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Abstract— Safe autonomous navigation is an essential and
challenging problem for robots operating in highly unstructured
or completely unknown environments. Under these conditions,
not only robotic systems must deal with limited localization
information but also their maneuverability is constrained by their
dynamics and often suffers from uncertainty. In order to cope
with these constraints, this article proposes an uncertainty-based
framework for mapping and planning feasible motions online
with probabilistic safety guarantees. The proposed approach
deals with the motion, probabilistic safety, and online computa-
tion constraints by: 1) incrementally mapping the surroundings
to build an uncertainty-aware representation of the environ-
ment and 2) iteratively (re)planning trajectories to goal that
is kinodynamically feasible and probabilistically safe through a
multilayered sampling-based planner in the belief space. In-depth
empirical analyses illustrate some important properties of this
approach, namely: 1) the multilayered planning strategy enables
rapid exploration of the high-dimensional belief space while
preserving asymptotic optimality and completeness guarantees
and 2) the proposed routine for probabilistic collision check-
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ing results in tighter probability bounds in comparison to
other uncertainty-aware planners in the literature. Furthermore,
real-world in-water experimental evaluation on a nonholonomic
torpedo-shaped autonomous underwater vehicle and simulated
trials in an urban environment on an unmanned aerial vehicle
demonstrate the efficacy of the method and its suitability for
systems with limited onboard computational power.

Note to Practitioners—Emergent robotic applications require
operating in previously unmapped scenarios. This article presents
a unified mapping–planning strategy that enables robots to
navigate autonomously and safely in harsh environments.

Index Terms— Field robotics, online mapping, online motion
planning under uncertainty, safe autonomous navigation in
unknown environments, sampling-based motion planning.

I. INTRODUCTION

AUTONOMOUS robots have been increasingly employed
to assist humans notably in hazardous or inaccessible

environments in recent years. Examples include rescue mis-
sions in disaster response scenarios [7], in-water ship hull [31]
and wind turbine inspections [51], and deep underwater and
space exploration [4], [74], among many others. A fundamen-
tal requirement for a robot engaged in any of these applications
is to be adept at navigating autonomously through highly
unstructured and hostile environments. However, this is not
a trivial task due to a limited or complete lack of prior knowl-
edge about the environment in which the robot has to operate.
This implies that the robot has to base its decision-making
on onboard sensors despite their limited accuracy. In addition,
the robot itself might suffer from poor localization, as well
as restricted and uncertain maneuverability. Therefore, even
though challenging, it is essential to jointly consider all these
motion and sensory constraints, as well as their associated
uncertainties, when planning for navigation actions. This prob-
lem becomes particularly more challenging in safety–critical
missions where the robot’s safety must be ensured at all times.

Although there exist alternative methodologies addressing
each of the abovementioned issues individually, limited atten-
tion has been devoted to the autonomous navigation problem
in unknown environments as a whole [44]. The classical
algorithms known as simultaneous localization and mapping
(SLAM) enable a mobile robot to concurrently build and use
a map to estimate its location [17]. These algorithms rely
on identifying distinctive landmarks, which can bound the
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uncertainty of both the environment representation and the
robot localization. Nonetheless, even for scenarios rich in
features, there are always some residual uncertainties. More
recently, online motion planning frameworks have been devel-
oped to empower a mobile robot to compute navigation actions
in unexplored environments while accounting for the system’s
motion capabilities, e.g., [11], [21], [27]–[29], [68], [76], [80].
These approaches, however, do not cope with any source of
uncertainty and employ ad hoc heuristics that lack quantified
safety guarantees. The few attempts to ensure safety through
probabilistic methods, such as [12], [35], [71], are generally
computationally expensive, built on strong assumptions, and
commonly suppose a complete prior environment knowledge.
Therefore, they are unsuitable for applications requiring online
computations to deal with unknown environments.

In this context, our previous framework guaranteed (in com-
pliance with a user-defined minimum probability of safety) the
robot’s safety when navigating through unexplored environ-
ments [55]. The underlying strategy consisted of an iterative
mapping–planning scheme capable of continuously modifying
the vehicle’s motion plan toward the desired goal according
to the incremental environmental awareness. At any time,
the resulting motion plan was guaranteed to be feasible and
safe in face of localization, mapping, and motion uncertain-
ties. Despite the promising results achieved with this itera-
tive mapping–planning scheme, its underlying formalization
had some limitations. Namely, the framework was exclu-
sively tailored to cope with a low-dimensional robot (three
degrees of freedom (DoFs)) navigating in an unknown, sym-
metrically structured, 2-D workspace. The initially proposed
mapping–planning scheme and its constituent components
would scale poorly when dealing with systems and scenarios
of higher complexity. More demanding problems exacerbate
the curses of dimensionality and computational load to guar-
antee probabilistic safeness in face of uncertainties. Such a
challenge motivated the development of this follow-up work
to extend the framework’s capabilities to suit the requirements
of a larger group of robotic systems and environments.

Building on our previous mapping–planning scheme [55],
the main contribution of this article is threefold.

1) Multilayered planning strategy capable of rapid search
in high-dimensional belief spaces, with asymptotical
optimality and probabilistic completeness guarantees.

2) Probabilistic map fusion that efficiently retrieves envi-
ronmental uncertainties in form of a cumulative map,
while dealing with overlapping local submaps.

3) Probabilistic collision checking routine, which rapidly
evaluates the validity of a state subject to uncertainties
by trading the tightness of the safety bound for compu-
tational efficiency, while accounting for the tail events.

Our new contributions in the framework’s key constituent
components are supported with rigorous theoretical devel-
opment and thorough experimental evaluations. These novel
advancements allow for faster online motion planning and
more efficient evaluation of uncertainties. Consequently,
the improved framework is now capable to compute nav-
igation actions online for high-dimensional systems and
more challenging unknown environments while providing

safety guarantees. To the best of our knowledge, this is the first
generic architecture capable of jointly dealing with kinody-
namic and probabilistic constraints in unknown environments
online. Both the precedent and new framework are analyzed
and compared in multiple scenarios with different interesting
real-world1 and simulated2 physical systems. The experimental
results demonstrate the suitability of the proposed method
to address the challenge of probabilistically safe autonomous
navigation in unknown environments while being suitable for
systems with limited onboard computational power.

The remainder of this article is organized as follows.
Section II provides a comprehensive review of the liter-
ature and the corresponding contribution of this article.
Then, Section III formally defines the considered problem.
In Section IV, an overview of the framework is presented,
and then, the mapping and planning components are detailed
in Sections V and VI, respectively. The description of the
framework is followed by a thorough analysis of its key
constituent features and its performance and capabilities as
a whole in Section VII. Finally, this article concludes with a
discussion in Section VIII.

II. RELATED WORK

This section gives a brief overview of prior work on plan-
ning under kinodynamic constraints and planning under uncer-
tainty, as well as frameworks for online mapping–planning.
Finally, this section discusses all contributions of this work
with respect to the latest related literature.

A. Planning Under Kinodynamic Constraints

Planning under kinodynamic constraints deals with the
challenge of computing trajectories that are feasible according
to the vehicle’s motion capabilities. This problem is commonly
formulated as finding a trajectory between two points through
the system’s state space. The robotics literature offers various
approaches to tackle this problem.

One strategy is to represent the continuous state space
as a lattice space, i.e., a graph where edges correspond
to a reduced set of precomputed motion primitives. Then,
the motion planning problem can be efficiently solved using
graph search algorithms. For the particular case of a car-like
system, the motion primitives can be defined as a set of
lines and arcs to build a geometric state lattice [16], [67].
These approaches can find the shortest path, but the transition
between segments presents abrupt changes in angular velocity,
which could only be achieved by a system capable of infinite
angular acceleration. More complex lattice space definitions
allow the consideration of more restrictive concatenation rules
and richer sets of primitive motions, e.g., [20], [62], at the cost
of more memory usage and more computationally expensive
queries. Even though planning in lattice spaces has proven
to be suitable for many applications, it requires the crafting
of a set of motions such that the resulting lattice offers,

1A mission through a real breakwater structure with an autonomous under-
water vehicle (AUV) can be seen in: https://youtu.be/dTejsNqNC00

2A mission in the DARPA Subterranean Challenge 2019 scenario with an
unmanned aerial vehicle (UAV) can be seen in https://youtu.be/I5X_QFKDpeI
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at least, one suitable solution to the planning problem. Some
works in the learning community have addressed this difficult
and time-consuming task with data-driven techniques [14].
However, the resulting set of motions still represents a very
limited range of the real dynamic capabilities of the robot. This
is undesirable in applications where the environment is not
known in advance, and where having the entire dynamic range
of motions available for planning can be critical to finding a
suitable solution. All in all, lattice-based methods struggle with
planning in high-dimensional state spaces.

To deal with kinodynamic constraints, sampling-based
motion planners offer great opportunities, e.g., [32], [36], [38].
Most sampling-based planners, however, lose their asymp-
totic optimality guarantees when a steering function does not
exist in the system’s kinodynamically constrained state space.
To cope with this limitation, there are different assumptions
and heuristics that can be applied at the expense of longer com-
putational times. For example, Webb and van den Berg [78]
proposed a version of the asymptotic optimal RRT (RRT*)
that can deal with kinodynamic constraints of systems with
linearisable dynamics [78]. If the system’s dynamics are not
linearisable, asymptotic optimality can be obtained in any
planner by augmenting the dimensionality of the state space to
account for the search cost [25]. However, this strategy implies
solving the planning problem repeatedly to improve the cost
of the solution at each iteration, consequently being unsuitable
for applications with online requirements. Finally, the stable
sparse RRT (SST) planner offers asymptotically near-optimal
guarantees by means of a shooting approach, which consists of
expanding the tree from the node with the lowest cost within
a neighborhood of predefined δ-radius [41].

Planning in high-dimensional spaces with multiple con-
straints poses a challenge for classical planners and, typi-
cally, results in long computation times if a solution can
be found at all. In such problems, a common approach to
boost performance is via a multilayered planning scheme.
The key idea is to leverage from a lead to guide (warm-
start) the search. In this regard, an interesting approach is
the incremental trajectory optimization for motion planning
(ITOMP) algorithm, which interleaves planning and optimiza-
tion; the planner is given a fixed time budget to find a
solution, which is then used as a warm-start for the opti-
mizer [58]. Work in [63] and [64] introduced a synergistic
three-layered planner: the high-level planner uses discrete
search to initially determine those candidate regions (from
a decomposed representation of the environment), which
might contain part of the final solution; a low-level plan-
ner employs a sampling-based motion planner to find a
solution; and a middle layer updates the candidate regions
according to the considered constraints. However, the pro-
posed combination of planners does not guarantee asymp-
totic optimality, and the discrete planner becomes slow for
high-dimensional problems. Palmieri et al. [57] presented the
Theta*-rapidly exploring random tree (RRT) scheme, which
first uses the Theta* path planner to compute a lead path,
which is then employed to bias the search of the RRT
planner [57]. This approach, however, lacks asymptotic opti-
mality guarantees, given that the second planner is an RRT.

