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The Poisson equation in density fitting for the Kohn-Sham
Coulomb problem
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A new density fitting approach to the Coulomb problem in Kohn–Sham and Hartree–Fock theory
is introduced. Almost all of the 2- and 3-index repulsion integrals become simple overlap-like
integrals, without approximation. The method is tested on numerous benchmark problems, which
reveal that accuracy equal to or better than standard density fitting can be achieved with the
evaluation of around a tenth of the number of Coulomb integrals. The scaling properties of the
method are illustrated for polyalanine helices up to Ala16. © 2001 American Institute of Physics.
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I. INTRODUCTION

A bottleneck in traditional implementations of Kohn
Sham~KS! theory1,2 is the evaluation of the electron repu
sion integrals~ERIs!, necessary for the evaluation of th
Coulomb contribution to the Fock matrix. The electron
density in KS and Hartree–Fock~HF! theory is expanded in
a product basis,

r~r !5(
mn

gmn xm~r !xn* ~r !, ~1!

so the Coulomb energy,

E5
1

2E dr1E dr2

r~r1!r~r2!

r 12
, ~2!

where r 12[ur12r2u, has to be constructed from 4-inde
ERIs. Formally, this is anO(N4) computational process, bu
since the density matrix is sparse, withO(N) nonzero ele-
ments for large molecules, the number of integrals to
evaluated actually scales asO(N2). Despite huge advance
in integral evaluation technology, these integrals are s
time-consuming to compute, and the Coulomb energy ev
ation is the main bottleneck for large calculations. It is po
sible, however, to avoid the evaluation of 4-index ERIs al
gether. This is achieved by the introduction of an auxilia
basis$JA% in which one constructs an approximate dens

ř~r !5(
A

dAJA~r !. ~3!

Then the Coulomb energy arising from the interaction oř
with itself only requires 2-index ERIs, and has the form

Ě5 1
2 dTJd, ~4!

where

a!Electronic mail: Fred.Manby@bristol.ac.uk
b!Electronic mail: P.J.Knowles@bham.ac.uk
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JAB5E dr1E dr2

JA~r1!JB~r2!

r 12
, ~5!

and whered is the coefficient vector that minimizes the err
in the auxiliary density.

There are several ways to measure this error, gener
having the form

D5
1

2E dr1E dr2 @r2 ř #~r1!Ŵ@r2 ř #~r2!, ~6!

and differing through the choice of the weight operatorŴ.
Least squares fitting—performed by choosi
Ŵ5d(r 12)—at first appears attractive, since the only 3-ind
integrals it involves are overlaps, not Coulomb integra
However, the performance of least squares fitting has b
found to be very unsatisfactory, both by others3 and in our
own investigations. The weight operator that shows go
convergence of energies and other properties with respe
auxiliary basis set is Ŵ5r 12

21 leading to the error
expression3,4

D5
1

2E dr1E dr2

@r2 ř #~r1!@r2 ř #~r2!

r 12
. ~7!

The error is minimized with respect to the coefficientsd
in the auxiliary basis by setting“dD50, and this leads to the
linear equations

(
B

JAB dB5(
mn

I A,mngmn , ~8!

whereI is a 3-index matrix of ERIs of the form

I A,mn5E dr1E dr2

JA~r1!xm~r2!xn* ~r2!

r 12
. ~9!

This fitting of the density considerably reduces the pr
actor in the evaluation of the Coulomb contribution to t
Fock matrix, but the scaling remainsO(N2) owing to the
long-ranged nature of the Coulomb interaction. To achiev
4 © 2001 American Institute of Physics
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linear-scaling method~either in Coulomb fitting or tradi-
tional 4-index integral methods!, the asymptotic multipolar
form of the Coulomb interaction between pairs of char
distributions can be exploited.5–9 The separation of long- an
short-range Coulomb effects can be further refined by pa
tioning the Coulomb potential using an error function,10

1

r
5

erf~vr !

r
1

erfc~vr !

r
. ~10!

These methods are all based on analytical six-dimensi
integrals, but an alternative set of methods exist in which
Coulomb potential is built on a quadrature grid, prior to n
merical integration with the density to obtain the Coulom
energy, or with orbital pairs to obtain the Coulomb contrib
tion to the Fock matrix.11–13The Coulomb potential is given
by the three-dimensional integral

v~r1!5E dr2

r~r2!

r 12
, ~11!

which has to be performed at each grid pointr1. The Cou-
lomb potential also satisfies the Poisson equation,

P̂v5r, ~12!

where P̂52(4p)21¹2, and one can solve this differentia
equation forv, avoiding the evaluation of any ERIs at a
However, a comparison of methods for computing the C
lomb potential on a grid revealed that it was more efficien
evaluate the integral of Eq.~11! than to solve the Poisso
equation.11 Nonetheless in this work we reinvestigate t
possibility of using the Poisson equation in Coulomb fittin

It is worth pointing out that although the exact exchan
energy in HF and hybrid KS theories is, like the Coulom
energy, constructed from 4-index ERIs, the sparsity of
density matrix can be exploited to construct an efficie
linear-scaling method. Thus the Coulomb problem is
bottleneck even in HF theory, and we expect the curr
work to be of use in that context as well.

