
An Investigation into Explanations for
Convolutional Neural Networks

A thesis submitted in partial fulfilment of the
requirement for the degree of Doctor of Philosophy

Thomas Hartley

Cardiff University
School of Computer Science and Informatics

March 2021

i

Abstract

As deep learning techniques have become more prevalent in com-
puter vision, the need to explain these so called ‘black boxes’ has
increased. Indeed, these techniques are now being developed and de-
ployed in such sensitive areas as medical imaging, autonomous vehicles,
and security applications. Being able to create reliable explanations of
their operations is therefore essential.

For images, a common method for explaining the predictions of a
convolutional neural network is to highlight the regions of an input
image that are deemed important. Many techniques have been proposed,
however these are often constrained to produce an explanation with
a certain level of coarseness. Explanations can be created that either
score individual pixels, or score large regions of an image as a whole. It
is difficult to create an explanation with a level of coarseness that falls
in between these two. A potentially even greater problem is that none
of these explanation techniques have been designed to explain what
happens when a network fails to obtain the correct prediction. In these
instances, current explanation techniques are not useful.

In this thesis, we propose two novel techniques that are able to
efficiently create explanations that are neither too fine or too coarse.
The first of these techniques uses superpixels weighted with gradients to
create explanations of any desirable coarseness (within computational
constraints). We show that we are able to produce explanations in an
efficient way that have a higher accuracy than comparable existing meth-
ods. In addition, we find that our technique can be used in conjunction
with existing techniques such as LIME to improve their accuracy. This
is subsequently shown to generalise well for use in networks that use
video as an input.

The second of these techniques is to create multiple explanations
using a rescaled input image to allow for finer features to be found.
We show this performs much better than comparable techniques in
both accuracy and weak-localisation metrics. With this technique, we
also show that a common metric, faithfulness, is a flawed metric, and
recommend its use be discontinued.

Finally, we propose a third novel technique to address the issue of
explaining failure using the concepts of surprise and expectation. By

ii

building an understanding of how a model has learnt to represent the
training data, we can begin to explore the reasons for failure. Using this
technique, we show that we can highlight regions in the image that have
caused failure, explore features that may be missing from a misclassified
image, and provide an insightful method to explore an unseen portion
of a dataset.

iii

Acknowledgments

I would like to begin by thanking my supervisors Professor David
Marshall, Dr Kirill Sidorov, and Dr Christopher Willis. Thank you
for all your encouragement, and guidance. Your support has been
invaluable, and without all of your insights I would not have progressed
as much as I have.

Of course, none of this would have been possible without the spon-
sorship of both BAE Systems and the EPSRC. For this opportunity and
support I am massively grateful.

A big thank you to my fellow PhDs in S/0.45. In particular, my
thanks go to Aled for our chats on papers, food and code. I think all
three were very important to the completion of this Thesis.

To Dan, thank you for your friendship. You were with me at the
start of my computer science journey and, although you may not have
realised it, our evenings of boardgames have been a welcome moment of
calmness in the storm.

To my sister, Emy. Thank you for being such a part of all of this.
Our lives have been intertwined since I was 16 months old, and I am so
glad we have managed to stay close to each other. And remember, I
love you by default.

To my parents, William and Gwen, thank you for your unwavering
support through all the years and career changes. Who would have
thought that I would go from following you both into the world of TV,
to almost having a PhD. Talk about the black sheep of the family!

I would like to thank my wife. Sharan, your understanding and
encouragement have allowed me to push through with this. I could not
have done any of this without you. We’ve made sacrifices to get here,
but hopefully it will all start to pay off.

Finally, I would like to thank my daughters, Iona and Ada. Although
neither of you have a clue what I am doing, and your erratic sleep
patterns have introduced me to the wonders of coffee, your love and
laughter have given me an extra boost to pursue this PhD.

Contents

1 Introduction 1
1.1 Motivation . 4
1.2 Research Goals . 6
1.3 Contributions . 7
1.4 Thesis Structure . 8

2 Background 10
2.1 Introduction . 10
2.2 Interpretability Techniques . 10

2.2.1 Inherently Interpretable Models vs Post-hoc Explanations 11
2.2.2 Input-Centric Explanations 12

2.2.2.1 Gradient Based Methods 12
2.2.2.2 Improvements to Gradient Based Methods . . 16
2.2.2.3 Activation Based Methods 17
2.2.2.4 Perturbation Based Methods 22

2.2.3 Analysis of Input Centric Methods 25
2.2.4 Network Centric Explanations 27

2.2.4.1 Deep Visualization 27
2.2.4.2 Filter Importance and Labelling 30
2.2.4.3 Prototypes and Criticisms 32

2.2.5 Analysis of Network Centric Methods 33

iv

CONTENTS v

2.3 Video Interpretability Techniques 36
2.3.1 Activation Based Methods 36
2.3.2 Perturbation Based Methods 38
2.3.3 Gradient Based Methods 38
2.3.4 Analysis of Video Interpretability Techniques 39

2.4 Post-hoc Explanation Evaluation Metrics 39
2.4.1 Qualitative Techniques 40
2.4.2 Explanation Accuracy 40

2.4.2.1 Local vs Global Accuracy 41
2.4.2.2 Local Accuracy 41
2.4.2.3 Global Accuracy 45

2.5 Gap Analysis Summary . 46
2.6 Chapter Summary . 47

3 SWAG: Superpixels Weighted by Average Gradients 48
3.1 Introduction . 48
3.2 Motivation . 49
3.3 Superpixels Weighted by Average Gradients (SWAG) 54
3.4 Superpixels Designed for Explanations 56

3.4.1 Definition of Superpixels 57
3.4.1.1 Gradient-Based Superpixels 58

3.5 Metric Implementation . 59
3.5.1 Local Accuracy . 60
3.5.2 Global Accuracy . 61
3.5.3 Weak-Localisation . 62
3.5.4 Attribution Accuracy 62
3.5.5 Efficiency . 65

3.6 Superpixel Optimisation . 65
3.6.1 Justification of Superpixel Method Choice 66

3.6.1.1 Natural Alignment 66
3.6.1.2 Superpixel Consistency 67
3.6.1.3 Computational Efficiency 67
3.6.1.4 Conclusion 68

3.6.2 Choice of Superpixel Count 69
3.6.3 Choice of Attribution Method 70

CONTENTS vi

3.6.4 Gradient Sanity Check 71
3.6.5 Choice of Pooling Method 72
3.6.6 Choice of Weights for SWAGI+G 74
3.6.7 Final Parameter Choices 76

3.7 Experiment Results . 77
3.7.1 Qualitative Inspection of Results 79
3.7.2 Explanation Accuracy 80

3.7.2.1 Local Accuracy 80
3.7.2.2 Global Accuracy 88

3.7.3 Superpixel Replacement for LIME 89
3.7.4 Weak Localisation . 91
3.7.5 Efficiency . 92
3.7.6 Attribution Accuracy 93

3.8 Chapter Summary . 95

4 SWAG-V: Explanations for Action Recognition 97
4.1 Introduction . 97
4.2 Action Recognition Review . 97

4.2.1 Deep Learning Approaches For Action Recognition . . 98
4.2.1.1 Two Stream Approaches 98
4.2.1.2 Two Stream Approaches 99
4.2.1.3 Combined Spatio-Temporal Approaches . . . 100
4.2.1.4 Joining the Two Techniques 101

4.2.2 Datasets . 102
4.2.2.1 Kinetics . 103
4.2.2.2 UCF101 . 103

4.3 SWAG for Video: SWAG-V 104
4.4 Optimisation . 105

4.4.1 Attribution Method . 105
4.4.2 Choice of Weights for SWAG-VI+G 106
4.4.3 Initial Superpixel Count 107
4.4.4 Final Parameter Choices 109

4.5 Experiments . 110
4.5.1 Qualitative Inspection of Results 110
4.5.2 Local Accuracy . 113

CONTENTS vii

4.5.2.1 Implementation 114
4.5.2.2 Results . 115

4.5.3 Weak-Localisation . 115
4.5.3.1 Results . 117

4.5.4 Efficiency . 117
4.6 Future Work . 118
4.7 Chapter Summary . 118

5 Jitter-CAM: Improving the Spatial Resolution of CAMs 120
5.1 Introduction . 120
5.2 Related Works and Motivation 121
5.3 Jitter-CAM . 122
5.4 Experiments . 129

5.4.1 Qualitative Inspection of Results 129
5.4.2 Faithfulness . 131
5.4.3 Local Accuracy . 133
5.4.4 Weak Localisation . 133

5.4.4.1 Pointing Game 136
5.4.5 Efficiency . 138

5.5 Future Work . 139
5.6 Chapter Summary . 139

6 Explaining Failure using Surprise and Expectation 141
6.1 Introduction . 141
6.2 Measuring Surprise and Expectation 143

6.2.1 Grad-AMap: Filter Importance Measure 143
6.2.2 Evaluation of Filter Ranking Methods 147

6.2.2.1 Aside: Better CAM Explanations? 149
6.2.3 Building Filter Score Distributions 152
6.2.4 Definition of Surprise and Expectation 152
6.2.5 Deviation from Mean Filter Activation – β 155

6.3 Exploration of Failure . 155
6.3.1 Understanding the Reasons for Failure 156

6.3.1.1 Misclassification with High β Values 162
6.3.1.2 Misclassification with Low β Values 163

6.3.2 Visualising Surprise . 165

CONTENTS viii

6.3.3 Visualising Expectation 168
6.4 ‘Fixing’ Incorrect Classifications 169

6.4.1 Suppressing Surprise 171
6.4.2 Correcting Expectation 173

6.5 Future Work . 175
6.6 Chapter Summary . 176

7 Conclusion 177
7.1 Future Work . 179

Bibliography 181

A Additional SWAG Examples 201

B Additional SWAG-V Examples 208

C Additional Jitter-CAM Examples 217

List of Figures

1.1 Examples of differing explanation granularity 3

2.1 Examples of gradient-based methods 13
2.2 Examples of different CAM methods 17
2.3 Examples of different perturbation methods 22
2.4 Overview of LIME . 23
2.5 Overview of RISE . 24
2.6 Examples of DeepDream . 28
2.7 Explanations for misclassified images 34
2.8 Deletion and insertion overview 43

3.1 SWAG Overview . 49
3.2 Effect of bilinear interpolation . 50
3.3 Local accuracy vs score to pixel ratio 52
3.4 Example of thresholding for weak localisation 63
3.5 Examples of the BAM dataset . 64
3.6 Score to pixel ratio vs local accuracy score 70
3.7 Sanity check for SWAG with guided backpropagation 73
3.8 Comparison of image and gradient weights 75
3.9 Results for finding optimal SLIC weights 77
3.10 Example of baselines . 78
3.11 Visual comparison between methods with ImageNet 81

ix

List of Figures x

3.12 Additional visual comparisons between methods with ImageNet . 82
3.13 Local accuracy results for VGG16 85
3.14 Local accuracy results for ResNet50 86
3.15 Global accuracy results . 90
3.16 Efficiency vs local accuracy score 94

4.1 Overview of differing fusion methods 98
4.2 Overview of the two stream approach 99
4.3 Overview of 3D convolutions . 101
4.4 Overview of convolutions for R(2+1)D 102
4.5 Coarse search for optimal values 107
4.6 Fine search for optimal values . 108
4.7 Effect of superpixel count on insertion and deletion 109
4.8 Visual analysis of SWAG-V results 111
4.9 Visual analysis of SWAG-V results 112

5.1 Image and CAM relationship . 123
5.2 Overview of Jitter-CAM . 125
5.3 Examples of varying sizes of Jitter-CAM 126
5.4 Effect of k on insertion and deletion 127
5.5 Finding the optimal k value . 128
5.6 Visual comparison between CAM methods 130
5.7 Example of a difficult COCO image 135
5.8 Example results from the pointing game 137

6.1 Results of filter ranking experiment 150
6.2 Example of typical distributions 153
6.3 ImageNet validation set β values 158
6.4 CUB200 and Food-101 β values 159
6.5 ImageNet β values vs softmax scores 160
6.6 ImageNet β values from a single class 161
6.7 Images ranked by β score . 162
6.8 Misclassified images with high β values 164
6.9 Misclassified images with low β values 166
6.10 Identification of image regions causing surprise 169
6.11 Exploration of features expected in the misclassified image 170

List of Figures xi

6.12 Results for suppressing regions causing surprise 172
6.13 Examples of located features causing misclassification 174
6.14 Examples of an image with an expected feature added in 175

List of Tables

3.1 Effect of method choice on local accuracy 67
3.2 Effect of method choice on superpixel count 68
3.3 Computational Efficiency of Superpixel Methods 68
3.4 Local accuracy results for potential attribution methods 72
3.5 local accuracy results for the guided backpropagation sanity check 72
3.6 Local accuracy results for potential pooling methods 74
3.7 Local accuracy results for all methods 87
3.8 Global accuracy results . 90
3.9 LIME using our proposed superpixel method 91
3.10 Weak-localisation results . 92
3.11 Efficiency results . 93
3.12 Attribution accuracy results . 95

4.1 Local accuracy results for potential attribution methods 106
4.2 Local accuracy results for all methods 116
4.3 Weak localisation results . 117
4.4 Efficiency results . 118

5.1 Faithfulness results . 133
5.2 Local accuracy results . 134
5.3 Weak-localisation results . 135
5.4 Pointing game results . 138

xii

List of Tables xiii

5.5 Efficiency Results . 139

6.1 Filter removal results . 149
6.2 Grad-AMap as a CAM method 151

CHAPTER

1
Introduction

Convolutional Neural Networks (CNNs) are a technique, based on deep learning,
that allows data with a grid-like structure [1] (typically images) to be processed.
CNNs can be used for a wide range of applications. In this thesis, we will focus
on the task of classification. Classification tasks are where the CNN learns to
represent features from the input, and combine them in such a way that they
can predict the class of an object present within the input.

CNNs were first introduced in 1989 with LeNet5 [2]. However, their recent
popularity only began in 2014 with the introduction of AlexNet [3]. Since this
point there has been an explosion in the prevalence of CNNs, touching all areas
of computer vision. A striking example of this is that in a 2018 press release [4],
Facebook reported that Caffe2 (their production deep learning framework)
was responsible for more than 200 trillion predictions per day. Whilst only a
subset of these predictions will be using CNNs, even a fraction of this figure
would still be a huge number of predictions. Indeed, such is the prevalence of
CNNs, they have found themselves at the heart of many complex or critical
applications [5–8].

A by-product of how a CNN is able to predict a class successfully is that
the CNN itself, learns how to represent the features of an image. In pre-deep
learning techniques, feature engineering was typically used. This is where
the features in an input are explicitly specified through the use of domain
knowledge. A toy example of this is that an engineer could specify a value for

1

how pointy an ear is to predict if an image is of a cat or a dog. However, with
a CNN these features are learnt by the network, and therefore, known only
to the network. This is problematic when a designer or end user of a CNN
would like to know why a prediction has been made. This has led CNNs to be
referred to as black boxes [9–11].

Numerous examples [12–15] have shown that CNNs can perform well at
a classification task by using features from within an image that would be
unacceptable to a human. For example, using gender to classify between
nurses and doctors [15], using properties of the camera that took an image
to determine patch location [12], and learning the image background rather
than the object to be classified [13,14]. All of these issues would potentially
have gone unnoticed had there not been a way to visually inspect the reasons
behind a network’s prediction. If an explanation can be made of the network’s
reasoning, then that reasoning can be analysed by the developer, user of the
system, or external auditor.

However, the concept of an explanation remains vaguely defined [5]. Robnik-
Šikonja and Bohanec [16] consider an explanation in this context to be a way
to capture the relationship between inputs and outputs of a model. The form
that this can take also varies depending on the approach taken. A common
way of creating explanations that we will concentrate on throughout this thesis
is to generate a heatmap that assigns values to regions or pixels based on how
important they are to the output of the network. However, even within this
subcategory of explanations there are multiple approaches, each with their own
advantages and limitations. One of the core differences in these approaches,
is the granularity of the explanation. As we will investigate in this thesis,
there is often a trade off between an explanation being too fine so as to not be
easily understandable, or too coarse so as to not be able to precisely represent
how the model has made its prediction. Alternatively, methods that find a
middle ground between fine and coarse explanations can be found. However,
these come at a computational disadvantage as they rely on perturbation
techniques [9,13,17] which often require thousands of passes through a network
to create a single explanation.

To allow a better understanding of this crucial concept, which is used
throughout the thesis, we show examples of fine, medium and coarse grained
explanations in Figure 1.1. No set definition about what constitutes a certain

2

Input Fine Grained Medium Grained Coarse Grained

Figure 1.1: Examples of differing levels of explanation granularity. The medium grained
explanation shown here required 8,000 passes through the network to create.

granularity of explanation exists. There is not a discrete range of explanation
granularity levels, but rather it is open to user interpretation. However, as we
see in the figure, there are clear indicators of where an explanation may be
on this scale, with fine grained explanation having a much more complex and
complicated explanations compared to a coarse one. A useful framework to
have for this is the concept of soundness and completeness of an explanation,
introduced by Kulesza et al. [18] and discussed further by Miller [19]. The core
of this concept is summed up by Kulesza et al. as: a users time and interest
is finite, and an explanation may not be better simply because there is more
information. Instead they propose two dimensions of an explanation; soundness
(how truthful or accurate the explanation is), and completeness (how much of
the underlying system is explained by the explanation). Miller suggests the
three principles to take from Kulesza’s work is that an explanation must be
sound, must be complete, and must not overwhelm the user. He highlights that
the principle of not overwhelming the user is at odds with the first two. Here we
see the crux of how these concepts relate to the idea of explanation granularity.
A fine grained explanation may be sound and complete, but assigning a score
to every individual pixel is overwhelming. By reducing the granularity, we
reduce the soundness and completeness, but also reduce how much the user
has to understand to appreciate the explanation.

What is needed are methods that can bridge this fine/coarse gap which
are achievable in a computationally efficient way. Doing so would allow us
to create explanations which are able to accurately locate the regions that
are used to inform a model’s prediction, whilst also being interpretable to the
viewer of the explanation.

3

1.1. Motivation

This is not to say that the only method for understanding a models pre-
diction is to generate a heatmap. Indeed, there are other methods that we will
discuss, such as finding dataset samples that are indicative of how a network
has learnt to represent the dataset classes [20]. Alternatively, an explanation
can be created for individual components within a network, depending on how
they have learned to represent the training data [21]. A recent set of techniques
has also begun to incorporate specific domain knowledge into explanations
to allow for semantically meaningful regions to be labelled and explained, i.e
body parts of a bird [22].

In this thesis, we will primarily focus on image classification tasks, and as
such the majority of explanation techniques that we will examine are created to
understand why a model has predicted a class in a given way. However, these
techniques are almost exclusively used to explain correct predictions, where
the model has accurately classified an image. There has been comparatively
little research in the area of explaining why a network has failed to predict the
correct class. Arguably this is an area of research that is of equal importance to
explaining correct classifications, for both developers of deep learning solutions
and end users alike.

There are a number of methods that have been introduced to measure
certain aspects of an explanation once it has been created. These range
from measuring how well the explanation can locate regions important to the
classification of the object (accuracy) to how well the explanation can locate
the object being classified (weak-localisation). We will use a range of these
metrics throughout this thesis and importantly will also present baselines for
use with these metrics. Indeed, it is notable that a number of metrics are
introduced alongside explanations, with no measurements done on baselines to
assure us that they are actually performing as expected [23,24].

1.1 Motivation

The primary motivation behind this thesis comes from the impact that deep
learning has had on all fields of computer vision, particularly applications
which require a robust understanding of why they perform the way they do.
Examples of these are medical diagnostics [6, 25, 26], surveillance and security
applications [7, 27], or autonomous vehicles [8, 28]. In these applications, the

4

1.1. Motivation

predictions made by deep learning systems are required to be trustworthy. In
this context, being trustworthy is not simply about achieving a high accuracy
when training the models, but being able to understand why a model has
made a specific prediction. For example, a doctor using a deep learning based
method for breast cancer prediction may like to see which regions of an X-ray
the model has used to inform the classification.

Since the ascendancy of deep learning techniques in computer vision, at-
tempts have been made to create either interpretable models, or post-hoc
explanations [29]. In this thesis, we will investigate post-hoc explanations as
it is still much more common to use non-interpretable models for computer
vision. Post-hoc explanations are those which are created after the model has
been trained for the desired task. There are numerous ways to create post-hoc
explanations, from using a single input image as a vehicle for creating an expla-
nation of the models prediction [15,30–34], to using an entire dataset to explain
the inner workings of the model [21, 35]. In particular, input centric methods
have had a large amount of research dedicated to them, as the highlighting
of regions within an input image is a popular way of creating explanations.
However, in this area of explanations in particular, there is often a trade-off
made between how interpretable an explanation is to a human, and how well
the explanation represents the regions of the input image used by the model
to make its prediction. This is often unavoidable, due to the methods used to
obtain the explanation. For example, methods which backpropagate back to
the input image give a relevance score to each pixel, whilst those techniques
which use activation maps extracted from lower convolutional layers are left
with a large contiguous region being assigned a single relevance score. Finding
a method that can bridge this divide efficiently would be beneficial to the
community, as it would allow a granularity of explanation that was previously
the reserve of perturbation methods to be created quickly. This in turn would
allow a quicker and more accurate understanding of the models being used at
the time.

The majority of explanation techniques in computer vision are aimed at
image based deep learning techniques. However, CNNs are also used heavily
in the action recognition domain. Previous attempts have been made to take
existing explanation methods and apply them to the video domain [23, 36].
However, few techniques are developed specifically for use with video inputs.

5

1.2. Research Goals

This presents an interesting problem as action recognition networks are often
crucially different to image based networks, from the inclusion of a temporal
element using 3D convolutions [37,38], to the use of two-stream networks [39,40].
Any technique that is developed for action recognition networks should take
into account these properties in order to produce explanations, and while these
do exist [23,36,41,42], they are poorly represented when compared to those
available for image based networks.

Of importance to note at this point in the thesis is that explanation tech-
niques can be developed with a range of stakeholders in mind. For example
in the work by Preece et al. [43], 4 stakeholder communities are identified
(developers, theorists, ethicists, and users), of which the target audience for
the work contained in this thesis is developers. This is not to say that members
from other communities may not find aspects of this work useful, simply that
they are not the intended audience.

This thesis explores how post-hoc explanations can be created for CNNs
and their use for both image and video based networks. In particular, we show
how explanations can be created for image and video networks that are neither
too fine or too coarse in their detail. We also present an approach based on
explaining why a network has failed to classify an input correctly.

1.2 Research Goals

In this section, we outline the research goals, driven by a desire to be able to
better explain CNNs, that guide this thesis:

Research Goal 1: We hypothesise that there is an efficient way of cre-
ating medium-grained region based technique without the use of expensive
perturbations.

Research Goal 2: We hypothesise our medium-grained explanation tech-
nique can create explanations for networks using video as an input.

Research Goal 3: We hypothesise that creating explanations from multi-
ple regions of a single image can be combined to produce an effective medium-
grained explanation.

Research Goal 4: We hypothesise that by understanding how the indi-
vidual filters in a network react to an image and compare it to the activations
found in the training data, we can begin to determine the reasons that networks
fail to classify inputs correctly.

6

1.3. Contributions

1.3 Contributions

In this section, we outline the contributions that we have made and how they
link to the hypotheses,chapters and, where applicable, papers produced. In
this thesis, we make the following contributions:

Contribution 1: We propose a method for combining superpixel and
gradients: SWAG (Superpixels Weighted by Average Gradients). We show
qualitatively and quantitatively that this method is able to produce explana-
tions that perform well across a number of metrics. This contribution addresses
research goal 1 and can be found in Chapter 3. This work has been presented
in the following papers:

[44] Thomas Hartley, Kirill Sidorov, Christopher Willis, and David Marshall.
Gradient Weighted Superpixels for Interpretability in CNNs. Workshop on
Interpretable and Explainable Machine Vision. BMVC 2019.

[45] Thomas Hartley, Kirill Sidorov, Christopher Willis, and David Marshall.
SWAG: Superpixels Weighted by Average Gradients for Explanation in CNNs.
WACV 2021.

Contribution 2: We propose a modification of a superpixel creation tech-
nique called Simple Linear Iterative Clustering (SLIC) that allows us to use
gradient-based explanations to inform the superpixel creation process (N.B
we do not train the superpixels to find regions as you might with attention
maps). We show that using these superpixels gives improved explanations.
This contribution addresses research goal 1 and can be found in Chapter 3.
This work has been presented in the following paper:

[45] Thomas Hartley, Kirill Sidorov, Christopher Willis, and David Marshall.
SWAG: Superpixels Weighted by Average Gradients for Explanation in CNNs.
WACV 2021.

Contribution 3: We propose SWAG-V, an extension of SWAG that works
with video inputs. We again show that this performs well across a number of
metrics for use with action recognition networks. This contribution addresses
research goal 2 and can be found in Chapter 4. This work is currently under
submission to WACV 2022.

Contribution 4: We propose Jitter-CAM, a method that creates multiple
Class Activation Maps (CAM) explanations and combines them to form a
single explanation. This contribution addresses research goal 3 and can be
found in Chapter 5. This work is currently under submission to BMVC.

