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ABSTRACT 

Purpose of review  

The clinical outcomes from COVID-19 in monogenic causes of predominant antibody deficiency have 

pivotal implications for our understanding of the antiviral contribution of humoral immunity to 

protection from severe disease, persistent infection, and vaccine responses. This has wider implications 

in secondary antibody deficiency. This review summarizes outcomes from COVID-19 infection in X-

linked agammaglobulinemia (XLA) due to genetic defects in Bruton’s tyrosine kinase (BTK) and 

therapeutic inhibition of BTK alongside other B-cell ablative agents.  

Recent findings  

We summarise outcomes for 28 XLA patients with confirmed SARS-CoV-2 infection, with a crude 

mortality rate of 4%. Mean duration of SARS-CoV-2 detection was 38.3 days (95% CI: 20.3 to 56.2 

days), consistent with the protracted infection course observed in secondary antibody-deficient 

populations. Individualised approaches have included convalescent plasma and monoclonal antibody 

therapy. Early experience with mRNA vaccinations suggests individuals with XLA can mount a viral-

specific T-cell response, however the clinical significance remains uncertain. 

Summary  

XLA patients remain susceptible to severe disease or death. Persistent infection is likely to favour the 

emergence of novel viral variants. COVID-19 infection in antibody-deficient groups due to genetic, 

therapeutic or disease therefore warrants prompt recognition and specific interventions for both patient 

and societal benefit.   



Introduction 

Since its emergence in 2019, the novel pandemic coronavirus (SARS-CoV-2) causing COVID-19 has 

placed enormous pressure on health-care systems worldwide. Individuals with primary  

immunodeficiency (PID) appear at particularly elevated risk of mortality  (1,2). The diagnosis of PID 

encompasses a heterogenous patient group however, with over 430 distinct monogenic disorders 

recognised to date, accompanied by a spectrum of immunological and clinical phenotypes (3). Analysis 

of young individuals hospitalised with COVID-19 has revealed inborn- and acquired- dysregulation of 

the innate type I interferon signalling pathway is highly enriched within those with risk of severe disease 

(4,5). However less is known about the impact of monogenic defects affecting other immune 

compartments.  

XLA is a congenital antibody deficiency caused by mutations in Bruton’s Tyrosine Kinase (BTK).  

Treatment consists of lifelong immunoglobulin replacement therapy (IgRT).  It should be noted this 

treatment does not replace IgA or IgM, nor can current therapies compensate for the other lost roles of 

BTK outside of B-cell development.  These limitations in therapy are being increasingly recognised, 

particularly in relation to ongoing risk of recurrent respiratory tract infections and the frequent 

development of end organ damage such as bronchiectasis. 

Initial experience during the pandemic suggested that individuals with congenital forms of 

agammaglobulinaemia appeared to experience only asymptomatic or milder disease, relative to those 

with common variable immunodeficiency (CVID), but considered only 2 congenital 

agammaglobulinemia cases and 7 patients overall (6). We and others have recently described the heavy 

burden associated with persistent and symptomatic respiratory and gastro-intestinal tract infections in 

individuals with both XLA and CVID (7–10), suggesting a re-evaluation of  this assessment as more 

reports became available. Here, we conduct a rapid review of the peer-reviewed and pre-print literature 

for the outcomes from COVID-19 in cases of congenital agammaglobulinaemia in relation to disease 

severity and persistence, and consider biological and epidemiological factors which may contribute to 

these findings. PubMed, MedRxiv, Medline and EMBASE were interrogated for articles published until 

June 30th 2021 with the search terms; “COVID-19”, “SARS-CoV-2”, “XLA”, 

“Agammaglobulinaemia”, “BTK” and “Bruton”. Finally, given continued occurrence of new viral 

variants with enhanced transmissibility, we assess the evidence for T-cell responses to vaccination in 

this patient group. Together, the findings emphasise the unique balance between pathogen clearance 

and immunopathology with specific immunological defects, and highlight a need for greater focus on 

individualised approaches to protect and treat immunocompromised patients.  

