

1) The charging mode selection should be further studied with the application of photovoltaic 

cells. Constant voltage charging mode has also been studied by scholars from the perspective of 

higher charging efficiency [22, 35] However, the electromotive force of the batteries is lower in 

the initial charging stage, which would result in the larger charging current and impair the 

battery health. Therefore, a significant direction lies in the charging mode selection aiming at 

collaborative research of higher charging efficiency and battery health. 

2) The decarbonization of transport sector requires more studies towards green energy. 

Therefore, the future research direction may focus on the multi-source energy application such 

Table 4 Charging performance evaluation of different initial SOC values. 

Initial 

SOC 

Traditional charging method Proposed charging method Optimization 

Charging time 
Temperature 

rise 
Charging time 

Temperature 

rise 

Charging 

time 

Temperature 

rise 

10% 6613s 7.48℃ 6147s 4.24℃ 7.04% 43.32% 

40% 4304s 6.21℃ 4019s 3.48℃ 6.62% 43.96% 

60% 3218s 5.68℃ 2906s 3.35℃ 9.70% 41.02% 
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as solar energy, fuel cells, and hydrogen hybrid engines. Besides, the collaborative charging 

control strategy between these renewable energy requires more attention. 

7 Conclusion 

  The solar-assisted EV is expected to extend the EVs driving mileage in a sustainable manner. 

To address the challenge of coordinating vehicle-roof solar panels and the lithium battery system, 

a customized BMS for the solar-assisted EV is proposed and validated in this study. This BMS 

mainly consists of three modules. Firstly, the second-order RC model and solar panel conversion 

model are established. On this basis, the EKF-AH algorithm is designed to estimate the SOC in the 

whole intervals and the maximum available power for the solar-assisted EV predicted 

considering the generation power of solar panels. Accordingly, the last module of multi-stage 

constant current charging strategy is developed based on the GA method, in which the 

temperature rise and charging time are both optimized. The whole BMS is tested by the hardware 

experimental test, leading to the following findings. 

(1) The proposed parameter identification algorithm based on the improved RLS method 

couples the large time constant and internal resistance as the constraint factors to address the 

problem of differential constant of RC links. Results indicates that the estimated terminal voltage 

error is less than 20mV under the HPPC condition. 

(2) The issue of inaccurate estimation of SOC in the low SOC intervals can be addressed by the 

proposed EKF-AH algorithm; the joint estimation method can reduce the SOC estimation error 

within 0.01 under the constant 0.3C discharging condition. 

(3) The hardware experiment reveals that the radiation intensity has a higher impact on the 
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generation power than the temperature. The average boosting efficiency of solar panels is up to 

96.29% and the predictive generation power error is less than 1 %. 

(4) The proposed battery temperature rise model and thermal dynamics model turn out effective. 

Among which the developed multi-stage constant charging optimization algorithm achieve less 

charging time and lower maximal battery temperature than the traditional single-stage constant 

charging algorithm.  

  In the future, the proposed BMS modelling framework can be further extended to combine 

with the vehicle driving cycles. Meanwhile, the SOH in the BMS should be further studied to 

optimize the battery aging performance. 
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Appendix 

  This appendix describes the offline battery experiment in Appendix A.1, the SOC estimation 

algorithm in Appendix A.2 and the formulation derivation of SOP constraints in Appendix A.3.  
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A.1 Offline battery experiment 

  The battery characteristics play a significant role in the parameter identification and algorithm 

design. From this point of view, we establish a set of the experimental platforms to test the 

battery characteristics as shown in Fig. A1 (All figures in the Appendix part are illustrated in 

Supplement Documents). The battery test platform utilizes the ITS5300 test system (ITECH 

corporation) to execute the constant current charging and discharging test, constant power 

discharging test and constant resistance discharging test, in which the IT6832 and IT8511A+ are 

utilized to provide the programmable DC power supply and loads. The K-type thermocouple is 

pasted on the surface of the battery to sample its temperature during the charging and 

discharging process. 

  Fig. A2 depicts the battery capacity illustration with the discharging ratio and the temperature. 

With the increase of discharge ratio, the battery capacity is reduced; besides, the temperature 

also makes an effect on the actual battery capacity. The temperature is located within 25℃-40℃, 

the capacity with 1.5C discharging ratio is larger than 3000mAh, which implies that the battery 

has the good discharging performance. 

  Fig. A3 describes the temperature rise in the charge and discharge operations, respectively. 

When the discharge ratio is lower than 0.5C, the temperature rise is well controlled within 10℃ 

regardless of the initial surface temperature. When the basic temperature is higher than 45℃, 

the temperature rise rate is higher, and the temperature rise is up to 33.7℃ when the discharge 

ratio is 1.5C. Similarly, the temperature rise in the charge conditions presents a similar tendency. 