7

1.4. Thesis Structure

Contribution 5: We show that a commonly used metric in the CAM
literature is fundamentally flawed and its use should be discontinued. This
contribution addresses research goal 3 and can be found in Chapter 5. This
work is currently under submission to BMVC.

Contribution 6: We propose a method for scoring how an individual filter
reacts to an image. We show that this method performs better than a number
of alternative methods. This contribution addresses research goal 4 and can
be found in Chapter 6. This work has been presented in the following paper:

[46] Thomas Hartley, Kirill Sidorov, Christopher Willis, and David Mar-
shall. Explaining Failure: Investigation of Surprise and Expectation in CNNs.
Workshop on Fair, Data-Efficient and Trusted Computer Vision. CVPR 2020.

Contribution 7: Using our method of filter scoring, we propose a method
for building distributions how filter react to training data and then comparing
unseen images to this data. This contribution addresses research goal 4 and
can be found in Chapter 6. This work has been presented in the following
paper:

[46] Thomas Hartley, Kirill Sidorov, Christopher Willis, and David Mar-
shall. Explaining Failure: Investigation of Surprise and Expectation in CNNs.
Workshop on Fair, Data-Efficient and Trusted Computer Vision. CVPR 2020.

Contribution 8: We propose a method for locating regions of an image
that are causing an image to be misclassified through the use of the above
distributions. This contribution addresses research goal 4 and can be found in
Chapter 6. This work has been presented in the following paper:

[46] Thomas Hartley, Kirill Sidorov, Christopher Willis, and David Mar-
shall. Explaining Failure: Investigation of Surprise and Expectation in CNNs.
Workshop on Fair, Data-Efficient and Trusted Computer Vision. CVPR 2020.

1.4 Thesis Structure

The remainder of this thesis is as follows:
Chapter 2 introduces the reader to the common concepts, techniques, and

datasets discussed throughout this thesis.
Chapter 3 describes a novel algorithm for creating explanations in an

efficient way that finds a trade-off between accuracy and interpretability.

8

1.4. Thesis Structure

Chapter 4 extends the novel algorithm from Chapter 3 and explores how
it can be applied to CNNs designed for action recognition.

Chapter 5 proposes a method for creating a CAM based explanation that
performs better than previous CAM explanations.

Chapter 6 proposes a novel method for generating explanations that
proposes why a network fails in it’s predictions. Using the techniques from
chapter 3 we are able to highlight potential reasons for failure within an input
image.

Chapter 7 concludes the thesis and summarises the findings and contri-
butions made throughout.

9

CHAPTER

2
Background

2.1 Introduction

As deep learning networks have become more commonplace, the creation
and examination of explanation techniques has become more rigorous. This
chapter aims to provide an overview of both interpretability techniques and
the methods for measuring how well they perform.

2.2 Interpretability Techniques

In this section, we explore the body of work that has built up around explaining
the reasons behind a networks prediction. As deep learning as a research topic
has exploded in the last decade, the amount of techniques for explaining the
networks inner workings has also increased. A common description of inter-
pretability is “the degree to which an observer can understand the cause of
a decision”. [19] It is also common to use the terms interpretability and ex-
plainability interchangeably [19,29]. However, the use of the word ‘explanation’
is often reserved for discussing the understanding of a single prediction. As
we will outline in this chapter, there are many methods available to allow an
understanding of a models decision. We will begin by briefly discussing two
differing types of interpretability: inherently-interpretable models vs post-hoc
explanations.

10

2.2. Interpretability Techniques

2.2.1 Inherently Interpretable Models vs Post-hoc Explanations

Interpretability methods can be split many different ways into many different
categories and sub-categories. At the highest level, the majority of interpretabil-
ity methods can be split into two groups, these are: inherently-interpretable
models and post-hoc explanations. Inherently-interpretable models are models
that are able to produce an explanation of a prediction alongside the prediction
itself. A basic example of this is a decision tree [47], whereby a clear path
can be followed to understand how a prediction has been made. However, the
majority of CNN architectures are black boxes, and while some networks have
been designed to be inherently-interpretable (e.g. [48]) they remain rare com-
pared to the non-interpretable models. One prominent reason for this is that
inherently-interpretable models are still at an early stage of their development
and currently are unable to compete with more established, non-interpretable
models [48–50].

Post-hoc methods accept that the model is a black box and attempts to
create explanations based on this. For CNNs, these post-hoc methods can
be broadly split into two sub-categories depending on whether we are trying
to understand the model as a whole, or a single prediction. Varying names
have been given to this divide in techniques, for example Du et al. [51] call
them post-hoc global explanations and post-hoc local explanations respectively
while Murdoch et al. [52] define them as dataset-level and prediction-level
interpretations. For the purpose of this thesis and in order to avoid confusion
with a later discussed concept called global accuracy, we will refer to this split in
methods as network-centric and input-centric explanation techniques. However
the two sub-categories are referred by different authors, the divide in concepts
remains the same. Input-centric (post-hoc local explanations/prediction-level
interpretations) aim to explain a model’s prediction. For CNNs, this is typically
through the use of a single image. The subsequent explanation is then combined
with the input image, giving a visual representation of the importance of
the features in the image to the model. Network-centric (post-hoc global
explanations/dataset-level) techniques aim to understand how the model has
learnt to represent the training data. This is typically done by passing a
dataset through the network and observing how some element of the network
reacts. This allows explanations to be generated that seek to show the learnt
representations within the model.

11

2.2. Interpretability Techniques

In this thesis, we solely explore post-hoc methods for the generation of
explanations. We base this decision on how prevalent the current generation
of deep learning based techniques have become. As such it is likely that these
‘black-box’ architectures are going to be in common use for some time through-
out industry, in which case their lack of interpretability will still need addressing.
For example, models currently deployed for use in a medical setting will have
been through a rigorous approval process and there will only be a gradual
shift from current models to newer ones [53]. The following subsections will
introduce and discuss both input- and network-centric post-hoc explanation
techniques.

2.2.2 Input-Centric Explanations

In this section, we discuss input-centric methods for generating explanations.
We break this section down into three subsections, these are:

• Gradient based methods.
• Activation based methods.
• Perturbation based methods.

Gradient based methods [30,31,33,54–56] are those that rely on back propa-
gation through the network to the input image to highlight areas of interest.
Activation based methods [15,23,24,34] are those methods that use the activa-
tion maps produced by the layers of the network as a basis for visualisation.
Finally, perturbation methods [9, 11, 13, 17, 57–59] are those that treat the
network as a black box and pass multiple modified version of an image to
see how the network reacts. These reactions then inform the creation of the
explanation.

2.2.2.1 Gradient Based Methods

Gradient based methods are a selection of techniques that create explanations
by backpropagating through the network back to the input space. This class
of explanations has proven to be enduringly popular [60] and have been
consistently built upon over the years. Examples of gradient based methods
are shown in Figure 2.1. In this figure, we note that fine-grained explanations
are created using gradient-based methods since every pixel is assigned a score.

12

2.2. Interpretability Techniques

Input Vanilla Guided Integrated Smooth-Grad

R
es

N
et

50
V

G
G

16

Figure 2.1: Examples of gradient-based methods. Of importance to note is how fine
grained these explanations are. Every pixel is assigned a score.

The idea of backpropagation through a CNN as an explanation technique
was proposed by Simonyan et al. [30] based on early, non-CNN based works [54].
They referred to their technique as class saliency extraction but it is now
commonly referred to as simply ‘vanilla gradients’. The idea behind this
technique is simple, for a given image, it is desirable to have an importance
score for each pixel showing how important it it to the network. This is
achieved by backpropagating from a target classes pre-softmax score to the
input image. This results in a set of gradients the same size as the input image.
To reduce this down to a single score per pixel, the maximum is taken for
each gradient score over the corresponding RGB channels. This produces an
explanation that the authors show to be able to localise and segment the target
object successfully.

A technique proposed by Zeiler and Fergus [17] called deconvolution aims to
invert the network so that the input can be reconstructed based on the output
of a network. It does this using by attaching a deconvnet [61] (essentially a
network where all layers perform the inverse of those in the original CNN) to
the CNN under examination.

Springenberg et al. [31] highlight the fact that previous methods (vanilla
gradients and deconvolution) fail to produce sharp recognisable image structure.
They suggest that this is primarily down to the way in which the signal is
backpropagated. Both vanilla gradients and deconvolutions allow negative
gradients to flow backwards through the network. Springenberg et al. introduce

13

2.2. Interpretability Techniques

guided backpropagation as a means of fixing this. Guided backpropagation is
a method almost identical to vanilla gradients, but it uses the output of the
ReLU activations from the forward pass to help determine which gradients
to backpropagate. By only backpropagating gradients at positions that are
positive for both the backward pass and in the corresponding activation map,
a much clearer explanation is generated.

Layer-Wise Relevance Propagation (LRP), proposed by Bach et al. [55],
is another backpropagation based technique that aims to identify the pixels
important to the network’s prediction. However, unlike deconvolution [17] and
vanilla gradients [30], they argue that LRP aims to reconstruct the classifier
decision, rather than the input. They achieved this by taking into account
the signed activations from the layer preceding the one they are currently
weighting. This has the effect of only redistributing values to the lower layer,
based on the values received from the previous layer. The relevancies of a
particular neuron are computed using the product of the activation and the
weight between the neurons that produced the activation. A complication of
LRP that there is not a single method for computing relevance, and a number
of rules have been introduced depending on where in a network the relevance
is being computed. LRP was refined further by Montavon et al. [62] as Deep
Taylor Decomposition. The authors suggest that the rules from LRP can be
seen as a series of Taylor expansions. They propose new rules that redistribute
relevance scores to neurons through the use of a first-order Taylor expansion
around a reference point.

Shrikumar et al. [32] highlight that explanations such as guided backpropa-
gation remove negative gradients during the backward pass. They argue that
removal of these, results in an explanation not being able to identify regions of
an input that contribute negatively to a networks output. They also highlight
an issue they call model saturation, whereby a models output will not change
even if a region of potential importance is removed while another identical
feature is not. For example, given a network that finds the colour yellow, and
the input is two yellow pixels. Both are equally important, but if one is set to
black the network will still determine yellow is present so a gradient of 0 will
be assigned to the turned off yellow pixel at backpropagation. Shrikumar et
al. [32, 63] address these problems through the introduction of Deep Learning
Important FeaTures (DeepLIFT). This technique tries to explain the difference

14

2.2. Interpretability Techniques

in output from a network between a reference image and the input. For images,
the authors recommend either a black image (all zeros) or a blurred version
of the input. They assign a contribution score for each pixel based on the
difference from the reference. Crucially, even when the gradients are zero, the
contribution score can be non-zero, this helps to alleviate the model saturation
problem.

When determining what properties a good explanation should have, Sun-
dararajan et al. [33] proposed two axioms, and a novel method called integrated
gradients that satisfies them. The two axioms they identify are sensitivity and
implementation invariance. The sensitivity axiom says that given two images
that vary in only one feature, if the prediction of a network is different for
both then that feature must be given a non-zero score. The implementation
invariance axiom states that, given two networks that are functionally equiva-
lent (they produce the same output but have differing implementations), the
explanation should be identical for both. The arguments for implementation
invariance is that if an explanation method fails to satisfy it, then it means
the explanation could be sensitive to unimportant aspects of the network.
Sundararajan et al. [33] found that none of the existing explanation techniques
at the time satisfied both axioms. To solve this, they introduced Integrated
Gradients, a method that takes an input image and a reference image as
Shrikumar et al. [32] (they call it a baseline image) and multiple images that
transition from one to the other. By generating the gradients for each image
and integrating them, an explanation is created that the authors find better
reflects distinctive features of an image.

Smilkov et al. [56] took these techniques and observed that they are all often
visually noisy. To alleviate this and reduce the visual noise in an explanation,
they introduced a technique called Smooth-Grad. The authors propose that
rather than creating an explanation using the gradient directly, the gradient
could be smoothed using a Gaussian kernel. They propose to do this by adding
Gaussian noise to multiple copies of the input image, calculating their gradients,
and then taking the mean of these gradients. This produces an explanation
that has significantly reduced amounts of visual noise.

Excitation Backprop was introduced by Zhang et al. [64] using a probabilis-
tic winner take all method. Using this technique they define any connection
between neurons with a non-negative weight as excitatory. This is determined

15

2.2. Interpretability Techniques

during the forward pass through the network. Excitation probabilities are
computed in a backward pass using only the excitatory connections. A combi-
nation of the activation map and the weights used to generate it on the forward
pass is used to compute the probability.

2.2.2.2 Improvements to Gradient Based Methods

A number of techniques have used one of the above gradient based techniques as
a basis for creating a novel explanation. This section describes three techniques
that have been introduced that can work alongside the aforementioned gradient
based methods to help improve them.

As a component of their DeepLift technique, Shrikumar et al. [32, 63]
suggested that LRP [55] can be reduced to simply the gradient multiplied
by the input. This has the benefit of being much simpler to compute than
LRP but can also be applied to differing explanation techniques (i.e. guided
backpropagation). This technique is referred to as gradient×input. While it
does produce visually less noisy explanations, a concern is that black pixels
with a value of 0 will never have any attribution applied to them [56].

XRAI is a method introduced by Kapishnikov et al. [65] which uses su-
perpixels as the foundation for creating explanations. XRAI uses superpixels
to create interpretable regions within the image. Multiple sets of superpixels
are generated using differing parameters. Each superpixel in every one of the
superpixel sets is assigned a score. This score is generated through the use
of integrated gradients [33]. This is achieved by generating an explanation
for a given input image using the sum of both black and white baselines for
integrated gradients. This produces a single score for each pixel in the image.
For each superpixel, a value gs is assigned where:

gs =
∑

i∈s/M

Ai

area(s/M) . (2.1)

Here, A is he explanation map generated using integrated gradients, s is
the current superpixel region and M is the explanation we are creating. The
blank explanation is built up in multiple passes by adding the regions that
give the highest values per area. This technique scores well in metrics that will
be introduced later in this thesis. However, it is computationally inefficient as
it requires multiple iterations of the algorithm to build the explanation.

16

2.2. Interpretability Techniques

Input G-Cam Score-CAM XG-CAM G-CAM++ Ablation-CAM

R
es

N
et

50
V

G
G

16

Figure 2.2: Examples of different methods for generating Class Activation Mappings
(CAM). Note how coarse they are, and how little visual difference there is between methods.

2.2.2.3 Activation Based Methods

An alternative approach to understanding how a network is making a prediction
for a given image is to visualise the activation maps produced by individual
filters. In many respects this area of input-centric explanations uses similar
techniques to those of network-centric explanations, as we are showing how
the filters themselves are reacting to an image. However, as this strand of
work matured, a distinct input-centric approach has developed using these
activations so we will discuss them here.

The simplest method of using activations to create an explanation is to
simply input an image into a network, then view the individual activations.
An example of this was proposed by Yosinski et al. [66] who developed an
application that would allow them to capture web-cam footage and view the
activations of the network in real time. Using this, Yosinski et al. were able to
demonstrate that valuable intuitions about how the network was interpreting
the image could be gained. For example, they found that a single filter could
recognise faces across a range of species, or that a filter learnt to recognise
text.

However, there is an element of information overload in trying to view even
just the activation maps from the final layer of a CNN. For example, in the
final convolution layers of the VGG16 [67] and ResNet-152 [68] architectures
there will be 512 and 2,046 activation maps produced respectively. A novel
way of reducing these into a single heatmap was proposed by Zhou et al. [34]
called Class Activation Mapping (CAM).

17

2.2. Interpretability Techniques

CAM is a technique that allows a user to discover regions in an image that
are discriminative to the network. This is achieved by summing all of the
activation maps from the final convolution layer into a single unified heatmap.
However, simply combining the activations would be misleading, as often
filters that are activated, are not ultimately useful for the models predictions.
Instead, a way of weighting the individual activation maps is required. This is
achieved through the use of a Global Average Pooling (GAP) [69] layer within
a network. A GAP layer has the effect of taking the spatial average from each
activation map in the preceding layer. This results in a single value for each
activation map which represents a score of the importance. The higher the
spatial average of the activation map, the more important it becomes to the
discriminative abilities of the network. These values can be then used to weight
the activation maps by simply taking the product of each activation map and
its corresponding spatial value. The heatmap is then created by summing these
weighted activation maps together. As this heat map is the size of the final
layer activation map and typically small (e.g. 7×7 for ResNet), it is resized to
the same size as the input. Bi-linear interpolation is used during resizing.

While the heatmaps produced by CAM are useful for visualising the regions
of an image that are useful to the networks prediction, a major drawback was
the limitation of having to use the values from the GAP layer. This limits the
use of this technique as it requires the GAP layer to be present during training
as it sits between the final convolution layer and the softmax layer. This means
any network architecture must either already contain this configuration, or
be retrained with it present. Selvaraju et al. [15] proposed a generalisation of
CAM based on using the gradients instead of a GAP layer. This approach,
titled Gradient-weighted Class Activation Mapping (Grad-CAM), uses the
the gradients to generate the weights for the activation map rather than the
output from a GAP layer. These gradients are generated using the vanilla
gradient method introduced by Simonyan et al. [30] and discussed previously.
Rather than backpropagating back to the input image, the gradients are taken
from the convolution layer. To obtain a single weight value from each set of
gradients, the spatial average is taken. All subsequent CAM based techniques
follow a similar pattern, aiming to create a set of values which are used to
weight the activations. As such, we now introduce the notation that we will
use to discuss CAMs throughout this thesis. With Grad-CAM we have seen

18

2.2. Interpretability Techniques

that weights are generated that corespond to the filters of the layer in a CNN.
We show this as αc

k, which is the weight of filter k for class c. The activation
map of the final layer from filter k which are used as the basis of the CAMs
are shown as Ak. Z is number of individual values in an activation map. The
prediction score for class c is labelled as y. Using this notation, we generate
the weights for Grad-CAM as so:

αc
k = 1

Z

∑
i

∑
j

∂yc

∂Ak
ij

. (2.2)

The product of each individual activation map and corresponding weight is
then summed together to give a single heatmap. All values below 0 are set to
0 through the use of a Rectified Linear Unit (ReLU):

CAM = ReLU
(∑

k

αc
kAk

)
. (2.3)

This heatmap is then resized to the input image size using bi-linear interpolation.
All the following CAM methods use this approach to combine their generated
weights with the activations.

Also proposed alongside Grad-CAM was Guided Grad-CAM [15]. This is
the element-wise product of Grad-CAM and Guided Backpropagation which
produced an explanation that is still as fine as Guided Backpropagation, but
better localises to the object of the class being explained.

CAM methods have proven to be enduringly popular, with numerous novel
approaches for how to combine the activation maps being introduced. Examples
of these CAM methods are shown in Figure 2.2.

Following the introduction of Grad-CAM, a number of approaches have
been introduced, all of which attempt to improve CAMs by altering the method
for the creation of the weights used. Chattopadhyay et al. [23] suggested that,
while Grad-CAM was a useful technique, it was deficient in two areas. The first
is that while Grad-CAM is able to locate the region of the image important
to the model, Chattopadhyay et al. suggest that a good explanation should
“capture the entire object in completeness”. Secondly, they suggest that an
explanation technique based on activation maps should also work for action
recognition networks. Based on these areas, they introduced Grad-CAM++.
This follows the same approach as Grad-CAM, but reformulates how the
weights are created from the gradients. Grad-CAM++ aims to only include

19

2.2. Interpretability Techniques

positive gradients (again through the use of a ReLU function) when creating
the weightings, (similar to deconvolution [17] and guided backpropagation [31]).
More concretely, the Grad-CAM++ weights are created as so:

αc
k =

∑
i

∑
j

[∂2yc

(∂Ak
ij)2

2 ∂2yc

(∂Ak
ij)2 +∑

i

∑
j A

k
ij{ ∂3yc

(∂Ak
ij)3}

]
.ReLU

(∂yc

∂Ak
ij

)
. (2.4)

Here i and j are locations of elements within A. They find that doing
so produces explanations that highlights more of the object present in the
image when compared to Grad-CAM. Of particular interest to this thesis
is their attempts to produced explanations for action recognition networks.
Their approach is no different to how they would treat an image classification
network, except using an architecture specifically designed for using video as
an input - the C3D Network [37]. Explanation techniques relating specifically
to video will be discussed further in Section 2.3.

Axiom-based Grad-CAM (XGrad-CAM) [70] was introduced as a way
of getting CAM based methods to comply with the axioms introduced by
Montavon et al. [71] and Sundararajan et al. [33]. In particular XGrad-CAM,
is intended to comply with the axioms of sensitivity [33] and conservation [71].
They achieve this in a similar way to Grad-CAM++ by reworking how the
gradients and activation maps are combined to produce the weights:

αc
k =

∑
i

∑
j

(Ak
ij∑

i

∑
j A

k
ij

∂2yc

∂Ak
ij

)
. (2.5)

Ablation-CAM, introduced by Desai and Ramaswamy [24], removes the
gradient component from the weight creation process. Instead they set each of
the activation maps from the final convolution layer to zero, one at a time, and
observe the effect that removing them has on the networks prediction. The
weights are therefore generated as so:

αc
k = yc − yc

k

yc

. (2.6)

Here yc
k is the prediction score y for class c when activation map at index

k is set to 0. The intuition, here, is that removing an activation map that is
important to the networks prediction, will cause a corresponding drop in the
pre-softmax class scores. These scores are used as the weights by subtracting

20

2.2. Interpretability Techniques

them from the pre-softmax class scores and dividing by the pre-softmax class
scores. Any activation map that has caused a large drop in the prediction score
will now produce a high value showing how important it is to the network.

Following on from this idea of no longer using the gradient to inform the
weights, Score-Cam by Wang et al. [72] uses the product of the activation maps
and the input image to inform the weights. The activation maps from the
final layer are extracted, normalised between [0, 1], and then rescaled to the
input size. This set of activation masks is then multiplied with the input image
creating a new set of input images masked to represent their corresponding
activation map. These are then passed to the network and the softmax score
for each activation map/image combination stored. These softmax scores are
then used as the weights for each activation. They are combined and summed
to create the heatmap as before.

Rebuffi et al. [73] proposed NormGrad, a method with similarities to Grad-
CAM. However, rather than try to explain the reasons behind the output of
a model, NormGrad aims to find locations within an image that are useful
for training. As with the previous techniques, the gradients and activation
maps are combined and the Frobenius norm taken (hence NormGrad). A key
difference between Grad-CAM and NormGrad is that GradCam only takes
positively aligned activations and gradients. NormGrad on the other hand
allows both positive and negative features so as to show regions detrimental to
training.

A method separate from CAM work that uses the activation maps from a
separate network was introduced by Dabkowski and Gal [10]. The core of the
idea is to train a model (separate to the base model which is treated as a black
box) to produce an explanation. This is done using an adapted U-Net [74]
architecture. A ResNet50 model (pretrained using ImageNet) is used for the
contracting path with a series of upsamplers being used for the expansion path.
From each of the 5 blocks present within ResNet50, the activations are passed
to their corresponding upsampler. A custom loss function is then used which
aims to encourage 4 desirable explanation aspects. These are:

• Mask smoothness.
• Compact explanations.
• Ensuring the salient explanation region gives the correct prediction.
• The salient explanation region if removed, stops the models ability to

predict the class.
21

2.2. Interpretability Techniques

Input LIME RISE Occlusion Meaningful SHAP

R
es

N
et

50
V

G
G

16

Figure 2.3: Examples of perturbation methods. Here we see that explanations can be
created which are less coarse than the previous CAM based methods.

2.2.2.4 Perturbation Based Methods

While the previously discussed methods for creating explanations have all
required access to the inner working of the CNNs, either through access to
the activation maps, or the ability to retrieve gradients, perturbation methods
generally do not. Perturbation methods can be broadly defined as those that
treat the model as a black box, and that use multiple passes through the
network in order to obtain an explanation. Typically this is in the form of an
image that is altered in some way and then passed to the black box model and
the subsequent prediction score stored for analysis.

Occlusion maps, introduced by Zeiler and Fergus [17], are a very early
example of the perturbation technique being applied to CNNs. An occlusion
map is generated by sliding a square mask around an image. At the location
of the square, the image is ‘turned off’ by setting the pixel values to 0. At
every location the pixels under the square are turned off, the image is passed
to the network and the softmax score for the target class is stored. The
intuition is that when a region that is important to the models prediction is
set to 0, the softmax score will drop, while regions that are detrimental to the
networks prediction will see an increase in the softmax score. This work is
expanded further by Zintgraf et al. [57], who adopt a more rigorous sliding
window approach by using nested patches. The authors observed that a pixel
depends most strongly on the region surrounding it, and to accommodate this,
proposed a conditional sampling method using the nested patches. If a feature
within the image is to be labelled as useful to the network it now has to satisfy
two criteria. As with the Zeiler and Fergus [17], method the feature must be

22

2.2. Interpretability Techniques

Figure 2.4: Overview of the LIME technique. Taken from [13]

relevant to the class under observation but now it must also be hard to predict
from within the larger patch.