  



Viral infections in XLA 

Whilst the predisposition to bacterial infection is well recognised in XLA there is in addition both 

consistent historical evidence of viral susceptibility before and after the advent of IgRT able to maintain 

stable levels of IgG well into the normal range. This includes enteroviral infection leading to chronic 

and potentially fatal enteroviral infections (chronic meningoencephalitis in agammaglobulinaemia 

(CEMA)), from Echovirus type 11 and Coxsackievirus B5 (11,12).  The exact mechanism underlying 

this susceptibility in XLA is unknown, although it has been suggested the loss of BTK in TLR signalling 

may play a role (13). Severe herpesvirus infections are described prior to optimal IgRT and vaccine-

associated paralytic poliomyelitis is reported (14). Live vaccinations are therefore contraindicated in 

XLA. Respiratory viruses occur more frequently in antibody deficiency and are prolonged with 

rhinoviral persistence described for 4 months in XLA (10). Chronic type 2 norovirus related gut failure 

necessitating parenteral nutrition and ultimately HSCT to cure the infection and the antibody deficiency 

has been recently reported (8). Taken together the findings suggest an important role for antibody in 

viral defence with the caveat regarding the other potential functions of BTK. 

 

  



A role for therapeutic antibodies and BTK inhibition in COVID-19 infection?   

Antibody responses are active in the early immune response to COVID-19, as demonstrated by 

detectable SARS-CoV-2 specific antibody responses within the first days to weeks of infection (15). 

Neutralising antibodies to viral spike protein are an important correlate of protective immunity 

following vaccination (16). Studies of antibody therapy in COVID-19 support the importance of early 

intervention for convalescent plasma (17), and whilst  initial results from the 5795 patients allocated to 

convalescent plasma within the RECOVERY trial suggested this to be ineffective, subsequent 

reanalysis strongly suggests benefit in sero-negative individuals  (18).  In addition, 2 monoclonal 

antibodies targeting the receptor-binding domain of the SARS-CoV-2 spike protein reduce viral load 

(19), and offer clear benefit in reducing 28-day inpatient mortality amongst hospitalised sero-negative 

adults with COVID-19 (20). Importantly, this benefit was not seen when administered to patients with 

antibodies to SARS-CoV-2 (20). The results support a dose dependent reduction in viral load with 

clinical benefit only when given early and also benefit in seronegative over seropositive individuals 

(18).  

B-cell aplasia and pan-hypogammaglobulinaemia are hallmarks of X-linked and autosomal recessive 

antibody deficiency (3) which mean that these patients will neither mount an antibody response to 

COVID-19 and nor are they likely to have anti-interferon antibodies - in contrast to autoimmune 

polyglandular syndrome type 1 (APS-1), a rare autoimmune disease that results from autosomal 

recessive mutations of the autoimmune regulatory (AIRE) gene. Instances of severe COVID-19 in 

individuals with APS-1 coinciding with pre-existing neutralising antibodies type I interferons 

stimulated the search and discovery of similar auto-antibodies in up to 10% of individuals with severe 

COVID-19 pneumonia (5). 

As noted in Figure 1, BTK has wide ranging roles beyond B-cell development, and is expressed across 

haematopoietic lineages apart from T-cells, where it participates in Toll-like receptor (TLR) and NLRP3 

inflammasome signalling (including thrombo-inflammation in platelets) (Figure 1) (21–23). It has been 

suggested that BTK deficiency may protect from the cytokine storm seen in severe disease based on the 

role of BTK in macrophage activation and IL-6 production (6,24–26), although murine and human 

studies have shown conflicting results (27). Recent studies of blood monocytes from general adult 

patients with severe COVID-19 showed consistent increases in BTK activation and production of 

interleukin-6 (28). Blockade of IL-6 using Tocilizumab has been shown also to improve survival in 

severe disease (29), and BTK inhibitors (such as ibrutinib and acalabrutinib) are now being studied for 

the treatment of severe COVID-19 following promise in case series (28,30). It is therefore plausible 

that agammaglobulinaemia or genetic BTK deficiency may confer protection from severe COVID-19.  



