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Abstract

A programmable intrusion detection method is presented to identify the

malicious attacks to distributed energy resources (DERs) in the cyber-physical

networked microgrids. The proposed method injects small programmable sig-

nals into the system and uses the response to identify abnormal conditions.

Because of the low or even zero inertia induced by integrations of DER power-

electronic-interfaces, microgrids have very limited resilience capability; and thus,

being sensitive to attacks. One microgrid’s malfunction caused by attacks can

easily propagate to its neighboring systems when several microgrids are con-

nected, leading to catastrophic electricity supply failures. Through the pre-

sented method, malicious intrusions can be effectively detected, located, and

defended for securing microgrids. Theoretical derivations are provided to define

the programmable detection rules. The detection rule is easy and flexible to up-

date, making it difficult for attack actors to gain the knowledge of the detection

rules, in order to avoid being detected. Numerical results on a cyber-physical

networked microgrids system show that the proposed method is effective and

efficient in precisely locating intrusion attacks to the microgrids system.
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1. Introduction

Energy sustainability has become one of the major concerns in power en-

gineering [1, 2]. To seek an edge toward energy sustainability, microgrids

have been deployed and built worldwide in recent years [3, 4]. A microgrid

is defined as a group of interconnected loads and distributed energy resources

(DERs), such as photovoltaic and wind generation, within clearly defined elec-

trical boundaries that can act as a single controllable entity [5, 6]. It can connect

to or disconnect from the bulk power grid to enable it to operate in either grid-

connected or island operational mode [7, 8].

DERs are usually integrated into microgrids through power-electronic inter-

faces [9], such as inverters. For one thing, the power-electronic interfaces enable

flexible system control and operations [10]; and thus, microgrids can provide

local green energy generation and delivery to facilitate the sustainable devel-

opment of power grids [4, 11]. For another, the adoption of power-electronic

interfaces makes microgrids vulnerable to attacks [12], because the distributed

system configuration offers malicious actors opportunities to access the system

locally or remotely [13] or even manipulate the whole power grid in a bottom-

up manner. Several power grids attacks, including the first known devastating

cyber-attack on Ukraine’s power grid in 2015 [14] and the first U.S. ‘denial

of service’ attack launched by remote hacker into the western power grid in

March 2019, remind us of this issue as a global challenge. Meanwhile, attacks

on power utilities are growing in numbers. Such disastrous attacks would not

only take down a large-scale power system but could also result in catastrophic

regional or national effects on public health or safety, economic security, or na-

tional security. In system operations, the communication network is playing an

important role in transmitting measurement data and control signals between

physical layer and the control center. A cyber-physical microgrid system is given
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in Figure 1 [15], illustrating how signals flow in the system. Therefore, one fun-

damental question of employing microgrids to promote energy sustainability is:

How to efficiently detect attacks to power-electronic interfaces so microgrids can

be used as secure and resilient energy transformation towards sustainability?

Figure 1: Illustration of cyber-physical microgrids

Among the possible attacks to power-electronic interfaces [16, 17], e.g.,

denial-of-service, data integrity attacks, intrusions are attracting extensive at-

tention, because they are easy to carry out but hard to detect. The frequent

information exchange between DERs also provide several opportunities for ma-

licious actors to manipulate the power-electronic interfaces, such as planting

malware [18]. In recent years, intrusion detection has been growing in the

computer science field [19, 20]. Intrusion detection is based on software or

hardware that can automatically monitor events occurring in the computer sys-

tem or other networks through analyzing system behaviors for signs of security

problems [21, 22]. There broadly exist two main categories of intrusion detec-

tion systems [23], namely, Signature-based Intrusion Detection Systems (SIDS)

and Anomaly-based Intrusion Detection Systems (AIDS). SIDS, also known as

knowledge-based detection or misuse detection, are based on pattern matching
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techniques to identify a known attack. When an intrusion signature matches

with the signature of an existing intrusion in the database, an alarm signal will

be triggered. So, it can accurately detect the previously known intrusions; how-

ever, it is difficult to detect unknown attacks since no matching signature exists

in the database. Therefore, the effectiveness of SIDS is progressively reduced

as new attacks arise, and thus, preventing its applications. AIDS develops a

normal model of the system for capturing the significant deviations between the

observed behavior and the model. It can be used to identify new attacks be-

cause recognizing abnormal activities does not rely on the signature database.

However, the recognition highly depends upon accurately building the normal

model, which is usually difficult and computationally expensive. Although it

is effective in detecting acute intrusions, it is impotent to trigger alarms for

attacks which are mild at beginning but can abruptly cause severe damage.

To bridge the knowledge gap, based on AIDS, a Programmable Intrusion

Detection method is presented to effectively detect intrusions into microgrids

with DERs. The novelties of the presented method are stated below.