Local Interpretable Model-agnostic Explanations (LIME) [13] is a popular
technique that takes the concept of perturbing regions of the image and expands
it further by adding two novel ideas. The first is that rather than using a sliding
square to perturb regions of the image, superpixels are used instead. Superpixels
are contiguous groups of pixels that are typically similar in colour, although
other attribute (such as texture) can be used. By using superpixels instead of
square regions we immediately have a foundation that better corresponds to the
input image. These superpixels are then perturbed by ‘turning them on and off’
(setting superpixels to 0). This is done multiple times with multiple random
perturbations; by default, 1000 different perturbed version of the image are
passed through the network. When the images are passed through the network,
the softmax scores are stored. An example of this is shown in Figure 2.4. The
second innovation is that by performing multiple perturbations and storing the
softmax results from the model, a secondary interpretable model can be trained.
This is typically a Least Absolute Shrinkage and Selection Operator (LASSO)
or a decision tree. This interpretable model is trained on the perturbed samples
and the softmax scores. Using the interpretable model we are then able to
see the importance to the prediction of each superpixel to the networks final
prediction.

23

2.2. Interpretability Techniques

Figure 2.5: Overview of the RISE technique. Here I is the input image, Mi is the random
mask, and S is the final resized (with interpolation) output. Taken from [9].

While LIME remains a popular method for generating explanations, con-
cerns were raised by Petsiuk et al. [9] that superpixels may not correctly
capture the regions important to the model. To address these concerns they
introduced Randomized Input Sampling for Explanations (RISE). This is a
method designed to alleviate the spatial constraints placed on the input space
by LIME’s superpixels. To avoid the use of superpixels, RISE uses multiple
random masks to generate the perturbation regions. The masks are generated
by producing random binary images smaller than the original image. These
images are then upsampled to the original images size. By upsampling the
original binary masks using bilinear interpolation, the values are no longer
binary, rather falling in the range [0, 1]. Upsampling also causes the masks to
have contiguous regions, rather than completely random noise. Once a mask
is generated, it is multiplied with the image to be explained, and this new
masked image passed to the model. The softmax score for the target class is
stored along with the mask. This is repeated multiple times (4,000 and 8,000
for VGG16 and ResNet50 respectively) before a single heatmap is computed
through a weighted sum of the scores and the masks. An overview of this is
shown in Figure 2.5. The authors show that RISE is able to produce more
accurate pixel scores than occlusion maps, Grad-CAM, and LIME. Through
the use of a weak localisation metric, which we will discuss later, they also
show it can better localise the object in the image compared to comparable
techniques.

24

2.2. Interpretability Techniques

Similarly to the idea by Dabkowski and Gal [10], Fong and Vedaldi [11]
introduced a technique with the aim of producing compact explanations through
‘meaningful perturbations’. Unlike previous techniques which perturb the
network with modified images and observe the softmax output, this work
learns a better perturbation mask through the use of gradient descent. In
this way, the perturbations becoming more akin to new training data for the
mask to learn from. The authors introduce a custom loss function that aims
to create an explanation mask through the use of what they refer to as the
‘deletion game’. This is designed to find a mask that find the smallest region
that when deleted destroys the networks ability to predict a given class. This
work was improved upon with the introduction of ‘extremal perturbations’ by
Fong and Vedaldi [58]. The core difference with their previous technique is
that that explanation mask generated is constrained to take up a fixed fraction
of the input image area.

SHapley Additive exPlanations (SHAP) is a technique introduced by Lund-
berg and Lee [59] based on Shapley values [75]. Shapley values are a method
found in game theory that, in our context, assumes every feature is a player in
a game and that the prediction is the payout. Shapley values aim to find the
contribution of each player to the final prediction. This is done by forming
coalitions of features and observing the prediction. By having different features
present or absent from these coalitions, an insight into how each feature affects
the prediction is gained. In the context of explaining CNNs using SHAP, it
would be inefficient to treat every pixel within an image as a player as this
would require every pixel to be ‘turned on and off’ for multiple coalitions of
pixels. Although it is possible to limit the number of combinations of features
used to improve efficiency, the authors solution was to combine SHAP with
LIME to create KernalSHAP. The downside to KernalSHAP is that it is very
inefficient to compute due to the numerous passes required, making it difficult
to generate explanations for large batches of images [29].

2.2.3 Analysis of Input Centric Methods

In this section, we will discuss the pros and cons for each of the above methods
and highlight areas for exploration in this thesis. In particular, we will discuss
how the explanations can posses different levels of coarseness, their computa-
tional requirements, and their ease of implementation.

25

2.2. Interpretability Techniques

We begin with gradient based methods. Due to the way in which they are
generated, explanations produced in this manner are very fine, that is, every
individual pixel is assigned a score. This gives gradient-based explanations
the ability to be very accurate with regards to their ability to determine the
pixels important to the network. In contrast to this, the activation based
methods are unable to reach such a level of precision due to the small sizes
of the activations they are based on. The use of activation maps (which is
core to the technique and cannot be changed) are typically very coarse as
they are located deep into the network. Having such a coarse foundation to
an explanation in turn causes the explanation itself to be coarse. However,
numerous papers [10, 64, 76, 77]. have reported that this coarseness is not
necessarily detrimental to an explanation as it makes it more interpretable to
a human viewer.

This begs the question then, is there a family of methods that is able to
bridge the gap between these coarse and fine explanations? The answer to this
question is the use of perturbation methods. This family of methods allows the
explainable region to be defined allowing the user to set the granularity of the
explanation. By then perturbing the network in some fashion using these user
defined regions, an explanation can be constructed. These explanations have
also been shown to give more accurate explanations than their activation based
counterparts [9, 65]. This increased accuracy arises because these perturbation
techniques are able to directly question which regions of an image the network
finds important. The downside to this is an often massive increase in the
computational requirements needed to perform the multiple perturbation
required. For example, RISE requires 4,000–8,000 perturbation (depending on
network architecture) to create a single explanation. This also has a direct
effect on the coarseness of the explanation. Theoretically, a perturbation
method could work at the pixel level. For example with the occlusion maps
technique [17] setting each pixel to 0 and observing how the score changes
could produce a very fine grained explanation. This would take a 224×224
(50,176) passes for a 224×224 image. Alternatively, a method such as LIME,
which randomly sets regions to 0 and observes how different combinations of
regions being removed effects the network, would have an impossible search
space of 2224×224. This then bounds these perturbation techniques to again
using relatively coarse regions as a basis for explanation. Having too many

26

2.2. Interpretability Techniques

regions to explain would be prohibitively costly to compute. This suggests
that there is a missing method that is capable of producing medium grained
explanations in a timely manner.

2.2.4 Network Centric Explanations

In this section, we explore and discuss network-centric methods for understand-
ing and visualising a network’s inner workings. We break this topic down into
three subsections; these are:

• Deep visualization.
• Filter importance and labelling.
• Prototypes and criticisms.
Deep visualisation is a group of methods that creates synthetic images which

produce activations within the network in a desirable way. Filter importance
and labelling are methods that try to understand a filter’s importance to the
network and assign some label to it. Finally, prototypes and criticisms are
images within a dataset that are discovered to be in some way typical or
atypical of the data used to train the network.

2.2.4.1 Deep Visualization

While deep visualisation techniques all have a common approach to visualise
the filter of the network through image modification, the techniques can be split
into two areas [78]; these are network inversion and activation maximisation.
We begin with network inversion as there seems to be less in the literature and
it is not as important to this thesis as activation maximisation.

An initial method for visualising how a network represents the data it was
trained on was proposed by Mahendran and Vedaldi [79]. Their idea was to
invert the network so that an input image consisting of random noise could be
modified to in such a way as to produce activations seen by a known real image
at a specific layer. This work was improved upon by Dosovitskiy and Brox [80],
who train a network to learn how to reconstruct the initial image based on the
activations generated at each layer. Using this method the authors are able to
generate much more accurate synthesised images than before.

More related to the work in this thesis is activation maximisation, first
introduced as a concept by Erhan et al. [81]. They argue that rather than

27

2.2. Interpretability Techniques

Figure 2.6: Examples of DeepDream using a VGG19 network trained on ImageNet. Shown
from left to right are the original image, and then the image tuned for activation on the 5th,
9th and 13th convolution layers. Note how the features get more abstract the deeper the
layer.

search through a set of images to find one which maximally activates a certain
filter, the process can be treated as an optimisation problem. Gradient ascent
is performed from the filter to the input space and the input space modified
in such as way as to maximise the activation of the filter. Crucially for
this implementation, they visualised a model trained in an unsupervised way
meaning that a specific class could not be maximised. Class model visualisation
was subsequently proposed by Simonyan et al. [30] which is similar to the
previous work but visualises the classes of a supervised model. Because the
model is now supervised, specific class scores can be maximised and a zeroed
input image modified to do so. Using this method produces images that contain
clear features related to the target class.

DeCAF was introduced by Donahue et al. [82] as a method for finding
patches within an image dataset that cause a target layer to activate maximally.
Zeiler and Fergus [17] built upon this idea with the introduction of visualisation
technique that used a Deconvolutional Network (DeconvNet) [61]. DeconvNets,
originally designed for use with unsupervised learning techniques, is in-essence
a reverse CNN. This results in features being mapped to pixels rather than
the other way around. They are used to probe the network by attaching one
to each convolution layer. This allows the filters that activate highly to be
projected back down to the pixel space for visualisation.

A popular method that expanded this work is called Inceptionism (or
more popularly Deep Dream) and was introduced by Mordvinstev et al. [83].
There are two core differences to the previous work. The first is that once the
initial image is modified, the inversion process is repeated creating a feedback

28

2.2. Interpretability Techniques

loop. The second is that adjustment of the image scale is introduced to find
features of different sizes within the image. These adjustments produce images
with much clearer visualisation of features. Any part of the network can be
picked to maximise the input image for allowing an insight into the features
learnt by different layers of the network. By altering the input image, the
features learnt by a layer are able to be projected back into the image space
for visualisation. This allows insights into how objects are learnt by the model,
for example, a dumbbell always has an arm and hand attached to it. Olah et
al. [84] extend this further with feature visualisation, which takes the concept
from deep dream’s layer visualisation but extends it to allow a greater range
of the network to be explored instead of just layers. With their extension of
deep dream, they are able to visualise smaller components such as neurons
and channels within a layer or larger components such as the class softmax
score. These are then combined to give further insights in the authors future
work [85].

Another technique is the visualisation of a features through the use of
extraction from the network and plotting. In the work by Karpathy [86], for
example, he extracts the outputs of a fully connected layer for every image in
a validation set. He refers to these as ‘CNN codes’. By displaying these codes
using t-SNE [87], Karpathy is able to gain an insight into how the network
represents an image based on how they are clustered in the visualisation. This
technique is advanced by Carter et al. [88] who introduced the idea of an
activation atlas. They argue that the visualisation of activations as we have
discussed previously [30,83,84] is limited by the ability to only visualise the
activations for a single input. Instead, they propose taking the idea of CNN
codes but applying them to neuron activations of image patches.

In order to make this manageable when creating an activation atlas with
millions of input images, they reduced the activations to two dimensions as
with CNN codes, and plot them. These are then pooled over a grid, and all the
activations falling into a grid square are averaged. Feature visualisation [84]
is then run on these average activations to create an image that optimally
recreates these activations.

Wei et al. [89] suggest that while the previous methods have focused on
visualising and understanding the differences between classes, there is a lot to
be gained from visualising intra-class knowledge within a CNN. They propose

29

2.2. Interpretability Techniques

that a neuron is able to represent a feature from within a class in differing
ways. For example, they find that a filter that activates highly for oranges can
produce synthesised images of both cut oranges and untouched oranges. This
suggests that the network is capable of representing the same concept using
different features within the same filter.

Nguyen et al. [78] argued that a limitation of the previous activation
maximisation techniques is that they assume that when maximising a neuron,
there is only one or two types of features that activate it. They build on the
work of Wei et al. [89] and suggest that all neurons are multi-faceted. That
is, a neuron can detect multiple types of features. They propose a technique
to discover images that activate each of these facets by discovering similar
clusters of images with a single class of the training data. As with Karpathy’s
CNN codes, they pass an entire classes of images to a network and extract
the hidden codes from a fully connected layer. These are reduced to a 2D
embedding using t-SNE and clusters of similar activations found using k-means
clustering. The average image from each of these clusters is computed and
then activation maximisation is run to modify the image towards one that
maximally activates a selected neuron. Performing this technique, the authors
find that they create images that both better describes a neuron and its many
facets, but are also more realistic in their colouring and scaling.

2.2.4.2 Filter Importance and Labelling

An interesting body of work that began prior to the recent deep learning boom
was the understanding of how important the neurons within a neural network
are to the network itself. This body of work has multiple applications and
seems to have advanced alongside network pruning literature where the two
have a common desire to understand the importance and impact of individual
neurons.

An early example of understanding neuron importance was ‘Optimal Brain
Damage’ (OBD) by Le Cun et al. [90]. In OBD, individual neurons are
scored using the second derivative of the neuron and ranked, with the weakest
ones being subsequently removed from the network. While not generating an
explanation explicitly, it is the beginnings of understanding how more complex
networks represent training data.

30

2.2. Interpretability Techniques

While these previous methods have been able to score neurons to show how
important they are to the network or individual prediction, there has been
limited attempts to apply a concrete explanation on what is activating the
neuron. Early attempts were based on a visual analysis of what the individual
neurons were activating on as discussed earlier in Section 2.2.2.3. By visualising
the activations from the neurons, viewers could attempt to determine which
features in the image they aligned with. This has the problem of potentially
introducing confirmation bias to an explanation. Following this, Zhou et al. [91]
showed how the layers of neurons in a network become object detectors. They
did this by passing unseen images through the network and observing how the
layer activates (as defined by the sum of the average neuron activation). The
authors were then able to display the images that most activated a certain
layer and find the visual similarities within them e.g. Layer 5’s top 3 images
were all dogs. A concept called network dissection was subsequently introduced
by Bau et al. [21]. This is a technique that allows individual neurons to be
given a label from a set of visual concepts. This is achieved by combining
the previously discussed strand of work involving scoring neurons, along with
a novel dataset called the Broadly and Densely Labelled Dataset (Broden).
Broden consists of several pre-existing datasets, unified into a single set of
images labelled with visual concepts. The dataset contains images labelled with
concepts such as colours, textures, objects, scenes etc. in a variety of contexts.
The individual neurons are labelled with a concept by passing the Broden
dataset through the network and observing how strongly each neuron reacts
to each visual concept. The scoring is achieved by collecting every activation
map produced by each neuron and building a distribution of activations. The
activation maps are then resized to the input size and threshold based on the
top quantile level of the distribution. This produces a binary mask for each
concept and neuron pair. For each pair, the intersection over union (IoU)
is calculated. Each neuron is then labelled with its highest scoring concept.
While network dissection aims to align a concept to an individual neuron, Fong
and Vedaldi [92] argue that individual filters alone do not represent a single
concept. Rather, they propose that semantic concepts are mapped to vector
embeddings. Using this, they show that individual filters are not concept
specific, but are often able to encode multiple concepts.

31

2.2. Interpretability Techniques

Kim et al. [35] argue that the above methods for aligning neurons with
attribution labels is useful, but understanding how a network reacts to human
concepts would be more beneficial. To achieve this, they introduce Quantitative
Testing with Concept Activation Vectors (TCAV). TCAV is a framework that
allows a models internal representations to be understood in human-friendly
concepts. To begin, a dataset of images is assembled in a similar manner to
the previous Broden dataset. These images contain concepts such as stripes,
dotted, male, female, etc. Alongside this is a set of random images made
up of anything that is not the target concept. A concept dataset is passed
to the network and the activations from a desired layer are stored. This is
repeated with the random dataset. These activations are then used to train
a binary linear classifier to distinguish between the two datasets. Taking
the normal of the hyperplane that separates the two concepts gives us the
Concept Activation Vector (CAV). Directional derivatives are generated using
the gradients backpropagated from the target classes softmax to the chosen
activation layer. A conceptual sensitivity is generated by taking the dot product
of the CAV and the gradients. A score is then generated simply by taking the
ratio of the images being tested against the number of images where a concept
was important. For example, zebra images would have a high ratio of images
reacting positively to the striped concept.

The idea of exploring concepts was expanded by Ghorbani et al. [93] through
the use of Automatic Concept-based Explanations (ACE). ACE builds upon the
previous TCAV work. Rather than have pre-defined concepts, as with TCAV,
concepts are automatically extracted from the images themselves. ACE seg-
ments images from the same class into varying sizes of superpixels. Superpixels
are turned off (by setting them to 0) so that a new dataset is created containing
images with only one superpixel region turned on. Patches containing only
the superpixel are then passed to the network and the activations from the
final layer are stored. These are then clustered to find similar concepts within
the activations space. The score from TCAV is then calculated using these
automatically generated concepts.

2.2.4.3 Prototypes and Criticisms

An interesting strand of work that has arisen is the use of prototypes and
criticisms. Previous network-centric techniques such as those by Zeiler and

32

2.2. Interpretability Techniques

Fergus [17], Zhou et al. [91], and Yosinski et al. [66] use example images to
explain the model’s inner workings. However, Kim et al. [20] argue that unless
the dataset from which the example is drawn from is ‘clean’ (containing only
images that are prototypical of the class) then it will be hard to determine
how the network is representing the data. To this end, they introduce a novel
method called MMD-Critic (MMD: maximum mean discrepancy). Rather than
having a method for finding an image that maximally activates some element of
the network as with Zhou et al. [91], MMD-critic allows the discovery of both
prototypes and criticisms from within a dataset. In this context, a prototype is
an example image that is strongly representative of the data, while a criticism
is an example image that is not representative of the data. These examples
are created using MMD, a measure of the difference between two distributions.
To find prototypes, the desired number of prototypes is specified, and then
images from the dataset are greedily selected using a radial basis function
(RBF) kernel. These two distribution (prototypes and the data) are measure
using the MMD. Finding criticisms is done in a similar way, but instead of
finding a set of prototypes that are most similar to the dataset, we search for
a set of images that deviate the most.

This method was improved by Gurumoorthy et al. [94] through the intro-
duction of a faster set of algorithms for discovering prototypes. This involved
the use of non-negative weights to inform the prototypes. For this they trained
a support vector machine (SVM) and then only took prototypes that had
non-negative weights. Doing this they found that they achieved superior results
compared to the previous work, finding prototypes that were more indicative
of the dataset.

Of importance to note is that both of these techniques extract information
about how the network views an image using the same method as Karpathy’s
CNN codes [86]. They extract values from the final layer of a ResNet for use
with their proposed techniques.

2.2.5 Analysis of Network Centric Methods

As CNNs are used more and more in a variety of situations, the desire to be
able to explain the predictions becomes paramount. However, the explanation
techniques that we have discussed in the previous sections are only useful

33

2.2. Interpretability Techniques

Input Backprop [30] Integrated [33] Grad-CAM [15] RISE [9] G-CAM++ [23]

Figure 2.7: An image from the ‘goldfish’ class that is misclassified as a ‘roundworm’.
Existing visualisation techniques fail to give a clear explanation of the reason for failure.
The top row are explanations for the (incorrectly) predicted class, while the bottom row
are explanations for the ground truth class. The network used is VGG16. A plausible
explanation for the failure is shown later in Chapter 6.

when we are trying to explain how a class was correctly predicted. This is of
limited use when trying to ascertain why a model may have failed to correctly
classify an input. This has the potential to be an important area of research,
especially when dealing with vision systems that are integrated into critical
applications. In critical applications, such as autonomous driving, surveillance,
or medical applications, failure of the system could endanger lives. We have
seen previously that when these systems have failed, an investigation is taken
to find their failures. For example, the Uber self-driving incident in 2018 [95]
where a pedestrian was killed. In such a scenario, where the underlying reasons
for failure are being sought, it may be useful to both identify the reasons the
model may have failed, and to be able to visualise those reasons on the input
image.

We begin by analysing why current explanation methods are not well suited
to explaining failure. Perhaps the most crucial aspect is that the previous
explanation methods are good at identifying how the network interprets a single
image, with little regard to how the model has learnt to represent the class
as a whole. A key ability of all of the methods is to be able to produce class
specific explanations, either from backpropagation from the classes’ softmax
score, or in the case of perturbation methods, by observing how the classes’
softmax score change. This means that these techniques are perfectly capable
of producing explanations for both the ground truth and incorrectly predicted
classes. An example of this is shown in Figure 2.7. In this figure, we show an

34

2.2. Interpretability Techniques

image from the ‘goldfish’ class that has been misclassified as a ‘roundworm’.
The top row of the figure shows explanations produced for the incorrectly
predicted class, while the bottom row are the visualisations for the ground
truth class. The problem with this is that in both sets of visualisations, the
regions of the image highlighted as important to the class are all regions that
could realistically be used to define the goldfish class. It is, therefore, not
apparent from these visualisations why the network has failed to correctly
classify the image.

A possible reason for the failure of these techniques is that the model has
learnt to represent a class based on the features found in the training data.
However, the techniques in Figure 2.7 have no insight into how the models have
learnt to represent a class. They are only able to leverage the features in the
image at that time. It therefore make sense to somehow root the explanation
for failure in the context of the training data.

In itself this is not a novel view to take, as previously discussed methods
have also attempted to interpret the model through the use of the dataset. An
example of this is the work by Kim et al. [20] and Gurumoorthy et al. [94].
In these works, methods were proposed that allowed for the discovery of
two categories of images from within the training dataset: prototypes and
criticisms. These are images that are strongly typical of the dataset, and
images that are strongly atypically respectively. Seeking to understand how
the model has learnt to represent the training data is a useful step forward.
The prototype images allow a better understanding of what type of image
would allow the model to produce a strong prediction, while the criticisms
allow us an understanding of why something may fail. However, this again
only begins to touch on the reasons for failure. Are the images found by the
criticisms atypical because they do not contain features that were expected, or
is there some feature present that is acting in an adversarial way, making the
network classify it incorrectly?

To begin to discover possible answers to these questions, we believe that
further insight into how the network discriminates between classes is required.
Again, this in itself is not a unique proposition. Techniques such as Grad-CAM
visualise the activations from the final convolution layer by assigning a weight
to each of the filters activations. A visualisation produced by Grad-CAM is
therefore an insight into the contribution of the final convolution layers filters.

35

2.3. Video Interpretability Techniques

This is important as the individual filters have learnt to represent features
found within the training data, that when passed through the classification
layers allows a prediction to be made.

2.3 Video Interpretability Techniques

So far we have only looked at input-centric explanation techniques in relation
to explaining networks which use images as an input. In this section we discuss
how these techniques are expanded to work with video networks.

As interpretability techniques have developed for CNNs, the primary appli-
cation has been image classification networks. Networks that take a spatio-
temporal volume as an input have largely been either overlooked despite often
having a substantially different network design that causes image techniques
to either be inefficient to compute, or inaccurate due to the addition of the
temporal element. In particular, activation based techniques such as CAM suf-
fer as they are are based on visualising the final activation layer and projecting
it back to the original image. In action recognition networks, the temporal
volume is reduced alongside the spatial dimension. Conversely, black box
techniques which perturb the input space (such as LIME) can be effective
as they have no need to try and reconstruct the input space from a lower
resolution. However, using techniques which perturb the input space of an
action recognition network have the potential to be vastly inefficient as the
networks contain more parameters compared to image classification networks,
and the input volume is larger.

In this section, we will discuss methods that have been introduced and
used for action recognition networks. We again break them down into three
subsections:

• Activation based methods.
• Perturbation based methods.
• Gradient based methods.

2.3.1 Activation Based Methods

As mentioned previously, CAM techniques such as the original CAM, Grad-
CAM, and Grad-CAM++, rely on the final activation layer to form, the core
of the visualisation. From here, it is simply a case of weighting the activations

36

2.3. Video Interpretability Techniques

and scaling back to the original input size. However, in action recognition
networks that typically use 3D convolutions, there is a temporal element to the
activation maps that must also be considered. As the input passes through the
network, not only is the spatial component reduced, so is the temporal element.
This means that when the activation maps are resized back to the input size,
the explanation has to be stretched across frames, causing coarseness in the
temporal dimension.

A number of approaches have been taken to aligning the original 2D intent
of these techniques with an additional temporal domain. In the simplest case,
the CAM can be generated as it would in a 2D network. This produces a CAM
with the same dimensions as the final activation layer, for example in C3D
this is a 14×14×2 (height×width×depth), while in I3D [96], R(2+1)D [38] or
ResNet3D [38], this is 7×7×2. A number of techniques have attempted to be
built on top of this simple method. In the Saliency Tube work by Stergiou et
al. [36], this is very slightly modified so that the the activation maps themselves
from the final convolution layer, following batch normalisation, are used to
weight the activation maps rather than the gradients.

In Grad-CAM++ [23], the authors discuss the application of their technique
for use in action recognition networks. They propose a technique similar to
the input�gradient technique proposed by Shrikumar et al. [32] whereby
the resized CAM is combined with the spatio-temporal volume via point-
wise multiplication. None of the above techniques, to our knowledge, have
been subject to an empirically sound analysis using techniques that measure
the accuracy of the generated heatmaps. Without first performing these
experiments it is difficult to compare them against each other. In the Grad-
CAM++ work, the authors performed an experiment (called faithfulness)
where they produce an explanation map based on the Hadamard product of
the input image and the generated CAM. This explanation map is then passed
back into the model and then a number of comparisons are performed based on
the softmax score. However, this is not particularly informative in the context
of how accurate the heatmaps are as the aim of Grad-CAM++ is to maximise
the heatmap so it covers as much of the target object as possible. This, in turn,
produces explanation maps that have more object context than those produced
by Grad-CAM and therefore produce better scores in this experiment. We
explore this metric further in Chapter 5.