More recently, a multilayered approach based on the RRT*
as a lead planner and the SST as the final planner has been
proposed in [76]. The final planner’s search space is strictly
constrained around the lead path, raising concerns about the
completeness guarantees of the overall architecture.

B. Planning Under Uncertainty

An essential capability for any autonomous robot is to oper-
ate in the presence of uncertainty [13]. Sources of uncertainty
relevant to autonomous systems fall into four types [39].

1) Uncertainty in Localization: The robot’s location
is uncertain with respect to the environment. This
issue is particularly critical in robots operating in
GPS-denied environments or for systems suffering from
low-accuracy state estimation.

2) Uncertainty in Motion (Dynamics): The future robot
state cannot be predicted accurately, either because of
discrepancies between the considered and the real sys-
tem’s dynamic behavior or due to limited precision in
the system’s command tracking.

3) Uncertainty in the Environmental Awareness: The robot
has inexact or incomplete information about its sur-
roundings (e.g., obstacle location). This issue can arise
from inaccuracies in the a priori map, or imperfect and
noisy exteroceptive sensory capabilities.

4) Disturbances in the Operational Environment: The robot
is subject to external factors, such as wind, atmospheric
turbulences, or water currents, which makes the robot
deviate from the planned trajectory, thus compromising
the reliability of deterministic path planning techniques.

This section scrutinizes relevant planning strategies dealing
with any of the three first sources of uncertainty. Given the
scope of our work, terrain traversability analysis methods
(e.g., [19], [24], [54]) are excluded from this review.

One approach that is popular among existing planners is
based on discrete Markov processes. This strategy models the
evolution of the system in the environment and generates a
policy over the approximated Markov states. Examples of such
motion planners include stochastic motion roadmap (SMR) [5]
and incremental Markov decision process (iMDP) [33]. These
methods have shown to be effective and provide optimality
guarantees in terms of the probability of reaching the desired
goal; however, they assume perfect knowledge about the envi-
ronment. Works such as [47] have extended these techniques
to partially unknown environments. Nonetheless, their large
computational times remain the main hurdle in applications
with fully unknown environments or requiring online planning.

Another approach to deal with uncertainties in planning is
by means of feedback controllers and sampling-based plan-
ners. Van Den Berg et al. [75] proposed the linear quadratic
Gaussian (LQG) motion planning method, which finds the best
path simulating the performance of LQG on all extensions
of an RRT [75]. This idea was later applied in roadmaps to
propose the feedback-based information roadmap (FIRM) [1].
This method, though, relies on full a priori awareness of the
environment to explore the belief space offline and then to
quickly perform queries online. Consequently, this strategy
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is not suitable for planning applications where the a priori
information about the environment, if available, is not fully
informative. A similar strategy is used in [2] for simultane-
ous localization and planning. Alternatively, Sun et al. [73]
presented the high-frequency replanning (HFR) architecture,
a strategy that leverages from an LQG and a multithread RRT,
allowing to continuously replan in the face of alterations
in the robot or environment space, while accounting for
uncertainties. However, the asymptotic optimality guarantees
of such a method can only be assured in multithreaded
implementations.

An alternative approach to dealing with uncertainty is
the chance-constraint strategy. In these methods, instead of
maximizing the probability of success, the objective is to
find a path that satisfies a minimum safety probability con-
straint. The challenge in incorporating this method in planners
lies in the computation of the safety probability over plans.
In [9], linear chance constraints are combined with disjunctive
linear programming to perform probabilistic convex obsta-
cle avoidance. This concept was extended and integrated
into a sampling-based planner, leading to the chance con-
strained RRT (CC-RRT) [45] and the CC-RRT* [46]. These
approaches evolve the system’s dynamics in an open-loop
fashion, hence growing the uncertainty unboundedly forward
in time. To improve accuracy, linear chance constraints were
applied after propagation of the system’s state conditioned
on the precedent states being collision-free [59]. Such a
strategy is commonly referred to as truncating the distribution
estimating the system’s state, and its usage in planning led
to the CC-RRT*-D planner [43]. The advantage of chance-
constraint-based methods is that satisfying plans can be com-
puted quickly, making them desirable for online applications.
They are, however, built on strong assumptions that result in
overly conservative calculations and rely on the prior knowl-
edge of a convex environment. Nonetheless, chance-constraint
methods are still widely used in the planning community to
deal with localization, motion, and environmental uncertain-
ties, e.g., [12], [71].

In recent years, planners based on various discretization
methods have been developed to deal with limited computa-
tional power or online planning requirements in face of uncer-
tainty. Majumdar and Tedrake [48] proposed a precomputed
library of funnels to efficiently estimate the system’s kinody-
namic and uncertainty propagation in 3-D environments [48].
However, library-based approaches consider a reduced set of
the real system’s capabilities that can endanger the efficacy of
the planner. Another approach in favor of performance consists
of approximating the computation of the probability of colli-
sion to a discrete support [55], [71]. This strategy truncates the
infinite expansion of the belief in a bounded patch considered
to contain a large portion of the belief’s probability mass.
In our previous work [55], all uncertainties were projected
onto discrete support, referred to as kernel, whose resolution
resembled the optimal one for online mapping applications.
Although considering discrete support for the computation of
the probability of collision allows for quick calculations, none
of the works using such technique actually normalizes the
calculations for the probability mass laying outside the patch,

i.e., tail events. Therefore, they cannot offer guarantees on the
compliance of the probabilistic safety constraints.

C. Frameworks for Online Mapping–Planning

Limited attention has been devoted to the navigation prob-
lem as a whole, especially in the face of uncertainties. Note
that the navigation requirements differ from those of coverage
path planning, for which there is a perpendicular literature
thread, e.g., [23], [37]. Current navigation frameworks in
the robotics literature are built on strong assumptions, which
could endanger (or completely neglect) some of the essential
requirements for safe navigation in undiscovered environ-
ments. Some of the prerequisites are the ability to create
an uncertainty-aware representation of the environment such
that uncertainties about the environment can be considered
at the planning stage. It is also crucial to ensure complete-
ness guarantees, i.e., the ability of finding a solution if one
exists, and among many others, being capable of guaran-
teeing the vehicle’s safety at any time during the mission.
Ideally, an online mapping–planning framework should be
able to find paths quickly while offering asymptotic optimality
guarantees.

A common strategy for online navigation is to continu-
ously replan in the face of changes in the robot’s pose or
the environment awareness. Scherer et al. [69] endowed an
UAV with the capability to map online with an occupancy
probabilistic grid and then to guide itself toward the goal
with a combination of global and local potential field-based
planners [69]. Along this line, navigation in 3-D environments
by mapping from stereo vision and planning with the RRT was
considered in [6]. The resulting paths of these approaches do
not account for kinodynamic constraints or safety guarantees.
Alternatively, in [42], the local planner of the RRT approx-
imated an UAV capabilities by 3-D Dubins paths. Neverthe-
less, none of these approaches considers any of the multiple
sources of uncertainty in the mapping nor the planning stage,
thus not providing any theoretical performance or safety
guarantees.

More recently, Ho et al. [29] proposed an online framework
to build an uncertainty-aware map and plan over it using the
RRT. However, the resulting paths do not meet kinodynamic
nor safety constraints. Instead, proposals in [27] and [28]
presented an online framework to plan paths under motion con-
straints for AUVs, but their approach assumes zero uncertainty.
While their framework succeeded in solving start-to-goal
queries in unexplored real-world environments, their planner
used ad hoc heuristics to estimate the solution’s associated risk
and approximated the system’s dynamics with Dubins curves.
Frameworks can employ multilayered schemes to scope the
complexity of online constrained planning in a subregion of
the entire planning space, e.g., [18], [76]. Youakim et al. [80]
presented a multirepresentation, multiheuristic A* planner
capable of jointly dealing with mobile-base and manipula-
tion planning in unknown environments while accounting for
localization uncertainty via heuristics. Despite all methods
have been tested in real-world environments, the underlying
frameworks lack of theoretical analysis and do not provide a
measure of robustness or quantified safety guarantees.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PAIRET et al.: ONLINE MAPPING AND MOTION PLANNING UNDER UNCERTAINTY FOR SAFE NAVIGATION 5

D. Closely Related Contributions

An early version of the work presented in this manu-
script has appeared before [55]. This consisted of a simpler
framework that proved to be suitable for real-world motion
planning problems, but its applicability was strictly lim-
ited to underwater robots operating at constant depth,
i.e., 2-D workspaces. This motivated the development of this
follow-up work to extend the framework’s capabilities to suit
the requirements of a larger group of robotic systems and
environments. Overall, given the precedent efforts by the
authors, this article provides the following contributions.

1) An online mapping–planning framework that probabilis-
tically guarantees the robot safety during navigation
tasks in unknown environments (see Section IV).

2) A mapping strategy using local submaps that builds an
uncertainty-aware map (Section V). These calculations
now, in contrast to [55], include efficient retrieval of
environmental uncertainties and consider probabilistic
map fusion to deal with overlapping local submaps.

3) A multilayered planner (MLP) that guides the search
in the high-dimensional belief space (Section VI), in
contrast to the uniform search of the single-layered
planner in [55]. Our planner satisfies kinodynamic con-
straints and probabilistic safety guarantees while provid-
ing probabilistic completeness and asymptotic optimality
guarantees.

4) A rapid probabilistic collision checking routine
(Section VI-C). In contrast to [55], the calculations
now include a controllable confidence level α that
allows to trade the tightness of the safety bound for
computational efficiency while correcting for the tail
events (i.e., the probability mass excluded by the
confidence level).

5) A thorough evaluation of the whole framework and its
key constituent components (see Section VII). Besides
robot deployments on challenging real-world environ-
ments, this assessment, in contrast to [55], now includes
rigorous analysis on different scenarios and dynamical
systems.

Our contributed advancements allow for faster online
motion planning and more efficient evaluation of uncertainties.
Consequently, the framework now can compute probabilis-
tically safe navigation actions online for high-dimensional
systems and more challenging unknown environments.

III. PROBLEM FORMULATION

In this work, the focus is on the challenging problem of safe
autonomous navigation in unexplored environments. To start
with, the robotic system must be capable of perceiving and
creating a consistent representation of the surroundings despite
its potentially uncertain localization. The perceived surround-
ings must be encoded efficiently such that the robot can
exploit them online for planning purposes. Besides the map-
ping requirements, the process of planning navigation actions
toward the desired goal is challenging by itself. The robot must
not only account for its limited and uncertain maneuverability
but also for the evolving awareness and uncertainty of the

TABLE I

SUMMARY OF THE NOMENCLATURE IN THIS ARTICLE

surroundings as the robot moves. This section provides formal
definitions for these uncertainties and the problem of safe
autonomous navigation in unexplored environments. Table I
summarizes the nomenclature used through this article.