Outcomes from COVID-19 in XLA patients  

The clinical outcomes 28 XLA patients with SARS-CoV-2 infection identified from peer-reviewed and 

pre-print literature are summarised in Table 1. Age was reported in 23/28 individuals, with a median 

age at presentation of COVID-19 infection of 30.5 years (range: 5 to 55 years). Clinical presentations 

were available in 24 patients, with asymptomatic presentations uncommon (2/24, 8%). Fever was 

present in 83%, cough in 50%, and shortness of breath in 38%; a background of bronchiectasis was 

documented in 11 patients. Twenty-two (79%) were admitted to hospital, including 2 children (1,31). 

Supplemental oxygen was required in the majority of hospitalised patients (8/11, 73%), with evidence 

of elevated inflammatory markers. The median length of stay was 22 days (range: 11-73 days) with 

three patients (11%) admitted to an intensive case setting. A single death was reported, a 55 year old 

male (32), equating to an overall mortality rate of 4% (1/28). Therapies were defined in 17/21 

hospitalised individuals, and included hydroxychloroquine (n=10), remdesivir (n=4), and 

corticosteroids (n=3). In contrast to the initial experience of Quinti et al (6), tociluzimab use was 

reported in 2 individuals with protracted hospital stays (39-56 days).  Convalescent plasma therapy 

(CPT) was the most frequently reported therapeutic agent, employed in 11 patients (52%). Individual 

groups reported rapid recovery after CPT  (31,33,34), including Buckland et al, where CPT was 

successful in achieving viral clearance after two independent courses of  remdesivir had failed. 

Interestingly, remdesivir achieved symptomatic response and suppression of viral load, but its cessation 

was followed by recrudescence of symptoms and rise in viral load. Genomic sequencing indicated 

persistent infection rather than re-infection. Detailed longitudinal investigation of this patient confirmed 

the absence of viral-specific antibodies produced by the patient and within replacement 

immunoglobulin therapy. Additionally, complement activation similar to critically-ill COVID-19 

admissions was demonstrated (34,35). Polyfunctional CD8 T-cell responses were also observed, 

comparable to those seen in healthcare workers, and these increased in magnitude during the course of 

COVID-19 infection (34). This case illustrates the power of a personalised experimental approach, and 

suggests that SARS-CoV-2 specific antibodies provide a non-redundant contribution to reduction in 

viral load and eventual viral clearance. The patient continued regular immunoglobulin replacement 

therapy (IgRT) throughout their admission, suggesting that clearance was not due to correction of 

defects of dendritic cell maturation arising in the absence of IgRT (34). 

Overall, the small sample size in the XLA patient group reported to date, possible reporting bias, and 

high mortality in this age-range leaves us underpowered to address the hypothesis that individuals with 

XLA have a different inpatient mortality rate to the general population (Table 2). Mortality appears 

comparable to modelling of inpatient mortality for COVID-19 in the UK population of a similar age-

band (36). Time until viral clearance was reported in 8/23 patients (35%) (Figure 2). Mean duration 

was 38.3 days (95% confidence interval: 20.3 to 56.2 days) and ranged from “6 to 14” days (handled 

as 10 days) to 64 days. By comparison, a recent meta-analysis estimated the mean duration of SARS-



CoV-2 shedding from the upper respiratory tract to be 17.0 days (95% CI: 15.5 to 18.6 days) and 17.2 

days (95% CI: 14.4 to 20.1 days) from the lower respiratory tract, up to a maximum of 83 days (37). 