37

2.3. Video Interpretability Techniques

2.3.2 Perturbation Based Methods

Perturbation methods such as LIME or RISE could work perfectly well with
spatio-temporal volumes as they treat the network as a black box and are
agnostic to input. That is, as they are based on perturbing the input space
to discover the relevant regions, they are able to incorporate the temporal
element directly into their explanation of the model. A recently introduced
technique by Li et al. [41] takes the method proposed by Fong and Vedaldi [11]
and reconfigures it to work with action recognition networks. This is done
through the introduction of a loss function that helps create masks that are
smooth in both the spatial and temporal dimensions.

The above perturbation methods require multiple passes through the net-
work to generate a single explanation, therefore these quickly become incredibly
inefficient when working with spatio-temporal volumes.

2.3.3 Gradient Based Methods

Gradient based methods, still perform admirably for networks that use a
spatio-temporal volume as the gradients are back-propagated back to the
original input space. This means that the inherent problem faced by activation
based methods is avoided as their is no spatial or temporal resizing required.
However, it is still a more difficult task to understand saliency maps based on
individual pixel scores compared to more coherent heatmaps such as CAM or
those produced using perturbation techniques. This is exacerbated as often
there is no cohesion between frames leading to explanations produced this way
to appear like noise.

A number of methods have been proposed that modify these gradient-based
techniques to make them more suitable to action recognition networks. For
example, the work by Hiley et al. [97] takes the Deep Taylor Decomposition
(DTD) and adapts it to work with action recognition networks. They do
this by introducing a discriminative relevance model that is able to split the
relevancies assigned to spatial and temporal elements. This allows the regions
of the input that are relevant to the motion aspect of the network to be
highlighted. Following from this, Hiley et al. [42] proposed a method that
takes a DTD explanation and uses a 3D Sobel filter to create “edges in time”.

38

2.4. Post-hoc Explanation Evaluation Metrics

Methods such as these which aim to decompose the spatial and temporal
aspects of the network are still relatively rare in the literature.

A further example of this modification of existing image based techniques
is the work by Bargal et al. [98]. This takes excitation backpropagation [64]
and modifies it to work with action recognition networks that contain an RNN
element. In particular, they target their technique at CNN-LSTM models such
as those by Donahue et al. [99].

2.3.4 Analysis of Video Interpretability Techniques

From discussing these methods we see that there is still room for an explanation
method such as SWAG to work well in a spatio-temporal environment. The
activation based methods (Grad-CAM, Grad-CAM++, and Saliency Tubes)
are still limited by their spatial coarseness, but are now further constrained in
usefulness by the coarseness of the temporal element. Gradient based methods
have the potential to be accurate, but again suffer from being so fine as to
limit the user-friendliness of the methods [41]. Perturbation methods, either
pre-existing or those that have been proposed specifically for action recognition
networks suffer from the same problem as before. That is they require multiple
passes through the network before an explanation can be created.

2.4 Post-hoc Explanation Evaluation Metrics

As methods for producing post-hoc explanations have increased, attempts
to understand how well a visual explanation truly explains a models prediction
have closely followed. The issue with evaluating explanations is that there is
no ground truth present to compare explanations against. Every model has
the potential to represent the data differently depending on its architecture or
even how the starting weights were randomly initialised. This is problematic
and requires evaluation metrics that attempt to align an explanation to the
model through the use of perturbations, that is removing regions of an image
based on the explanation. Other methods can use synthetic datasets to try
and understand whether an explanation attributes a known region of an image.
Another alternative is to see how well an explanation localises to a known
ground-truth bounding box within an image (which is supplied as part of

39

2.4. Post-hoc Explanation Evaluation Metrics

the dataset). In this section, we will discuss a range of post-hoc evaluation
techniques. While we do not propose a novel evaluation metric in this thesis
per se, we do use a number of these metrics through the chapters so it is
important to outline them up front.

2.4.1 Qualitative Techniques

The first, and perhaps the most obvious, method for evaluating an explanation
is to perform a visual inspection. Doing this allows us to compare different
methods of explanations to assess how their visual aspects compare. For
example: is a method coarse or fine, or is it giving an explanation as expected.
However, the major drawback to using this as a means of evaluating the
accuracy of a method is that it requires the viewer to impart some pre-formed
judgement of which image features they think the network should be using. This
opens up the possibility of confirmation bias that could impair a judgement on
both whether an explanation is correct or incorrect. For example, Ribeiro et
al. [13] show an example where a network trained to classify dogs, shows that
the networks uses snow on the ground as a primary indicator for a breed of dog,
rather than any of the features on the dog. If this example where to be shown
to a viewer, they could think the explanation is incorrect as it is looking at the
dog in the image, without realising it is a fault of the network not conforming
to their pre-determined view of how the network should work. Therefore, as
has been noted many times in the interpretability literature [9, 100, 101], a
human visual inspection of an explanation as a method for ensuring accuracy
is discouraged.

2.4.2 Explanation Accuracy

The primary method for ensuring that an explanation has been created that
successfully aligns with the networks methods of discrimination is to measure
the accuracy (which we will describe in this section). In this case, the accu-
racy is typically discovered by altering the image in some way based on the
recommendation of an explanation, and then seeing how the network reacts.

In this subsection we begin by discussing the difference between local and
global accuracy, before exploring examples of both.

40

2.4. Post-hoc Explanation Evaluation Metrics

2.4.2.1 Local vs Global Accuracy

So far we have mentioned the word accuracy as a singular metric, however,
there are two distinct concepts of accuracy found in the literature. These are
local accuracy and global accuracy. Local accuracy is the most common method
for quantitatively measuring an explanation’s relationship to its corresponding
network. Local accuracy seeks to quantitatively measure how well an an
explanation lines up with a model at that point in time. By this we mean it
actively reflects how the model interprets the input image. Global accuracy
on the other hand seeks to find all regions of the image that may at some
point to be useful to the model regardless of whether they are or not in that
instance. Global accuracy is also harder to measure as well as it requires a
series of models to be trained using modified datasets.

In many ways local and global accuracy could be seen to be related to the
ideas of soundness and completeness we discussed in the introduction. This
depends somewhat on how we choose to align the soundness and completeness
concepts with the underlying model. For example, soundness relates to how
truthful an explanation is to describing the network. In this context, soundness
could be seen to be represented by local accuracy, with its metrics based on
understanding how an explanation represents the way the network has learnt to
represent a given class. Contrasting this would be completeness, which relates
to the extent to which the network is described. This could either be seen
as again the local metric, if we are only concerned about the network in its
trained state. However, if we care about understanding the networks ability to
learn anything that represents a given class, then equating completeness to
global accuracy makes more sense. In the following section we explore various
methods of measuring local and global accuracy.

2.4.2.2 Local Accuracy

A very early method of quantitatively measuring how well an explanation
method performed was proposed by Zeiler and Fergus [17] in tandem with
their work on occlusion maps. Here, they took images of dogs and separately
obscured (by setting to 0) each eye, the nose and a random point with a square.
They are then able to observe how the mean feature vectors change for each
layer depending on which area of the image is obscured. While this was only

41

2.4. Post-hoc Explanation Evaluation Metrics

done over a very small test set (5 images), it is an early example of modifying
a region of the image by setting it to 0 (the mean value of the normalised RGB
channels) and observing how some measurement of the network changes.

This idea forms the basis of a number of techniques that can be roughly
grouped together and are referred to by Hooker et al. [102] as modification-
based evaluation metrics. The general thrust of this idea is that we begin with
an image, and through a series of modifications to that image, we end up with
a heavily modified image. At each modification, the image is passed to the
network and some metric is stored, classification accuracy, softmax score etc.

Samek et al. [103] seek to formalise this idea of modifying an image and
observing how the network’s predictions are affected with the introduction of a
heatmap evaluation framework. This is the introduction of a greedy iterative
procedure that removes pixels from an image in an ordered sequence and stores
the softmax of the image class. The ordered sequence is derived from a heatmap
produced my the explanation techniques whereby the most important regions
of the image are defined by the highest values on the heatmap. The authors
propose modifying them most important to least important. In the proposed
heatmap evaluation framework, the pixel to be removed is located and all
pixels in a 9×9 neighbourhood are replaced with randomly drawn values. This
gives a set of results, that when charted as the number of modification steps
vs the class softmax score should show a steep drop as the important regions
of the image are removed. A quantitative value is taken by measuring the area
above the curve.

Kindermans et al. [104] built upon the method introduced by Samet et
al. and split the image into non-overlapping 9×9 patches. The pixel values
from the heatmap that fall within each patch are summed and then ranked
highest to lowest. The patches are then iteratively replaced with their mean
per colour channel and the classifiers output stored. As before, a steeper drop
in performance indicates a more accurate explanation technique.

A measure of how well a method scores pixels was developed by Fong et
al. [11] and builds upon the previous techniques. However, a crucial difference
is that rather than use the 9×9 patch as a basis for region removal, a mask
is produced by thresholding the heatmap. This allows regions of the image
to be removed in a more natural way. This mask is produced by slicing
the explanation into binary masks by thresholding at threshold α where

42

2.4. Post-hoc Explanation Evaluation Metrics

Figure 2.8: Overview of the deletion and insertion local accuracy techniques. Taken
from [9]

α ∈ [0 : 0.05 : 0.95]. As before, the most relevant pixels are modified first
and the value of the softmax for the target class observed. It is expected that
unless the pixels relevant for the given class are modified, the softmax score
for the target class should remain consistent.

Dabkowski and Gal [10] explore concepts related to this idea of removing
the most important regions first and formalise it. They suggest two concepts
related to the previous work that should be explored. These are the Smallest
Destroying Region (SDR) and the Smallest Sufficient Region (SSR). SDR is
the smallest region of the image that can be removed that causes the model
to make an incorrect prediction. SSR is the opposite, the smallest region of
the image left remaining that allows the model to make a correct prediction.
They introduce a new saliency metric based on SSR that crops the image to
contain the salient region as defined by the explanation heatmap. The cropped
image is passed to the network and the class softmax recorded. The log of the
softmax score is subtracted from the log of the cropped are (as a fraction of
the image size). This gives a score that can be used to determine a metric
performs for SSR. The lower the score, the better the SSR explanation.

In the work by Petsiuk et al. [9], the strands from the previously mentioned
ideas are drawn together to give two new explanation metrics. These are
deletion and insertion metrics. Petsiuk et al. [9] either start with the original
image and incrementally remove the most salient images, or start with a
blank image and reintroduce the most important pixels. At each stage of
insertion or deletion the altered image is fed to the network and the softmax
score for the target class stored. However, as opposed to the previous work,
Petsiuk et al. produce a probability curve using the stored scores as a function
of the removed pixels and then measure the area under the curve (AUC).

43

2.4. Post-hoc Explanation Evaluation Metrics

For deletion of pixels, a sharp drop towards the beginning of removal (and
therefore a low AUC) indicates a good explanation as it suggests the method
being evaluated has correctly identified the most important pixels used by
the network. Conversely, for inserting pixels, a high AUC indicates that the
evaluated method is reintroducing the most important pixels allowing the
probability of the prediction to increase rapidly. An example of this technique
is shown in Figure 2.8. This is the method that we will primarily use for
measuring local accuracy in this thesis.

Performance Information Curves (PICs) were introduced alongside the
XRAI [65] method (discussed previously in the gradient-based methods) as a
way of measuring how well an explanation ranks the importance of regions of the
image against the information content in the image. This use of the information
content is distinctly different to the previous metrics discussed which measures
scoring accuracy against the amount of pixels altered (typically re-introduced
or removed). In the XRAI paper [65], the decision to use the information
content is suggested as the usual method of measuring the amount of pixels
altered tends to give better results for explanation methods that are very fine.
That is, they can highlight single pixels as being important rather than large
contiguous regions such as with Grad-CAM or LIME. Using the information
content gives results that perform the other way, penalising methods that
do not produce cohesive explanations, despite this being potentially more
accurate.

PICs are proposed in two varieties: Accuracy Information Curves (AIC)
and Softmax Information Curves (SIC). For AIC the y-axis is given as the
accuracy calculated for all the images at each information content level. For
SIC the y-axis is the median of the softmax scores at an information level
compared to the original image. For both AIC and SIC the y-axis values are
normalised between 0 and 1. A single value is extracted from both AIC and
SIC using the same AUC technique as the RISE modification-based evaluation
metric.

A question that needs to be asked about the above evaluation metrics is
what it means to modify a region of an image. Fong and Vedaldi [11] suggest
that their are three common ways to delete an image region. These are:

1. Constant Value: Here we set each pixel within a region to a constant
value. This is typically 0 due to the normalising of input images reulting

44

2.4. Post-hoc Explanation Evaluation Metrics

in 0 being the mean value each channel. Alternatively, some metrics set
RGB channels separately to replace the pixels with the average colour of
the input image.

2. Blurring: Rather than using a constant value, the use of blurring
replaces a pixel with its counterpart from a blurred version of the input
image. This method of removing pixels is used as there is concern that
introducing hard edges as with a constant value may create an image
that is out of distribution. It has been argued that introducing blurred
counterpart pixels instead creates a more realistic image [65].

3. Noise: Randomly assigning a value to a pixel within the range of the
image values. Fong and Vedaldi [11] sample them from a Gaussian
distribution. As with using a constant value, the use of noise has been
criticised for creating artificially strong boundaries within the image [11].

An alternative to these deletion methods called pixel flipping was introduced
by Bach et al. [55]. As input images to CNNs are typical normalised to be
centred around 0, multiplying the value to delete by −1 will cause it to ‘flip’.
Whilst this technique has been used subsequently [71], it seems to have not
been used as commonly as the three mentioned above.

2.4.2.3 Global Accuracy

The previously discussed local accuracy metrics have all aimed to measure the
accuracy of an explanation technique, i.e. how well an explanation can deter-
mine which features are required for a trained networks prediction. However,
concerns have been raised about these techniques as the removal of features
form the input image (either in the form or zeroing or blurring) may lead
to the image now falling out of the distribution of the training data [102].
Remove and Retrain (ROAR) is a metric introduced by Hooker et al. [102]
that aims to tackle this problem by continuously retraining the network to
ensure that images with removed features do not fall out of distribution. This
is done in an incremental way. To begin, a network is trained as usual and an
explanation produced for each image of both the training and validation set.
New training and validation sets are generated by removing (setting to 0) the
most important t% of the image features. These new datasets are then used
to retrain the network and and store the validation accuracy. This is repeated

45

2.5. Gap Analysis Summary

for t = [0, 10, 30, 50, 70, 90]. To ensure that the comparisons are fair and that
the randomness introduced during the retraining does not skew results, the
process is repeated 5 times. This results in every t step requiring 5 models to
be retrained, therefore for a single explanation method to be tested on a single
model, 30 models are required. For datasets with a large number of images (i.e
ImageNet) or computationally inefficient explanation techniques, this metric
can take an inordinate amount of time to compute [105].

2.5 Gap Analysis Summary

The analysis of existing techniques discussed in this Chapter has highlighted a
number of gaps in the existing body of explainability work. In this section we
highlight these gaps, and relate them to the following chapters in this Thesis.

With regards to input centric methods we identified the inability for current
methods to produce explanations that are neither too fine or too coarse in an
efficient way. Existing techniques that are able to have control over the coarse-
ness of the explanations produced are inefficient to run, due to the underlying
reliance on network perturbation. We address this issue using two approaches.
The first is addressed in Chapter 3 through the introduction of a technique
which allows for explanation of arbitrary coarseness to be created in a single
forward and backward pass. The second approach is addressed in Chapter 5
and uses existing CAM methods to produce multiple explanations that can be
recombined to create an explanation with a higher spatial resolution.

Having discussed input centric methods for images, we also investigated
those designed for use with video as an input. We identified both a lack of
explanation techniques for use with video inputs, but also the same gap in the
research as explanations for images. However, due to the temporal element
of a network using video as an input, this need was greatly increased due to
the reduction of both spatial and temporal resolution. We found that existing
techniques were often inappropriate for coping with this decreased temporal
resolution when resizing. This is addressed in Chapter 4 where we discuss how
we are able to create explanations that are able to identify regions important
to the network in both the spatial and temporal dimensions.

Finally, we identified a gap in both existing input and network centric
methods for explaining why an input might have failed to be classified correctly.

46

2.6. Chapter Summary

Input centric methods are almost exclusively designed to identify reasons why
a network has made a successful prediction. With network centric methods,
this is not the case, for example we saw how prototypes and criticisms were
used to identify how a network may have learnt to represent a given class
in a dataset. However, a gap exists in the literature for connecting the two
techniques together. To the best of our knowledge, no technique is able to
highlight regions of an image that contributed to a networks failure to predict a
class. We address this in 6 where we show how taking inspiration from network
centric techniques allows us to explore individual failed predictions in more
detail.

2.6 Chapter Summary

In this chapter, we have outlined the common methods for creating both
network- and input-centric explanations. We have also discussed various
methodologies for measuring how well these explanation methods perform.
These will be useful going forward when we begin to compare our proposed
methods with existent explanations methods. Of particular importance are
the areas we discussed that we believe are fertile grounds for research. In
particular for image-centric explanations we identified the lack of mid-grained
explanations that can be computed in an efficient way. This research will form
the basis of Chapters 3, 4, and 5.

From network-centric methods, we highlighted that the concepts of using
prototypes could be linked up with the idea of explaining networks through an
understanding of filter activations. This research is reported in Chapter 6.

47

CHAPTER

3
SWAG: Superpixels Weighted

by Average Gradients

3.1 Introduction

In the literature review, we highlighted the idea that explanations can have
varying degrees of coarseness. Here, coarseness refers to the size of the region
that is assigned a relevance score. Fine-grained explanations assign a score to
every pixel while coarse-grained explanations assign scores to large regions of
the image. Typically, there is some constraint placed on the coarseness of an
explanation. For example, activation based methods are constrained to the
size of the activation maps used; perturbation based methods are constrained
by the acceptable time budget when passing images through the network. We
investigate if we are able to find a middle ground between these fine grained and
coarse grained explanations and if this can be achieved in a computationally
efficient way. To our knowledge, this approach has not been taken before, or
considered in other contexts such as weakly supervised learning.

In this chapter, we therefore propose two novel complementary techniques
that when combined produce an explanation that has a number of desirable
properties when compared to other similar techniques. The first of the tech-
niques we propose is Superpixels Weighted by Average Gradients (SWAG).
This is a method that uses superpixels to segment an input image into discrete
regions, before weighting each superpixel using the backpropagated gradient.
This is a distinct to semantic segmentation which requires a ground truth
label for each segment being labelled. SWAG uses superpixels that are created

48

3.2. Motivation

Figure 3.1: A high level overview of how the SWAG method works.

based on the properties of an image. As such the superpixels do not represent
semantic concepts as they would in semantic segmentation. An overview of
SWAG is shown in Figure 3.1.

The complementary technique we propose in this chapter, is the use of
superpixels created especially to achieve accurate explanations. We explore how
the same backpropagated gradients used for SWAG can also be integrated into
the superpixel creation process. We begin by providing some motivation for
why these techniques may prove useful to a wider audience. We then perform
a number of experiments that seek to understand both the local and global
accuracy of our technique, its weak-localisation ability, and its computational
efficiency. We also show how our proposed superpixel generation method can
be used as a drop in replacement for use in existing explanation techniques
such as LIME. This chapter contains work we have presented in the following
papers [44, 45].

3.2 Motivation

In this section, we outline the motivation behind the work in this chapter.
In particular we explore and discuss the gap that exists between explanation
methods with regards to how fine or coarse the produced visualisation is.
We discussed in the previous chapter (Section 2.2.2) three of the primary
methods for creating explanations: gradient based, activation map based,

49

3.2. Motivation

Figure 3.2: Comparison showing how coarse activation-based methods are in reality, with
the smoothness of their appearance being primarily produced by bilinear interpolation during
resizing. Left: original image. Centre: Grad-CAM without interpolation. Right: Grad-CAM.
Both explanations created using ResNet50.

and perturbation based. The three techniques all produce explanations with
varying degrees of coarseness, that is, the size of the region within an image
they assign a score to. Fine-grained techniques such as gradient based methods
assign a single value to every pixel within an image. At the other end of
the scale are the coarse grained explanations produced by the activation map
based methods. Explanations produced by these are limited by the size of the
activation map on which they are based. For example, an explanation produced
for a ResNet50 [68] model using Grad-CAM will be using a 7×7 activation
map. This means that only 49 scores (representing importance to the networks
prediction)) are assigned to all the pixels present in an image (50,176 for a
224×224 input). The smooth appearance of explanations produced by CAM
based methods [15, 23,34,72] and RISE [9] is a result of bilinear interpolation
used when the initial explanation is resized to match the size of the input
image. Resizing without the interpolation shows how the scores based on
the activation map are assigned in reality. An example of this is shown in
Figure 3.2. This figure highlights just how coarse this method of explanation
is. Despite the coarseness of these explanations, there must be some benefit
to using them or they would not have thrived within the computer vision
community? The answer to this comes in their ease of interpretability. Yang
and Kim [76] suggest that a highly interpretable explanation is one that has
a high accuracy of feature attribution. That is, an explanation assigns high
scores only to those features that are important to the model. This is distinct
to the concept of saliency, as the regions a human may find useful for discrim-
inating a given class, may not be those useful to the model. Using feature

50

3.2. Motivation

attribution effectively removes the human from the process of determining
what makes a good explanation. In their work, Benchmarking Attribution
Methods (BAM), Yang and Kim show that coarser methods such as Grad-CAM
perform significantly better at only assigning high scores to regions considered
important by the model. Conversely, fine-grained methods such as vanilla
gradients and guided backpropagation perform poorly in this respect.

However, accuracy of feature attribution is not the same as the accuracy of
an explanation technique. Features tend to be a collection of pixels that make
up some object. For example, in a cat detection network, a human may see a
feature as being the ear of a cat. However, the network is unlikely to be using
that feature in the same way as a human may label it, instead using a subset
of pixels from within the feature to actually make a prediction. Intuitively this
makes sense as it has been shown repeatedly through adversarial examples
that, by changing only a small selection of pixels, the accuracy of the model
can be compromised [106]. This suggests that explanations may score a region
as being important, whereas in reality only a sub-region within the high scoring
region is important to the networks prediction. In extreme cases, only a single
pixel is required to be modified in order to alter a networks prediction [107].
Important to note is that the single pixel attacks are not randomly chosen pix-
els, but are discovered using a perturbation based technique. However, it is still
illuminating that the discover of a single pixel, when altered, is able to adversely
effect the network. As discussed in the background chapter, local accuracy is a
good measure of the ability of an explanation technique to correctly score the
regions of an image most important to a model. It is important to note here
that the local accuracy technique is able to assign a score to fine explanations
(where every pixel has a score) and to coarse explanations. This is beneficial
as we have discussed with the adversarial examples that coarse regions do not
necessarily reflect how the network represents features. Having a technique that
can work for all explanations can give us a good insight into how accurate a
range of explanation granularities are. Using the deletion technique introduced
by Petsiuk et al. [9] (discussed further in Section 3.7.2.1), we compute local
accuracy scores for a range of fine and coarse grained methods and plot them
alongside their score to pixel ratio. The score to pixel ratio is a measure of how
many pixels are represented by a unique score. For example, gradient based
methods assign a score to every pixel so have a 1:1 ratio whereas CAM based

51

3.2. Motivation

0 200 400 600 800 1000 1200 1400
Explanation to Pixel Ratio (1:x)

0.05

0.06

0.07

0.08

0.09

0.10

0.11

L
oc

al
A

cc
ur

ac
y

(A
U

C
)

Grad-Cam

Vanilla

Rise

Lime

Grad-Cam++

I*G

Guided-Backprop

Guided-Cam

0 200 400 600 800 1000 1200 1400
Explanation to Pixel Ratio (1:x)

0.08

0.10

0.12

0.14

L
oc

al
A

cc
ur

ac
y

(A
U

C
)

Grad-Cam

Vanilla

Rise

Lime

Grad-Cam++

I*G

Guided-Backprop

Guided-Cam

Figure 3.3: A comparison using ImageNet between the local accuracy score (lower is
better) and the score to pixel ratio. Top: VGG16. Bottom: ResNet50.

techniques use the coarse activation map. For ResNet (7×7) this would give a
ratio of 1:1024, for VGG16 (14×14), this would be 1:256. It should be noted
that the use of a 7×7 final convolution is much more common now than the
larger version [68,108–110]. This analysis is shown in Figure 3.3. In particular,
note the difference in local accuracy between the fine-grained methods. With
the exception of vanilla gradients for ResNet50, they are all more accurate
than the coarse methods.