When the initial temperature is higher than 45℃, there is a risk with losing control. 
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  Fig. A4 describes the open-circuit voltage (OCV) curves with the different SOC values and 

temperatures. The higher temperature denotes the larger open-circuit voltage range. Taking the 

average value of the charge and discharge OCV corresponding to different SOC intervals at each 

temperature point, the data (see Table A1) obtained can be used to fit the empirical formula of 

the OCV.  

Table A1 The OCV parameters under different temperatures and SOC values. 

Temperature 0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

15℃ 3.323 3.437 3.531 3.582 3.630 3.695 3.798 3.873 3.945 4.041 4.151 

25℃ 3.292 3.399 3.518 3.579 3.621 3.689 3.800 3.884 3.969 4.071 4.174 

35℃ 3.199 3.373 3.501 3.567 3.615 3.672 3.785 3.863 3.947 4.054 4.153 

45℃ 3.108 3.352 3.476 3.561 3.613 3.673 3.778 3.862 3.943 4.051 4.176 

  The final OCV-SOC curve is illustrated in Fig. A5. When SOC is larger than 0.2, the OCV is almost 

similar; however, when SOC is lower than 0.2, the OCV significantly varies with temperatures. In 

this study, OCV values are fitted with eighth order expression as expressed in Eq. (A1) and the 

coefficients are listed in Table A2. The mean absolute error is 0.0027 and the root mean square 

error is 0.004. 

8 7 6 5 4
8 7 6 5 4

3 2
3 2 1 0

( ) + +f OCV k SOC k SOC k SOC k SOC k SOC

k SOC k SOC k SOC k

= + +

+ + +
 (A1) 

where 𝑘1-𝑘8 is the fitting factors. 

Table A2 Fitting factor definition with the different temperatures. 

Coefficients 15℃ 25℃ 35℃ 45℃ 
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k8 -128.1850 -109.2575 -205.3310 -341.2176 

k7 432.4414 332.8634 732.2135 1332.8911 

k6 -543.6812 -326.8974 -1014.8166 -2108.5956 

k5 297.1311 44.4201 679.1413 1736.9305 

k4 -49.5682 119.3213 -218.9950 -802.1044 

k3 -11.0741 -74.6393 30.3223 212.7218 

k2 2.7655 14.8656 -3.5295 -33.9058 

k1 0.9986 0.2056 1.9490 4.3480 

k0 3.3230 3.2920 3.1990 3.1080 

MAE 0.0016 0.0018 0.0027 0.0018 

RMSE 0.0024 0.0027 0.004 0.0027 

A.2 SOC estimation strategy 

  How to accurately estimate the SOC is vital for the vehicle operation. However, in practice, a 

larger estimation error often exists when the battery SOC is lower than 10% especially for the 

second-order RC battery model. The reason is that the battery model may be distorted in such a 

case [33]. To address this problem, an accurate estimation algorithm is proposed by combining 

the EKF and AH algorithms. 

  According to Eq. (1), U1, U2 and SOC are selected as state variables. The discrete state-space 

equation can be expressed by Eq. (A2). 
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where 𝑤1, 𝑤2, and 𝑤3 are system noises, which are disturbance variables. The system output 

is expressed by Eq. (A3). 
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where 𝐶𝑘 =
∂U

∂𝑥𝑘
= [

∂U

∂𝑈1
 

∂U

∂𝑈2
 

∂U

∂SOC
] = [−1 − 1 

∂U𝑜𝑐

∂SOC
]. The open-circuit voltage 𝑈𝑜𝑐 is the eighth-

order polynomial approximation as expressed in Eq. (A1), and 
∂U

∂SOC
 can be solved by Eq. (A4). 
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where z denotes the SOC and coefficients 𝑎1-𝑎8 can be determined by looking up the Table A2. 

  With Eq. (A2) and Eq. (A3), the EKF algorithm can be applied to estimate the SOC value in real 

time. The details of EKF algorithm can refer to [34]. 

  Although the EKF exhibits a good estimation performance when the SOC value is larger than 

20%, the accuracy would be impaired under the condition of lower SOC. Therefore, this study 

introduces the AH algorithm to correct the SOC estimation for avoiding the over-discharge 

problem under lower SOC conditions. The AH method adopts the mathematical expression of Eq. 

(A5). 

( )
00

0

( )d
( ) t

t

I t t
SOC t SOC t

C


= −   (A5) 

  The joint estimation EKF-AH algorithm is described below. Assuming that the estimated SOC 

values in EKF method and AH are marked as 𝑆𝑂𝐶1 and 𝑆𝑂𝐶2, the final SOC estimation can be 
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expressed as their weighted-sum as derived by Eq. (A6). 