Similar observations of prolonged SARS-COV-2 infection in patients who have received Rituximab 

help triangulate the critical defect in XLA patients to the B-cell compartment (38,39). A case series of 

17 B-cell–depleted patients with protracted COVID-19 were treated with CP at a median of 56 days 

from onset of symptoms. Prior to CPT, SARS-CoV-2 specific IFN-gamma producing T-cells were 

evident in all patients studied, accompanied by profound hypogammaglobulinaemia with absent 

neutralising antibody responses to SARS-CoV-2 (38). Similar to the XLA patient described by 

Buckland et al (34), symptomatic and inflammatory marker improvement occurred in all but 1 within 

48 hours, followed by falling viral load and reduction in oxygen requirements (38,39). Together, this 

provides evidence for viral persistence of SARS-CoV-2 in patients with XLA and iatrogenic B-cell 

depletion and suggests a role for antibodies in reduction in viral load and contribution to viral clearance. 

The United States Food and Drug Administration reissued emergency use authorisation for high-titre 

COVID-19 CPT in hospitalized patients with impaired humoral immunity (39) in March 2021, 

however, a potential concern in immunosuppressed individuals was raised by Kemp et al (40). 

Performing phylogenetic analysis on ultra-deep whole genome sequential sequencing on samples from 

a chronically infected immunosuppressed individual with SARS-CoV-2, they showed CPT was 

accompanied by viral evolution and reduced sensitivity to neutralizing antibodies (40). Recent analysis 

of a second immunocompromised adult with hypogammaglobulinaemia and SARS-CoV-2 infection for 

over 290 days has subsequently demonstrated similar viral escape mutations can also arise 

independently of CPT (41). In this instance, following failure of remdesivir, treatment with the 

combination of casirivimab and imdevimab at day 265 achieved progressive resolution of all symptoms 

over the next 8 weeks, and clearance by RT-PCR was achieved by day 311 (41). 

  



Vaccine responses to SARS-CoV-2 in XLA 

We identified 2 reports assessing vaccine response following 2 doses of Pfizer-BioNTech in 10 

individuals with genetically-confirmed XLA (42,43). As expected, these individuals mounted no 

detectable serological response, however robust production of IFNy was evident following stimulation 

with spike peptide using an ex vivo ELISpot approach in 9/10 individuals (and IL-2 production in 5/5). 

Stimulation with peptides representing SARS-CoV-2 membrane protein induced no cytokine responses, 

consistent with vaccine-induced cellular immunity over post-infection responses (42). The relevance of 

such T-cell assessments, as a reflection of nature and durability of cellular immunity and risk of future 

severe COVID-19, remain uncertain. The presence of polyfunctional CD8+ T-cells during prolonged 

infection, described by Buckland et al (34), does not exclude protection following vaccination. It is 

relevant to note both Hagin and Salinas et al identified a higher rate of vaccine-induced T-cell non-

responders within genetically-undefined common variable immunodeficiency (CVID) patients, 

compared to XLA (42,43). Although patients were not age or gender matched, this difference in T-cell 

response mirrors differences in reported mortality between XLA and CVID (1,6), and suggests 

assessment of T-cell responses maybe relevant to ongoing risk stratification, Figure 3. The efficacy of 

alternative vaccination strategies, such as subunit or adenoviral vectors has yet to be examined. 

However, previous assessment of a trivalent inactivated influenza vaccine in 12 XLA patients showed 

induction of influenza virus-specific CD4 and CD8 T-cell responses comparable to healthy controls 

when assessed up to 6 months post-vaccination (44).  

 

  



Conclusion 

 

In this review we draw together the international experience of COVID-19 in XLA, representing the 

largest description of outcomes for this rare patient group to date, highlighting the vulnerability of such 

individuals to chronic SARS-CoV-2 infection. In contrast to reports made early in the pandemic, we 

show these patients remain susceptible to severe disease despite any immunomodulation mediated by 

their underlying selective immunodeficiency. Although low, the crude case fatality rate of 4% 

associated with acute COVID-19 in XLA should be viewed in the context of the young age of the cohort 

described, likelihood of reporting bias, and the high level of background lung disease (i.e. 