Perturbation techniques such as LIME or RISE have the ability to alter
the size of the regions that they assign a score to, however this comes at the

52

3.2. Motivation

cost of increasing computational requirements. For example, LIME defaults to
1,000 perturbations for approximately 30 regions per image (using ImageNet).
In a perfect scenario LIME would be able to test every combination of regions
being set to 0 or not. However, for every region k that is added, the potential
number of combinations doubles (yielding 2k total). This results in potentially
degraded performance unless the number of perturbations increases accordingly.
Increasing the number of perturbations allows a deeper insight into how remov-
ing different regions of the input image effects the networks prediction. The
more combinations of input image that can be passed through then network,
the more robust the understanding of which regions are important to the
network. A similar constraint affects RISE, where a large number of randomly
generated 8×8 boolean grids are required. However, increasing the size of these
would require an increased number of passes through the network in order to
maintain consistent results. As RISE currently suggests 4,000 and 8,000 passes
for VGG16 and ResNet50 respectively, this could require a large increase if
a larger grid is used. Another concern raised about perturbation techniques
is how the features are selected as a basis for visualisation. Petsiuk et al. [9]
suggest that the superpixels used by LIME (which are arbitrarily sized and
adhere to dominant boundaries within the image) may not capture regions
suitable for the explanation. Intuitively this may be true as the superpixels
used by LIME are generated based upon the RGB values of the image and
therefore align to the boundaries within the image. It may be that a feature
that is important to a networks prediction is located within the same superpixel
as one that is not. However, any explanation score would be assigned to a
region containing both which may be misleading. The simple solution is to
increase the number of superpixels used within the explanation, but as we
have discussed, this leads to a large increase in computational requirements.
To account for this, the XRAI method which uses superpixels as a basis for
it’s explanations, seeks to adjust the superpixels to incorporate certain regions
of the image. In this case, the XRAI authors noted that edges in an image are
often highlighted as being important by gradient-based methods. To account
for this and ensure their superpixels do not sit on these edges, they manually
dilate all the superpixels by 5 pixels to incorporate these edges. This does
not necessarily solve the problem of how best to segment the image for the
creation of an explanation. Rather, it is a heavy handed approach, expanding

53

3.3. Superpixels Weighted by Average Gradients (SWAG)

superpixels to incorporate regions that may not be beneficial to the underlying
explanation.

It, therefore, seems that their is a need for an explanation technique that
is able to bridge the divide between fine and coarse grained visualisation
techniques. Doing so would allow us to achieve the higher interpretability
rates of coarse grained methods, with the improved local accuracy results
for fine-grained techniques. At this stage in the thesis we are only exploring
techniques which find regions which contribute to a networks classification
ability. In the penultimate chapter we explore techniques which are designed
to discover regions of an image that can contribute to failure. In this chapter,
we suggest two novel approaches to this problem:

• The first novel approach is Superpixels Weighted by Average Gradients
(SWAG), a method for marrying the region based approach of techniques
such as LIME with the gradient based approach.

• The second novel approach is to generate superpixels using gradient based
explanations, allowing us to create superpixels that better reflect the
regions deemed important by the model. This is a distinct but comple-
mentary approach to the first one, and has applications for explanation
techniques besides SWAG which use superpixels.

3.3 Superpixels Weighted by Average Gradients (SWAG)

The first technique that is introduced in this chapter is Superpixels Weighted
by Average Gradients (SWAG). This is a method that allows us to create
regions of any size and subsequently score how important the contents of that
region are to the network. The score is normalised by the size of the region to
ensure larger regions do not dominate. The core idea of our technique is to join
the accuracy of pixel-based methods with the interpretability of region-based
methods. To achieve this, we take gradient values backpropagated to the input,
and pool them into discrete regions. With SWAG we therefore have two distinct
components that must be generated and combined. The first is the method of
generating the gradients. Any pixel-based method should be able to offer an
accuracy improvement over existing region-based techniques if used correctly.
For this work, we chose to use guided-backpropagation as the method for

54

3.3. Superpixels Weighted by Average Gradients (SWAG)

generating pixel-scores. Here, a larger gradient value indicates that the corre-
sponding pixel of the input image is more important to the networks prediction.
We opted for this method primarily because it was both simple to implement
and offered improved accuracy over vanilla backpropagation. To briefly recap,
guided backpropagation follows the same procedure as vanilla backpropagation,
but during the backward pass, only gradients whose corresponding activations
were positive on the forward pass are allowed to propagate.

Guided-backpropagation produces an image M ∈ R224×224×3. As per [30],
each pixel (i, j) in the gradient (back-propagated to the input layer in a non-
cumulative way) is obtained by taking the maximum of the absolute values:
Mi,j = maxc|Mi,j,c|, where c is the colour channel. With a method in place
for generating individual scores, we now require a set of regions that can be
weighted.

The choice of region within an image that is assigned a score is typically a
characteristic of an explanation that is uncontrollable. For example, gradient
based techniques give a score to every pixel while CAM based methods are
constrained to using the activation map. It is interesting then to look at the
decision taken by techniques that are able to control the regions that they
assign scores to. These primarily fall into two categories, the use of a rigid
grid [9, 17] or the use of superpixels [13, 65]. The use of a grid is often used
for its simplicity, the RISE technique [9] uses it to create simple regions
that can be continuously perturbed and then combined with one another.
The authors of LIME and XRAI chose superpixels as they claim that they
correspond to the human intuition of what constitutes a meaningful region
within an image. However, to our knowledge no human studies have been
undertaken to confirm this claim. As noted previously, perturbation techniques
struggle with computational inefficiency when tasked with using large amounts
of superpixels as a basis for an explanation. It is important to note that
the perturbations of the networks used by these techniques are not used to
define the superpixels segments themselves as with Markov Chain Monte Carlo
(MCMC) [111,112]. Rather, these perturbation are used to explore how the
prediction of the network changes as combinations of regions are masked or
unmasked. As our proposed technique will not use perturbations as a basis
creating scores, we believe that superpixels are an appropriate choice.

55

3.4. Superpixels Designed for Explanations

Now we have a method for generating individual pixels scores, and a method
for creating regions to weight, we must have a method of combining the two.
In the context of this chapter, combining is the weighting of independently
produced superpixels with pixel-wise scores obtained from back-propagated
gradients. The intention behind this is that the accuracy of pixel-wise scoring
technique can be joined into regions that humans find more understandable.

The most similar technique to ours is XRAI. However, XRAI uses multiple
sets of superpixels created at differing scales using the Felzenszwalb superpixel
method [113]. XRAI then uses integrated gradients as a method for creating
the individual pixel scores and combines with the superpixels using an iterative
method. This iterative method builds an explanation by selecting from the
multiple sets of superpixels those regions which have the highest attribution
score within their boundaries. This is repeated until there are no superpixels
left to add or the explanation is complete.

While the authors found this method produced good explanations, it is very
computational inefficient as it requires multiple passes through the superpixels
to allocate scores to regions of the image. Instead we propose to simply pool
the superpixels found within a superpixel region and assign that pooled score
to the region. This is a much more efficient method of creating an explana-
tion, and found the pooling of scores to be robust in producing explanations
that scored well in available metrics. We produce an explanation Ei ∈ R by
weighting each superpixel region Ri (where Ri is the set of pixels belonging to
the ith superpixel), with the mean values of M found within that superpixel:

Ei = 1
|Ri|

∑
M ∩Ri. (3.1)

We experimented with multiple methods of pooling the pixel scores into
the superpixel but found that taking the mean was the optimal method. The
justification and discussion of the other methods tried are given in Section 3.6.5.

3.4 Superpixels Designed for Explanations

Now that we have a method in place for the combining of the pixel scores
superpixel regions, a question that should be asked is ‘how well do these
regions align to those deemed important by the model?’. Previous techniques

56

3.4. Superpixels Designed for Explanations

have either simply used off-the-shelf superpixels [13], or combined multiple
superpixels created at varying scales [65] to find regions important to the
model. However, to the best of our knowledge no one has previously tried to
create superpixels that are designed to group regions by both appearance, and
their importance to the networks prediction.

In this section, we propose the use of superpixels created solely for the
purpose of giving accurate explanations. We explore how incorporating the
pixel scores into the superpixel creation process can be achieved and the
benefits of this. We begin by discussing the method of superpixel generation
used and outlining how our proposed methods operate.

3.4.1 Definition of Superpixels

Many different methods for creating superpixels exist [114], each with their own
advantages and disadvantages. For this work, we choose to use Simple Linear
Iterative Clustering (SLIC) [115]. SLIC is a fast method that accurately adheres
to object boundaries [114]. Experiments justifying SLIC over other superpixel
methods (Felzenszwalb and Quickshift) can be found in Section 3.6.1.

The benefits of SLIC for use with our method is that it is easy to adjust the
algorithm in order to incorporate features other than RGB values. For example
SLIC has been adapted to use texture information [116] and depth information
[117]. For our method we propose two ways of incorporating pixels scored from
guided backpropagation. The first is to simply use the guided-backpropagated
gradient by itself as an alternative to using the RGB image. These superpixels
are simple to generate as SLIC treats the guided backpropagated gradients as
a greyscale image. The second is to use a combination of the RGB image and
the guided-backpropagated gradient to inform the creation of the superpixel.
This is a more complicated proposition as it requires the SLIC algorithm to be
adapted to combine both the RGB image and gradient distances. Throughout
this thesis we will use the following method of referring to our proposed
methods:

• SWAGI: SWAG using SLIC superpixels generated using only the values
in the image.

• SWAGG: SWAG using SLIC superpixels generated using only the pixel
scores generated using guided-backpropagation.

57

3.4. Superpixels Designed for Explanations

• SWAGI+G: SWAG using SLIC superpixels generated using both RGB
values from the image and the pixel scores from guided-backpropagation.

3.4.1.1 Gradient-Based Superpixels

In this section, we introduce the SLIC algorithm and propose changes to it
that allow it to better create superpixels that line up with both discriminative
regions in the image, and those used by the network. We first begin by
examining how SLIC works using a colour image. SLIC generates superpixels
by clustering pixels in both colour and co-ordinate space: [li, ai, bi, xi, yi],
where l, a and b represents the CIELAB colour space [118], and x, y are pixel
co-ordinates. SLIC proceeds to cluster these to produce cluster centres Ci.
Superpixels are allowed to expand or contract within a limited range, in the
original SLIC algorithm this is fixed at 2ws from the cluster centre point.
Here, where ws =

√
N/K, N is the number of pixels in the image, and K is

the desired number of superpixels. To determine whether a pixel (position j)
belongs to a given superpixel, its distance to the spatial position or RGB value
of the superpixel (at position i) is measured. Here, distance is defined as a
combination of both colour distance dc, and spatial distance ds:

dc =
√

(lj − li)2 + (aj − ai)2 + (bj − bi)2, (3.2)

ds =
√

(xj − xi)2 + (yj − yi)2. (3.3)

These distances are then combined to give a single distance value D′ for each
pixel within a superpixel:

D′ =

√√√√(dc

wc

)2

+
(
ds

ws

)2

. (3.4)

Due to the differing scales of dc and ds, (determined by the maximum values of
the CIELAB colour space and superpixel size respectively) a scaling component
is used for each. For scaling colour distances, a value wc is used. When this is
large, priority is given to the spatial component, and when it is small, priority
is given to the colour distance. The SLIC paper [115] uses a wc value of 10.
The authors chose this value as they found using a constant value in the range
0 to 40 made the superpixel creation process more controllable, using 10 as

58

3.5. Metric Implementation

their default. Spatial distance is scaled by ws which seeks to maintain the grid
like structure of the superpixels. Clustering proceeds iteratively as in k-means
clustering.

Superpixels are designed to adhere to boundaries within an image which
makes them useful as a starting point for CNN explainability methods [13].
However, by confining a superpixel method to only taking into account the
colour space and distance when generating superpixels, we are potentially
creating superpixels in a way that does not lead to the production of the
most accurate explanations. For example, this process could be splitting an
important region of an image across superpixels, when it may be beneficial
to have it represented by a single one. We, therefore, propose a method of
incorporating a gradient component into the SLIC algorithm. To begin with,
we introduce a gradient component g to the initial superpixel description
vector: Ci = [li, ai, bi, xi, yi, gi]T . Here g is a pixel within our gradient-based
explanation M that provides a single score for each pixel. Here, M is scaled
between [0, 100] to match the range of LAB values. To compute the distance
between pixels and the superpixel centre dg, as with the spatial and colour
distances, we calculate the Euclidean distance: dg =

√
(gj − gi)2. Following

this, we alter the distance function D′ to incorporate dg:

D′ =

√√√√(dc

wc

)2

+
(
ds

ws

)2

+
(
dg

wg

)2

. (3.5)

We also introduce a new parameter wg that allows us to control the weighting of
the newly introduced gradient element. These give superpixels that are created
by combining both the image and gradient, by removing the dc component (i.e.
the image input) we are able to produce superpixels using only the gradient:

D′ =

√√√√(ds

ws

)2

+
(
dg

wg

)2

. (3.6)

3.5 Metric Implementation

As discussed in the literature review, a number of metrics have been
proposed that allow us to measure how well an explanation is performing. In
particular we will use metrics that explore the following areas: local accuracy,

59

3.5. Metric Implementation

global accuracy, weak-localisations, interpretability, and efficiency. In this
section, we discuss how these metrics are implemented throughout this chapter.

3.5.1 Local Accuracy

Measuring the local accuracy is an important, and common, way of under-
standing how well an explanation is performing. The local accuracy shows us
how accurate the explanation is at highlighting regions of an input image that
are most discriminative to the model. The better an explanation, the better
the regions of the image that scored highly will align to the regions used by
the model.

As we outlined in the literature review, there exist multiple methodologies
for calculating the local accuracy. For this chapter, we chose the deletion metric
introduced by Petsiuk et al. [9] metric for two reasons. The first is that it has
been shown to be a popular technique amongst the community [72,119], and
the second is that it has a number of common traits with the global accuracy
metric we use (discussed further in the following section). In this chapter, we
will not perform insertion experiments, instead using the BAM metric as a
measure of interpretability.

In the deletion experiment, every pixel within the input image is assigned
a score from the explanation. For techniques such as LIME or XRAI that use
superpixels, all pixels within a superpixel are assigned the same value. Pixels
are then iteratively removed from the original image in order of importance,
most important first. Here, removing a pixel from the image means setting it
to the 0 (the mean colour value of the channel). As pixels are removed from
the image, it is returned to the model for evaluation and the softmax score of
the initially predicted class recorded. At each new evaluation it is expected
that the removed pixels will damage the models ability to correctly classify
the image. Striking the correct balance between how many pixels to remove
for each step is an important decision. If too few are removed at each step
then the process will be hugely inefficient. If too many then the results will be
too coarse to properly interpret. We follow the number of steps taken by the
original authors in their released code [120]. Here, the authors use 28 steps
giving a removal amount of 1,792 pixels at each iteration.

When the softmax scores are plotted against each iteration taken, we get
a chart showing how the softmax of the target class decreases as pixels are

60

3.5. Metric Implementation

removed. Ideally the better an explanation method, the faster the softmax
score should drop. To obtain a single score, the Area Under Curve (AUC)
value is taken. A lower AUC value indicates that the explanation is better at
assigning scores to pixels.

We obtain results for a dataset by passing through the entire validation set
and taking the mean of all the AUC values.

3.5.2 Global Accuracy

The second aspect that we aim to understand is the global accuracy of an
explanation. Where local accuracy seeks to determine how well an explanation
can score the regions of an image important to a models prediction, the global
accuracy is a measure of how well the explanation finds all regions of the image
that contains elements of the object that the model could learn from.

To measure the global accuracy, we need to be able to measure how well
an explanation can find all areas of the image that may be useful to the model
for describing the class. To do this we use the metric proposed by Hooker et
al. [102], called Remove and Retrain (ROAR). This is a method of measuring
global accuracy by retraining a model once a set amount of pixels have been
removed from all images in a dataset. This is achieved by having multiple
versions of a dataset with differing amount of pixels removed, each with a
correspondingly trained model.

To create these datasets, we begin with a trained model. Using a chosen
explanation technique, we create explanations for every image in both training
and validations sets. Using these explanations, pixels are removed at the
corresponding percentages: [0, 10, 30, 50, 70, 90]. At each removal step, a new
training and validation set is created. This training data is then used to train
a new model and the model accuracy is assessed using the new validation set.
The better an explanation is at highlighting regions of an image that contain
features of the object, the quicker the accuracy should drop.

Due to the stochastic nature of training models, this process is repeated
5 times for every explanation method tested. This means that for every
explanation technique tested, 30 models are trained, each requiring a separate
dataset of training and validation images with the correct percentage of pixels
removed.

61

3.5. Metric Implementation

ROAR shares some similar properties with the previous local accuracy
technique. They both remove regions of importance first, and the method
of removal in both cases is to set the regions to 0. When plotted, they both
produce similar looking graphs where the aim is to cause the softmax score or
model accuracy to drop as quickly as possible. In the original implementation
of the ROAR technique, the authors did not assign a single value to each set
of results, relying on visual inspection instead. We, therefore, follow the local
accuracy method and assign an AUC value to each set of results allowing us
to better compare results between techniques.

3.5.3 Weak-Localisation

Localisation metrics aim to identify how well an explanation technique is able
to weakly localise an object. That is, how well can an explanation localise an
object without implicit supervision at training time. The weak-localisation
task takes an explanation and sweeps through a range of thresholds in such a
way that a bounding box can be drawn that incorporates the explanation left
after thresholding. As per Fong and Vedaldi [11], we report results using three
simple thresholding methods. First, we threshold the pixel value (scaled to
between 0 and 1) in steps [0 : 0.05 : 0.95]. Second, we threshold using the mean
intensity of the heatmap (µI) by taking our threshold α ∈ [0 : 0.5 : 10] and
multiplying by the mean to form αµI . Finally, we threshold using the energy
of the heatmap in such a way that the most salient region of the heatmap
covers a defined percentage of the energy, where α ∈ [0 : 5 : 95]. An example
of thresholding using the pixel value is shown in Figure 3.4. Localisation
error is calculated using the Intersection over Union (IOU), where an overlap
greater than 50% is counted as correct. We only use ImageNet to perform this
experiment as it contains ground truth bounding boxes that are vital for this
technique to work correctly.

3.5.4 Attribution Accuracy

While methods of generating explanations for CNNs has been an active
area of research for a number of years, only recently have attempts been made
to understand how well the attributions assigned by an explanation align

62

3.5. Metric Implementation

Input Grad-CAM α = 0.25 α = 0.50 α = 0.75

Figure 3.4: Examples of Grad-CAM explanations thresholded using the pixel value. The
explanation is scaled between 0 and 1. Green is the ground truth bounding box, whilst red
is the bounding box based on the thresholded explanation.

against a known ground truth. This is separate to accuracy, which aims to
evaluate the correctness of the explanation, instead aiming to capture the
mismatch between an explanation and the features known to be important to
the model. Yang and Kim [76] introduced Benchmarking Attribution Methods
(BAM), a dataset and associated methods used to discover an explanations
false positives. These are the features of an image that are attributed high
importance by an explanation, but actually have no importance to the model.
BAM does this by introducing a composite dataset consisting of two separate
datasets. These are scene images from MiniPlaces [121], and objects extracted
from MS COCO [122]. The dataset uses 10 object classes from MS COCO
(backpack, bird, dog, elephant, kite, pizza, stop sign, toilet, truck, zebra)
and 10 scenes from MiniPlaces (bamboo forest, bedroom, bowling alley, bus
interior, cockpit, corn field, laundromat, runway, ski slope, track/outdoor).
These extracted objects are layered onto the scene images to create the new
dataset. Examples from this dataset are shown in Figure 3.5. By compositing
an object into a scene, it allows us to know for certain where the pixels are that
the network should be using to predict the object, and the regions it should
not.

Alongside the BAM dataset, the authors also define a method of computing
the average attribution that an explanation gives to a specific region of an
image. In this case, as seen in the BAM dataset, these regions, c, are either

63

3.5. Metric Implementation

Figure 3.5: Examples of the BAM dataset. The top row is the ski slope scene, while the
bottom row is the bowling alley scene. Both scenes have objects pasted in the foreground.

objects or scenes. The average attribution of pixels within a regions is given
as:

gc(f, x) = 1∑
Ic

∑
e(f, x)

⊙
Ic. (3.7)

Here, f is a model, x is an input image, and e is the explanation for image x
using model f , whose values have been normalised to [0, 1]. Ic is a binary mask
where pixels inside a region c have a value of 1 and those outside 0. Where gc

is applicable for single images at a time, concept attribution is further defined
as the average of gc over those inputs which are classified correctly. This is
called Gc:

Gc(f,X) = 1
Xcorr

∑
x∈Xcorr

gc(f, x). (3.8)

X is a dataset of images and Xcorr is the set of images from the dataset
that are correctly classified.

The model contrast score (MCS) is a method proposed by Yang and Kim
using the BAM dataset. MCS allows us to measure how well an explanation
method provides attribution to regions of an image that are known to be used
for prediction of an objects presence. This is done using two models, each
trained on either the objects in the BAM dataset, or the background scenes.

64

3.6. Superpixel Optimisation

The MCS is therefore the difference in attributions given to either objects or
scenes by each model. More concretely:

MCS = Gc (fo, Xcorr)−Gc (fs, Xcorr) (3.9)

Here fo and fs correspond to the model trained for objects and scenes
respectively.

3.5.5 Efficiency

A question raised by Doshi-Velez and Kim [123], when discussing methods
of generating explanations, is the time constraints that surround them. As
explanations can be used in a variety of different environments the need to
understand the computational costs of generating an explanation is important.
For example, the requirement for a doctor sat with a patient needing an
explanation in a timely manner is very different to a researcher with less strict
time constraints.

In the literature, there are two predominant methods of measuring the
computational efficiency of a deep learning method, we can either measure the
required floating point operations (FLOPS), or the “wall clock” time, that is
the number of seconds taken to compute an explanation. This is averaged over
a large number of explanations. Of the two, measuring the “wall clock” time is
much more common when discussing explanations. To run this experiment we
take the first 1,000 images from the validation set and generate explanations
for each. We measure the time taken in seconds to compute the explanation.
We then take the mean time taken to create the explanation as our indicator
of the efficiency of the method.

3.6 Superpixel Optimisation

With our two complementary methods, defined above, there are a number of
important choices that have to be made in order to allow optimal performance.
In this section, we begin by justifying our use of SLIC as our choice of superpixel
method. We then discuss the choice of gradient-based pixel scoring method
that is used as the underlying weighting method for SWAG. These gradients
are the used when we create our gradient based superpixels.

65

3.6. Superpixel Optimisation

Having determined these crucial elements, we then look to determine the
optimal choice of colour and gradient weights (wc and wg respectively) for use
with the combined gradient and image superpixel method SWAGI+G. Finally,
we discuss the choice of how many superpixels we determine to be optimal for
use in SWAG.

3.6.1 Justification of Superpixel Method Choice

The choice of method that generates the superpixels is a core element of
SWAG. In this section, we compare three techniques: Simple Linear Iterative
Clustering (SLIC), Quickshift [124], and Felzenszwalb [113].

We choose these techniques to compare against as they are currently used
in alternative explanation methods. Felzenszwalb is used as the underlying
superpixel generation technique in XRAI [65], while Quickshift is the default
method for LIME [13]. For all techniques, we use scikit-image to generate the
superpixels. As the methods all have varying parameters that affect the way
superpixels are generated, we only change one parameter for each technique,
and keep the remaining parameters as the defaults. For SLIC, we change the
number of segments; for Quickshift, the kernel size; and for Felzenszwalb the
scale. These parameters are the ones that have the most impact on the number
of superpixels generated.

We look at three aspects of the superpixel generation techniques. The first
is the ability for each technique to form superpixels that naturally align well
to regions that are useful for explanations. We do this using the local accuracy
AUC metric and our SWAG technique. The second aspect we investigate is
how consistent the superpixels are in terms of superpixel sizes. Ideally we
would like to have control over the superpixels generated, and the ability to
create consistently sized superpixels for explanation may be beneficial. In
contrast we wish to avoid techniques which could produce very small or very
large superpixels within the same set of superpixels. Finally, we observe the
computational costs for each method as it is important to not pick a technique
that is unable to scale when multiple images require explanations.

3.6.1.1 Natural Alignment

We measure the natural ability for a technique to align with explainable
regions. Although it is difficult to compare methods directly, as they all

66

3.6. Superpixel Optimisation

Table 3.1: AUC results for the local accuracy experiment. Lower is better.

Method Mean Superpix VGG16 ResNet50
Felzenszwalb(50) 342 0.090 0.121
Felzenszwalb(100) 215 0.096 0.127
Felzenszwalb(200) 122 0.103 0.134

Quickshift(4) 246 0.111 0.142
Quickshift(3) 352 0.106 0.137
SLIC(200) 153 0.099 0.128
SLIC(300) 235 0.092 0.119
SLIC(400) 328 0.086 0.113

produce superpixels with differing shapes and sizes, we compute the mean
number of superpixels and display it alongside the local accuracy results. These
results are shown in Table 3.1. Quickshift seems to perform poorly across the
board, while SLIC performs well when compared to similar sized superpixels
(i.e SLIC(400) vs FZ(50)).