• It offers an efficient detection approach for real-time monitoring, which

can be used to quickly and accurately identify and locate intrusions to

DERs including mild attacks. It identifies attacks when they occur rather

than severe damages have been caused by attacks.

• The detection rule is programmable, which can be flexibly renewed when

necessary. So, it can avoid the rule being learned by hackers and will

significantly increase the cost of hackers. Thus, the system can be secured

in a cost-effective way.

• It is a lightweight method which does not impact the normal operations of

the system. So, it provides a suitable method to detect anomaly actions

in the complicated dynamic systems such as power grids or airplanes.

The remainder of this paper is organized as follows: Section 2 introduces the

intrusion detection strategy and its application to the microgrid system. Section

3 presents the programmable detection method and discusses the corresponding

changes of detection rules when detection signals are updated. In Section 4,
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tests on a networked microgrid system verify the feasibility and effectiveness of

the presented method. Conclusions are drawn in Section 5.

2. Intrusion Detection

2.1. Intrusion Detection Idea

The essential idea of intrusion detection is to proactively introduce a detec-

tion signal fs(t) to the physical system, and then analyze the response of the

system under that detection signal to see whether intrusions into the system

occur [24]. There are several detection rules to analyze the response of the sys-

tem. The following integration function is given as an example, as it is efficient

to implement and suitable for programming under different scenarios.

H(t) =

∫ t

0

〈r(t), fs(t)〉dt, (1)

where H(t) is the detection result; fs(t) is the detection signal that will be

discussed in Section 3; r(t) represents the response of the testing system; 〈·, ·〉

represents the inner product; and t is the time under investigation.

In order to perform a real-time detection, fs(t) is usually designed as a

periodical signal and it should be small enough compared to the real signals

in the testing system; otherwise, it is going to impact the system’s normal

operation. Additionally, fs(t) must meet the following requirement to avoid

introducing unintended consequences to the monitored system.

1

T

∫ τ+T

τ

fs(t)dt = 0, (2)

where τ is the beginning time of monitoring and T is the period of the detection

signal fs(t).

2.2. Intrusion Detection in Cyber-Physical Microgrids

Most of microgrid functions, such as island operation and smoothing DER

fluctuations, are realized through controlling DER power-electronic interfaces.

As those interfaces are operated through controllers, intrusions into those con-

trollers would provide malicious actors an easy way to malfunction the power-

electronic interfaces; and eventually manipulate the overall microgrid system.
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So, intrusions to the controllers of DER power-electronic interfaces is analyzed

in this paper. Figure 2 shows a typical double loop controller of the DER

power-electronic interfaces [25].

Kdo_p+Kdo_i/s Kdi_p+Kdi_i/s

Kqi_p+Kqi_i/s  

    

Kqo_p+Kqo_i/s  

+

Do(t)
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+

Figure 2: A typical double loop controller

In Figure 2, Dref (t) and Qref (t) are reference signals for the dispatchable

DERs. Those signals are usually generated in a control center in the centralized

control strategy and sent to DERs through the communication network. The

detection signal f(t) is also generated in the control center and added to the

reference signals. Then those signals are transmitted to DERs through com-

munication network. Do(t) and Qo(t) are the outer loop measurement signals.

rdo(t) and rqo(t) are the outer loop output signals. Di(t) and Qi(t) are the inner

loop measurement signals. rdi(t) and rqi(t) are the inner loop output signals.

Their responses under the detection signal are analyzed below.

3. Programmable Intrusion Detection

The detection signal fs(t) is playing an essential role in identifying mali-

cious behaviors in the DER power-electronic interfaces and guaranteeing their

integrity. If malicious actors gain the knowledge of fs(t) and then make up fake

responses to emulate normal operations, the intrusion detection rule given in (1)

will fail to detect attacks. So, in order to make it difficult for malicious actors to

always know fs(t) and increase the attack cost of adversary, the detection signal

fs(t) will be designed as a programmable signal, i.e., programmable intrusion

detection.
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Several periodic signals can be used to design the detection signal, e.g.,

square signal and sinusoidal signal, etc. Those fundamental signals must meet

the condition given in (2). When necessary, those signals will be combined to

create a hybrid detection signal, which makes it harder for hackers to exactly

know the detection signal.

3.1. Square Detection Signal

Taking square signal as an example, the programmable detection rule is

analyzed below. Assume the square signal is expressed by,

f1(t) =











ϕ1 kT1 ≤ t < (k + 1/2)T1

−ϕ1 (1/2 + k)T1 ≤ t < (k + 1)T1,
(3)

where f1(t) represents fs(t) in (1), ϕ1 is the amplitude of the square wave, T1

is the period of the detection signal, and k = 0, 1, 2, · · · , n.