bronchiectasis). Protracted SARS-CoV-2 infection appeared common, with fever and respiratory 

symptoms in over 80% of cases at presentation, often accompanied by systemic inflammation and 

respiratory impairment. This is closely analogous to the marked symptom burden and impaired quality 

of life associated with persistent viral infections of the respiratory tract, gastro-intestinal, and central 

nervous system reported in this patient group (7,8,11,12,14). The psychosocial impact of protracted 

COVID-19 infection on these individuals and their families is likely multiplied given requirements to 

self-isolate accompanied by experiencing progressive debilitation due to declining respiratory function 

(41). We also highlight the far-reaching societal and clinical implications of chronic viral infection 

within primary and the expanding field of secondary predominant antibody deficiency disorders (45). 

Whilst viral reversion of attenuated vaccine strains during chronic infection in XLA can result in 

vaccine-associated paralytic poliomyelitis for the individual (14), evolution of novel highly-

transmissible SARS-CoV-2 variants in hypogammaglobulinemic individuals poses a continued threat 

to vaccine-induced herd immunity (40,41). The significance of increasing titres of anti-SARS-CoV-2 

antibody within pooled purified immunoglobulin replacement therapy (IgRT) products over time 

warrants further investigation, as they may complement T-cell induced vaccine responses. Caution is 

necessary however, given immune selection pressure from CPT or future IgRT may accelerate 

generation of escape variants (40). This suggests virological surveillance with immunological risk 

stratification should go hand in hand in order to recognise infection in this subset of vulnerable 

individuals and support a rapid individualised response.  

The paradigm that XLA is simply an antibody deficiency is slowly being challenged.  In particular, 

susceptibility to both severe and persistence viral infections is also being recognised.  Beyond the lack 

of ongoing of IgA/IgM in IgRT, the wider roles of BTK that cannot be compensated for in XLA are 

likely to play a major role in the control of viral infections. 

  



Summary 

• Individuals with XLA remain susceptible to severe disease or death following COVID-

19. 

 

• Protracted SARS-CoV-2 infection appears common in B-cell ablated and antibody-

deficient individuals, and may favour emergence of novel viral variants. 

• COVID-19 infection in antibody deficient groups due to genetic, therapeutic or disease 

therefore warrant specific interventions for both patient and societal benefit.  

• Individualised therapeutic approaches include monoclonal anti-SARS-CoV-2 antibody 

cocktails. 

• COVID-19 mRNA vaccination successfully elicit T-cell responses in XLA patients 

however the degree of clinical protection remains uncertain. 
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Table 1: A summary of the reported cases of SARS-CoV-2 infection in XLA patients.   

NA = Data not available.  *Admitted for infection control measures only. 

Paper Age 
(years) 

Bronchiectasis Presentation Peak 
CRP 
(mg/L) 

Peak 
Ferritin 
(ng/mL) 

Hospital 
admission 

Oxyge
n 

ICU Therapies Length 
of stay 
(days) 

Virus 
detection 
duration 
(days) 

Devassikutty 
et al., (46) 

18 Yes Fever, 
myalgia,loss 
of taste/smell 

11.9 NA Yes* No No None 17* 17 

19 Yes Fever, cough NA NA Yes Yes Yes None 22 NA 
Milosevic et 
al., (47) 

34 Yes Fever 205.8 493 Yes Yes No IVIG, 
chloroquine, 
nadroparin, 
tocilizumab, 
convalescent 
plasma, 
steroids 

56 52 

Meyts et al., 
(1) 

3-12 No Fever, 
cough, 
shortness of 
breath, chest 
pain 

NA NA Yes Yes No Remdesivir, 
convalescent 
plasma, 
enoxaparin 

NA NA 

19-24 Yes Fever, 
cough, 
shortness of 
breath 

NA NA Yes No No Chloroquine, 
convalescent 
plasma, 
enoxaparin 

NA NA 

25-34 No Cough, fever NA NA Yes No No Steroids, 
Immunoglobul
in, chloroquine 

NA 64 

35-44 No Cough, fever NA NA Yes No No Chloroquine, 
lopinavir, 
ritonavir 

NA 6-14 



Paper Age 
(years) 