3.6.1.2 Superpixel Consistency

To allow for comparison between the ways the differing methods size the
superpixels, we record the mean number of superpixels, along with the min-
imum and maximum number of superpixels. The range in the number of
superpixels is striking with both Felzenszwalb and Quickshift having a large
range. SLIC on the other hand is much more constrained in its range as they
are controlled by the initial seeding of superpixel start points. SLIC begins by
initialising a grid, and growing the superpixels from that point.

The number of superpixels produced by SLIC is, therefore, capped by the
starting grid which allows for some consistency and control when compared to
the Felzenszwalb and Quickshift techniques.

3.6.1.3 Computational Efficiency

The computational efficiency of a method is an important factor to consider
when generating explanations [5]. It is particularly important for tasks which
take a long time to compute such as action recognition. We run each of the

67

3.6. Superpixel Optimisation

Table 3.2: Showing how the choice of superpixel methods and parameters effects the
number of superpixels produced.

Method Min Superpix Mean Superpix Max Superpix
Felzenszwalb(50) 16 342 1025
Felzenszwalb(100) 7 215 920
Felzenszwalb(200) 4 122 718

Quickshift(4) 40 246 3688
Quickshift(3) 64 352 4165
SLIC(200) 5 153 199
SLIC(300) 10 235 289
SLIC(400) 28 328 401

Table 3.3: A comparison of the computational efficiency for each method. This is the
average time to computer a set of superpixels for a 224×224 image

Method Time Taken (seconds)
Felzenszwalb(50) 0.05
Felzenszwalb(100) 0.05
Felzenszwalb(200) 0.05

Quickshift(4) 0.78
Quickshift(3) 0.47
SLIC(200) 0.06
SLIC(300) 0.06
SLIC(400) 0.06

superpixel methods 1,000 times and compute the mean time taken to generate
a set of superpixels. These results are shown in Table 3.3. From these results
we see that Felzenszwalb and SLIC and take fairly similar times to compute.
Quickshift, however, takes a much longer time per image to compute a set of
superpixels.

3.6.1.4 Conclusion

Each of the three techniques we have tested have their own strengths and
weaknesses. Of the three Quickshift is the slowest to compute, has by far the

68

3.6. Superpixel Optimisation

largest range in terms of superpixels per image, and seems to have the worst
natural alignment. SLIC and Felzenszwalb are similar in the time taken to
compute and their natural alignment to explainable regions. However, SLIC
is much more predictable with regards to the number of superpixels being
created. SLIC has an upper bound on the number of superpixels able to be
created due to the use of a grid as a starting point. Felzenszwalb does not
have this constraint and therefore produces superpixels with widely varying
counts between images.

Based on these observations, we feel justified in our use of the SLIC method
as a means of creating the underlying superpixels for our method.

3.6.2 Choice of Superpixel Count

At the heart of our technique is the use of SLIC superpixels to create a founda-
tion with which to build explanations upon. One of our prime motivations is to
create a technique that bridges the gap between fine and coarse explanations,
therefore the number of superpixels that we use is important. In practice, the
number of superpixels presents a trade-off between the desired granularity of
the explanation and the spatial accuracy (large superpixels can extend beyond
the boundaries of a significant object, whereas small superpixels cause expla-
nations to become less human-interpretable). We have shown previously that
when scores are assigned to individual pixels they produce explanations with
better accuracies. It makes sense intuitively that as we increase the number of
superpixels used, the local accuracy should also improve. If we continued to a
theoretical point where every superpixel corresponded to a single pixel, our
explanation would be identical to the gradient method we have used to weight
the superpixels.

We found that using an approximate starting value of 300 pixels offered a
good balance between fine and coarse explanations. For clarity, we chose this
value based on visual assessment rather than running local accuracy metrics on
multiple different superpixel values. In later chapters we investigate a method
of finding the optimal superpixel count value. Using 300 superpixels for our
SWAG method, we show how our proposed method inserts into the chart from
Figure 3.3. We show this in Figure 3.6

69

3.6. Superpixel Optimisation

0 200 400 600 800 1000 1200 1400
Explanation to Pixel Ratio (1:x)

0.05

0.06

0.07

0.08

0.09

0.10

0.11
L

oc
al

A
cc

ur
ac

y
(A

U
C

)

Grad-Cam

Vanilla

Rise

Lime

Grad-Cam++

I*G

Guided-Backprop

Guided-Cam
SWAGI

0 200 400 600 800 1000 1200 1400
Explanation to Pixel Ratio (1:x)

0.08

0.10

0.12

0.14

L
oc

al
A

cc
ur

ac
y

(A
U

C
)

Grad-Cam

Vanilla

Rise

Lime

Grad-Cam++

I*G

Guided-Backprop

Guided-Cam
SWAGI

Figure 3.6: A comparison between the local accuracy score (lower is better) and the score
to pixel ratio using ImageNet. Top: VGG16 Bottom: ResNet50.

3.6.3 Choice of Attribution Method

Finding the optimal method of creating gradients used by our techniques
is of paramount importance to the correct generation of explanations. As
discussed in literature review (Chapter 2), there are a large range of methods
for the generation of back-propagated gradients. We constrain ourselves to
only selecting from methods that are simple to implement and computationally
efficient to run. With this criteria, we investigate the use of: vanilla-backprop,
guided-backprop and input�gradients. As noted earlier XRAI uses integrated

70

3.6. Superpixel Optimisation

gradients as it’s attribution method. While this method is simple to implement,
we feel that this does not meet our criteria for being efficient as it requires
multiple calculations of the gradient to create. For example XRAI, uses 100
passes through the network to create it’s pixel scores for every image. We
provide an outline of each method we tested:

• Vanilla-Backprop: Gradients are backpropagated from the target
classes softmax score back to the input image. The maximum of the
absolute values are taken over the three channels to produce a single
224×224 image.

• Input�Gradients: Gradients are produced as with the previous vanilla
technique but prior to taking the maximum of the absolute values the
gradients are multiplied with the RGB values in the image.

• Guided-Backprop:When the input image is passed through the network
the activations are stored and during the backward pass only gradients
that correspond to a positive activation value are allowed through.

As a sanity check, we also test using both uniformly random noise and Sobel
to weight the superpixels. In order to understand how well each of these
methods perform with SWAG, we use the local-accuracy experiment devised
by Petsiuk et al. [9]. The results are shown in Table 3.4. These results give us
confidence in our choice of attribution method for two reasons. The first is
that guided-backpropagation beats the alternative methods of vanilla gradients
and input�gradients. This suggests that this is an appropriate method that
gives useful attributions to our superpixels. Secondly we are able to beat the
baselines. This is important, as Hooker et al. [102] showed, in its pixel form
guided backpropagation was unable to perform better than the baselines for
global accuracy.

3.6.4 Gradient Sanity Check

Previous work has discussed how guided-backpropogation does not pass sanity
checks such as randomisation of weights [101]. By only allowing positive gradi-
ents to backpropagate through regions of the image that had a corresponding
ReLU activation, a visual similarity occurs when the weights are randomised.
This is likely due to the strong involvement of the positive-only activation map
component which forces the explanation to look at the edges of an image. This

71

3.6. Superpixel Optimisation

Table 3.4: AUC results for the local accuracy experiment. Lower is better.

Attribution Method VGG16 ResNet50
Random Noise 0.170 0.210
Sobel 0.154 0.188
Vanilla-Backprop 0.134 0.190
Guided-Backprop 0.092 0.119
Input�Vanilla-Backprop 0.118 0.165

Table 3.5: AUC results for our sanity check for guided backpropagation for use with SWAG.
Lower is better.

Attribution Method VGG16 ResNet50
Guided Backprop (Predicted Class) 0.092 0.119
Guided Backprop (Random Class) 0.104 0.131

is also what gives guided backpropagation it’s distinctive and clean look. How-
ever, we’ve shown that guided backpropogation works well as an attribution
method for our technique. To ensure that we actually explaining the reasons
behind how the network is discriminating between classes, we propose a sanity
check. Guided-backpropogation works by backpropogating from the predicted
classes softmax score to the input image. By randomly assigning the target
class instead of using the predicted one, we would like to see a drop in local
accuracy as the pixel scores no longer align to the regions used by the network
for discrimination. We show the results for this in Table 3.5, and an example
of the explanations produced in Figure 3.7. It is noticeable that even when the
class has been randomised, the results are still good compared to our baselines
and other techniques from the previous experiment. This is again likely due to
the activation map component which will always force the areas of the image
that caused an activation to score highly, regardless of the gradient component.

3.6.5 Choice of Pooling Method

In this section, we quantitatively justify the method chosen for pooling the
gradients into superpixels. In Equation 3.1, we proposed taking the mean of the

72

3.6. Superpixel Optimisation

Wash Basin Polaroid Camera

Predicted Target Random Target Predicted Target Random Target

Figure 3.7: Examples of SWAG using guided backpropagation with both the predicted and
random class. Note that the superpixel regions are identical for the predicted and random
targets.

gradients within a superpixel as the importance score for that region. However,
there are multiple other methods that could have been chosen. Therefore, we
run the local accuracy experiment using guided backpropagation as SWAG’s
gradient method, with a number of substitutions for scoring using the mean
value. These alternatives are:

• Minimum.
• Maximum.
• `1-norm.
• `2-norm.
• Variance.
• Standard deviation.
• Sum of the gradients.

The results from the local accuracy experiment for each of these methods can
be found in Table 3.6. Here we see that taking the mean of the gradients
gives the best local accuracy performance overall. However, it is interesting
to note that taking the minimum value performs equally well for ResNet50.
A potential oversight in these results was investigating the use of the median
value. Although it is likely it would’ve performed poorly as a characteristic of
the guided-gradients we used is that they are typically sparse with only a few
high scoring pixels. This may not have allowed the median value to work well.

73

3.6. Superpixel Optimisation

Table 3.6: AUC results for the local accuracy experiment. Lower is better. Here we see
that of the pooling methods tried, taking the mean works the best.

Method VGG16 ResNet50
`1-norm 0.099 0.124
`2-norm 0.096 0.122
Maximum 0.100 0.125
Mean 0.092 0.119
Minimum 0.095 0.119
Standard Deviation 0.097 0.124
Sum 0.099 0.124
Variance 0.097 0.124

3.6.6 Choice of Weights for SWAGI+G

Our SWAGI+G method introduces a new weight (wg) that allows us to control
the influence that the gradients have upon the generation of superpixels. In
addition to the gradient weight, there is also a spatial weight (ws) and a
colour space weight (wc) that we must optimise for. As with the original SLIC
algorithm, we leave ws =

√
N/K, where N is the number of pixels in the image,

and K is the desired desired number of superpixels. This controls how far the
superpixel can spread from its initial centre point. This allows us to maintain
superpixels that have a degree of compactness to them rather than stretching
out over the image. However, wc and wg require further investigation as they
must be balanced carefully so as to allow the superpixel to capture both the
salient region of the colour space as well the regions of the image deemed
important to the network by the gradients. We, again, use the local-accuracy
metric and perform a grid search over the weight values. We constrain our
search space to between the values of wg ∈ [4, 20] and wc ∈ [4, 20], incrementing
in steps of 2. We chose these values as they are centred around the default
(in the original SLIC implementation) wc value of 10. As we have scaled the
gradients to have approximately the same range as the colour space values we
should be able to apply the same rage of values to each weight. Here, values of
5 and 20 represents a doubling or halving of the channels influence respectively.
We choose not to use values that would diminish the influence of the colour
channel beyond half. Doing so could begin to allow the superpixels to detach

74

3.6. Superpixel Optimisation

wg = 5 wg = 10 wg = 20

w
c

=
5

w
c

=
10

w
c

=
20

Figure 3.8: Comparison showing how altering the balance of wg and wc effects the
generation of superpixels. For clarity we show approximately 150 superpixels.

themselves from the underlying image which would remove one of the benefits
of using superpixels, namely that they root themselves to human interpretable
regions of an image (i.e. the beak of a bird, or the ball in a sports game). An
example of the superpixels created using these search values can be seen in
Figure 3.8.

From these qualitative results we can see that when both wc and wg

approach 20, the superpixels begin to become squarer as the influence of the
spatial component is increased, however note that the colour boundaries are
still adhered to. In contrast, as wc is decreased the influence of the colour
space becomes more apparent. For example, note the right side of the clock, as

75

3.6. Superpixel Optimisation

the colour becomes more important the superpixels begin to differentiate the
colour gradient up the wooden side. As wg decreases, we begin to see a looser
adherence to the colour components within the image and a greater ability to
form around areas with high gradient value.

When we produce quantitative results using the local-accuracy technique,
we begin to gain a more concrete understanding of how the choice of weights
effects our explanation method. We again use the local accuracy metric
to understand how altering the weights effects the ability of the superpixel
boundaries to adhere to features important to the network. In Figure 3.9,
we show the interplay between the two values when the other is fixed. It is
interesting to note that the local accuracy continues to improve as the influence
of the colour space component is diminished. For SWAG I+G, we aimed to
maintain a balance between the superpixels created for the image (SWAGI),
and those solely using the gradients (SWAGG). Allowing the influence of
the colour component to diminish further would therefore encroach upon the
explanations created using SWAGG.

3.6.7 Final Parameter Choices

For clarity, we present the final parameter choices for our technique:
• Superpixel Method: We use the SLIC method for generating super-

pixels as we found it to be both efficient to compute, and had a more
reliable range of superpixel sizes compared to other methods.

• Attribution Method: Guided backpropagation was chosen as the attri-
bution method of choice as we showed it to outperform other methods
for the local deletion metric.

• Pooling Method: The Mean value of the attribution values falling into
a superpixel was determined to the optimal method.

• Initial Superpixel Count: Using a count of 300 superpixels was
determined to produce an explanation that lay between the fine and
coarse explanations produced by existing techniques.

Using these parameters we will now being to run experiments using our
SWAG method.

76

3.7. Experiment Results

4 6 8 10 12 14 16 18 20
wc (colour compactness)

0.12

0.13

L
oc

al
A

cc
ur

ac
y

wg = 8

4 6 8 10 12 14 16 18 20
wg (grad compactness)

0.120

0.121

L
oc

al
A

cc
ur

ac
y

wc = 20

Figure 3.9: Grid search results showing the interplay between each parameter when we fix
each at their best values.

3.7 Experiment Results

In this section, we present the results of the experiments that were outlined in
Section 3.5. To recap, these are the local and global accuracy, weak-localisation,
attribution accuracy, efficiency, and LIME superpixel substitution. We conduct
the experiments to ascertain how well our SWAGI, SWAG I+G, and SWAGG

methods perform compared to a number of well known explanation techniques.
In particular we compare against the following techniques: Grad-CAM, Grad-
CAM++, LIME, RISE, and XRAI. Note that these are all region based
techniques. We also show results for guided-backpropagation as this underpins
our technique. To ensure fairness we run all experiments using the authors
original implementations for LIME [125], XRAI [126], and RISE [120]. The
only changes made are to utilise a PyTorch backend instead of a TensorFlow
one when required.

77

3.7. Experiment Results

Figure 3.10: An example of the Euclidean baselines used. Top: Centre point. Bottom:
Random point

Baselines are often used to evaluate how well a technique performs, for
example in the work by Hooker et al. [102], random noise and Sobel edge
detection [127] are used as baselines to compare against various saliency map
techniques. However, as we are explicitly comparing against region-based
explanation approaches, we instead use baselines based on the Euclidean
distance from a specific pixel. We use both a centre point Euclidean distance
map (referred to as centre), as well as the Euclidean distance to a uniformly
randomly chosen pixel (referred to as random). Examples of these are shown
in Figure 3.10. We report results across multiple datasets: ImageNet [128],
Caltech-UCSD Birds 200(CUB200) [129], Stanford Dogs [130], and Oxford
Flowers 102 [131]. Excepting ImageNet, these are all fine-grained datasets
consisting only of visually similar objects. This presents an additional challenge
to existing explainability methods where discriminative features may occupy
a small region of the image. All work is conducted with PyTorch [132]
using pre-trained VGG16 [67] and ResNet50 [68] networks for ImageNet.
These models were fine-tuned for the fine-grained datasets for 50 epochs with
a learning rate of 0.001 for both VGG16 and ResNet50. Top-1 validation
accuracies for VGG16 and ResNet50 respectively are: ImageNet (71.59%,
76.15%), CUB200 (82.22%, 85.42%), Stanford Dogs (79.60%, 85.09%), and
Oxford Flowers (94.95%, 92.24%).

We hypothesise that for the metrics we have outlined in Section 3.5 our
proposed SWAG method should outperform other comparable techniques. We

78

3.7. Experiment Results

suggest this may be the outcome due to SWAGs ability to create finer expla-
nations. For both the local and global accuracy metrics this should have the
effect of allowing explanations to more precisely locate regions of importance.
For the weak-localisation and BAM metric this is a less certain as activation
based techniques such as Grad-CAM or Grad-CAM++ may benefit in their
coarseness. This would allow the explanation to highlight the object completely
which is beneficial to these techniques.

3.7.1 Qualitative Inspection of Results

In this section we show qualitative examples to allow for visual inspection. We
select these images by generating an explanation every 50 images and then
selecting representative examples. To ensure that we have not simply cherry
picked examples, we also include further examples in the appendix. By only
allowing selection from a smaller set of non hand-picked explanations, we hope
that this gives some faith that these examples are representative. We will follow
this selection process for all qualitative inspections in the following chapters. In
Figure 3.11 and Figure 3.12, our method is compared to a number of other well
known and comparable methods. These examples are computed using both
the VGG16 and ResNet50 networks with images from the ImageNet validation
set. From these images we see that both SWAGI, SWAGI+G, and SWAGG

provide much more concise explanations than other methods. In particular
we see how coarse the two CAM methods are, especially for the ResNet50
architecture. For example, note the camera in Figure 3.11 where the lens
seems to be the most important feature. Here, the CAM based methods give
very coarse explanations, essentially highlighting the entire front of the camera
as important. LIME also fairs poorly in this example with the superpixels
being too large to accurately represent the important regions. RISE gives
visually more concise explanations as it has the benefit of having more regions
to work with than LIME, but also has the additional power of being able to
pass multiple variations through the model. XRAI is interesting as it manages
to be both precise by highlighting small regions of the image, but also noisy in
its visual appearance. The latter attribute is likely due to the use of integrated
gradients which aims to assign non-zero values to the majority of the image.
This in turn likely leads to the visual noise. This visual noise may cause

79

3.7. Experiment Results

difficulty in a viewer discerning between important and not important image
regions.

Compared to these methods, the precision of SWAG based methods can be
seen, for example note the precision surrounding the body of the chainsaw or
the plughole of the washbasin with only minimal highlighting of other regions
of the image. Where there is visual noise in our method, for example the
VGG16 version of the camera, it seems that other methods also highlight the
noisy regions.

Further examples using images from the other datasets experimented with
can be found in Appendix A.

3.7.2 Explanation Accuracy

In this section, we present the results for what are perhaps the most important
metrics for an explanation technique, their accuracy. As we have previously
outlined, this is divided into two differing ways of measuring the accuracy:
local and global. Using the deletion metric by Petsiuk et al. [9] and ROAR by
Hooker et al. [102] to measure the local and global accuracies respectively, we
present the results for each.

3.7.2.1 Local Accuracy

The local accuracy experiment attempts to ascertain how well an explanation
attributes importance to regions of the image. This is achieved by iteratively
removing regions of the image as determined by each explanation technique.
These are removed from most important region to least. In this metric, the
intuition is that removing the regions important to the network’s decision will
force the network to alter its decision. Therefore, as the important regions of
the image are removed, the softmax score will drop accordingly. A sharper
drop will indicate that pixels important to the network are being removed
more quickly, suggesting a better explanation. This local metric measures the
area under the curve (AUC) as features are removed from the input image.
A smaller AUC values indicates that its corresponding method is better able
to attribute importance to the regions of the image most discriminative to
the network. The results for all datasets and networks used can be found in
Table 3.7. The corresponding plots for VGG16 and ResNet50 are shown in

80

3.7. Experiment Results

Input SWAGI SWAGI+G SWAGG GB
C
ha

in
sa
w

V
G
G
16

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

R
es
N
et
50

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

Po
la
ro
id

C
am

er
a

V
G
G
16

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

R
es
N
et
50

G-CAM G-CAM++ LIME RISE XRAI

Figure 3.11: Qualitative comparison between methods using examples from ImageNet with
ResNet50 and VGG16. Our SWAG methods provide finer explanations than comparable
activation, and perturbation based methods. 81

3.7. Experiment Results

Input SWAGI SWAGI+G SWAGG GB
St
up

a

V
G
G
16

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

R
es
N
et
50

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

W
as
h
Ba

sin

V
G
G
16

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

R
es
N
et
50

G-CAM G-CAM++ LIME RISE XRAI

Figure 3.12: Qualitative comparison between methods using examples from ImageNet
with ResNet50 and VGG16.

82

3.7. Experiment Results

Figure 3.13 and Figure 3.14 respectively. Each figure contains standard views
of the results for each dataset alongside charts showing a closer view of the
bottom left corner.

From these results, we can see a number trends that are important to
highlight. The first is the performance of the baselines. As expected, the
random baseline performs poorly across all datasets and models. The centre
point baseline is more interesting. On the whole it performs poorly too,
outperforming only the random baseline. It is notable however that with the
Oxford Flowers dataset it beats both Grad-CAM and RISE. This is likely
due to the very central nature of the images within the dataset, where the
centres of the flowers align to the centre of the image. This explains the centre
baseline success as it simply removes the flower from the image during the
earliest removal steps.

LIME performs admirably compared to the other perturbation technique,
RISE. This is despite LIME being able to score far fewer regions (∼ 37 to 64).
LIME also outperforms all techniques for Stanford Dogs using the ResNet50
architecture. This seems to be because the size of the superpixels used by
LIME match with the features present in the images of the dogs. Typically,
LIME attributes the dog’s head as the most important regions and assigns it
to a single superpixel meaning. This results in the dogs head being removed
in the first step of pixel removal, which in turn causes the models prediction
abilities to decrease significantly.

It should also be pointed out how well guided backpropagation performs
compared to all other techniques. While this is not surprising, as it is a
pixel-based technique, the results are still strikingly better than all of the
region based techniques. As the technique is able to apply scores at the pixel
level, it can very quickly identify the important pixels and cause the network
to crash. This is seen in Figures 3.13 and 3.14 showing how quickly the
guided-backpropagation curve drops.

Finally, we move on to discussing our three SWAG methods. SWAGI

performs well, beating all of the previous region-based techniques apart from
the previously mentioned LIME and Stanford Dogs combination. Adding a
gradient element to the generation of the superpixels further improves upon
these results with SWAG I+G surpassing SWAGI. However, using the gradient
alone to inform the superpixel process gives the best results of all. This suggests

83

3.7. Experiment Results

that using superpixels built upon the gradient allows regions to be formed
that are better suited to explaining how the image is used by the network to
discriminate between classes.

84

3.7. Experiment Results

VGG16

Im
ag
eN

et

0 5 10 15 20 25
Removal Steps

0.0

0.5

1.0

S
of

tm
ax

S
co

re

0 5 10 15
Removal Steps

0.0

0.2

0.4

S
of

tm
ax

S
co

re

St
an

fo
rd

D
og
s

0 5 10 15 20 25
Removal Steps

0.0

0.5

1.0

S
of

tm
ax

S
co

re

0 5 10 15
Removal Steps

0.0

0.2

0.4

S
of

tm
ax

S
co

re

C
U
B
20
0

0 5 10 15 20 25
Removal Steps

0.0

0.5

1.0

S
of

tm
ax

S
co

re

0 5 10 15
Removal Steps

0.0

0.2

0.4

S
of

tm
ax

S
co

re

O
xf
or
d
Fl
ow

er
s

0 5 10 15 20 25
Removal Steps

0.0

0.5

1.0

S
of

tm
ax

S
co

re

0 5 10 15
Removal Steps

0.0

0.2

0.4

S
of

tm
ax

S
co

re

0.0 0.5 1.0
0.0

0.5

1.0

Centre

G-CAM++

Grad-CAM

Guided Backprop

LIME

RISE

Random

SWAG
SWAGG

SWAGI+G

XRAI

Figure 3.13: Local accuracy AUC charts for VGG16. Left column is the regular view,
right is a zoomed in view of the bottom left corner.

85

3.7. Experiment Results

ResNet50

Im
ag
eN

et

0 5 10 15 20 25
Removal Steps

0.0

0.5

1.0

S
of

tm
ax

S
co

re

0 5 10 15
Removal Steps

0.0

0.2

0.4

S
of

tm
ax

S
co

re

St
an

fo
rd

D
og
s

0 5 10 15 20 25
Removal Steps

0.0

0.5

1.0

S
of

tm
ax

S
co

re

0 5 10 15
Removal Steps

0.0

0.2

0.4

S
of

tm
ax

S
co

re

C
U
B
20
0

0 5 10 15 20 25
Removal Steps

0.0

0.5

1.0

S
of

tm
ax

S
co

re

0 5 10 15
Removal Steps

0.0

0.2

0.4

S
of

tm
ax

S
co

re

O
xf
or
d
Fl
ow

er
s

0 5 10 15 20 25
Removal Steps

0.0

0.5

1.0

S
of

tm
ax

S
co

re

0 5 10 15
Removal Steps

0.0

0.2

0.4

S
of

tm
ax

S
co

re

0.0 0.5 1.0
0.0

0.5

1.0

Centre

G-CAM++

Grad-CAM

LIME

RISE

Random

SWAG
SWAGG

SWAGI+G

XRAI

Figure 3.14: Local accuracy AUC charts for ResNet50. Left column is the regular view,
right is a zoomed in view of the bottom left corner.