II. THEORY

In a previous paper14 two of us wrote down a density
fitting method based on the Poisson equation. Here we re
the method and approach the problem in a slightly differ
way. We start off from the integral identity15

E dr2

P̂f ~r2!

r 12
5 f ~r1!, ~13!

which holds exactly for anyf (r ) that vanishes more quickly
than r 21 as r→`. Equation~13! can be obtained by insert
ing the Poisson equation@Eq. ~12!# into the Coulomb poten-
tial expression in Eq.~11!. However, we merely note her
that Eq. ~13! is an exact relation that implies a means
avoiding the troublesome six-dimensional, long-range C
lomb integrals. To apply the identity we will set up a dens
fitting method by expanding the auxiliary electronic dens
ř in a set of functions of the formP̂JA , which we will call
Poisson functions, whereJA is a Gaussian~and therefore
loaded 11 Jul 2011 to 131.251.133.27. Redistribution subject to AIP licens
e

i-

al
e
-

-

-
o

.
e

e
t
a
t

ne
t

f
-

satisfies the requirement of vanishing at long range fa
than r 21),

ř~r !5(
A

dAP̂JA~r !. ~14!

Writing down the Coulomb energy in exactly the sta
dard way@Eq. ~2!# we have

Ě5
1

2 (
AB

dAdBE dr1E dr2

@ P̂1JA~1!#@ P̂2JB~2!#

r 12
, ~15!

where P̂i acts on functions in the coordinatesr i . Inserting
Eq. ~13! and using the Hermiticity ofP̂, the energy reduces
to

Ě5
1

2 (
AB

dAdBE dr1JA~1!P̂1JB~1!. ~16!

This equation is interesting because it gives an exact exp
sion for the Coulomb energy of the densityř using only
short-range three-dimensional integrals, which differ fro
kinetic energy integrals only by a factor of (2p)21.

There is a catch in all this. Consider a multipole of t
densityP̂JA(r ),

qA
lm5E drYlm~ r̂ !r l P̂JA~r !. ~17!

The functionJA(r ) vanishes asymptotically so we can u
integration by parts to apply¹2 to the left, and then since
¹2Ylm( r̂ )r l50 we see thatqA

lm50 for all l ,m. In other
words the fitted density in Eq.~14! can have no total charge
no total dipoles, and so on. In our earlier paper14 we allevi-
ated the first problem—that of the vanishing charge—
considering the electrons and nuclei of a neutral system
multaneously. Here we generalize the method by conside
the addition of asmall numberof ordinary basis functions to
the expansion in Eq.~14!. These functions serve to describ
the total charge and higher multipoles ofř, and to give some
gross approximation to the density. The Poisson functi
serve to move charge around and produce an accurate m
density.

We will now set up density fitting in a basis ofmC stan-
dard andmP Poisson functions, following Eqs.~4!–~9!. The
Coulomb matrixJ now blocks into three types of integra
~see Fig. 1!, having in the integrand zero, one and two i
stances of the Poisson operator. These integrals are res
tively standard Coulomb integrals, standard overlaps, and
scaled kinetic energy-like integrals of Eq.~16!. The 3-index
integrals block intomCm(m11)/2 Coulomb integrals and
mPm(m11)/2 overlaps, wherem is the size of the atomic
orbital basis. SincemC is small, by far the greater proportio
of the 2- and 3-index integrals are short-ranged, and thS
andP blocks in Fig. 1 are sparse.

Once the Coulomb matrices in the mixed basis ha
been set up, density fitting can be performed in exactly
normal way.

III. BASIS SETS AND TEST CASES

To test the method, it is necessary to optimize mix
basis sets. For the preliminary calculations presented h
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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FIG. 1. Blocking of 2- and 3-index in-
tegrals in mixed Poisson density fit
ting. The AO basis is of sizem and
there aremC and mP standard and
Poisson fitting functions, respectively
The blocks are labeledJ ~standard
Coulomb integrals!, S ~standard over-
lap integrals!, and P ~scaled kinetic
energy integrals!.
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we optimize basis sets for the elements of the first row of
periodic table. Our procedure for doing so closely follow
that of Eichkorn et al.,16 and we choose to use the
3-parameter extension of even-tempered series of expon
@Eq. ~27! of Ref. 16#. The optimizations are performed usin
a Powell minimizer from several starting guesses. The re
lar way in which the optimal parameters vary across the
riodic table makes the optimizations increasingly easy.