A. Motion Uncertainty and Constraints

Consider a mobile robot that operates in a workspace
W ⊂ R

nw , where nw ∈ {2, 3}, under motion uncertainty.
The uncertainty in the robot’s motion can be due to many
reasons, e.g., unmodelled dynamics or noise in actuation,
and can be described in several ways. In this work, inspired
by [8], [26], [40], and [52], the evolution of the uncertain
robotic system is assumed to follow a Gaussian process. That
is, the robot state xk at every time step k is defined by a
Gaussian distribution

xk ∼ bk = N �
x̂k, �xk

�
(1)

where bk is referred to as the belief of xk and is fully defined
by mean x̂k and covariance �xk . The set of all beliefs is called
the belief space and denoted by B. Intuitively, B is an uncertain
representation of the state space X . Mean x̂ ∈ X ⊆ R

nx is the
nominal state of the robot and evolves according to

x̂k+1 = f (x̂k, uk) (2)

where f : X × U → X captures the nominal (known)
dynamics of the robot, and uk ∈ U ⊂ R

nu is the system’s con-
trol input. Covariance �xk ∈ R

nx×nx
>0 describes the uncertainty
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around the nominal robot state and evolves according to

�xk+1 = g
�
�xk , uk

�
(3)

where g : Rnx×nx × U → R
nx×nx
>0 is the covariance function.

Examples of Gaussian processes for robots with unicycle and
fixed-wing dynamics are provided in Appendix A. Methods
for modeling robots with (partially) unknown dynamics as
Gaussian processes are discussed in [34] and [52].

B. Environment Uncertainty

Some applications in robotics lack complete awareness of
the environment, either because there is no information about
the surroundings or due to the presence of dynamic elements
in the workspace. This work scopes the mapping requirements
to undiscovered static environments. In order to reveal the
obstacles in the environment, the robot is equipped with
exteroceptive sensors such that it can autonomously explore
the surroundings as it moves, i.e., to integrate into the map
the obstacles when they are inside the sensor’s detection
range. Importantly, most sensors uniquely detect points on the
boundary of a nearby obstacle.

This work assumes no uncertainty in the robot local observa-
tions denoted by hk . To transform this local observation from
the robot frame to the global frame, let hk ∼ N (ĥk, 0). Bear-
ing in mind that the robot’s location might be uncertain with
respect to the global frame bk ∼ N (x̂k, �xk ), the observed
point is represented in the global frame as

bO = bk ⊕ hk (4)

= N �
x̂k ⊕ ĥk, J1⊕�xk JT

1⊕
�

(5)

where bO ∼ N (x̂O, �xO ) is the result of the Gaussian
relationships via a compounding operator ⊕ explained
in Appendix B. From these uncertain points xO , the robot con-
structs a probabilistic map M. Then, the obstacle occupancy
probability for point x ∈ X denoted by FX (x) is the sum of
the normally distributed densities in M. The cumulative sum
over all space X is called cumulative map and denoted by FX .

C. Probabilistic Safety Guarantees

The system’s and the environment’s uncertainty are jointly
considered to guarantee the vehicle’s safety. More specifically,
the probability of the system being in collision with an obstacle
in the environment at time k is characterized by

pcollision(bk, M) =
�
X

bk(x) FX (x) dx

=
�
X
N �

x | x̂k, �xk

�
FX (x) dx (6)

where FX (x) is the cumulative obstacle occupancy probability,
as introduced in Section III-B. Then, given a minimum prob-
ability of safety psafe, we require 1− pcollision(b, M) ≥ psafe

for every belief b on the trajectory in order to probabilistically
guarantee the robot’s safety.

Fig. 1. Framework for online mapping and motion planning under kinematic
and uncertainty constraints.

D. Planning Problem

Therefore, the planning problem considered in this work
seeks a dynamically feasible trajectory in the belief space B,
which is probabilistically safe. Formally, let Bgoal ⊂ B denote
the set of all belief states that correspond to the desired goal
region Xgoal in the environment as

Bgoal =
�

b ∈ B
�����
�
Xgoal

b(x) dx ≥ pgoal

�
(7)

where pgoal is the minimum probability that a belief must
satisfy for being considered to be in the goal region.
Then, the constrained planning problem is to compute a
sequence of controls u0,u1, . . . ,uT−1 ∈ U that result in
a dynamically feasible trajectory ξ : [0, T ] → B for the
robotic system described by (1), (2), and (3) such that
ξ(0) = bstart ∈ B, i.e., the system state at the beginning of the
mission, ξ(T ) ∈ Bgoal, and 1− pcollision(ξ(t), M) ≥ psafe for
all t ∈ [0, T ].

IV. FRAMEWORK FOR ONLINE NAVIGATION

This article presents a framework that endows a robotic sys-
tem with the capability of safely navigating through unknown
environments. This is achieved by means of online map-
ping and online motion planning of trajectories that meet
motion and probabilistic constraints. The framework, depicted
in Fig. 1, is threefold: 1) a mapping module that incrementally
builds an uncertainty-aware map; 2) a planning module that
continuously computes a safe and feasible trajectory toward
the goal; and 3) a framework manager that coordinates the
overall framework’s execution. The remainder of this section
describes the manager’s strategy to control the interaction
between the two core modules of the framework, i.e., the
mapping (see Section V) and the planning (see Section VI).
Note that, although the framework’s description focuses on the
online navigation challenge, the proposed online scheduling
intrinsically solves the off-line motion planning problem.

The framework manager coordinates the mapping
(MAPPER) and planning (PLANNER) modules according
to the pipeline presented in Algorithm 1. This is, given the
desired goal region Bgoal and the required probabilistic safety
guarantees psafe, the manager conducts an iterative process
until the system reaches the predefined goal region (line 7).
An iteration consists of solving an updated version of the
underlying motion planning problem that accounts for any
alteration to the system’s state and environment awareness.
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Each iteration starts by predicting a planning frame R	 that
corresponds to the robot state at the time the current itera-
tion solution will be available (line 8). Calculating a suit-
able planning frame is essential to guarantee the continuity
and feasibility between consecutive plans. As the framework
iterates each �TMP and it has full knowledge of the plan
in execution ongoing_traj, calculating a planning frame that
is suitable after �TMP is formulated as a state prediction
problem. This is, given the current robot state xW

R and the
set of subsequent controls u involved in the execution of
ongoing_traj, xW

R	 is computed by integrating (2) and (3) for
the time-horizon �TMP. Then, the manager retrieves, from the
MAPPER, the current environment awareness as a cumulative
map F R	

X relative to R	 (line 9). Both the predicted planning
frame R	 and the updated cumulative map F R	

X are provided
to the PLANNER (lines 10 and 11).

Before proceeding to solve the updated planning problem,
the current plan in execution ongoing_traj, if any, is prob-
abilistically checked for collision according to the current
uncertainty-aware map F R	

X . In the event of ongoing_traj not
being any longer valid, the framework manager dispatches to
the robot the segment ongoing_traj of ongoing_traj that is still
safe (lines 12 and 13). This approach prevents the vehicle from
stopping every time that a trajectory gets partially invalidated
while ensuring its safety.

Finally, the PLANNER attempts to solve the planning
problem by growing a new tree in B for a specific amount of
time �TMP (line 14). The PLANNER tries to find a near-optimal
trajectory that meets kinematic and probabilistic constraints
within the allocated time budget �TMP and returns a new_traj
if one is found (line 15). The newly found new_traj is uniquely
dispatched to the robot when it fulfills the selection criteria
defined in satisfiesCriteria() (sline 16–18). This
work bases the selection criteria satisfiesCriteria()
on the length of the trajectory; new_traj is dispatched
if length(new_traj) ≤ length(ongoing_traj), where
length(ongoing_traj) = ∞ if ongoing_traj is partially
invalidated, i.e., it does not reach the goal region Bgoal.

Note that the computations in lines 8 and 9 are low demand-
ing, and they can be scheduled in parallel to the main execution
of the framework’s pipeline. Therefore, the overall iteration
rate of the framework is 1/�TMP, as solving the planning
problem (line 14) is the unique process of the framework that
requires a nonnegligible amount of time.

Given the nature of the problem of navigation in unknown
environments, it may be possible that a feasible and prob-
abilistically safe trajectory toward the goal region does not
exist. Therefore, the framework is endowed with a contingency
plan that attempts to return the vehicle nearby the deployment
location bstart. This contingency plan gets activated when the
planner has not been able to find a solution in the last
ncp consecutive iterations, where ncp is a user-defined safety
value. In the event of the contingency plan getting activated,
the MANAGER is reinitialized with the new planning problem.
Note that, if the environmental awareness is highly uncertain,
there might not exist a trajectory toward the new goal region.
In this situation, not considering the previous map information
for planning would allow the vehicle to move safely toward

Algorithm 1 MANAGER(Bgoal, psafe)

1 Input:
2 Bgoal: Goal region
3 psafe: Required probabilistic safety guarantees
4 begin
5 ongoing_traj← ∅

6 PLANNER.loadProblem(Bgoal, psafe)
7 while not isGoalAchieved() do

/* Predict planning frame */
8 R	 ← pedictFrame(ongoing_traj)

/* Retrieve cumulative map */
9 F R	

X ← MAPPER.getMap(R	)

/* Update planning problem */
10 PLANNER.setNewFrame(R	)
11 PLANNER.updateMap(F R	

X )

/* Check ongoing plan */
12 if not PLANNER.isValid(ongoing_traj) then
13 dispatchPath(ongoing_traj)

/* Solve planning problem */
14 PLANNER.solve(�TMP)

/* Dispatch best valid plan */
15 new_traj ← planner.getSolution()
16 if satisfiesCriteria(new_traj) then
17 ongoing_traj ← new_traj
18 dispatchPath(ongoing_traj)

the deployment location. In case no feasible motion plan is
found to return to the deployment location, an emergency
maneuver should be performed, e.g., coming to a complete
stop for ground vehicles, going to the water surface for AUVs,
and immediate landing for UAVs. Alternatively, one might
consider ensuring the existence of a contingency plan at any
time as in [22], but doing so under uncertainties is not trivial.