Bronchiectasis Presentation Peak 
CRP 
(mg/L) 

Peak 
Ferritin 
(ng/mL) 

Hospital 
admission 

Oxyge
n 

ICU Therapies Length 
of stay 
(days) 

Virus 
detection 
duration 
(days) 

45-54 Yes Asymptomat
ic 

NA NA No No No None 0 NA 

45-54 Yes Fever NA NA Yes No No None NA NA 
Shields et al., 
(2) 

Median 
age 30.5 

NA NA NA NA Yes NA NA NA NA NA 

 NA NA NA NA No No No NA 0 NA 
 NA NA NA NA No No No NA 0 NA 
 NA NA NA NA No No No NA 0 NA 

Quinti et al., 
(6) 

34 NA Fever NA NA Yes No No Hydroxychlor
oquine, 
lopinavir, 
ritonavir 

NA NA 

Marcus et al., 
(48) 

6 No Fever NA NA No No No None 0 NA 
5 No Asymptomat

ic 
NA NA No No No None 0 NA 

Geutl et al., 
(49) 

 Yes Fever, 
fatigue 

NA NA Yes Yes Yes Hydroxychlor
oquine, 
lopinavir, 
ritonavir, 
IVIG, 
convalescent 
plasma, 
tocilizumab  

39 49-70 
days 

Jin et al., (31) 10  No Fever, 
cough, chest 
pain 

22.4 642 Yes Yes No Remdesivir, 
IVIG, 
Convalescent 
plasma, 

29  25 

24 No Fever, 
cough, 
shortness of 
beath 

64 185 Yes Yes No Convalescent 
plasma 

19 NA 



Paper Age 
(years) 

Bronchiectasis Presentation Peak 
CRP 
(mg/L) 

Peak 
Ferritin 
(ng/mL) 

Hospital 
admission 

Oxyge
n 

ICU Therapies Length 
of stay 
(days) 

Virus 
detection 
duration 
(days) 

40 Yes Fatigue, 
fever, cough, 
respiratory 
distress 

16.4 967 Yes Yes No Convalescent 
plasma 

45 NA 

Soresina et 
al., (24) 

34 No Fever, cough 78 269 Yes No No Hydroxychlor
oquine, 
lopinavir, 
ritonavir 

22 NA 

26 No Vomiting, 
asthenia, 
fever 

3.6 774 Yes No No Hydroxychlor
oquine 

  

Mira et al., 
(50) 

39 No Cough, 
respiratory 
distress, 
fever 

NA NA Yes No No Hydroxychlor
oquine, IVIG, 
Convalescent 
plasma 

30 25 

Hovey et al., 
(51) 

26 No Fever, 
respiratory 
distress, 
diarrhoea 

12.86 1324.3 Yes No No IVIG, 
convalescent 
plasma 

14 NA 

Loh et al., 
(32) 

55 Yes Fever, 
respiratory 
distress 

258 NA Yes Yes No Steroids, IVIG Died NA 

Iaboni et al., 
(33) 

28 No Respiratory 
distress 

127 >1500 Yes Yes Yes Remdesivir, 
convalescent 
plasma 

13 NA 

Buckland et 
al., (34) 

31 Yes Fever, 
cough, 
diarrhoea, 
vomiting 

NA 1063.5 Yes Yes No Hydroxychlor
oquine, 
Remdesivir, 
convalescent 
plasma 

73 64 



Paper Age 
(years) 

Bronchiectasis Presentation Peak 
CRP 
(mg/L) 

Peak 
Ferritin 
(ng/mL) 

Hospital 
admission 

Oxyge
n 

ICU Therapies Length 
of stay 
(days) 

Virus 
detection 
duration 
(days) 

Almontasheri 
et al., (52) 

19 Yes Fever, 
respiratory 
distress, 
diarrhoea 

47.6 58 Yes No No IVIG 11 NA 

 

 



Table 2: Age stratified mortality for individuals with Primary Immunodeficiency, X-linked Agammaglobulinemia, and the general UK population. 