3.1.1. Outer Loop

Taking the d-axis as an example, the output of the outer loop, rdo(t), is

expressed as:

rdo(t) =
(

Dref (t) + fs(t)−Do(t)
)(

Kdo p +
Kdo i

s

)

= Kdo p

(

Dref (t) + fs(t)−Do(t)
)

+

∫ t

0

Kdo i

(

Dref (t) + fs(t)−Do(t)
)

dt.

(4)

Then, based on (1), (3), and (4), the attack detection rule of the outer loop

controller is derived as follows:

H1,Do(t) =

∫ t

0

〈rdo(t), f1(t)〉 dt

=

∫ t

0

〈Kdo p

(

Dref (t) + f1(t)−Do(t)
)

, f1(t)〉 dt

+

∫ t

0

〈

∫ t

0

Kdo i

(

Dref (t) + f1(t)−Do(t)
)

dt, f1(t)〉 dt

= A+B,

(5)

where
∫ t

0
〈Kdo p

(

Dref (t)+f1(t)−Do(t)
)

, f1(t)〉 dt is defined asA, and
∫ t

0
〈
∫ t

0
Kdo i

(

Dref (t)+

f1(t)−Do(t)
)

dt, f1(t)〉 dt is defined as B to simply the analysis of programmable

detection in Sections 3.1.3 and 3.1.4.
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3.1.2. Inner Loop

The d-axis inner loop is also analyzed as an example. According to Figure 2,

the output of the inner loop, rdi(t), is expressed as:

rdi(t) =
(

rdo(t)−Di(t)
)(

Kdi p +
Kdi i

s

)

= Kdi p

(

rdo(t)−Di(t)
)

+

∫ t

0

Kdi i

(

rdo(t)−Di(t)
)

dt.

(6)

Then, based on (1), (3), and (6), the attack detection rule of the inner loop

controller is derived as follows:

H1,Di(t) =

∫ t

0

〈rdi(t), f1(t)〉 dt

=

∫ t

0

〈Kdi p

(

rdo(t)−Di(t)
)

, f1(t)〉 dt+

∫ t

0

〈

∫ t

0

Kdi i

(

rdo(t)−Di(t)
)

dt, f1(t)〉 dt

= C +D,

(7)

where
∫ t

0
〈Kdi p

(

rdo(t)−Di(t)
)

, f1(t)〉 dt is defined as C, and
∫ t

0
〈
∫ t

0
Kdi i

(

rdo(t)−

Di(t)
)

dt, f1(t)〉 dt is defined as D.

Depending on how to adjust the amplitude and frequency of the detection

signal f1(t), the detection rules given in (5) and (7) will have the following two

different detection results.

3.1.3. Program the amplitude of the detection signal

When the frequency of the detection signal is set at a very high value, e.g., a

few kHz, the detection rule will depend on the amplitude change of the detection

signal. Note that the detection signal f1(t) is very small. When f1(t) is a

periodical signal and meets the condition given in (2), the following findings

can be obtained from analyzing (5) and (7).

• When microgrids reach the steady state, the result of A depends on
∫ t

0
〈Kdo pf1(t), f1(t)〉 dt and the result of C depends on

∫ t

0
〈Kdo pKdi pf(t), f(t)〉 dt.

• The result of
∫ t

0
Kdo i

(

Dref (t) + f1(t) − Do(t)
)

dt and
∫ t

0
Kdi i

(

rdo(t) −

Di(t)
)

dt are small periodical triangle signals and meet the condition given

in (2).
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• The result of B and D are small periodical signals, which can be negligible

when monitoring the detection results.

Therefore, the result of (5) mainly depends on A, and the result of (7) mainly

depends on C. Then, the detection results of the outer and inner loop controllers

can be calculated through the following two functions.

H1,Do(t) =

∫ t

0

〈Kdo pf1(t), f1(t)〉 dt = Kdo pϕ
2t. (8)

H1,Di(t) =

∫ t

0

〈Kdo pKdi pf1(t), f1(t)〉 dt = Kdo pKdi pϕ
2t. (9)

It can be seen from (8) and (9) that the detection results are proportional

to the time t and the amplitude square of the detection signal f1(t).

3.1.4. Program the frequency of the detection signal

When the amplitude of the detection signal is fixed and the frequency of the

detection signal is relatively small (e.g., a few Hz to hundreds of Hz) and ad-

justable, the detection rule will depend on the frequency change of the detection

signal. The following findings can be obtained from analyzing (5) and (7).

• The result of
∫ t

0
Kdo i

(

Dref (t) + f1(t) − Do(t)
)

dt and
∫ t

0
Kdi i

(

rdo(t) −

Di(t)
)

dt are periodical signals.

• When microgrids reach the steady state, the result of A depends on
∫ t

0
〈Kdo pf1(t), f1(t)〉 dt and the result of C depends on

∫ t

0
〈Kdo pKdi pf1(t), f1(t)〉 dt.