V. INCREMENTALLY MAPPING UNKNOWN

ENVIRONMENTS VIA LOCAL MAPS

Incrementally exploring the environment with a location-
uncertain system leads to an uncertain representation of the
surroundings. Under these conditions, obtaining a consistent
and reliable representation of the entire environment is a chal-
lenging task commonly addressed with probabilistic inference
approaches. These algorithms rely on gathering data from
which distinctive features (landmarks) can be extracted and
used to bound the uncertainty of the environment representa-
tion and system localization. Nonetheless, even for scenarios
rich in features, there are always some residual uncertainties.
Moreover, onboard perception sensors usually suffer from
noises, which compromises the accuracy of the environment
representation. All these issues motivate the need for an
environment representation that jointly explains captures the
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Fig. 2. Online mapping of the environment suitable for motion planning under uncertainty. (a) As the robot navigates through an unknown environment,
(b) it builds a probabilistic map M, which represents the surroundings as a set of local maps. Each local map is uncertain [magenta ellipses in (a)] with
respect to the global frame. (c) and (d) Each local map is encoded as an occupancy grid map, which is built from a set of sequential sensor scans over a
finite horizon time. (e) All local maps are fused into a cumulative map representation F R	

X taking into account the relative uncertainty of each local map with
respect to the predicted planning frame R	. (a) Environment. (b) Probabilistic map M. (c) Semantic scene understanding. (d) Probabilistic scene understanding.
(e) Cumulative map F R	

X . Note that our mapping suits 3-D scenes too and illustrations in 2-D for visualization purposes only.

uncertainty on the true obstacle’s localization and the detection
confidence according to the sensor model while being suitable
for motion planning. In this work, such a representation is
referred to as a probabilistic map.

This section details the undertaken mapping approach,
which builds a set of local occupancy submaps whose base
poses are uncertain with respect to a global frame (see
Section V-A). Each submap is an occupancy grid map,
which provides an efficient strategy to encode the incremental
environment awareness (see Section V-B) and retrieve infor-
mation about the environment occupancy (see Section V-C
and Section V-D). This overall mapping strategy has proven
to be suitable for real-time robotic mapping and planning
applications in our previous work [55] and, despite being out
of the scope of this manuscript, has also shown to be effective
for online mapping and localization applications [29].

A. Global Map as a Set of Local Submaps

There are different alternatives to represent the incremental
knowledge of an environment, e.g., [3], [53], [66], [77]. The
framework presented in this manuscript encodes the environ-
ment M via a set of n local stochastic submaps [60], [61]
due to its demonstrated efficiency on dealing with applica-
tions requiring real-time robotic localization, mapping, and
planning [29], [55]. Formally, the local submaps method is
defined as

M = {LM1, . . . ,LMn} (8)

LMi =
�{v1, . . . , vm}, x̂W

LMi
, �W

LMi

	
(9)

where each local submap LMi contains a set of sequential
sensor scans over a finite horizon time �TLM. Within this

time period, all point coordinates v of the sensed environment
are registered into the active submap LMn . The coordinate
frame of LMn is defined in a global frame W by its
estimated state xW

LMn
∼ N (x̂W

LMn
,�W

LMn
). Importantly, such

local registration assumes null uncertainty on observations,
i.e., �LMn

v = 0 ∀ v ∈ LMn. A new local submap LMn+1 is
initiated every �TLM such that the accumulated localization
error within the active local submap LMn is low. In other
words, the local mapping time horizon�TLM must be defined
such that it always maintains the robot pose uncertainty �LMn

R
within the active local map LMn negligible.

The coordinate system of a new local submap LMn+1

is defined at the robot state estimate when LMn+1 is initi-
ated, i.e., xW

LMn+1
= xW

R . It is assumed that the robot starts
building LMn+1 as soon as it finishes the LMn . Therefore,
the robot state at the end of LMn (defined as the last global
robot state when building LMn) is the same as the global
robot start state of LMn+1. For simplicity, the origin of the
global map W is chosen to be the same as the coordinate
frame of the first local submap LM1, i.e., the robot’s initial
state.

Fig. 2 illustrates the concept of using local submaps to
map the incremental knowledge about the environment. Par-
ticularly, the figure depicts a robot that has been navigating
in an unknown environment, while, in the meantime, it has
been encoding the perceived surrounding environment in a
total of eight local submaps. Noteworthy, the example assumes
open-loop navigation, i.e., without localization updates. There-
fore, the first defined submaps are less uncertain with respect
to the global frame W than those built at a later stage. This
fact corresponds to unbounded growth of the uncertainty on
the system localization estimate.
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B. Local Submap as Occupancy Grid Map

The assumption of null uncertainty on the robot pose within
each local submap, also referred to as known robot poses,
enables the representation of each local submap as an occu-
pancy grid map. The chosen alternative to efficiently encode
an occupancy grip map is via Octomaps [30]. Octomaps
permits fusing range-based data into a probabilistic voxel
representation, which generates an occupancy grid map with
adjustable resolution. Octomaps store the information in an
octree data structure, which provides fast access time while,
at the same time, optimizing memory usage. All these desir-
able features make the undertaken mapping strategy ideal for
online mapping and planning.

The probabilistic sensor fusion within an occupancy grid
map is performed as an Octomap [30], [50]. This is, the prob-
ability P(v|h1:k) of a cell v to be occupied given a set of
sensor measurements h1:k is estimated as

P(v|h1:k) =



1+ 1− P(v|hk)

P(v|hk)

1− P(v|h1:k−1)

P(v|h1:k−1)

1− P(v)
P(v)

�−1

(10)

where P(v|hk) is the inverse sensor model characterizing the
sensor used for mapping and P(v|h1:k−1) is the preceding
estimate given all historical measurements. Using log-odds
notation

L(·) = log



P(·)

1− P(·)
�

(11)

and under the common assumption of a uniform (noninforma-
tive) prior, i.e., P(v) = 0.5, (10) is simplified to

L(v|h1:k) = L(v|h1:k−1)+ L(v|hk). (12)

To change the state of a node v, (12) requires as many
observations as the ones used to define its current state. This
overconfidence in the map is addressed as in [79] by using
a clamping policy to ensure that the confidence in the map
remains bounded

L(v|h1:k) = [L(v|h1:k)]lmax
lmin

= max(min(L(v|h1:k), lmax), lmin) (13)

where lmin and lmax denote lower and upper bounds on log-odds
values. As a consequence, the model of the environment
remains updatable [30].

The measurement update rules in (12) and (13) can be used
with any kind of distance sensor, as long as the inverse sensor
model is available. Our framework employs the extended
beam-based inverse sensor model depicted in Fig. 2(c). This
model assumes that: 1) the line of sight between the sensor
origin and the endpoint of measurement does not contain
any obstacle (free space); 2) endpoints correspond to obstacle
surfaces (occupied space); and 3) the line continuing beyond
the endpoint until the maximum sensor range is likely to be
occupied by the observed obstacle (occluded space). Then,
the extended ray-casting operation to update each voxel v from
the sensor origin to the maximum sensor range is performed

using the following log-odds inverse sensor model:

L(v|ht) =

⎧⎪⎨
⎪⎩

lfree, if v is traversed by the beam

locc, if v is hit by the beam

locl, if v is between the hit and sensor range
(14)

where lfree and locc are constants determined according to the
sensor model, and locl penalizes occluded zones according to
the decaying function

locl = γ d locc (15)

where, for a decay rate γ ∈ [0, 1], locl decreases γ times for
each unit of d , which is the distance from the measurement
endpoint. This corresponds to locl = locc for d = 0, i.e., in the
hit point, and to locl → 0, i.e., to a noninformative P(v) = 0.5,
as d →∞. The maximum expand of the occluded region is
as far as the sensor range.

C. Map Fusion and Single Point Query

An occupancy query to the current probabilistic map M is
done by converting the given query into multiple local queries.
The occupancy probability values at each local submap can be
fused together by means of the log-odds update rule in (12)
with the corresponding clamping operation in (13). These
operations apply because combining measurements from mul-
tiple local submaps is a similar operation as combining mul-
tiple measurement updates in a single global map [29].

Without loss of generality, assume that an occupancy query
at position x̂Y is performed from an uncertain coordinate
frame Y with known pose estimate xW

Y ∼ N (x̂W
Y ,�

W
Y ). This

global query corresponds to the multiple local log-odds occu-
pancy queries

L(x̂Y ) =
n�

i=1

�
L1:i−1(x̂Y )+ Li (xLMi )

�lmax

lmin
(16)

where L1:i−1(x̂Y ) is the accumulative log-odd estimate from
the precedent i − 1 local submaps with L1:i−1(x̂Y ) = 0 for
i = 1, Li (·) implies that the log-odds lookup is done in
the local submap LMi , and xLMi ∼ N (x̂LMi ,�LMi

Y ) cor-
responds to x̂Y in local coordinates. xLMi is calculated via
the linear estimation of known spatial relationships

xLMi = �xW
LMi
⊕ �

xW
Y ⊕ xY

�
(17)

where ⊕ denotes the compounding operation and � corre-
sponds to its inverse relation, as commonly used to simplify
notation when calculating spatial transformations (see Appen-
dix B for a brief introduction and [70] for a full review).

Given that x̂Y in local coordinates follows a probabilistic
distribution, the local occupancy query Li (xLMi ) is

Pi (xLMi ) =
�

v∈LMi

P(v) N
�

v
�� x̂LMi ,�LMi

Y

�
(18)

where v represents the set of voxels in submap LMi and
Pi (xLMi ) can be described in log-odds Li(xLMi ) notation
via the log-odds transform.
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D. Computation of the Cumulative Map F R	
X

Section V-C provides a strategy to query the occupancy
probability P(x) of a single point coordinate x ∈ X . Our
previous work [55] demonstrated that this approach is suitable
for the requirements of an online planner under probabilistic
constraints. However, bearing in mind that each planning
cycle requires numerous queries of P(x) involving differ-
ent x, the overall planner performance can be enhanced by
computing the map fusion before the planning time budget
starts.

The probabilistic map fusion over all state space X is
described by the cumulative distribution FX over the local
density distributions of the sensed environment.3 In particular,
for the online planning problem, it is of interest to fuse
the map information with respect to the predicted planning
frame R	 such that the cumulative map F R	

X reflects the relative
uncertainty between the current environmental awareness and
the planning frame R	. Fig. 2(e) illustrates the extraction
of F R	

X from a set of local maps. Computing F R	
X implies that

the computational requirements of retrieving P(xR	) during
planning time are reduced to those of a lookup table in the
cumulative map F R	

X .
Subject to the log-odds transformation, F R	

X is computed by
rewriting (16) and (18) as

L(X̂ R	) =
n�

i=1

�
L1:i−1(X̂ R	)+ Li (XLMi )

�lmax

lmin

(19)

where L1:i−1(X̂ R	) is the accumulative log-odd estimate from
the precedent i − 1 local submaps with L1:i−1(X̂ R	) = 0 for
i = 1, Li (·) is the log-odds lookup done in the local occupancy
submap LMi , and XLMi ∼ N (X̂LMi ,�LMi

R	 ) corresponds to
the state space X̂ R	 in local coordinates defined as

XLMi = �XW
LMi
⊕

�
XW

R	 ⊕ X R	
�
. (20)

Then, the occupancy probability Li (XLMi ) at LMi for all
x ∈ XLMi is computed as

Pi(XLMi ) =
�

v∈LMi

P(v) N
�

v | x̂,�LMi
R	

�
∀ x ∈ XLMi

= LMi ⊗Kα

�
�LMi

R	

�
(21)

where v represents the set of voxels in submap LMi and
Kα(·) with confidence level α = 1 is a kernel representing
the discrete version of a Gaussian distribution over the entire
span of the local submap LMi (see Appendix C). ⊗ is
the correlation operator, i.e., a sliding inner product, and
Pi (XLMi ) can be described in log-odds Li(XLMi ) via the
log-odds transform.