86

3.7.
Experim

ent
R
esults

Table 3.7: Area under the curve for the local accuracy experiment. Lower is better.

ImageNet CUB200 Stanford Dogs Flowers 102
Method VGG16 ResNet50 VGG16 ResNet50 VGG16 ResNet50 VGG16 ResNet50

Random 0.274 0.303 0.296 0.317 0.337 0.371 0.446 0.425
Centre 0.153 0.177 0.153 0.168 0.200 0.233 0.221 0.223

Grad-CAM 0.105 0.142 0.060 0.099 0.097 0.150 0.237 0.235
Grad-CAM ++ 0.111 0.147 0.069 0.101 0.104 0.149 0.217 0.234
XGrad-CAM 0.105 0.142 0.058 0.099 0.099 0.150 0.239 0.235

LIME 0.105 0.125 0.059 0.074 0.087 0.107 0.214 0.218
RISE 0.116 0.124 0.057 0.072 0.113 0.129 0.250 0.244
XRAI 0.105 0.137 0.053 0.063 0.090 0.117 0.227 0.188

SWAGI 0.092 0.119 0.051 0.062 0.083 0.123 0.206 0.168
SWAGI+G 0.084 0.109 0.050 0.060 0.080 0.118 0.195 0.151
SWAGG 0.073 0.095 0.046 0.057 0.077 0.110 0.177 0.137

Guided-Backprop 0.051 0.074 0.040 0.046 0.042 0.080 0.122 0.086

87

3.7. Experiment Results

3.7.2.2 Global Accuracy

Having obtained results for the local accuracy, we now turn our attention to
understanding how well our technique performs for the global accuracy metric.
Where the local accuracy metric sought to discover how well an explanation
was at finding regions of the image important to a specific decision by the
network, the global accuracy metric seeks to know how well an explanation
can find all features representative of the class.

Using the ROAR technique outlined earlier is the primary way of finding
the global accuracy. The downside to using this technique is that it is very
inefficient as it requires multiple models and datasets to compute. To this
end, we were only able to calculate results for two datasets (CUB200 and
Stanford Dogs) using ResNet50. We also found that the combination of a
computationally inefficient test metric combined with an inefficient explanation
method caused problems. In the end we were unable to test RISE and XRAI
due to the sheer amount of explanations needing to be created for each dataset.
With these caveats, the results are shown in Table 3.8 and Figure 3.15

As with local accuracy we see that the baselines perform poorly compared
to the other region-based techniques tested. However, it is interesting to
see that the difference between our baselines and the non-baseline methods
is not as great as when measuring the local accuracy. Indeed, the centre
baseline performs better than the guided-backpropagation for the Stanford
Dogs dataset. This suggests that a certain amount of coarseness is desirable in
order to achieve a good score with this metric. This is shown by the Grad-CAM
results which both perform almost identically to one another and give good
global accuracy scores across both datasets. LIME is interesting as it performs
well with the CUB200 dataset, but poorly with Stanford Dogs. Looking at
the plots in Figure 3.15 suggests that initially LIME has a sharper drop than
the CAM methods but then performs poorly during the later stages of feature
removal. The good initial performance is likely due to the use of superpixels
which closely allign to the object regions ion the image. This is useful for
obtaining a good global accuracy as ideally, assuming all the class features are
in the object, we would be able to remove the entire object without removing
the background. The use of superpixels goes some way to allowing this. It is
likely that the superpixels used by LIME are too coarse for this.

88

3.7. Experiment Results

The use of superpixels is the reason we believe that all the SWAG variants
perform so well in the global accuracy experiment. Unlike LIME, SWAG
uses a much larger number of superpixels allowing for better alignment with
the boundaries of the object. Within the object, the increased number of
superpixels are able to more accurately identify the important regions, rather
than having them combined into a single large superpixel. Unlike in the local
accuracy experiment, SWAGG performs worst of the SWAG variants, although
still better than the other methods tested. This is likely due to the expansion of
the superpixels away from the object boundaries. As has been noted previously
by Kapishnikov et al. [65], the areas surrounding the boundaries of the object
are important to the model. This is the reason XRAI artificially expands their
superpixels regions. However, with the global accuracy, this is not desirable as
it means we are more likely to remove background pixels rather than object
pixels. This is likely what leads to the inferior score for SWAGG. SWAGI

performs well as the superpixels will align closely to the object boundaries,
however SWAGI+G performs the best of all methods tested. SWAGI+G gives the
best global accuracy results because it finds a happy medium between SWAGI

and SWAGG. By incorporating enough of the image, the superpixels stay
better aligned to the object boundaries, but by incorporating a certain amount
of gradient when making the superpixels, features within the object are more
accurately scored. It is possible that the global accuracy score achieved with
SWAGI+G could be improved as we chose the wc and wg to work best for the
local accuracy metric. However, due to the computational requirements of the
ROAR technique, it is impractical to perform hyper parameter optimisation.

3.7.3 Superpixel Replacement for LIME

Superpixels form the underlying foundation for techniques such as LIME
and XRAI. Here the superpixels are generated, then either perturbed or
weighted in some way. However, both of these examples use “off-the-shelf”
superpixels, Quickshift for LIME and Felzenszwalb for XRAI. In this experiment
we demonstrate the usefulness of using our proposed SLIC variants as a drop in
replacement for those used in LIME. We use the local accuracy experiment and
generate superpixels using off the shelf SLIC as well as our combined image
and gradient, and gradient only variants. These are referred to as LIMEI,

89

3.7. Experiment Results

Table 3.8: ROAR AUC results. Lower is better.

Method CUB200 Dogs
Centre 0.284 0.393
Grad-CAM 0.219 0.344
G-CAM++ 0.218 0.342
LIME 0.210 0.364

SWAGI 0.173 0.320
SWAGI+G 0.172 0.319
SWAGG 0.179 0.324

Guided Backprop 0.231 0.435

0 25 50 75
% of input features replaced

0

20

40

60

80

100

T
es

t
A

cc
ur

ac
y

(%
)

CUB200

0 25 50 75
% of input features replaced

0

20

40

60

80

100

T
es

t
A

cc
ur

ac
y

(%
)

Stanford Dogs

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Centre

G-CAM++

Grad-CAM

Guided Backprop

LIME

SWAG

SWAGG

SWAGI+G

Figure 3.15: ROAR results using the ResNet50 architecture. Faster accuracy drop indicates
a better global explanation.

LIME I+G, and LIMEG respectively. In the initial LIME implementation using
Quickshift, approximately 37 superpixels are created. To mimic this we use
SLIC with the approximate number of superpixels to generate set to 50. The
results for this experiment using ImageNet are shown in Table 3.9. From these
results we see that simply using our SLIC variants as a drop in replacement

90

3.7. Experiment Results

Table 3.9: Local accuracy results for LIME. Changing Quick Shift to SLIC and our variants
(I+G and G). Lower is better.

Method VGG16 ResNet50
LIMEI 0.107 0.126
LIMEI+G 0.090 0.108
LIMEG 0.082 0.099

allows for local accuracy to be dramatically improved for both VGG16 and
ResNet50. Indeed such is the improvement that with only approximately 50
superpixels used for the explanation with LIME, the results are close to SWAG
using 300 superpixels. This is potentially very useful to users of LIME as it
would allow only a modest increase in the number of superpixels using our
technique to achieve superior results. Without our superpixel technique many
more superpixels may be required, which would in turn requires a large number
of additional perturbations.

3.7.4 Weak Localisation

A common experiment undertaken to assess an explanation method is to
investigate its ability to locate a salient object within an image. We used the
well-established method [11,64,133] outlined in Section 3.5.3. Achieving a good
score across the weak localisation experiment indicates that an explanation is
able to both identify where in the image the object is, and also be cohesive
enough to score a large number of pixels within the bounding box. While
a useful proxy to get insight into the cohesiveness of an explanation, weak
localisation experiments do not directly measure the accuracy or quality of an
explanation, Petsiuk et al. [9].

The results for the weak-localisation experiment using ImageNet are shown
in Table 3.10. For the VGG16 network we are able to obtain a better localisation
score for two of the three metrics than Grad-CAM. Interestingly for VGG16, all
of our SWAG methods perform better than the others when thresholding using
the mean or the energy. However, it seems that our method performs poorly
when thresholding by pixel value, most likely due to the uneven distribution of

91

3.7. Experiment Results

Table 3.10: Weak-localisation results as % of localisation error. Lower is better.

VGG16 ResNet50
Val Mea Eng Val Mea Eng

Random 57.43 58.96 57.39 57.43 58.96 57.39
Centre 47.57 48.18 47.68 47.57 48.18 47.68
Grad-CAM 52.06 49.76 51.80 45.94 45.89 44.35
Grad-CAM ++ 47.32 47.25 46.08 45.76 45.83 43.85
LIME 54.82 52.40 52.82 53.08 50.77 51.19
RISE 55.01 57.94 49.68 52.73 53.82 50.53

SWAGI 55.06 46.10 45.01 56.73 52.50 50.65
SWAGI+G 54.57 46.44 44.95 56.33 52.10 50.70
SWAGG 54.16 45.95 44.86 56.69 52.07 52.02

Guided Backprop 55.28 46.32 49.63 56.44 51.53 52.35

values between superpixels. For ResNet50, we note that our method does not
perform well when compared to Grad-CAM and Grad-CAM++. Of particular
interest in these results, is how well simply pointing to the centre of the image
performs. For VGG16 this baseline, performs better than the majority of
methods apart from Grad-CAM++, and in ResNet50 is only approximately
+2.5% from the best performing methods. This, again, highlights that weak-
localisation is perhaps not a good measure of accuracy or quality.

Our method mirrors and in some cases outperforms guided backpropagation.
As guided backpropagation is used to weight, and in some cases define our
superpixels, it is likely that using an alternative method could yield better
results using our method.

3.7.5 Efficiency

To measure the efficiency of an explanation technique we measure the average
time to compute a single explanation for each of first 5,000 images of the
ImageNet validation set, each cropped to 224×224. These results were com-
puted using a single NVidia Titan X GPU. We show the average time taken
to compute each explanation in Table 3.11 and Figure 3.16.

92

3.7. Experiment Results

Table 3.11: Mean computation time in seconds

Method VGG16 ResNet50
Grad-CAM 0.03 0.03
G-CAM++ 0.03 0.03
LIME 5.80 4.76
RISE 13.19 17.48
XRAI 31.10 30.57

SWAGI 0.12 0.18
SWAGI+G 0.12 0.18
SWAGG 0.07 0.10

From these results, we see that our method produces explanations that are
efficient to produce. When compared with CAM based methods, we see that
SWAG based methods are marginally slower, however we are able to obtain a
much better local and global accuracy for only a relatively small increase in
computational cost. The additional overhead incurred by the SWAG methods
is due to the creation and weighting of the superpixels. Notably SWAGG is
quicker to compute that the other SWAG methods as it does not have to deal
with the colour channels and so only creates superpixels using a single grey
scale channel. Compared to LIME (the other technique using superpixels in
a similar way to ours) we see that our technique is much faster to compute
due to only requiring one pass through the network. RISE is also an inefficient
method to generate explanations due to the number of images required to be
passed through the network. However, XRAI is the most inefficient method by
far for two reason. The first is the use of integrated gradients as the gradient
method underlying their explanations. In the code the authors released, they
use 2 baselines, each with 100 passes through the network. The second is the
use of 6 sets of superpixels that have to be iterated through and weighted.
Overall, this leads to a very inefficient explanation method.

3.7.6 Attribution Accuracy

93

3.7. Experiment Results

0 10 20 30
Mean Time to Generate (s)

0.07

0.08

0.09

0.10

0.11

0.12

0.13

L
oc

al
A

cc
ur

ac
y

S
co

re

VGG16 - ImageNet

Grad-CAM ++

Grad-CAM
SWAGG

SWAGI

SWAGI+G

LIME

RISE

XRAI

0 10 20 30
Mean Time to Generate (s)

0.10

0.11

0.12

0.13

0.14

0.15

L
oc

al
A

cc
ur

ac
y

S
co

re

ResNet50 - ImageNet

Grad-CAM ++

Grad-CAM
SWAGG

SWAGI

SWAGI+G

LIME

RISE

XRAI

Figure 3.16: Computation efficiency Vs local accuracy AUC score. A lower AUC is better.

The final results that we present are for the attribution accuracy metric
discussed earlier in this chapter. This is a measure of much an object with
known boundaries is highlighted by the explanation. If an explanation covers
an object without highlighting the background it will score well.The results for
this experiment using ResNet50 are shown in Table 3.12. Here, we see that the
coarser explanations achieve higher scores using this metric. For example, Grad-
CAM++ which achieved the worst local accuracy score (excepting baselines)
using ResNet50, here achieves the highest score for this metric. Indeed it
seems that the better a method is at the local accuracy metric, the worse it
scores with this metric. This seems to happen because the model contrast
score (MCS) gives higher rewards for an explanation completely covering the
desired object. However, we have seen in the qualitative examples (Figures 3.11
and 3.12) that the explanation methods that score well with the local accuracy
metric are typically more focused and precise than those which do not. This
would then result in less of the object being covered by the explanation as an it
is able to better differentiate between regions of the object that are important
or not.

94

3.8. Chapter Summary

Table 3.12: MCS scores using the BAM dataset. Higher is better.

Method ResNet50
Grad-CAM 0.312
G-CAM++ 0.326
XGrad-CAM 0.312
LIME 0.210
RISE 0.202
XRAI 0.243

SWAGI 0.194
SWAGI+G 0.200
SWAGG 0.194

Guided Backprop 0.044

3.8 Chapter Summary

In this chapter, we have introduced two complementary techniques. The
first technique introduced is SWAG, a method for efficiently creating accurate
explanations through the use of backpropagated gradients and superpixels. The
second is a technique for incorporating gradients into the superpixel formation
process using either the gradients alone, or the combined image and gradient.

We have shown through experimentation that our SWAG methods offer
improved local and global accuracy compared to a range of comparable tech-
niques. This is achieved in a computationally efficient manner. The trade-off
is a drop in interpretability which favours coarser, less accurate techniques. Of
the techniques proposed (SWAGI, SWAGI+G, and SWAG G) SWAGG performs
the best in local accuracy and weak-localisation, while SWAGI+G performs
the best in global accuracy. Both SWAGI+G and SWAGG perform better than
SWAGI. However, interestingly SWAGG performs poorly in global accuracy
suggesting, that SWAGI+G is the best all-round technique of the three.

In this chapter we also experienced limitations in the range of metrics
we were able to fully test. This was primarily due to the computationally
inefficient manner of these metrics. In particular, we found that the global

95

3.8. Chapter Summary

accuracy metric ROAR was particularly inefficient. A decision was made to run
the global accuracy metric instead of the insertion portion of the local accuracy
metric. Going forward, due to the inability to run ROAR in an efficient manner,
we will drop the global accuracy, and instead focus on running both insertion
and deletion local accuracy metrics.

96

CHAPTER

4
SWAG-V: Explanations for

Action Recognition

4.1 Introduction

In this chapter, we extend the SWAG technique from the previous chapter to
work with networks that use video as an input, specifically action recognition
networks. These have a number of different requirements compared to image
networks. We begin by presenting a brief literature review of the architectures
used for action recognition, before moving on to discuss how current techniques
are used to create explanations. We then show the motivation behind intro-
ducing SWAG-V (SWAG for Video) and discuss how it is implemented. A
number of experiments are then conducted comparing our proposed technique
to alternative methods and baselines. The key contributions of this chapter are
two-fold. The first is that we introduce a robust video explanation technique
to the video explainability field, an area of research that is often lacking. The
second is that we introduce a method for finding the optimal trade-off point
between insertion and deletion metrics. This allows explanations to be created
in such a way that we find a middle ground between being too coarse and too
fine.

4.2 Action Recognition Review

Action recognition is the task of being able to detect or classify a person’s
actions. We will first discuss deep learning approaches to action recognition,

97

4.2. Action Recognition Review

Figure 4.1: An overview of the different fusion methods. The 16 frame clip is shown at
the bottom, with the dark gray frames being those used as an input.

highlighting the differences from image networks that create problems when
generating explanations. Then, we briefly discuss the datasets used in this
chapter.

4.2.1 Deep Learning Approaches For Action Recognition

Deep learning was invigorated by the ImageNet challenge [128]. This was a
challenge to correctly classify and detect objects in 2D images. While successes
in 2D images [134] were the catalyst for the shift towards the use of deep
learning methods, the use of deep learning with videos has proven more difficult
due to the videos combined temporal-spatial nature. As such, a number of
differing techniques for handling video data in Deep Learning has emerged.
The majority of techniques initially followed two differing architectures:

1. Two stream approaches that separate spatial and temporal components.
2. 3D spatio-temporal convolutions that combine spatial and temporal

components.

However, more recent approaches have combined these two styles of archi-
tecture to give improved results.

4.2.1.1 Two Stream Approaches

One of the first attempts at using Deep Learning for action recognition in videos
was attempted by Karpathy et al. [135]. This work was important in two ways.
The first was that it introduced Sports-1M, the first large-scale video dataset

98

4.2. Action Recognition Review

Figure 4.2: An overview of the two stream approach showing one stream taking the RGB
frames, and a second taking the optical flow representation.

to the community. Until the introduction of later datasets this was commonly
used to pre-train action recognition networks in the same way ImageNet is for
image networks. The second contribution was the exploration of how to use
the frames of a video as an input. At this point Karpathy was still using 2D
CNNs so relied on the concept of giving each CNN a frame, and then fusing
the multiple 2D CNNs together. Aside from using a single frame as an input
to a 2D CNN as one might with image classification, three fusion methods
were proposed: late fusion, early fusion, and slow fusion (see Figure 4.1). Slow
fusion, which was found to work best, uses blocks of four frames (of a 10 frame
clip input) with an overlap of two have their own one-layer convolution network,
these are then fused into two separate networks for a layer before being fused
into a single network. Using the slow fusion technique preserves the temporal
information until the third convolution layer. An interesting aspect to note
though was that these fusion methods only offered small increases over using a
single frame as input to the CNN.

The two concepts of preserving a combined spatio-temporal input for as
long as possible in the network, and having two separate networks that merge
late on are important for the architectures that followed.

4.2.1.2 Two Stream Approaches

The first of these newer architectures, a two stream approach, was proposed
by Simonyan and Zisserman [136]. This used two separate networks as per

99

4.2. Action Recognition Review

the late fusion method seen earlier, but had one network accepting a single
frame, and the second network accepting a stack of optical flow frames (see
Figure 4.2). Both networks use 2D convolutions, this means that the stack of
optical flow frames containing the temporal information is convolved over in
its entirety at the first convolution layer. This results in the network being
unable to learn from the changes in the temporal information at lower layers.
The two networks are not joined until after their respective softmax layers.
The authors found that using a Support Vector Machine (SVM) [137] proved
to be the best method of joining the softmaxes rather than averaging them.

The two stream approach decouples the spatio-temporal information which
allows the spatial network to be pre-trained on a large body of data, in this
case ImageNet [128].

This architecture has been modified in various ways since its inception,
with more complex fusion techniques [138], improved appearance and motion
representation [139], and action localization [140]. Feichtenhofer et al. [40],
introduced a two stream architecture but with ResNets with temporal to spatial
links in place of the original ones. ResNets [68] allow networks to be trained
for more layers with a reduced risk of overfitting, this allows more complex
representations to be formed.

4.2.1.3 Combined Spatio-Temporal Approaches

The second main architecture used for action recognition in videos is a combined
spatio-temporal approach. Although the first example of 3D Convolution
Networks were introduced by Ji et al. [141] and Baccouche et al. [142], they were
not used for large-scale supervised training until the C3D network introduced
by Tran et al. [37]. C3D networks allow the temporal element of the video
to be propagated through the network for longer, as opposed to losing the
information at the first layer as was the case with the two stream network. The
key difference is that rather than using 2D convolution filters, that work over the
entire temporal volume, 3D convolution filters are used instead (see Figure 4.3).
This allows blocks of temporal information to be processed independently,
allowing the temporal information to persist further into the network. The
C3D network has eight 3D convolution layers, with the temporal information
lasting until the final layer. The authors found that a 3D convolution filter of

100

4.2. Action Recognition Review

Figure 4.3: The difference between a 2D convolution (a), a 2D convolution over multiple
frames as used in the two-stream network (b), and the 3D convolution used in the C3D
network (c). Note the output of the 3D convolution contains an additional dimension. Taken
from Tran et al. [37].

size 3×3×3 gave the best performance when working with combined spatio-
temporal features. Their experiments showed that using a 3D CNN gives more
suitable spatio-temporal features compared to using a 2D CNN.

4.2.1.4 Joining the Two Techniques

As Girdhar et al. [143] noted, two stream networks often outperform other
architectures as they are flexible enough to allow for the latest architectures
to be swapped in for the existing networks. However, the combined spatio-
temporal nature of C3D showed that these architectures were able to replace
2D networks.

An architecture proposed by Varol et al. [139] combined aspects of both the
two-stream and spatio-temporal approaches. This technique was called Long-
term Temporal Convolutions (LTC). From the two-stream approach it takes the
two-stream architecture with use of separate optical flow and appearance data.
From the spatio-temporal approach it takes the 3D convolution network and
inserts it into the two networks. The authors also explore the expansion of the
networks temporal depth input, from C3D’s original 16 frames, up to 100 frames,
and show that the increased depth results in an improved performance. This
result is corroborated by Ng et al. [144] who show that optimal classification
performance is given by 120 frame inputs for their network. While the LTC
work gave better results, a limitation of this approach became the performance
of C3D compared to more modern 2D architectures such as Inception [145] or
ResNet [68]. To combat this problem, Carreira and Zisserman [96] proposed the
idea of taking more current 2D architectures, and ‘inflating’ them to produce
3D networks. This technique is called Two-Stream Inflated 3D ConvNets (I3D).

101

4.2. Action Recognition Review

Figure 4.4: An overview of the difference between 3D convolutions (a) and the separated
variation used for R(2+1)D (b). The separated variation shows how the spatial and temporal
elements are decomposed into two separate convolutions. Taken from Tran et al. [38].

I3D was based around taking the inception architecture and inflating the 2D
convolutions to become 3D convolutions, by adding a temporal element. These
inflated networks were then used in a two stream approach. This gave state of
the art performance for a number of action recognition datasets. Following
this work, Tran et al. [38] introduced ResNet3D and R(2+1)D. ResNet3D
was created in a similar way to I3D, a ResNet model was inflated to use 3D
Convolutions. R(2+1)D takes a different approach, and is based on work done
by Qiu et al. [146]. Here, the 3D convolutions are split into a combination
2D and 1D convolutions. This is shown in Figure 4.4. The 2D component
performs a spatial convolution followed by a 1D convolution over the temporal
extent. The benefit of this is to double the number of non-linearities, allowing
more complex functions to be represented. In the paper, the authors show that
R(2+1)D performs better than ResNet3D and only marginally worse than I3D.

4.2.2 Datasets

A number of datasets exist for action recognition applications. However,
not all are suitable for deep learning tasks due to their limitations in both
quantity of samples and action classes. However, a small subset are repeatedly
experimented upon within the deep learning literature, notably UCF101 [147],
Sports1M [135], ActivityNet [148], THUMOS [149], and Kinetics [150]. In
particular, Kinetics is now the standard dataset to pre-train and test networks
on. We will give a brief description of it here as we use it throughout the

102

4.2. Action Recognition Review

chapter. In addition we also discuss UCF101 as this has a subset of the dataset
annotated with ground truth bounding boxes that localise the action. A more
thorough review of other action recognition datasets can be found in Chaquet et
al. [151].

4.2.2.1 Kinetics

The Kinetics 400 dataset was initially introduced in 2017 by Kay et al. [150]
and developed in parallel with the I3D network [96]. Kinetics 400 is a dataset
consisting of 400 classes of human actions, each with over 400 clips per class.
The motivation for introducing Kinetics 400 was two fold. The first was to
provide more classes and data with which to train on, the second was to
increase the variation within the classes. This has been shown to be a problem
with datasets such as UCF101 where a lack of variation allows a network to
learn the background rather than the action [152]. For example, in UCF101
all tennis playing takes place on a tennis court, simply seeing a tennis court
indicates the action taking place. Kinetics 400 attempts to diversify this by
having actions take place in a variety of environments. Kinetics 600 [153] was
introduced as an extension to Kinetics 400 with Kinetics 700 [154] following as
a subsequent extension.

4.2.2.2 UCF101

UCF101 was introduced in 2012 by Soomro et al. [147] and incorporates and
builds upon previous implementations of UCF datasets, UCF11 [155] and
UCF50 [156].