Our procedure for optimizing a basis for a given ato
was as follows:

~1! Optimize a minimal basis of standards-type functions
for the isolated atom;

~2! Optimize Poisson functions~s and in some casesd-type
functions! for the isolated atom;

~3! Simultaneously optimize a single, standardp function
and a set of Poissonp, f, and possiblyd functions for the
hydride.

The size of bases was chosen to obtain errors in the Coul
energy below 5031026 hartree for atoms and 0.
31023 hartree per atom for molecules. The basis sets fo
N, O, and F have 2s 1p functions contracted to 1s 1p for the
standard basis and 6s 3p 6d 1 f for the Poisson basis. Thes

TABLE I. LDA bond lengths, dipole moments, and harmonic frequencies
ground states of first-row diatomics using an exact Coulomb treatment
the approximation introduced in this work. Average errors are provided
the final row.

Diatom

r /bohr umzu/D n/cm21

Exact This work Exact This work Exact This work

H2 1.4774 1.4773 0.0000 0.0000 4153.30 4153.1
LiH 3.0756 3.0762 5.5546 5.5531 1343.19 1342.3
BeH 2.5998 2.5993 0.0827 0.0785 1943.49 1941.3
BH 2.4240 2.4243 1.3888 1.3888 2184.34 2183.3
CH 2.1369 2.1369 1.0614 1.0616 2867.46 2867.9
NH 2.0138 2.0136 1.5449 1.5428 3127.87 3126.7
OH 1.9160 1.9156 1.9316 1.9289 3293.75 3294.9
HF 1.7671 1.7671 1.8449 1.8443 3945.76 3943.1
LiF 2.9778 2.9781 5.5384 5.5378 977.19 977.07
BeF 2.6545 2.6542 1.0549 1.0551 1237.80 1236.1
BN 2.5213 2.5207 1.4384 1.4384 1534.69 1533.5
BO 2.2921 2.2916 1.8272 1.8292 1872.72 1871.0
CN 2.2310 2.2308 0.9027 0.8989 2130.56 2130.7
CO 2.1523 2.1520 0.3089 0.3109 2160.47 2160.9
N2 2.0981 2.0975 0.0000 0.0000 2397.18 2399.6
NO 2.1860 2.1856 0.1850 0.1842 1964.61 1964.8
NF 2.4493 2.4485 0.6983 0.7010 1239.12 1240.7
O2 2.2855 2.2850 0.0000 0.0000 1628.67 1629.3
F2 2.6368 2.6366 0.0000 0.0000 1033.21 1032.0

Avg. error 0.0004 0.0012 1.1
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bases are somewhat larger than those used in standard
sity fitting, but the integral evaluation is easier, and, as
shall show, the number of integrals to compute is mu
smaller.

To test the accuracy of the method, we have compu
the bond lengths, dipole moments and harmonic frequen
of the ground states of 19 first-row diatomics. This and
tests are based on comparisons between LDA calculatio17

using the cc-pVDZ atomic orbital basis sets of Dunning18

The results and average errors are given in Table I. The
rors in bond lengths and dipole moments are consiste
extremely small, and the frequencies are generally rep
duced to within 1 cm21.

Our second test examines the accuracy of the metho
computing energy differences of different magnitudes.
therefore compute the dissociation energy~using fixed geom-
etries! of benzene into three acetylene molecules,
singlet–triplet splitting of methylene and the rotational ba
rier of ethane. The values and errors are given in Table
Although the relative errors do increase as the quantity be
computed decreases, the smallest energy—the rotational
rier of ethane—is in error by only 0.8% in the curre
method.

A further energy difference that provides a test of t
method is that between the zwitterionic and neutral forms
glycine. Table III shows results using an exact Coulom
treatment, standard density fitting with the basis sets of E
korn et al.16 and the current method. The performance

f
nd
n

TABLE II. Energy differences of three different magnitudes computed us
an exact Coulomb treatment and this work. The three cases are the d
ciation of benzene into three acetylene molecules, the singlet/triplet spli
of methylene, and the rotational barrier of ethane. The errors range betw
0.07% and 0.8% of as the size of the computed quantity decreases.