Interestingly, the underlying computation of F R	
X is the cor-

relation operator ⊗, a common technique for which there exist
efficient implementations. On top of that, the independence
between local submaps allows parallelizing (21) for each LMi

in different threads. Ideally, this process could be scheduled

3Only those voxels describing the known environment, i.e., free, occluded,
and occupied space, are considered in the computation of FX . Considering
the unknown space with its P(v) = 0.5 in the computations would lead to a
cumulative map with misleadingly overestimating occupancy probabilities.

such that F R	
X is ready before the planning time budget

starts.

VI. MULTILAYERED MOTION PLANNING UNDER

ENVIRONMENT AND MOTION UNCERTAINTY

The planning problem defined in Section III-D has three
main requirements: 1) to consider the vehicle’s motion con-
straints; 2) to validate probabilistic constraints in face of uncer-
tainties; and 3) to meet online computation limitations. Our
previous approach successfully addressed all these require-
ments formulating a single-layered sampling-based planning
strategy in the belief space [55]. The planner in question:
1) samples feasible states in the system’s state space and
2) extends and validates the tree of motions in the belief
space. This approach proved to be suitable for solving online
motion planning problems in challenging real-world scenarios,
but its applicability was limited to low-dimensional planning
problems given the huge search space and the computational
burden of all considered constraints.

As discussed in Section II, multilayered planning strate-
gies enable online planning in high-dimensional spaces. This
motivates the use of such an idea to extend our framework’s
capabilities to suit the planning requirements of a larger group
of robotic systems and environments. Principally, the extended
planning strategy employs a multilayered planning scheme
(see Section VI-A) to overcome the aforementioned scalability
issues. Such a strategy allows deferring the computation of
kinematic constraints (see Section VI-B) and probabilistic con-
straints (see Section VI-C) after identifying some subregions
of the system’s state space that potentially contain a solution
to the planning problem.

A. Multilayered Motion Planning

The capabilities of our previous planner (hereinafter referred
to as the constrained planner) are extended to deal with
problems of higher dimensionality by means of a multilayered
planning strategy. As schematized in Fig. 3, the proposed
strategy adopts a sequential two-layered planning scheme con-
sisting of a lead planner and the constrained planner. The lead
planner seeks to determine a subregion X 	 ⊂ X of the entire
state space that eases and, consequently, speeds up the search
of the final trajectory ξ , which accounts for all considered
constraints (see Section III-D). To this aim, the multilayered
scheme is designed as follows.

1) Lead Planner: It employs the RRT* to rapidly find
a path in the workspace W . The computed lead path
is a nearly optimal geometric solution ξ 	 ∈W used
to determine X 	 via the lifting operator lift :W → X
detailed in the following.

2) Constrained Planner: It leverages the delimited search
space X 	 and the SST in [55] to rapidly compute the final
solution ξ , which meets kinodynamic (see Section VI-B)
and probabilistic safety constraints (see Section VI-C).

Although the planners within the multilayered planning
scheme could be different, the selection above suits the online
requirements of our framework. This is, the framework’s over-
all planning time �TMP is divided as �TMP = �TL +�TC ,
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Fig. 3. (a) Multilayered motion planning framework: (b) lead planner—RRT* shown in blue computes a geometric lead ξ 	 (red path) to guide the search
space X 	 of (c) constrained planner—SST shown in magenta. The resulting trajectory ξ with its uncertainty (yellow funnel) satisfies kinodynamic and
probabilistic safety constraints.

where �TL and �TC are the time budgets allocated to the
lead and constrained planners, respectively. Then, given our
selection of planners, the assignment of time budgets allows
�TL � �TC as the lead planner is adept at providing quickly
a suitable lead path such that the constrained planner has at
its disposal most of the time budget �TL ≈ �TMP to refine
the final trajectory, which accounts for all the considered
constraints.

Given our selection of planners and their operational space,
the designed multilayered planning scheme requires the lifting
lift :W → X . A common lift(·) strategy is to define X 	 as a
tube around ξ 	 with radius d for the geometric components
of the state space, whereas the nongeometric components are
left unbounded, e.g., [56], [57], [76]. The performance of this
approach, however, is susceptible to the parametrization of d;
tight search spaces, i.e., small radius d , promote final solutions
with lower cost than those obtained with bigger radius d .
On top of that, relying on a fixed d requires hand-tuning such
parameter to ensure that the final solution lies within X 	; if
X 	 does not contain the final solution, the planner will lack
probabilistic completeness. Adjusting d to ensure probabilistic
completeness would prove to be a cumbersome task since the
type of environment and planning constraints, among many
other factors, should be taken into account.

Different from other multilayered planning schemes in the
literature, ours uses a method of information interchange
between planners that maintains the completeness and asymp-
totic optimality properties of the constrained planner when
used in a standalone fashion [55]. This work builds on the
idea of sampling around a lead path to present alternative def-
initions of X 	 via the lift(·) operator. In particular, the designed
MLP exploits a mixture of samplers to trade off the low-cost
trajectories found when sampling around a lead path and the
probabilistic completeness of uniform sampling. This article
proposes two mixtures of sampling techniques.

1) Bias to Rigid X 	: Given a fixed radius d , the planner
samples uniformly in X 	 with probability p and uni-
formly over the space with probability 1− p.

2) Adaptive X 	: The planner adjusts d within the range of
a strictly guided sampling to a uniform search. Adjust-
ing d can be conducted via some heuristics or as an
optimization problem subject to a cost function.

The performance of both approaches in comparison to a
rigid X 	 strategy is discussed in Section VII-B. Noteworthy,

Fig. 4. Probabilistic completeness of the proposed multilayered planning
scheme with adaptive lead, which (a) and (b) promotes finding the final
solution in the neighborhood of the asymptotically optimal lead ξ 	 (red),
while it (c) and (d) preserves completeness guarantees even when the lead
ξ 	 transverses a corridor, which does not offer a probabilistic safe passage.
(a) Lead planner—RRT*. (b) Constrained planner–SST. (c) Lead planner—
RRT*. (d) Constrained planner–SST.

any of the two presented mixtures of sampling strategies
ensures probabilistic completeness of the overall multilayered
scheme. As an extreme example, let us consider the scenario
depicted in Fig. 4(c) and (d), where the lead planner finds
an asymptotically optimal solution through the farthest (most
left) corridor. However, according to the probabilistic safety
constraints defined in Section VI-C, such a corridor does
not offer any safe passage. Despite the initial bias toward
this unsuitable X 	, a mixture of sampling strategies, as the
ones introduced in this section, permits finding a solution if
one exists provided enough time, thus ensuring probabilistic
completeness guarantees.

B. Planning Under Motion Constraints

The system’s motion capabilities are considered in the
constrained planner by expanding a tree with the system’s
motion model (2) and (3). In particular, the constrained plan-
ner employs the SST algorithm [41] to build a tree in the
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Fig. 5. Tree expansion under motion and probabilistic constraints. The state
beliefs (nodes) of the tree are obtained by considering the motion capabilities.
The ellipses surrounding the states represent their uncertainty, where green
corresponds to those states satisfying the probabilistic safety constraints and
red corresponds to those that do not.

belief space with state beliefs x ∼ b = N (x̂, �x) as nodes.
The tree expansion is based on two procedures: sample(·)
and extend(·), which are conducted in the state and belief
space, respectively [see Fig. 3(a)]. That is, sample(·) draws
a random state xrand ∈ X 	, where X 	 is a subregion of X
as defined in Section VI-A. The planner then selects a node
from the tree to attempt connecting to the randomly sampled
state xrand. Such a selection is conducted via nearest neighbor
in the state space using the Euclidean metric. The selected
node xnear has a probabilistic representation in the belief space,
i.e., xnear is better described as xnear ∼ bnear = N (x̂near, �xnear ).
Then, from this belief, the extend(·) procedure expands the
tree in the belief space by evolving the system’s motion
model (2) and (3) with a randomly sampled control input
u ∈ U . This expansion is done for a random period of time
Tprop. Since the considered motion model includes the system’s
uncertainty, each obtained belief (tree node) corresponds to a
vehicle’s state with its associated uncertainty (see Fig. 5).

C. Planning Under Probabilistic Constraints

In our approach, the environmental awareness relative to
the current robot state is represented as a cumulative dis-
tribution on discrete support F R	

X (see Section V). As dis-
cussed previously, this representation of the environment
favors efficiency for online mapping and planning appli-
cations. In fact, we leverage such encoding to guarantee
1− pcollision(b, M) ≥ psafe for each belief b of the tree as

1−
�

pcollision,α

�
b, F R	

X
�
+ (1− α)

�
≥ psafe (22)

α − pcollision,α

�
b, F R	

X
�
≥ psafe (23)

where α is the confidence level on the computation of
pcollision,α(·) ∈ [0, α]. In other words, pcollision,α(·) does not
cover a (1 − α) span of the belief b over the state space.
Therefore, it is assumed that the remaining (1 − α) is in
collision to ensure probabilistic guarantees on the collision
checking decision. All in all, this method can be exploited to
trade a constant conservatism α in favor of performance.

Then, the probability of collision of a robot centered belief
bR	 ∼ N (b̂R	, �R	

b ) with the environment is calculated as

pcollision,α

�
bR	, F R	

X
�
=

�
Kα

�
�R	

b

�
, F R	

X
�

F

= vec
�
Kα

�
�R	

b

��T
vec

�
F R	
X

�
(24)

where �·, ·�F is the Frobenius inner product of the overlapping
region between the b̂R	-centered discrete state belief Kα(�

R	
bk
)

(see Appendix C) and the cumulative environment aware-
ness F R	

X . The Frobenius inner product is an efficient operation
via matrix vectorisation.