• The impacts of A and C on the detection results are negligible.

Therefore, the result of (5) mainly depends on B, and the result of (7) mainly

depends on D. The detection results of the outer and inner loop controllers can

be calculated through the following two functions.

H1,Do(t) =

∫ t

0

〈

∫ t

0

Kdo i

(

Dref (t) + f1(t)−Do(t)
)

dt, f1(t)〉 dt

= Kdo i

∫ t

0

〈

∫ t

0

f1(t) dt, f1(t)〉 dt.

(10)
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H1,Di(t) =

∫ t

0

〈

∫ t

0

Kdi i

(

rdo(t)−Di(t)
)

dt, f1(t)〉 dt

= Kdo iKdi i

∫ t

0

〈

∫ t

0

f1(t) dt, f1(t)〉 dt.

(11)

3.2. Sinusoidal Detection Signal

Sinusoidal wave is another example that can be used as a detion signal.

The corresponding programmable detection rule is analyzed below. Assume a

sinusoidal signal is expressed by,

f2(t) = ϕ2 sin(ω2t+ θ2), (12)

where f2(t) represents fs(t) in (1), ϕ2 is the amplitude of the sinusoidal wave,

ω2 = 2π/T2 is the angular frequency, and θ2 is the initial angle.

Once again, taking the d-axis as an example, based on (1), (4), and (12),

the attack detection function of the outer loop controller is derived as follows:

H2,Do(t) =

∫ t

0

〈rdo(t), f2(t)〉 dt

=

∫ t

0

〈Kdo p

(

Dref (t) + f2(t)−Do(t)
)

, f2(t)〉 dt.

(13)

Based on (1), (6), and (12), the attack detection function of the inner loop

controller is derived in (14).

H2,Di(t) =

∫ t

0

〈rdi(t), f2(t)〉 dt

=

∫ t

0

〈Kdi p

(

rdo(t)−Di(t)
)

, f2(t)〉 dt.

(14)

Similar to the derivation and analysis in Section 3.1.3, the detection results

of inverter controllers are calculated through the following two functions.

H2,Do(t) =

∫ t

0

〈Kdo pf2(t), f2(t)〉 dt =
Kdo p

2
ϕ2
2t. (15)

H2,Di(t) =

∫ t

0

〈Kdo pKdi pf2(t), f2(t)〉 dt =
Kdo pKdi p

2
ϕ2
2t. (16)
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When the frequency of the sinusoidal wave is adjustable, the detection results

of the outer and inner loop controllers are calculated below.

H2,Do(t) =

∫ t

0

〈

∫ t

0

Kdo i

(

Dref (t) + f2(t)−Do(t)
)

dt, f2(t)〉 dt

= Kdo i

∫ t

0

〈

∫ t

0

f2(t) dt, f2(t)〉 dt.

(17)

H2,Di(t) =

∫ t

0

〈

∫ t

0

Kdi i

(

rdo(t)−Di(t)
)

dt, f2(t)〉 dt

= Kdo iKdi i

∫ t

0

〈

∫ t

0

f2(t) dt, f2(t)〉 dt.

(18)

3.3. Programmable Hybrid Detection Signal

To further increase the cost of adversary, the detection signal can be defined

as a combination of signals, such as the aforementioned two basic signals. This

detection signal is programmed at the microgrid coordination center; and thus,

it can be modified over time. The programmable detection signal is expressed

in (19), where the same period T is used in the two signals as an example.

fs(t) = α1f1(t) + α2f2(t)

=











−α1ϕ1 + α2ϕ2 sin(ω2t+ θ2) kT ≤ t < (k + 1/2)T

α1ϕ1 + α2ϕ2 sin(ω2t+ θ2) (1/2 + k)T ≤ t < (k + 1)T,

(19)

where f1 and f2 are the signals discussed in the previous section, α1 and α2 are

impact factors that can be adjusted in the microgrid coordination center.

When the d-axis is taken as an example, based on (1), (4), and (19), the

attack detection function of the outer loop controller is expressed as,

Hs,Do =

∫ t

0

〈 rdo(t), fs(t)〉dt =

∫ t

0

〈 Kdo p

(

Dref (t) + fs(t)−Do(t)
)

, fs(t)〉dt.

(20)

Based on (1), (6), and (19), the attack detection function of the inner loop

controller is derived in (21).

Hs,Di =

∫ t

0

〈 rdi(t), fs(t)〉dt =

∫ t

0

〈 fs(t)(Kdo pKdi p, fs(t)〉dt. (21)
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3.3.1. Program the amplitude of the hybrid detection signal

According to the derivation in Section 3.1.3, the detection results of the

outer and inner loop controllers can be calculated through the following two

functions, from which we can see they are proportional to the detection time t.