E/hartree

Error/1023 hartreeExact This work

C6H6→3C2H2

C6H6 2230.096 551 2230.097 085 0.53
C2H2 276.588 225 276.588 328 0.10

Dissociation 0.331 876 0.332 103 0.23

Singlet/triplet CH2

Singlet 238.704 500 238.704 640 0.14
Triplet 238.743 226 238.743 307 0.081

Splitting 0.038 726 0.038 667 0.059

Barrier of C2H6

Eclipsed 279.024 833 279.025 269 0.44
Staggered 279.030 755 279.031 147 0.39

Barrier 0.005 922 0.005 877 0.045
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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very good ~less than 0.05% error in the isomerization e
ergy!, and, perhaps fortuitously, significantly better than th
obtained with the standard fitting basis of Ref. 16. The
sults also show that molecular properties such as the di
moment, which provide a more stringent test of the faithf
ness of the density fitting in regions of space not stron
weighted in the fitting error functional, can be reproduc
with similar accuracy in the current and standard method

Our final set of tests regard the number of integrals co
puted in the current method compared to standard den
fitting methods. We consider polyalanine helices with up
16 amino acids, and count the number of primitive 3-ind
integrals that have to be computed in the standard and
rent density fitting approaches. Integrals are screened w
threshold of 1028 hartree. The results are shown in Fig.
The number of Coulomb integrals evaluated in the curr
method remains consistently around 10% of the numbe
standard Coulomb fitting, and the number of 3-index ov
laps rises only linearly. Even for the smallest~4 peptide!
molecule, the total number of integrals is less than with
standard basis, and the vast majority of these are of thS
type, rather than the more expensiveJ. Since the number o

TABLE III. Energies and dipole moments of zwitterionic and neutral form
of glycine using an exact Coulomb treatment, standard density and
method of this work, along with the errors in computed values. Clearly
energy difference between the two forms is treated more accurately in
current work than in standard density fitting, and the dipoles in the
approaches are roughly equal in accuracy.

Exact Standard This work

Zwitterion
E/hartree 2282.149 160 2282.149 708 2282.149 712
mx /bohr 23.6497 23.6468 23.6484
my /bohr 21.2700 21.2689 21.2697
mz /bohr 1.3851 1.3848 1.3839

Neutral
E/hartree 2282.144 421 2282.145 094 2282.144 971
mx /bohr 1.4777 1.4771 1.4794
my /bohr 21.0268 21.0257 21.0258
mz /bohr 20.1293 20.1292 20.1297

DE/kJ mol21 12.442 12.115 12.448

FIG. 2. Number of 3-index integrals in density fitting calculations on po
alanine helical peptides. The lines are the number of Coulomb integra
standard density fitting~circles! and in the current work~crosses!, and the
number of 3-index overlap integrals in the current work~squares!.
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non-zeroS integrals grows only linearly with system size, fo
the largest~Ala16) system, the integral evaluation problem
considerably reduced, and we are still in the regime wh
theO(N2) number ofJ integrals is less than theO(N) num-
ber of S integrals.

IV. DISCUSSION

We have introduced a new density fitting method for t
Coulomb problem in KS and HF theory. Most of the fun
tions in the auxiliary basis having the formP̂JA(r ), and the
Coulomb integrals involving one or two of these functio
become exactly equivalent to simple overlap-like integra
This allows us to reduce the number of Coulomb integrals
density fitting by a factor of around 10. A small number
standard functions is required in the auxiliary basis since
functions P̂JA(r ) contain no charge and have vanishin
multipoles. They do, however serve to move density arou
the molecule to provide an accurate auxiliary density. Furt
savings can be made. Since the standard basis in this me
is only present to give a very rough approximation to t
density, we will reoptimize the basis sets using the sa
exponent for the more diffuses function and thep function.
Since none of the functions in the standard basis needs t
diffuse, the multipole approximation will rapidly take ove
and a very small number of true Coulomb integrals will ha
to be evaluated.

For very large systems, the bottleneck in standard d
sity fitting is the dense linear algebra need to formd. In the
current method only theJ-block of the Coulomb matrix~see
Fig. 1! is dense, and this amounts only to around 1% of
whole matrix. Therefore even for large systems, the lin
algebra to be performed is effectively sparse. Naturally th
comes a point where the dense part of the matrix beco
too large, but the current method delays that threshold u
the system is roughly ten times larger.

Despite the great savings in terms of the number of
tegrals to be computed, and the fact that most of them
overlap integrals, the method is accurate. Extensive test
energies, energy differences, bond lengths, dipoles, and
monic frequencies reveals that the current method is equa
superior in accuracy to standard density fitting methods. A
accuracy can be increased by the addition of further Pois
functions at relatively little cost, as these only incur t
evaluation of overlap integrals, almost all of which vanish
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