The overall proposed MLP leads to the exploration tree
depicted in Fig. 5, whose edges account for the vehicle’s
kinodynamic capabilities and whose nodes are probabilisti-
cally safe subject to the system’s localization, motion, and
environment uncertainties. In addition, the expansion of the
tree is also subject to states not leading to an inevitable
collision, i.e., a state must allow for the vehicle to make a
full stop before colliding.

VII. EXPERIMENTAL EVALUATION

The proposed framework has been implemented in ROS
and uses the facilities provided by Octomap [30] and the
OMPL [72] as the core building block of the proposed map-
ping and planning strategies, respectively. This implementation
is used to evaluate thoroughly the different proposed features
and the framework as a whole. This section reports the results
of such analysis in an incremental fashion. First, Section VII-A
presents a discussion on the capabilities of our framework’s
precedent version in simulated and real-world scenarios. Then,
Section VII-B and Section VII-C report the performance of the
key components of the newly proposed framework, i.e., the
multilayered scheme and the probabilistic collision checking.
The potential of these components is individually evaluated
against closely related state-of-the-art approaches. Finally,
in Section VII-D, the capabilities of the new framework are
demonstrated in a challenging scenario.

A. Navigation in Unknown 2-D Environments

An early version of the work presented in this article has
appeared before [55]. This consisted of a simpler framework
that evaluated all uncertainties on the fly (in contrast to the
proposed cumulative map encoding) while exploring the belief
space via a single-layered planner (in contrast to the proposed
multilayered guided exploration). As reported next, our prece-
dent work proved to be suitable for safe robot navigation,
but its computational requirements limited its applicability to
low-dimensional spaces.

The precedent framework has been deployed on the
Sparus II autonomous underwater vehicle (AUV) (see Fig. 6),
a nonholonomic torpedo-shaped vehicle with hovering
capabilities [10]. To meet the limitations of our precedent
work, the AUV is limited to operate at a constant depth,
i.e., in SE(2). Under these conditions, the motion model of
the Sparus II can be approximated by a unicycle system,
as detailed in Appendix A-A. The AUV is equipped with a
mechanical scanned imaging sonar (MSIS) to perceive the
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Fig. 6. Sparus II AUV, a nonholonomic vehicle.

surroundings and incrementally map the environment. We use
the default parameters in [30] of lfree = −0.4 (P(v) = 0.4),
locc = 0.85 (P(v) = 0.7), lmin = −2 (P(v) = 0.12), and
lmax = 3.5 (P(v) = 0.97). The decay rate in (15) is set
to γ = 0.8. The framework’s planning time is set to
�TMP = 1.5 s.

The test bed to evaluate the precedent framework consists
of two environments located in Sant Feliu de Guíxols (Spain):
1) breakwater structure that is composed of a series of concrete
blocks (14.5-m long × 12-m width), which are separated
by 4-m gaps [see Fig. 7(a) and (b)] and 2) rocky for-
mations that create an underwater canyon of 28-m long
[see Fig. 8(a) and (b)]. Using these environments, two exper-
iments are reported: 1) evaluation of the overall performance
of the framework in the underwater simulator (UWSim) [65]
and 2) validation of the framework in real in-water trials.
Experiment 1) is conducted in both environments, while exper-
iment 2) is uniquely tested in the real breakwater structure
scenario.

1) Simulated Trials: The framework is exhaustively tested
in the simulated breakwater structure and canyon scenarios
with 20 attempts per scenario (total of 40 trials).

In the breakwater structure, 19 start-to-goal queries are
successfully solved. Among those successful experiments,
the robot achieved the goal region Bgoal by crossing through
the first 1-m gap in 17 occasions, while, in the remaining
two trials, the planner found a less optimal trajectory through
the second 4-m passage. Fig. 7 depicts the mission execution
in one of those trials. In the initial part of the mission,
as the environment is completely undiscovered, the computed
trajectory goes straight to the goal [see Fig. 7(c)]. As soon as
the trajectory gets invalidated, a new collision-free trajectory
is computed [see Fig. 7(d)]. After some mapping–planning
iterations, the robot gets out of the 4-m gap between two
blocks [see Fig. 7(e)]. On average, the computed trajectories
toward the goal have a length of approximately 45.2 m and
are completed in 2	21		.

All 20 start-to-goal queries in the simulated canyon scenario
are successfully solved. The higher success rate with respect
to the previous experiment is given by the nature of the
environment; this scenario involves less abrupt maneuvers, and
the passage is wider, more than twice larger though. Fig. 8(d)
depicts one of the trajectories calculated through the narrow
passage of the canyon. On average, the calculated trajectories
toward the goal have a length of approximately 58.4 m and
are completed in 2	59		.

2) Real-World Trials: In-water experiments are conducted
in the real breakwater structure located in Sant Feliu de
Guíxols (Spain). Similar to the simulated trials, the robot is

required to solve a start-to-goal-query to reach a goal region
Bgoal located on the opposite side of the structure, which can
only be achieved by navigating through any of the narrow
4-m gaps. A total of five start-to-goal queries are attempted.
During those autonomous missions, the vehicle is connected
to a wireless access point buoy for monitoring purposes;
all components of the framework run on the robot to prove
the framework’s suitability for real-world robots with limited
onboard computation power.

In all five trials, the framework was successful in finding and
driving the Sparus II AUV toward the desired goal region Bgoal

through one of the narrow gaps in the breakwater structure.4

In four trials, the trajectory was found through the first
corridor, while, in the other trial, the robot went through
the second gap. Fig. 9 depicts Sparus II in one of those
in-water trials and the trajectory calculated toward the goal,
which has a length of 57.9 m and took 3	07		.

B. Multilayered Planning Scheme

The multilayered planning scheme presented in
Section VI-A is one of the key features allowing us to
overcome the scalability issues of our previous single-layered
planner [55]. Nonetheless, different from current multilayered
approaches that rely on rigid definitions of the search
space X 	 (rigid-X 	), this article explores two alternative
definitions of X 	 (biased-X 	 and adaptive-X 	) based on
a mixture of sampling experts. This section reports the
performance of these four strategies in the following belief
space planning problem: reaching the state between the blocks
in Fig. 10 while satisfying kinodynamic and probabilistic
safety constraints subject to a psafe = 0.99 minimum safety
probability bound. In this evaluation, the entire 3-D
environment is considered to be known in advance, and
the system dynamics are approximated as described in
Appendix A-B.

The four methods [single-layered planner (SLP) and MLP
with rigid-X 	, biased-X 	, and adaptive-X 	] are evaluated for
their ability to quickly find a solution and for the cost of the
resulting trajectory. The given total planning time budget is
set at �TMP = 1.5 s to emulate online planning requirements,
which is distributed as �TL = 0.3 s and �TC = 1.2 s for
the three multilayered schemes. With this setup, each plan-
ner attempts to solve the defined planning problem a total
of 2000 times.

Fig. 11 depicts the number of successfully solved trials and
the resulting trajectory length when considering a rigid-X 	 lead
with radius parameterisations d ∈ [0, 40] m. While d = 0 m
strictly limits the search space to those states on the lead path,
d = 40 m spans the search over all state space of the defined
planning problem, therefore resembling uniform sampling.
As it can be observed, small search spaces (small d) endanger
the planner’s ability to find a solution with limited time.
However, when a trajectory is found, the resulting cost is lower
than those solutions found with wider X 	 leads. Instead, these
wide search spaces (big d) make the planner struggle at solving

4A complete sea-trial through the real breakwater structure can be seen in
https://youtu.be/dTejsNqNC00
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Fig. 7. Incrementally mapping and planning in the undiscovered breakwater structure scenario. (c) Initial state of the Sparus II AUV in the unknown
environment with the initially found trajectory (red). (d) Anytime the trajectory is invalidated, a new collision-free trajectory is computed. (e) After some
iterations, the robot gets out of the 4-m gap between blocks. (a) Real breakwater. (b) Simulated breakwater. (c) Initial empty map. (d) Replanned trajectory.
(e) Final part of the survey.

Fig. 8. Incrementally mapping and planning in the undiscovered canyon
scenario. (a) Real canyon. (b) Simulated canyon. (c) Sparus II in the UWSim.
(d) Trajectory through the canyon.

most of the planning problems due to the search space extent.
In between these two extremes, a suitable parameterization
with d = 12 m (dashed lines) enables solving most of the
trials to the planning problem while providing a trajectory with
low length cost. Nevertheless, there are no efficient means of
defining the optimal d in advance since it is dependant on the
planning problem and environment characteristics. Therefore,
a rigid-X 	 strategy is not suitable for applications that lack
a fully prior informative representation of the environment.
Moreover, too restrictive guided searches can endanger the
completeness guarantees of the planner.

Fig. 9. Sparus II AUV guided by the proposed uncertainty-based framework
to solve a start-to-goal query in an undiscovered environment. (a) Sparus II
during the survey. (b) Trajectory toward the goal. (c) Trajectory through the
breakwater.

Fig. 10. Planning problem to assess the proposed multilayered scheme with
adaptive X 	 in comparison to other state-of-the-art approaches. The problem
is defined in the belief space for a SE(3) system operating in a 3-D workspace.
The minimum safety bound is set to psafe = 0.99.

The performance of those approaches that guarantee com-
pleteness, i.e., the SLP (green) and MLP with biased-X 	
(magenta) and adaptive-X 	 (orange) strategies is depicted
in Fig. 12. In particular, biased-X 	 is parametrized with radius
d = 12 m (best lead definition according to experimentation
in Fig. 11) and analyzed for different p ∈ [0, 1], whereas
adaptive-X 	 is defined, as shown in Fig. 13, i.e., with an
initial radius d = 3 m, which increases at a rate of 20 m/s.
Intuitively, adaptive-X 	 adjusts d from a strictly guided search
to uniform sampling, i.e., as t →∞, d →∞, i.e., X 	 → X .
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Fig. 11. Performance of the multilayer planning scheme with a rigid-X 	 ,
i.e., fixed radius around the geometric lead path.

Fig. 12. Performance of 1) our precedent SLP scheme (green) and the newly
proposed multilayered scheme when considering 2) a fixed lead with different
bias p (magenta, with best radius as found in Fig. 11), or 3) an adaptive lead,
as defined in Fig. 13 (orange).

Fig. 13. Two-layered planning scheme proposed in this work. After
computing a lead path, the constrained planner leverages an adaptive X 	
strategy to initially promote solutions with low cost (small d) before ensuring
probabilistic completeness by sampling the entire space (d →∞). Once a
solution is found, X 	 is fixed to let the constrained planner refine the found
solution until the completion of the planning time �TMP.