Hs,Do(t) =

∫ t

0

〈Kdo pfs(t), fs(t)〉 dt = Kdo p

(

α1ϕ
2
1 +

α2ϕ
2
2

2

)

t. (22)

Hs,Di(t) =

∫ t

0

〈Kdo pKdi pfs(t), fs(t)〉 dt = Kdo pKdi p

(

α1ϕ
2
1 +

α2ϕ
2
2

2

)

t.

(23)

3.3.2. Program the frequency of the hybrid detection signal

Based on the derivation in Section 3.1.4, the responses of the inverter con-

trollers under the hybrid detection signal are calculated as follows.

Hs,Do(t) =

∫ t

0

〈

∫ t

0

Kdo i

(

Dref (t) + fs(t)−Do(t)
)

dt, fs(t)〉 dt

= Kdo i

∫ t

0

〈

∫ t

0

fs(t) dt, fs(t)〉 dt.

(24)

Hs,Di(t) =

∫ t

0

〈

∫ t

0

Kdi i

(

rdo(t)−Di(t)
)

dt, fs(t)〉 dt

= Kdo iKdi i

∫ t

0

〈

∫ t

0

fs(t) dt, fs(t)〉 dt.

(25)

It can be seen from (24) and (25) that the detection results are periodical

signals and the frequency of the detection results is same with the detection

signal’s frequency. This conclusion is very straightforward for system operators

to analyze the detection results and will be verified in the following Section 4.

Note that only square signals and sinusoidal signals as well as their combina-

tion are introduced here as examples. In fact, many other fundamental signals

can be used, such as triangle signals, sawtooth signals,etc. The detection signals

can be programmed in multiple ways as long as the detection signals meet the

requirements given in (2). Programmable means that the detection signals can

be flexibly renewed to avoid the detection rule being learned by hackers and

increase the cost of hackers because the programmable detection signals can

12



cause a big difference in the detection results when the signal is renewed. It can

be seen from the simulation results in Section 4.

4. Numerical Examples

A typical networked microgrids system given in Figure 3 is used to test

and validate the feasibility of the programmable intrusion detection method

in detecting intrusions into the microgrids system. The programmable intru-

sion detection method is implemented in a centralized control center. The net-

worked microgrids system and communication network are modeled in Mat-

lab/Simulink. To better show the impact of the intrusion attack to microgrids,

the test system operates in the islanded mode, i.e., Circuit Breaker 0 is open.

Other circuit breakers are closed at the beginning, and could be open when

necessary. More details of the test system can be found in [25].

As mentioned in (19), the programmable detection signals are assumed to

have the same period T . Ten examples of the programmable signal will be

carried out to verify the effectiveness of the method in attack detection.

4.1. Validation When Adjusting the Amplitude of the Detection Signal

The test system is secure before 1.50 s. An intrusion occurs in the power-

electronic interface of Fuel Cell 20 at 1.50 s. Specifically, a malware is planted

into the outer loop controller of Fuel Cell 20’s inverter, causing a significant

change to its PI control parameters, so that controller will be malfunctioning.

The frequency of the detection signals sets at 3, 000 Hz. The settings of five

test cases are summarized in Table 1. Figure 4 demonstrates the correspond-

ing detection results of the system. Figure 5 and Figure 6 show the transient

dynamics of the networked microgrids system under the intrusion.

4.1.1. Case A1: α1 = 1 and α2 = 0

In Case A1, α2 = 0, according to (19), the detection signal is equivalent

to the square signal f1. The amplitude of f1(t) is set as 5 × 10−4. At 1.00 s,

the amplitude changes to 1× 10−3, and then changes to 2× 10−4 at 1.25 s, for

showing the impact of amplitude on the detection results. Figure 4 (a) and (b)

show the outer loop detection results from which it can be observed that:
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Figure 3: A typical networked microgrids test system

• During normal operations, the detection result is linearly increasing as the

time t increases, when the same detection signal is used, as shown by the

results during [0.80s, 1.00s] and [1.00s, 1.25s] in Figure 4(b). So, it verifies

the detection rule derived in (8).