1 2( ) ( ) ( ) [1 ( )] ( )SOC k K k SOC k K k SOC k= + −  (A6) 

where K denotes the weighted coefficient of EKF algorithm while 1-K denotes the weighted 

coefficient of AH algorithm. When the SOC is larger than 20%, the EKF algorithm can guarantee 

the higher accuracy; therefore K = 1 is selected. When the SOC value locates within range [0.1, 

0.2], the ramped weighted coefficient is determined linearly. Other assumption of K = 0 occurs 

in the case of SOC < 10%. In summary, the allocation of weighted coefficient can be depicted by 

Eq. (A7). 

1

1 1

1

1 ( ) 0.2

( ) 10 ( ) 1  0.1 ( ) 0.2

0 ( ) 0.1

SOC k

K k SOC k SOC k

SOC k




= −  
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 (A7) 

  We performed the experimental charging test under conditions of 0.3C charging ratio and DST 

test. The estimated results are illustrated in Fig. A6(a)-(d). When the SOC is larger than 0.2, the 

EKF algorithm and joint estimated algorithm can both observe the actual SOC values. However, 

when the SOC decreases to be lower than 0.1, the EKF algorithm presents a larger estimation 

error while the designed joint estimation EKF-AH algorithm still shows high estimation 

performance.  

  To validate the robustness of the EKF-AH algorithm, the different initial SOC values are applied. 

A series of initial SOC errors ranging from 75% to 100% are set, and the estimation results and 

estimated error are expressed in Fig. A6(e)-(f). Explicitly, the estimation algorithm enables the 

estimation results to approach the actual values in despite of different initial SOC values. Table 

A3 records the convergence of the EKF-AH algorithm under different initial SOC errors. The time 
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consumed when the explicit SOC error drops to 3%, 2.5%, and 2% for the first time is listed. 

  In the case of the most severe deviation of 75%, the initial error is as high as 23%. After 400s, 

this error has dropped to less than 3%, and after 610s, this error has been less than 2%, 

indicating that the designed EKF-AH algorithm can properly adapt to different SOC initializations. 

A.3 Model voltage constraints in the SOP prediction 

  The model voltage constraint is a part of SOP prediction strategy. Assuming that the initial 

operation timeslot is 𝑡𝑘 and 𝑡𝑘+𝐿 denotes the timeslot after L samples, the terminal voltage 

model in second-order RC model is expressed by Eq. (A8). 

( ), 1, 2,,L k L OC k L N k L k L i k LU U z Q U U R i+ + + + += − − −  (A8) 

  Assuming that the battery excitation maintains constant within the continuous sample 𝑡𝑘 -

𝑡𝑘+𝐿, 𝑢𝑘+𝐿 = 𝑢𝑘; the battery model is transferred as shown in Eq. (A9). 

1 1k L k L k L k L k L

k L k L k L k L

x A x B u

y C x D

+ + + − + + −

+ + + +

= +


= +
 (A9) 

  Since the electrical parameters in the battery varies very slowly, therefore the battery 

parameters during the peak power prediction period is regarded as constant by Eq. (A10). 

Table A3 Convergence of EKF-AH algorithm under different initial SOC values. 

Initial SOC  Initial error Error reduced less 

than 3% 

Error reduced less 

than 2.5% 

Error reduced less than 

2% 

95% 3% 1s 3s 5s 

90% 8% 35s 48s 71s 

85% 13% 244s 255s 475s 

80% 18% 370s 523s 599s 

75% 23% 400s 530s 610s 
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  Considering the Eq. (6), the polarisation voltage during the peak power prediction period is 

formulated as Eq. (A11). 

1 1 1

2 2 2

, 1, 2,

1

1

1, , 1 0

1

1

2, , 2 0

1 Σ

1 Σ

S S S

S S S

P k L k L k L

L L j
T T T

L

k L k j

L L j
T T T

L

k L k j

U U U

e U i R e e

e U i R e e

  

  

+ + +

− −
− − −

−

=

− −
− − −

−

=

= +

     
= + −     
     
     

     
+ + −     
     
     

 
(A11) 

  Decoupling the OCV and currents with first-order Taylor expansion, the following equation of 

Eq. (A12) is depicted. 
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  Neglecting the higher order small quantities, the OCV formulation is derived as Eq. (A13). 
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  Substituting Eq. (A11) and Eq. (A13) into Eq. (A8), the terminal voltage can be estimated by 

Eq. (A14). 
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 (A14) 

  Letting UL,max and UL,min denote the upper and lower cut-off voltages, the maximum charging 

and discharging currents would exist when the terminal voltage approaches to UL,max or UL,min. 
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Therefore, the maximum charging and discharging currents 𝐼𝑚𝑖𝑛,𝑘+𝐿
𝑐ℎ𝑔,𝑉

 , 𝐼𝑚𝑎𝑥,𝑘+𝐿
𝑑𝑖𝑠,𝑉   can be 

formulated as Eq. (A15). 
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