As it can be observed in Fig. 12, our precedent
single-layered planning scheme struggles at finding a solu-
tion on most of the trials; sampling uniformly the entire
high-dimensional belief space requires more time to find a

solution than the affordable time budget in online applica-
tions. Slightly worse performance is obtained when using a
multilayered scheme with biased-X 	 and p = 0 because it
still uses uniform sampling but with a portion of the total
planning time budget. However, as p→ 1, i.e., the planner is
more guided to the lead X 	 (whose optimal radius has been
determined empirically in Fig. 11), the performance of the
planner increases, in both the number of solved trials and
the length of the final solution. Interestingly, the proposed
adaptive sampling method endows the framework with a
competitive success rate and solution length to that obtained
when hand-defining the optimal radius.

C. Probabilistic Collision Checking

Sampling-based planners must be able to analyze the valid-
ity of a certain state accurately and efficiently. While accuracy
is relevant to avoid discarding regions of the state space,
which, in fact, are collision-free, efficiency allows for more
space exploration given a limited time budget. However,
accurate calculations jeopardize the ability to validate a state
rapidly, especially when accounting for uncertainty. In this
regard, chance constraints formulations [9], [46] offer an
interesting accuracy–efficiency tradeoff that has proven to be
suitable for many motion planning problems in the last decade
(see Section II). In fact, chance constraints formulations are
still the most widely used probabilistic collision checking
method among those state-of-the-art motion planning applica-
tions that account for uncertainty (e.g. [12], [71]). This moti-
vates the use of chance constraints as the baseline reference to
assess the proposed probabilistic collision checking algorithm.

The performance analysis comprises two chance constraints
formulations [9], [46] and our method with four different para-
metrizations α = {0.90, 0.95, 0.99, 0.999}. Each method is
assessed by its accuracy and efficiency. Accuracy is computed
as the ability to correctly detect that a state is valid

T P

T P + F N
∈ [0, 1] (25)

where a true positive (TP) indicates that a method’s outcome
matches the standard of truth,5 while a false negative (FN)
reflects that the method has mistakenly computed a state as
invalid. TP + FN is the total number of valid states according
to the standard of truth. Therefore, the higher the value of
the metric in (25), the more accurate the method is. For the
method’s efficiency, the analysis considers the average compu-
tation time to process the state validity.6 These two metrics are
analyzed subject to three variables relevant to motion planning
problems under uncertainty: 1) number of obstacles no in the
environment; 2) state uncertainty �x; and 3) minimum safety
probability bound psafe. With this setup, a problem instance
is parametrized by the triplet �no, σx , psafe�. In total, 847
instances are retrieved according to the parametrization span
and discretization defined in Table II.

Each problem instance is set up as follows. An environment
M is defined in R

3 with a total of no cubical obstacles.

5The standard of truth is approximated by numerical integration of (6).
6All experiments are performed with an Intel Core i7-7820X CPU at

3.60 GHz × 16 with optimized C++ implementation for all methods.
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Fig. 14. Evaluation of the accuracy (first row) and performance (second row) of the chance constraints formulations [9], [46] and the proposed probabilistic
collision checking method with α = {0.90, 0.95, 0.99, 0.999}. The accuracy and performance metrics are represented subject to the number of obstacles
no in the environment (first column), the state uncertainty �x = σ 2

x I3×3 (second column), and minimum safety probability bound psafe (third column). The
shadowed area corresponds to the variance of the metrics. In the interest of clarity, only one tenth of the variance is displayed.

TABLE II

PARAMETRIZATION FOR THE COMPARISON OF PROBABILISTIC
COLLISION CHECKING METHODS

In order to have a computational representation of the scene
suitable for each method, the environment is encoded as:
1) a set of linear constraints, where each cubical obstacle
is characterized by six constraints and 2) a global occu-
pancy grid map with 0.5-m resolution. Then, given the
known environment M, each probabilistic collision checking
method is required to validate, subject to psafe, 10 000 beliefs
b ∼ N (x̂, �x). The state estimate x̂ ∈ R

3 is uniformly sam-
pled over X , and the covariance �x ∈ R

3×3 is set diagonal,
i.e., �x = σ 2

x I3×3.

The data from the 847 problem instances are depicted
in Fig. 14. In the interest of clarity, the corresponding dis-
cussion is divided into three parts: accuracy, efficiency, and
suitability.

1) Accuracy Discussion: The accuracy analysis (first row
in Fig. 14) depicts that the number of obstacles in the
environment is the variable penalizing the methods’ accuracy
the most. This behavior is due to the methods’ conservatism,
whose relevance increases with the hardness of the motion
planning problem. In other words, the more conservative a
method is, the more negatively affected it is. On top of that,
the conservatism of chance constraints formulations [9], [46]
increases with the number of obstacles, whereas our approach
accounts for a constant conservatism α. This tighter bound
allows our method to outperform both chance constraints
formulations, even when choosing the most conservative para-
metrization α = 0.9. Higher values of α favor accuracy at the
cost of more computational expenses (see discussion below).
Importantly, the confidence level α of our method should
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Fig. 15. Effect of conservatism in the workspace. The over conservatism
of chance constraints formulations [9], [46] impedes finding a solution.
Our probabilistic collision checking with a fixed conservatism α suc-
ceeds on finding a trajectory that transverses the environment with a total
of 36 obstacles. (a) [9]. (b) [46]. (c) This work.

always be set such that α ≥ psafe; otherwise, the constraint
in (23) will never be satisfied since the analyzed part of the
space is not sufficient to ensure probabilistic safety. This fact
is visible in Fig. 14(c), where, for α < psafe, our method with
parametrization α is not used.

2) Efficiency Discussion: The efficiency analysis (second
row in Fig. 14) reflects the expected computational complexity
according to the theoretical grounds of each algorithm. That
is, chance constraints strategies are fast for scenarios with
few numbers of constraints, but their computational expenses
grow linearly as the number of constraints increases. This
linear correlation is influenced by the iterative nature of
chance constraints, which allows invalidating a state as soon as
1− pcollision(b, M) < psafe, i.e., without the need to check all
constraints. In other words, invalid states involve less time than
those which are valid. Consequently, harder planning prob-
lems, i.e., those involving more obstacles, higher uncertainties,
or more restrictive safety guarantees, show a mild deviation
toward lower computational time due to the presence of a
high number of invalid states. In contrast, the computational
requirements of our method are uniquely influenced by the
state uncertainty �z , which determines the number of voxels
to include in the calculations (see Section VI-C). This might
restrict the suitability of our approach to systems whose state
uncertainty is bounded over time (see discussion below).

3) Suitability Discussion: Robotic systems operating in
uncrowded environments, i.e., very few obstacles sparsely
distributed in the space, might find chance constraints to
be a suitable alternative. However, the accuracy and effi-
ciency of such approaches scale poorly as the complexity of
the motion planning problem increases, i.e., more crowded

Fig. 16. Urban Stairwell scenario of the DARPA Subterranean Chal-
lenge 2019. (a) Start-to-goal query that requires traversing (perspective view).
(b) 40-m-long tunnel and (c) narrow 25-m-long stairwell (entrance to narrow
stairwell). Planning through the stairwell is particularly challenging due to
the accumulated localization uncertainty.

environments or higher uncertainties. As it can be observed
in Fig. 15(a) and (b), this behavior endangers the ability of a
planner to find a trajectory through tight apertures or narrow
passages, even if one exists. If an alternative route toward
the goal exists, the resulting solution will be larger than
those trajectories found with less conservative approaches.
Moreover, chance constraints require the representation of
the environment to be a set of linear constraints, which
can be prohibitively expensive to compute online, espe-
cially in applications where the environment is incrementally
discovered.

In contrast, our approach trades a constant conservatism α
in favor of accuracy and performance. This allows dealing with
crowded environments efficiently while providing higher accu-
racy than chance constraints methods. Therefore, as depicted
in Fig. 15(c), our probabilistic collision checking method
enables a planner to find a solution through the tight corridors
where chance constraints methods are over conservatist. How-
ever, our method involves higher computation times for highly
uncertain states. This limitation might be relevant for systems
with unbounded uncertainty, but most robotic systems are
endowed with state estimation algorithms that keep the state
uncertainty bounded over time. Alternatively, the parameter α
can be adjusted to reduce the computation time while still
guaranteeing safeness.

On the whole, the presented probabilistic collision check-
ing approach proves to be a suitable strategy for a wide
range of motion planning problems under uncertainty, even
for those where chance constraints struggle at finding a
solution. Moreover, our method is suitable for applications
building a representation of the environment online, given that
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Fig. 17. Online mapping and planning through the Urban Stairwell scenario of the DARPA Subterranean Challenge 2019. (a) Initial state of the quadrotor
and (b) first mapping and planning iteration: geometric path (red), kinodynamic tree satisfying the probabilistic safety guarantees psafe = 0.95 (magenta),
and resulting trajectory (green) with the associated uncertainty propagation (yellow). (c) and (d) When the previous trajectory is partially invalidated due
to the incremental knowledge of the surroundings, the framework finds a new trajectory toward the goal. Note that the previously observed patches of the
environment become more uncertain (grayish areas) as the robot moves. (e) and (f) Entrance to the narrow stairwell is fully mapped and the framework
successfully plans through it despite the considerable accumulated uncertainty. (g), (h), and (i) As the robot moves into the stairwell, the framework continues
iterating over the mapping–planning process to ensure safe navigation until (j) reaching the goal region. (k) Incremental set of local maps composing the
discovered environment during the mission, and (l) corresponding cumulative map F R	

X (only showing those voxels P(v) > 0.4 for visualization purposes).

those usually exploit the efficient encoding of occupancy grid
maps.

D. Navigation in Unknown 3-D Environments

The proposed framework as a whole has been deployed on
a simulated quadrotor unmanned aerial vehicle (UAV) [49]
equipped with a 3-D Light Detection and Ranging (LIDAR).
The considered environment is the Urban Stairwell scenario
of the DARPA Subterranean Challenge 2019. This scenario is
challenging due to its extensive workspace of approximately
40 × 50 × 15 m and all narrow passages that must be
traversed to accomplish the requested start-to-goal motion
planning query. Fig. 16 illustrates the Urban Stairwell scenario
altogether with the defined start-to-goal query. In these exper-
iments, the quadrotor’s dynamics are approximated to those
of a fixed-wing plane, as described in Appendix A-B, and the
surroundings are mapped online from the sensor’s data at a
resolution of 0.2 m. The remaining parameters of the
mapping module are as those in the experiments reported
in Section VII-A. During the mission, no localization updates

are considered to test the planner in the most adversarial con-
ditions, i.e., large environmental and localization uncertainties.
The required probabilistic safety guarantees are psafe = 0.95,
and the planning time is �TMP = 1.5 s, distributed as
�TL = 0.3 s and �TC = 1.2 s.