• When the amplitude of f1(t) increases from 5.0× 10−4 to 1.0× 10−3, the
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Table 1: Amplitude settings of the detection signal in different cases

Case Figure Number Detection Signal Frequency(Hz) Interval(s) Amplitude

A1 Fig. 4(a)(b) f1(t) (Square) 3000

[0 1] 5 × 10−4

[1 1.25] 1 × 10−3

[1.25 2] 2 × 10−4

A2 Fig. 4(c)(d) f2(t) (Sinusoidal) 3000

[0 1] 4 × 10−4

[1 1.25] 8 × 10−4

[1.25 2] 1 × 10−4

A3 Fig. 4(e)(f) fs1(t) = 2 ∗ f1(t) + 4 ∗ f2(t)

D1(t) (Square) 3000

[0 1] 8 × 10−4

[1 1.25] 1 × 10−3

[1.25 2] 1.5 × 10−3

D2(t) (Sinusoidal) 3000

[0 1] 6 × 10−4

[1 1.25] 2 × 10−4

[1.25 2] 3 × 10−4

A4 Fig. 4(g)(h) fs2(t) = D1(t) + D2(t)

D3(t) (Square) 3000

[0 1] 9 × 10−4

[1 1.25] 6 × 10−4

[1.25 2] 1.2 × 10−3

D4(t) (Sinusoidal) 3000

[0 1] 7 × 10−4

[1 1.25] 3 × 10−4

[1.25 2] 9 × 10−4

A5 Fig. 4(i)(j) fs3(t) = 7 ∗ D3(t) + 3 ∗ D4(t)

increment rate of the detection result at [1.00s, 1.25s] is four times of that

at [0.80s, 1.00s], as shown in Figure 4 (b). It validates the detection result

is proportional to the amplitude square of f1(t).

4.1.2. Case A2: α1 = 0 and α2 = 1

In Case A2, α1 = 0, the detection signal is equivalent to the sinusoidal wave

f2. The amplitude of f2(t) is 4 × 10−4. At 1.00 s, the amplitude changes to

8× 10−4, and then changes to 1× 10−4 at 1.25 s. Figure 4 (c) and (d) show the

outer loop detection results, from which it can be observed that:

• During normal operations, the detection result is linearly increasing as

the time t increases, as shown by the results during [0.80s, 1.00s] and

[1.00s, 1.25s] in Figure 4 (d). It demonstrates the detection rule in (15).

• When the amplitude of f2(t) increases from 4.0× 10−4 to 8.0× 10−4, the

increment rate of the detection result at [1.00s, 1.25s] is about four times of
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Figure 4: Detection results when adjusting the amplitude of the detection signal

that at [0.80s, 1.00s], as shown in Figure 4 (d). It validates the detection

result is proportional to the amplitude square of f2(t) when sinusoidal

wave is adopted as a detection signal.
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                                           (a) Dynamics of three-phase voltage    

 

  
                   (b) Detailed dynamics of three-phase voltage before intrusion occurs  

 

   
                       (c) Detailed dynamics of three-phase voltage after intrusion occurs               

Figure 5: Voltage dynamics at bus 20 in Case A and Case B

4.1.3. Case A3: α1 = 2 and α2 = 4

In Case A3, the detection signal fs1(t) is the combination of the f1(t) and

f2(t), where fs1(t) = 2∗f1(t) + 4∗f2(t). Figure 4 (e) and (f) show the outer loop

detection results, from which we can see that: During normal operations, the

detection result is linearly increasing as the time t increases, which verifies the

detection rule in (22). The increment rate of the detection result at [1.00s, 1.25s]

is four times of that at [0.80s, 1.00s], as shown in Figure 4 (f). It validates the

detection result is proportional to α1f1(t) + α2f2(t).

4.1.4. Case A4: α1 = 1 and α2 = 1

In Case A4, setting a second hybrid signal by using square and sinusoidal

signals, D1(t) and D2(t), which are shown in Table 1. The detection signal

fs2(t) is the combination of D1(t) and D2(t), where fs2(t) = D1(t) + D2(t).

Figure 4 (g) and (h) show the outer loop detection results. From Figure 4 (g)
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                              (a) Dynamics of three-phase current 

 

 
      (b) Detailed dynamics of three-phase current before intrusion occurs 

 

 
           (c) Detailed dynamics of three-phase current after intrusion occurs 

Figure 6: Current dynamics at bus 20 in Case A and Case B

and (h), it can be observed that: During normal operations, the detection result

is linearly increasing as the time t increases, through which the detection rule in

(22) can be verified. The increment rate of the detection result at [1.25s, 1.50s]

is 2.25 times of that at [1.00s, 1.25s], as shown in Figure 4(h). It also validates

the detection result is proportional to α1f1(t) + α2f2(t).

4.1.5. Case A5: D3(t) and D4(t), α1 = 7 and α2 = 3

In Case A5, setting a third hybrid signal by using square and sinusoidal

signals, D3(t) and D4(t), as shown in Table 1. The detection signal fs3(t) is

the combination of D3(t) and D4(t), wherer fs3(t) = 7 ∗ D3(t) + 3 ∗ D4(t).

Figure 4 (i) and (j) show the outer loop detection results, from which we can

observe that: The detection result is linearly increasing as the time t increases

without attacks, which verifies the detection rule in (22). The increment rate

of the detection result at [1.00s, 1.25s] is 0.5 times of that at [0.80s, 1.00s], as
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shown in Figure 4 (j). It further validates the detection result is proportional

to α1f1(t) + α2f2(t).