Table adapted from Shields et al, (2). IFR, infection fatality rate- proportion of mortality in all suspected or proven infected SARS-CoV-2 infections; CFR, case 

fatality rate- proportion of deaths from all confirmed infections.

 
Primary Immunodeficiency, all diagnoses  

(United Kingdom, UK (2)) 
X-linked agammaglobulinaemic  

(International) 

General Population, (United 

Kingdom, (36)) 
Age 

group 

(years) 

Patients, 

n 

PCR+, 

n 

Hospitalized, 

n (%) 

Deaths, 

n 

% IFR 

(%) 

CFR 

(%) 

Inpatient 

mortality 

(%) 

XLA, 

n 

Hospitalised, 

n (%) 

Deaths, 

n 

CFR 

(%) 

Inpatient 

mortality 

(%) 

UK IFR 

(general 

population), 

% 

UK 

inpatient 

mortality 

(general 

population), 

% 

0-9 2 2 1 (50%) 0 0 0 0 0 3 1 (33%) 0 0 0 0.001 0.7 

10-19 1 0 0 (0%) 0 0 0 0 NA 4 4 (100%) 0 0 0 0.007 1.9 

20-29 12 5 3 (25%) 1 8% 8% 20 33.3 7 7 (100%) 0 0 0 0.03 4.3 

30-39 12 7 6 (50%) 0 0 0 0 0 9 6 (67%) 0 0 0 0.08 4.2 

40-49 9 5 4 (44%) 1 8% 11.1 20 25 3 2 (67%) 0 0 0 0.16 6.3 

50-59 11 7 7 (64%) 4 33% 36.4 57.1 57.1 1 1 (100%) 1 100.0 100.0 0.6 10.8 

60-69 3 2 2 (67%) 1 8.3 33.3 50 50 0 - - - - 1.93 20.2 

70-79 6 6 5 (83%) 2 16.7 16.7 16.7 40 0 - - - - 4.28 34.1 

>80 4 4 4 (100%) 3 25 75 75 75 0 - - - - 7.8 41.7 



Figure 1: The wider roles of BTK in downstream signalling  

BTK is widely expressed including in neutrophils, natural killer cells, dendritic cells, macrophages, and 

monocytes of myeloid origin. The wider functions of BTK are shown with involvement in downstream 

signalling of not only the B cell receptor (BCR) in B-lymphocytes but also the i) chemokine receptor 

(CXCR4) activating PI3K and subsequently BTK, AKT and MAP-K dependent pathways in B cells, ii) 

Toll Like receptors (TLRs) recruiting TIR, MYD88, IRAK1, TIRAP/MAL activating NF-κB, in 

macrophages, basophils and dendritic cells and iii) the activating Fcγ receptor (FcγR1), activating Src-

kinases, SYK, PI3K-γ and BTK in mast cells and basophils. There is increasing evidence for 

involvement of BTK in roles beyond B cell signalling in phagocytosis, the NLRP3 inflammasome 

(including thrombo-inflammation in platelets, (23)), microbe recognition via TLRs, nucleic acid 

recognition, maturation, differentiation signals and chemotaxis (53). 

 



Figure 2: SARS-CoV-2 persistence in XLA patients.  

 

Kaplan Maier plot showing time until SARS-CoV-2 no longer detectable by respiratory tract RT-PCR 

sampling in 8 XLA patients. Created using R version 4.0.2 in RStudio (version 1.3.959, R Foundation, 

Vienna, Austria) using the survival and survminer packages. 

  



 

Figure 3: Putative role of vaccine response profiling in risk stratification to individualise approaches 
to SARS-CoV-2 in individuals with suspected humoral immunodeficiency 

 

 

 

 

 

 