Fig. 17 depicts some snapshots7 of the online mapping
and planning procedure in the Urban Stairwell scenario of
the DARPA Subterranean Challenge 2019. Noteworthy is
that the mesh of the Urban Stairwell scenario is composed
of a total of 108 512 faces. Although these faces could be
potentially approximated online from the sensor’s data and
used as linear constraints in [9] and [46], it would imply
checking for collision against 30 times more linear constraints
than those considered in Section VII-C, for which chance con-
straints methods already showed poor performance due to their
over conservatism. Instead, our framework efficiently deals
with such complex scenarios online. All in all, the proposed
framework demonstrates its suitability for probabilistically

7A complete trial through the Urban Stairwell scenario of the DARPA
Subterranean Challenge 2019 can be seen in https://youtu.be/I5X_QFKDpeI
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safe autonomous navigation in hostile and unknown
environments.

VIII. CONCLUSION

This article has presented a novel end-to-end framework
that probabilistically guarantees the robot’s safety when nav-
igating in unexplored environments. The proposed approach
is twofold: 1) incrementally maps the vehicle’s surround-
ings to build an uncertain representation of the environment
and 2) plans feasible trajectories (according to the robot’s
kinodynamic constraints) with probabilistic safety guarantees
(according to the uncertainties in the vehicle’s localization,
motion, and mapping). Our proposed approach includes a
multilayered planning strategy that enables for faster explo-
ration of the high-dimensional belief space while preserving
asymptotically optimal and completeness guarantees, and an
efficient evaluation and tighter bound on the computation
of the probability of collision than other uncertainty-aware
planners in the literature. Overall, the framework is capable
to deal with high-dimensional problems online while being
suitable for systems with limited onboard computation power.
Experimentation conducted in simulation shows some of the
theoretical qualities of this work. In addition, simulated and
real-world trials on an AUV and a quadrotor UAV demon-
strated the suitability of the framework to guarantee the
robot’s safety while navigating in unexplored environments
and dealing with real-robot constraints.

The framework is not restricted to the presented experimen-
tal evaluation or a specific platform. Any other mobile robot,
either terrestrial, maritime, or aerial system, can benefit from
this work. The modularity of the proposed framework allows
for multiple extensions and variations. Foremost, although the
experimental evaluation of the proposed framework has been
conducted considering the worst case scenario of open-loop
navigation without uncertainty update, the framework can
bear with periodic navigation updates. An interesting possible
feature that could be added to the framework is the use of the
truncation trick, i.e., to uniquely propagate the posterior of
the estimation, which is in no collision. However, truncating
the system’s belief involves approximating the posterior to a
Gaussian distribution. Another possible extension is leveraging
the multiresolution encoding of octomaps to check the com-
pliance of the safety guarantee at different resolutions. Formu-
lating this process as a multiresolution kernel checking could
speed up computations even further. Finally, the conducted
experimentation pointed out that automatically adjusting the
replanning period might be beneficial, as well as studying
more intelligent methods to leverage from the lead path or
even prior solutions.

APPENDIX A
KINEMATIC MODELS

A. Unicycle System

For the particular case of a torpedo-shaped autonomous
underwater vehicle (AUV) that operates at a constant
depth, i.e., in a 2-D workspace W = R

2, with configuration

space SE(2), the vehicle’s motion model can be approximated
by a (second-order) unicycle system

ẋ = v cos(ψ)

ẏ = v sin(ψ)

ψ̇ = ω
v̇ = a

where x and y correspond to the Cartesian coordinates of
the system with respect to a predefined reference frame,
ψ is the system’s orientation around the z-axis, v is the
vehicle’s forward velocity, ω is the vehicle’s turning rate, and
a is the acceleration. Thus, the system’s state is defined as
x = (x, y, ψ, v)T , and the system’s control input is defined
as u = (ω, a)T .

The model above approximates the AUV’s behavior, but,
in an underwater environment, it is subject to uncertain
external forces, e.g., current. To capture this uncertainty
in the dynamics, the vehicle motion is modeled as a
Gaussian process. The system’s motion model is first lin-
earized by using a dynamic feedback linearization controller
as presented in [15]. This technique: 1) transforms the
state of the closed-loop system to z = (x, y, ẋ, ẏ)T and
2) applies a proportional derivative (PD) controller on the
model to drive the system toward a desired state r. Then,
the differences between the real system and the linearized
closed-loop model can be approximated by a Gaussian dis-
tribution, and the closed-loop system can be represented as a
Gaussian process as in (2) and (3) with states z ∈ X = R

4,
and controls r ∈ U = X . Thus, the system state zk is best
described by its probability distribution in the belief space B,
i.e., bk = N (ẑk, �zk ). The evolution of the belief is then given
by the independent propagation of its mean and covariance as

ẑk+1 = Aẑk + Brk (26)

�zk+1 = A�zk AT +�w (27)

where A ∈ R
4×4 and B ∈ R

4×4 define the closed-loop lin-
earized equations of motion with the PD controller as in [15],
and �w is the covariance of the noise modeling the discrep-
ancies between (26) and the real system behavior.

B. Fixed-Wing System

Although more complex models could be used to represent
the motion capabilities of an AUV or a quadrotor unmanned
aerial vehicle (UAV) operating in a 3-D workspace W = R

3

with configuration space SE(3), both vehicle’s motion model
can be approximated by a fixed-wing system

ẋ = v cos(ψ) cos(θ)

ẏ = v sin(ψ) cos(θ)

ż = v sin(θ)

ψ̇ = ω
θ̇ = q

where x , y, and z correspond to the Cartesian coordinates
of the system with respect to a predefined reference frame,
ψ and θ , respectively, define the system’s orientation around
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the z-axis and the y-axis, v is the vehicle’s forward velocity,
and ω and q are the vehicle’s turning rate. Thus, the system’s
state is defined as x = (x, y, z, ψ, θ)T , and the system’s
control input is defined as u = (v, ω, q)T .

Similar to [26], the Gaussian process describing the UAV’s
motion model is learned from the simulated data. The training
data are extracted from the UAV’s simulator producing a varied
set of stationary excitations via the control input u. Relevant
control inputs are selected with the above system’s model to
maximize information on the output system’s state x.

Further discussion on methods for modeling robots
with (partially) unknown dynamics as Gaussian processes is
available in [34] and [52].

APPENDIX B
GAUSSIAN RELATIONSHIPS

This appendix summarizes the calculation of spatial rela-
tionships via the inverse and compound operators. These
elemental transformations can be composed to calculate more
complex spatial relationships. The interested reader may
wish to consult [70] for a more thorough explanation about
Gaussian relationships than the brief introduction that follows.

A. Inverse Relationship

The inverse relationship � represents the Gaussian relation-
ship x j

i as a function of xi
j as

x j
i := �xi

j . (28)

The first-order estimates of the mean and the covariance of
the compounding operation are

x̂ j
i ≈ �x̂i

j (29)

�x j
i
≈ J��xi

j
JT
� (30)

where

J� := ∂x j
i

∂xi
j

. (31)

B. Compound Relationship

The compounding operation ⊕ computes the Gaussian rela-
tionship xi

k from two spatial relationships xi
j and x j

k that are
arranged head-to-tail as

xi
k := xi

j ⊕ x j
k . (32)

The first-order estimates of the mean and the covariance of
the compounding operation are

x̂i
k ≈ x̂i

j ⊕ x̂ j
k (33)

�xi
k
≈ J⊕

⎡
⎣ �xi

j
��

xi
j ,x

j
k

�
��

x j
k ,x

i
j

� �x j
k

⎤
⎦JT
⊕ (34)

where J denotes the Jacobian, i.e., the matrix of partial
derivatives

J⊕ :=
∂xi

j ⊕ x j
k

∂
�

xi
j , x j

k

� = ∂xi
k

∂
�

xi
j , x j

k

� (35)

= �
J1⊕ J2⊕

� = �
∂xi

k

∂xi
j

∂xi
k

∂x j
k

�
. (36)

TABLE III

CRITICAL VALUES tα COMPUTED WITH (39) FOR DIFFERENT CONFIDENCE
LEVELS α AND GAUSSIAN DISTRIBUTION DIMENSIONALITIES

If the relationships xi
j and x j

k are independent,
i.e., �(xi

j ,x
j
k )
= 0, (34) can be rewritten as

�xi
k
≈ J1⊕�xi

j
JT

1⊕ + J2⊕�x j
k
JT

2⊕. (37)

APPENDIX C
α-KERNEL CONSTRUCTION

A Gaussian distribution N (x̂, �x) describing a state’s
belief b is continuous and extends over the entire belief space.
For the required computations, b is represented on a discrete
support Kα(�x), referred to as α-kernel, with resolution h and
size md at each dimension d as defined by

md = 2 ceil

�
tασd

h

�
+ 1 (38)

where the kernel size md is always odd, σd is the standard
deviation of �x along dimension d , and the critical value
tα is computed from the desired confidence level α ∈ [0, 1]
as

tα = −φ−1

�
1

2
(1− α)

�
(39)

where φ−1(·) denotes the quantile function of the
d-dimensional Gaussian normal distribution describing
the system’s belief b. Table III shows some critical values tα
according to commonly desirable confidence levels α for 1-D,
2-D, and 3-D Gaussian distributions.

Noteworthy is that the confidence level α involves a tradeoff
between computational performance and accuracy. On one
hand, α bounds the extend of the resulting Kα(·) over the belief
space, thus determining the total number of voxels in the ker-
nel and, consequently, having an impact on the computational
load of the probabilistic collision checking formulated in (23).
On the other hand, (23) introduces a constant conservatism α,
implying that α must be selected such that α > psafe. Other-
wise, the method will not find any valid state. This requirement
is implicit in the probabilistic collision checking formulated
in (23).

The value of each cell n ∈ Kα(�x) can be drawn from
the corresponding Gaussian distribution as hDN (x | x̂, �x),
where hD is a normalizing constant according to the kernel
resolution h and x is the point coordinate of n referenced at x̂.
For the particular case of a multivariate Gaussian N (x̂, �x)
with diagonal covariance matrix �x, its elements can be
written as �i j = σi

2
Ii j , where Ii j are the matrix elements

of the identity matrix (so Ii j = 0 if i �= j and Ii j = 1).
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Then, the multivariate Gaussian with diagonal �i j = σi
2
Ii j

factorizes into a product of univariate Gaussians as

N (x | x̂, �x) = hD
D�

i=1

N �
xi

�� x̂, σ 2
xi

�
(40)

where, for any arbitrary positive definite covariance
matrix �x, the resulting distribution is normalized. The
property in (40) provides a computationally efficient strategy
to build any d-dimensional kernel K(·) from 1-D Gaussian
signals.

It is worth mentioning that the kernel computation can be
conducted and stored offline for different kernel sizes. At the
running time, the planner would uniquely need to retrieve
in a lookup table fashion the required kernel. Although this
is an option to speed up the performance of the presented
probabilistic collision checking, the implementation in this
work computes the kernels online.
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