To conclude the results from the tests of changing amplitude of the detection

signal, we can see from Figures 4, 5, and 6 that:

• Based on the detection rules (1), the detection result is a function of the

detection time t.

• The increment rate of the detection result validates the detection result is

proportional to α1f1(t)+α2f2(t). When α1 and α2 are programmable, the

overall detection results will also be different. This salient feature makes

it efficient to monitor the system.

• The amplitude adjustments of the detection signal do not cause changes

to the system normal operations, as shown in Figure 5(a)(b) and Fig-

ure 6(a)(b) . It indicates the programmable function of the presented

method will not impact system’s operations during normal conditions.

• When the intrusion occurs at 1.50s as shown in Figure 5(c) and Fig-

ure 6(c), the detection result shows a significant change which can bee

seen in Figure 4 (a), (c), (e), (g), and (i). It demonstrates the intrusion

can be effectively detected through the presented method.

• The simulation results also demonstrate attacks can be immediately de-

tected when they occur rather than severe damages have been caused by

attacks. Therefore, the simulation results also assess the novelty of the

presented method.

In summary, when there is a significant difference in the detection result, as

shown in Figure 4 (a), (c), (e), (g), and (i) after 1.50s, alarm will be triggered

in the control center because the abnormal behavior causes the responses react

very differently.

4.2. Validation When Adjusting the Frequency of the Detection Signal

The test system is secure before 1.50 s. The same intrusion attack is intro-

duced to the system at 1.50 s. Therefore, Figure 5 and Figure 6 also show the
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transient dynamics of the test system under the intrusion. Five test cases are

carried out and their settings are summarized in Table 2. Figure 7 demonstrates

the corresponding detection results of the system.

Table 2: Frequency settings of the detection signal in different cases

Case Figure Number Detection Signal Amplitude Interval Frequency(Hz)

B1 Fig. 7(a)(b) f3(t) (Square) 5 × 10−4

[0 1] 3000

[1 1.25] 10

[1.25 2] 100

B2 Fig. 7(c)(d) f4(t) (Sinusoidal) 4 × 10−4

[0 1] 3000

[1 1.25] 10

[1.25 2] 100

B3 Fig. 7(e)(f) fs4(t) = 2 ∗ f3(t) + 4 ∗ f4(t)

D5(t) (Square) 5 × 10−4

[0 1] 20

[1 1.25] 1000

[1.25 2] 50

D6(t) (Sinusoidal) 4 × 10−4

[0 1] 20

[1 1.25] 1000

[1.25 2] 50

B4 Fig. 7(g)(h) fs5(t) = D5(t) + D6(t)

D7(t) (Square) 5 × 10−4

[0 1] 80

[1 1.25] 50

[1.25 2] 15

D8(t) (Sinusoidal) 4 × 10−4

[0 1] 80

[1 1.25] 50

[1.25 2] 15

B5 Fig. 7(i)(j) fs6(t) = 7 ∗ D7(t) + 3 ∗ D8(t)

4.2.1. Case B1: α1 = 0 and α2 = 1

In Case B1, the amplitude of f3(t) is set at 5.0× 10−4 and the frequency is

3, 000 Hz. At 1.00 s, the frequency changes to 10 Hz, and then changes to 100

Hz at 1.25 s. Figure 7(a) and (b) show the detection results under the above

settings. From Figure 7(a) and (b), it can be seen that: When the frequency

of the detection signal is relatively small (e.g., 10 Hz), the detection result is

observed as a periodical signal with the same frequency as the detection signal.

For example, Figure 7 (b) shows during [1.00s, 1.25s], the detection result’s

frequency is 10 Hz which is equal to the detection signal’s frequency. During

[1.25s, 1.50s], the detection result’s frequency becomes 100 Hz which is also
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Figure 7: Detection results when adjusting the frequency of the detection signal

equal to the detection signal’s frequency. It also shows the detection result is a

triangle wave which can be validated through (10).
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4.2.2. Case B2: α1 = 0 and α2 = 1

In Case B2, the amplitude of f2(t) is set at 4.0× 10−4 and the frequency is

3, 000 Hz. At 1.00 s, the frequency changes to 10 Hz, and then changes to 100

Hz at 1.25 s. Figure 7(c) and (d) show the detection results. From the results,

we can see that: During normal operations, the detection result is a periodical

signal with the same frequency as the detection signal. Because a sinusoidal

wave is used to monitor the system, according to (17), the detection result is

also a sinusoidal wave with the same frequency as the detection signal.

4.2.3. Case B3: α1 = 2 and α2 = 4

In Case B3, the detection signal fs4(t) is the combination of the f3(t) and

f4(t), where fs4(t) = 2*f3(t) + 4*f4(t). Figure 7 (e) and (f) show the corre-

sponding detection results, which also verifies the detection result is a periodical

signal with the same frequency as the detection signal. But the shape of the

detection wave is very different from the aforementioned two ones. Further

analysis shows it is corresponding to the derivation given in (24).

4.2.4. Case B4: α1 = 1 and α2 = 1

In Case B4, the amplitude of the square detection signal, D5(t), is set as

5.0 × 10−4 and its frequency is 20 Hz. At 1.00 s, the frequency changes to

1, 000 Hz, and then changes to 50 Hz at 1.25 s. The amplitude of the sinusoidal

detection signal, D6(t), is 4.0 × 10−4 and the frequency is 20 Hz. At 1.00 s,

the frequency changes to 1, 000 Hz, and then changes to 50 Hz at 1.25 s. The

detection signal fs5(t) is the combination of D5(t) and D6(t), namely fs5(t) =

D5(t) + D6(t). Figure 7(g) and (h) show the detection results in the above

scenario. From Figure 7(g) and (h), it can be seen that: The detection result

is a periodical signal with the same frequency as the detection signal. But its

shape changes again because we actively change the combination of the detection

signals. When we substitute the above settings to (24), we can get the same

detection results, which verifies the simulation is correct.
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4.2.5. Case B5: α1 = 7 and α2 = 3

In Case B5, the amplitude of the square detection signal, D7(t) is 5.0×10−4

and the frequency is 80 Hz. At 1.00 s, the frequency changes to 50 Hz, and then

changes to 100 Hz at 1.25 s. The amplitude of the sinusoidal detection signal,

D8(t) is 4.0×10−4 and the frequency is 80 Hz. At 1.00 s, the frequency changes

to 50 Hz, and then changes to 15 Hz at 1.25 s. The detection signal fs6(t) is

the combination of the D7(t) and D8(t), namely fs6(t) = 7 ∗D7(t) + 3 ∗D8(t).

Figure 7(i) and (j) show the detection results, which shows a different periodical

signal with the same frequency as the detection signal..

To conclude the results from the tests of changing frequency of the detection

signal, we can see from Figures 5, 6, and 7 that:

• During normal operations, the detection result is observed as a periodical

signal with the same frequency as the detection signal.

• When the frequency of the detection signal is adjusted, only the frequency

of the detection results need to be monitored, which makes it easy for

system operators to capture the signs of attacks.

• The frequency adjustments do not cause changes to the system’s opera-

tion, which proves the method is a lightweight approach for monitoring a

dynamic system.

• When the intrusion occurs at 1.50 s, the detection results in Figure 7

(a), (c), (e), (g), and (i) show significant changes, which demonstrate the

intrusion can be effectively detected through the presented method.

Considering the attacks will propagate through and affect multiple inter-

connected grid components, the detection results of PV 35 are also shown in

Figure 8, where (a)-(e) illustrate the detection results when the amplitude of

the detection signal changes and (f)-(i) illustrate the detection results when the

frequency of the detection signal changes.

From Figure 8(a)-(e), there is no obvious change in the detection results of

PV 35 while a significant difference immediately shows up in the detection result

of Fuel Cell 20 as shown in Figure 4 after attack occurs at 1.50s. So, the attack
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Figure 8: Detection results from bus 35 for each case

can be quickly located attack based on the detection results. Figure 8(f)-(i) also

show that after the attack, the detection results of PV 35 do not change much

when the detection signal’s frequency changes; however, a significant difference

immediately shows up in the detection result of Fuel Cell 20 after attack occurs
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as shown in Figure 7. So, based on the difference of detection results of each

DER unit, the attacks can be quickly located.

The above test cases verify the feasibility of the presented detection method.

Note that one shortcoming of the method is that the detection signals need

to be continuously sent to the physical system and then the response of the

physical system is sent back to the control center for monitoring and analysis.

It might put a certain pressure on the communication network. For instance,

it could increase latency to communication network due to the intensive traffic.

This drawback can be overcome by leveraging the advanced communication

network or signal process technique, such as 5G network [26] and compressive

sensing [27].

5. Conclusions

A programmable intrusions detection method is presented and performed in

this paper to identify malicious intrusions into DERs in microgrids. The de-

tection signals are designed to be programmable to make it difficult for attack

actors to gain the knowledge of the detection rules for avoiding being detected.

Theoretical analysis is provided to discuss the changes of two different detection

rules for DER power-electronic interfaces, i.e., programming the amplitude of

the detection signal and programming its frequency. Numerical tests are per-

formed on a typical networked microgrids system, which validate the presented

method can be used to proactively monitor the system to locate attacks. Those

features make it a potent tool for detection intrusions and defending dynamic

systems in a precise way.
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