The dataset was introduced as a way to remedy the perceived problems
in action recognition datasets of the time, notably, small numbers of classes
and videos that were not real (i.e. they were staged or acted). UCF101 is
made of 13,320 videos split into 101 classes. Each of the videos is obtained
from YouTube and irrelevant clips were removed at the point of creation,
meaning the dataset consists of videos with a single action in and accurate
labels. Of potential interest, when further analysing the datasets inclusion in
the project, is that the 101 classes are also grouped into five high-level groups:
Human-Object Interaction, Body-Motion Only, Human-Human Interaction,
Playing Musical Instruments, and Sports. For deep learning purposes the

103

4.3. SWAG for Video: SWAG-V

dataset is often seen as being small so is not often used to train a network from
scratch due to over fitting [37]. Of importance to this chapter is the subset
of UCF101 that was introduced as part of the THUMOS challenge [149]. It
contains bounding boxes for 24 of the 101 classes, giving the location of the
action in each frame of the video.

4.3 SWAG for Video: SWAG-V

We propose that the technique discussed in the previous chapter, SWAG, is
extremely well suited for use in action recognition networks where the input is
a spatio-temporal volume. Action recognition networks typically take an input
that consists of multiple 2D images (video frames) stacked into a single volume.
This stacked frames are temporally cohesive. To represent this in the form
of an explanation we again use SLIC, but instead create 3D superpixels that
posses both a spatial and temporal element. As with SWAG, the gradients
are backpropagated to the input and used to weight the 3D superpixels. As
every individual frame has an associated set of gradients and superpixels, the
technique for weighting each frames’ superpixels is identical to the 2D version
of SWAG.

In this chapter, we will again show how superpixels can be generated using
both the image and the gradients individually as well as combining them. We
will refer to these as SWAG-VI, G, and I+G respectively.

Another key difference between SWAG and SWAG-V will be how we
optimise. As SWAG was image based, it is considerably more efficient to
compute results for. To this end we were able to generate results for both local
and global accuracy metrics. However, using video data makes the generation
of global accuracy results particularly inefficient and therefore prohibitively
lengthy. Instead of showing results for local and global accuracy, we instead
double down on local accuracy as the means of showing explanation accuracy.
What this means in practice is that we will generate results for both the
insertion and deletion metrics for the RISE deletion metric. Previously, for
SWAG, we only dealt with the deletion metric as we felt it to be more important.
It is important to note that the metrics available for evaluating explanations
for action recognition networks are much more limited than those proposed for
image based networks. The majority of these metrics are therefore applied in

104

4.4. Optimisation

the same manner as they would be for an image based-network. Where metrics
that incorporate the temporal element do appear, they are typically part of
localisation metrics [41, 98].

4.4 Optimisation

While the technique is only altered from SWAG through the use of 3D su-
perpixels rather than 2D ones, a number of changes must be considered to
adapt it to use for action recognition networks. The primary considerations
are the attribution method (i.e. which gradient method to use), the number
of superpixels to create, and how best to combine superpixels and gradients
to create SWAG-V I+G. We explore the attribution method first, as while we
found that guided backpropagation worked well for 2D images, there is no cer-
tainty this performance will transfer to video. From SWAG we keep the use of
SLIC as the method of generating superpixels and mean pooling as the method
for weighting each superpixel with the gradients. In this section we therefore
present the rationale behind the choices for the primary considerations we have
just discussed.

Throughout this section we show results using Kinetics 400 with the
R(2+1)D architecture. We start with an initial value of 100 superpixels,
and then update this when we determine the optimal value.

4.4.1 Attribution Method

The attribution method is key to the success of SWAG-V. Determining which
gradients produce the best initial results is important to discover early on before
further decision are made. In this section we show results for two baselines
(random noise and Sobel edges), and three methods for generating gradients
(vanilla backpropagation, guided backpropagation, and Input�Gradients). We
again chose these baselines as, although we are now using video as an input,
the baselines can be generated for each frame in an input clip. This results in
a similar appearance to gradient based methods. These results are shown in
Table 4.1. From these results we observe that the baselines perform poorly
for both deletion and insertion metrics. Vanilla backpropagation performs
almost as poorly as random noise for the deletion metric, but performs much
better for the insertion metric. With Input�Gradients this is reversed with

105

4.4. Optimisation

Table 4.1: Determining the optimal method of attribution. Results are shown for both
insertion and deletion local accuracy metrics. For deletion, lower is better. For insertion,
higher is better.

Deletion Insertion
Method R(2+1)D R(2+1)D
Random Noise 0.194 0.192
Sobel 0.162 0.298
Vanilla Backprop 0.188 0.302
Guided Backprop 0.113 0.371
Input�Gradients 0.156 0.185

the deletion metric performing much better than the insertion metric, which
performs worse than random noise. Of all the techniques tested though, it
is clear to see that, as with SWAG for 2D images, guided backpropagation
performs the best. Easily beating all the other techniques in both deletion and
insertion results. We will again use guided backpropagation going forward.

4.4.2 Choice of Weights for SWAG-VI+G

As with SWAG, it is not initially obvious that when creating a superpixels
using a combination of the image and gradients, what is the best way to
combine them. In this section we determine the optimal way of combining the
images and gradients in the superpixel creation process. To do this we modify
the weights for each input as we did in the previous chapter. The weights
are labelled wc and wg for the image and gradients respectively. Each weight
modifies how important the input is in the generation of the superpixel. A low
weight score means a high importance, while a high weight score gives lower
importance.

For both deletion and insertion metrics, we begin by performing a coarse
grid search using wc and wg values of [5, 10, 20]. Here, 10 is the default value
used by SLIC, while 5 and 20 represent a doubling and halving of an inputs
influence respectively. As with SWAG, to ensure that some aspect of the image
is always taken into account, we only increase the image weight to a maximum
of 20. Based on these coarse results we then performed a finer grid search in

106

4.4. Optimisation

Figure 4.5: Coarse search for optimal values for wc and wg. Left is deletion scores. Lower
(dark blue) is better. Right is insertion scores. Higher (dark red) is better.

the best performing region for each metric. The initial coarse results can be
found in Figure 4.5.

From these initial coarse results, we can see that both deletion and insertion
results tend to favour a high wc value and a low wg value. This suggests that
both metrics find the addition of the gradients to be beneficial to creating
superpixels that better align with the explainable regions.

Based on this, we narrow on in the best performing values and subsequently
produce a finer grid search using the combined scores of insertion and dele-
tion to find the optimal value. We combined the scores as so: (deletion +
(1−insertion)). Subtracting the insertion score from 1 means that as both
scores approach 0, the better they are. We compute the combined scores for
wc = [18, 20] and wg = [8, 9, 10, 11, 12]. These results are shown in Figure 4.6.
From these results we see that the lowest score occurs at wg = 9 and wc = 20.
We will use these values for SWAG-VI+G going forward.

4.4.3 Initial Superpixel Count

With SWAG we determined that an initial count of 300 was appropriate for
creating explanations for 2D networks which typically take a 224×224 image
as an input. However, action recognition networks typically take an input with

107

4.4. Optimisation

Figure 4.6: Fine search for optimal values for wc and wg. Here we show the combined
insertion and deletion score. Lower (dark blue) is better.

a spatial dimension of 112×112. Simply using the same number of superpixels
as SWAG may result in explanations that are therefore too fine grained. In
this section we explore the optimal number of superpixels to generate. We
again use both the insertion and deletion metrics. We sweep through a range of
superpixel counts and store the results. To find the optimal value, we add the
deletion scores to 1−insertion scores. In this way both sets of scores are better
as they approach 0. The results from the sweep of superpixels counts and this
combined result is shown in Figure 4.7. From the deletion and insertion results
we see that they are the opposite of each other. Deletion (where a low score is
better) improves the more superpixels there are in the image. The insertion
metric (where a high score is better) performs much better with a very low
number of superpixels and degrades as more are added. Again, looking at the
combined values (deletion + (1−insertion)), where a low value is better, we
see that after an initial rapid improvement in performance, the scores plateau.
When we analysis this we find that the lowest score occurs at a superpixel
count of 120. This is marked with the red cross in the figure. Going forward
we will use a superpixel count of 120.

108

4.4. Optimisation

Figure 4.7: Top: Showing how the superpixel count affects the insertion and deletion
scores. Bottom: Showing the optimal superpixel size.

4.4.4 Final Parameter Choices

For clarity we present the final parameter choices for SWAG-V determined in
this section.

• Attribution Method: We chose guided backpropagation as our attri-
bution method. As with SWAG, we found it to outperform the other
methods tests using the local accuracy metric.

109

4.5. Experiments

• Initial Superpixel Count: Using the combined deletion and insertion
results, we found that 120 was the optimal superpixel count to start the
explanation with.

• SWAG-VI+G weights: We showed, using the combined deletions and
insertion results, that wg = 9 and wc = 20 were the optimal values for
use with SWAG-VI+G.

Using these values, we now begin to conduct our experiments.

4.5 Experiments

In this section, we present our results based on the application of Gradient
Weighted Superpixels to action recognition networks. As discussed previously,
we find our technique well suited to explaining networks that use spatio-
temporal volumes. In this section we explore this both qualitatively, through
the use of example images, and quantitatively. For the quantitative metrics we
use local accuracy, but in this chapter we use both the insertion and deletion
metrics. Due to the computational requirements, we do not run any exper-
iments for global accuracy. For weak-localisation, we use a variation of the
metric used for SWAG, although tailored to work with the video data available
to us.

We hypothesise that we will achieve similar results to those of SWAG. That
is, we expect SWAG-V to perform well in the local accuracy deletion metric.
With the addition of the insertion metric, we expect this not to perform as
well as methods such as Grad-CAM, but rather that SWAG-V will perform
consistently well across both insertion and deletion. Unlike SWAG, we expect
SWAG-V to perform better than existing techniques for weak-localisation tasks
as it should be able to better localise action both spatially and temporally.

4.5.1 Qualitative Inspection of Results

We begin by presenting an example explanations created using Kinetics 400
and R(2+1)D. Examples for the classes capoeira (a Brazilian martial art) and
shearing sheep are shown in Figures 4.8 and Figures 4.9 respectivly. In the
figures we show individual frames from a 16-frame clip. We show our results
alongside the initial input frames as well as the activation map based methods.
From this example we can see how much more precise all variants of SWAG-V

110

4.5. Experiments
In

pu
t

G
-C

A
M

G
-C

A
M

+
+

S-
Tu

be
s

SW
A

G
-V

I
SW

A
G

-V
I+

G
SW

A
G

-V
G

Figure 4.8: An explanation for the Kinetics 400 class ‘capoeira’ using R(2+1)D. Note the
more precise explanations generated using SWAG-V compared to previous methods.

are when compared to the activation map based methods. These methods are
shown to be coarse in both the spatial and temporal dimensions. For example,
note that the activation map based methods are unable to precisely follow the
motion of the person in the capoeira action class. Instead the explanations
produced by the activation based methods seem to highlight the centre of the
frame and highlight all of the action in that region. In comparison, we see that
our proposed methods are much able to better track the location of limbs of the
person as they move. Interestingly, SWAG-VG appears to be much noisier, with

111

4.5. Experiments
In

pu
t

G
-C

A
M

G
-C

A
M

+
+

S-
Tu

be
s

SW
A

G
-V

I
SW

A
G

-V
I+

G
SW

A
G

-V
G

Figure 4.9: An explanation for the Kinetics 400 class shearing sheep using R(2+1)D. Note
the SWAG-V methods better highlight the action of the clippers.

superpixels mixing into each other, compared to the other SWAG-V methods.
SWAG-VI and SWAG-VI+G seem to have smoother superpixels that follow the
motion more accurately. We see smilar results in the sheep shearing clip. Here
our SWAG-V methods highlight both the clippers and a portion of the sheep.
However, the SWAG-V G method produces superpixels that are, again, noisy
in their shape. Here the superpixels appear quite diffuse compare to SWAG-VI

and SWAG-VI+G. Additional examples can be found in Appendix B.

112

4.5. Experiments

4.5.2 Local Accuracy

Now that we have qualitatively shown that SWAG-V produces explanations
that are better able to highlight an action both spatially and temporally, we
now perform quantitative experiments. As with SWAG, we begin by exploring
the accuracy of the explanation. Unlike SWAG however, we only show results
for local accuracy. This is due to the inefficient method for measuring the
global accuracy, that is the constant requirement to retrain the network. While
this was computationally expensive for use with image networks, the additional
temporal element and the size of the video datasets makes it infeasible for this
thesis. As discussed previously, we therefore use the time that would have
been spent running global accuracy tests, and instead run both insertion and
deletion tests.

While we covered the deletion metric in the previous chapter, the insertion
metric is similar in many ways, but seeks to highlight a different property of an
explanation. Ostensibly both measure how well an explanation aligns to the
regions of the image used by the network to inform the predicted class. Deletion
measures how well an explanation can locate the pixels that are very important
to the network. By removing these pixels, in order from most important to
least, we would expect to see that the more accurately an explanation can
locate the important pixels, the faster the network is unable to predict the
class. The insertion metric works slightly differently by reversing the order
in which the pixels are altered. Starting from a blank image (all pixels set
to 0), the pixels are iteratively reintroduced most important first. In many
ways this insertion metric is similar to a concept introduced by Dabkowski
and Gal [10], called the smallest sufficient region (SSR). They used this to
help build explanations that were compact and cohesive in nature. Indeed,
in the qualitative examples the authors show, the SSR is a cohesive region,
rather than a scatter of pixels the network finds important. In the metric
introduced by Kapishnikov et al. [65] they modify the insertion metric so that
rather than the percentage of pixels removed, they report the compressed size
of the image. The intent being that the more the image can be compressed,
the more cohesive the region being reintroduced.

This then sets up a conflict between the insertion metric, and the deletion
metric. While the deletion metric favours the precision of an explanation to

113

4.5. Experiments

accurately locate individual pixels that are important, the insertion metric
rewards finding cohesive regions that are important. It therefore becomes a
balance between how well a method is at the insertion vs deletion metric. It is
likely that as a technique become more precise it will give better deletion results,
while a technique that becomes more cohesive should give better insertion
scores.

4.5.2.1 Implementation

To generate our insertion and deletion scores we first create an explanation for
an input using one of our chosen methods. Using these explanations, we rank
every pixel based on its importance to the network. For deletion, we begin
with the video and remove pixels from most import to least. For insertion,
we begin with a video containing only zeros and reintroduce the pixels from
the original input, most important first. We introduce or remove pixels over
28 iterations. This equates to 7,168 pixels being introduced or removed at
a time. While this is more pixels than introduced or deleted for the SWAG
experiments (1,792 pixels at each iteration), it is necessary to ensure that the
experiments are able to be run in an efficient and timely manner.

To generate local accuracy results, we use two architectures and the Kinetics
400 dataset. Weights for the models were imported from those released by
Tran et al. as part of the R(2+1)D paper [38]. As is standard, we perform
experiments on the spatial stream. We do not perform any experiments on
motion streams. From each of the Kinetics 400 validation videos, we extract
the centre 16 frames and use these to obtain our scores. This gives us 18,362
clips.

We compare our method against a number of activation based methods,
namely Grad-CAM, Grad-CAM++ and Saliency Tubes. Saliency Tubes re-
quires a network architecture where there is only one linear layer in order
to generate the weights for the activations. As such, we do not test pro-
duced results for C3D using Saliency Tubes. Also, we compare against guided
backpropagation to see how it compares against SWAG-V which uses guided
backpropagation for weighting.

114

4.5. Experiments

4.5.2.2 Results

We show the results for the insertion and deletion metrics in Table 4.2. From
these results we can begin to discern a number of trends. The first is that the
random baseline, as expected, performs poorly. It is the worst in the deletion
metrics and the second worst in insertion. Interestingly, both baselines perform
better than guided backpropagation in the insertion metric but much worse in
the deletion. This again reinforces our belief that every explanation is a trade-
off between precision explanations and cohesive ones. For C3D simply pointing
at the centre of the clip produces better deletion results than Grad-CAM,
although Grad-CAM produces better insertion results. This suggests that
the methods based on activation maps sacrifice precision for a more cohesive
explanation. This seems to be the case with these methods performing the
best in insertion, while only beating the baseline methods for deletion.

When we look at the results for our proposed method we see that all three
methods perform much better at the deletion metric than the activation based
methods. However, for the insertion based metrics, SWAG-V does not perform
as well. Indeed, for C3D, both baseline methods outperform SWAG-VG with
the insertion metric. This suggests that SWAG-V in general is more precise
than the activation based methods, but not as cohesive. Grad-CAM and
saliency tubes perform identically suggesting there is little difference between
the explanations. Interestingly Grad-CAM++ outperforms Grad-CAM on
everything apart from insertion with the R(2+1)D architecture. This is contrast
to the previous chapter were Grad-CAM outperformed Grad-CAM++ on the
local accuracy metric.

4.5.3 Weak-Localisation

As discussed in Chapter 3, there is a body of work devoted to weak-localisation
of objects through the use of model interpretation techniques. As such, it
has become common when introducing a novel interpretability technique to
have a section of experiments that discuss how well the generated saliency
map locates the given object within an image. In networks that deal with
image classification this primarily takes the form of extracting some portion
of an explanation and seeing how it aligns spatially with a bounding box.
However, for video inputs we need to localise in both the spatial and temporal

115

4.5. Experiments

Table 4.2: Deletion and insertion results for both C3D and R(2+1)D using Kinetics 400

Deletion Insertion
Method C3D R(2+1)D C3D R(2+1)D
Centre 0.153 0.167 0.264 0.304
Random 0.222 0.265 0.272 0.322
Grad-CAM 0.157 0.118 0.313 0.447
Grad-CAM++ 0.136 0.125 0.315 0.422
Saliency Tubes – 0.118 – 0.447
SWAG-VI 0.091 0.113 0.312 0.372
SWAG-VI+G 0.087 0.111 0.314 0.381
SWAG-VG 0.068 0.080 0.262 0.343

Guided Backprop 0.031 0.035 0.184 0.287

dimensions. To do this, we extend the weak-localisation method used in the
previous chapter (established in [11,64,133]) for use with video inputs.

To begin to adapt this experiment for use with spatio-temporal inputs,
a suitable dataset with corresponding bounding boxes is required. For this
experiment, we chose UCF101. This is both a commonly available dataset,
and crucially contains localisation annotations for 24 of the classes. It is these
classes that we will use to measure the localisation abilities of the interpret
ability techniques. This is also in-line with techniques for specifically generating
action localisations in spatio-temporal inputs (i.e. bounding boxes through
time) [157].

For simplicity, we filter out any videos from the validation set (containing
914 videos) that have more than one action to localise per frame, and any clips
that have fewer than 16 contiguous bounding boxes present. This reduces the
validation set to 697 videos. We crop videos into 16 frame clips, starting a
new clip every 8 frames. If the 16 frame clip does not contain a ground truth
bounding box for every frame, we ignore it. This generates a total of 10,704
clips for evaluation. To evaluate, we generate a bounding box for each frame in
the clip, and get an IOU score for each frame. We then average these over the
16 frame clip. If the average IOU is greater than 0.5 we classify it as correct.

116

4.5. Experiments

Table 4.3: Weak localisation results as % localisation error, where a lower score is more
desirable. For each of the three thresholds tested, we present the average score as an
indication of the overall ability of the method to weakly localise action.

C3D R(2+1)D
Val Mea Ene Val Mea Ene

Centre 87.91 88.26 87.66 87.91 88.26 87.66
Random 90.51 90.63 90.34 90.51 90.63 90.40
Guided Backprop 90.62 90.69 100.00 90.68 87.58 85.64
Grad-CAM 90.57 90.46 90.53 85.40 87.08 85.32
Grad-CAM ++ 90.21 89.91 89.92 85.40 87.08 85.32
Saliency Tubes – – – 85.58 85.86 85.64
SWAG-VI 74.00 74.46 74.26 71.76 72.61 72.58
SWAG-VI+G 73.00 72.52 72.99 70.02 69.94 71.25
SWAG-VG 75.22 74.25 74.09 69.88 70.80 70.59

4.5.3.1 Results

We show the results for this experiment in Table 4.3. From these results we can
pick out some interesting observations. The first is that guided backpropagation
performs poorly for both models, in some cases even being outperformed by the
baselines. The second observation is how close the results are for the baselines
compared to the CAM results. In particular, using the C3D architecture, the
centre baseline is beaten only by our proposed SWAG-V methods, with even the
random baseline outperforming them in some instances. The R(2+1)D network
provides slightly different results, with the CAM techniques and saliency tubes
slightly outperforming the baselines.

Given these results, our SWAG-V methods outperform all others tested by
a large margin, often by around 15% to 20%. Of the three SWAG-V methods,
SWAG-VI performs the worst, with SWAG-VI+G performing best with C3D,
and SWAG-VG the best with R(2+1)D. Compared to the difference with the
other methods though, there is little difference between the SWAG-V methods,
with around 2% variation.

4.5.4 Efficiency

We show the mean time taken to generate an explanation in Table 4.4. These
are averaged over 1,000 explanations. From these results, we can see that

117

4.6. Future Work

Table 4.4: Mean computation time in seconds

Method C3D R(2+1)D
Grad-CAM 0.08 0.15
G-CAM++ 0.08 0.15
Saliency Tubes – 0.05
SWAG-VI 0.41 0.68
SWAG-VI+G 0.46 0.74
SWAG-VG 0.26 0.40

SWAG-V adds an additional computational overhead when compared to the
alternative methods. As with the results for SWAG in the previous chapter
(Section 3.7.5, we see that SWAG G is the fastest of the SWAG-V methods due
to the simplicity of making the superpixels. Again, SWAGI+G is the slowest
due to the overhead involved in combining the gradients and images. Despite
the additional computational cost, we believe the improvement in the other
metrics justifies the increase.

4.6 Future Work

We have seen that SWAG-V performs well with the architectures experimented
on in this chapter. However, in future examination of SWAG-V we would like
to experiment with two-stream architectures. This would involve the creation
of explanations for both the RGB stream, as well as one based on dense optical
flow. Doing so would allow us to create individual explanations for both the
appearance (the RGB stream), and perhaps more interestingly, the motion.
This is likely to provide additional insights into how an action recognition
models uses the input to inform its prediction.

4.7 Chapter Summary

In this chapter, we have proposed SWAG-V, an extension of SWAG for the
production of explanations for action recognition networks. Through experi-
mentation we have shown that SWAG-V performs better in both deletion and
weak-localisation metrics compared to other comparable explanation methods.

118

4.7. Chapter Summary

However, this comes at the cost of performance in the insertion metric. As with
SWAG, this suggests that a trade-off between cohesion and understandability
is necessary for improved accuracy. Using SWAG-V allows us to achieve this
trade off for action-recognition networks.

There are a number of areas within this chapter that would have been
beneficial to explore further given appropriate time and resources. The first
would have been to explore how our methods performed in a global accuracy
metric. This is something that would have been impossible without drastically
increasing the resources or time available to us. Secondly since completion of
this work, a weak-localisation metric that aimed at localising temporal regions
has become more popular [41]. Running this metric would have allowed us to
further understand how well SWAG-V is able to perform in weak localisation
tasks.

In this and the previous chapter, we have focused on creating explanations
based on combining superpixels and gradients. However, activation-based
methods such as CAM and its variants remain popular and particularity
effective at weakly-localising an object. In the following chapter, we introduce
a method that allows us to improve upon the existing CAM techniques, allowing
us to create more accurate explanations, that retain the interpretable quality
of CAM methods.

119

CHAPTER

5
Jitter-CAM: Improving the

Spatial Resolution of CAM

Based Explanations

5.1 Introduction

In the previous chapters, we have explored explanations produced through
combining superpixels and gradients. However, Class Activation Map (CAM)
based methods remain popular for both explanations and tasks such as weak-
localisation. SWAG in particular performed poorly at weak-localisation. Indeed,
CAM methods are popular enough to have spawned a number of modifications,
notably Grad- CAM [15], Grad-CAM++ [23], XGrad-CAM [70], Ablation-
CAM [24], and Score-CAM [72]. The common advancement through all of these
methods is in accurately weighting the activation maps prior to combining.
However, as we have discussed in previous chapters, these activation maps
are typically very coarse. There can only be so much progress with weighting
the activation map before the inherent accuracies present become a limiting
factor. based explanations. It is important to discuss briefly at this point the
difference between activation maps and attention maps as the terms are often
used interchangeable. At their most basic they are the output of a convolu-
tion layer. For example, Jetley et al. [158] suggest that attention maps are
used either in post hoc analysis (as we are doing), or in trainable attention
mechanisms. However, as the majority of CAM papers use the term activation
maps [23,24,34,72], we will also use this terminology.

In this chapter the key contribution is a method for generating explanations
with an increased spatial resolution compared to existing CAM based methods.

120

5.2. Related Works and Motivation

This is achieved through rescaling the input image, and creating multiple CAM
explanations from this larger image. These are then recombined into a high
resolution explanation.

5.2 Related Works and Motivation

As we have discussed previously, a number of CAM based methods have
been proposed that aim to produce explanations that better indicate the
reason behind a networks prediction. Since the original CAM method [34] was
restricted to network architectures that possessed a global average pooling
layer at prior to the classification layers, this restricted the techniques adoption.
However, Grad-CAM generalised this by backpropagating the gradients from a
specific class output to the activation map. Weights for the activations were
produced by taking the mean value of the gradients in such a way that each
activation map had a corresponding mean gradient value. The intuition here is
that the mean of the gradient will be indicative as to how useful the network
finds a particular activation map to the output. Grad-CAM, Grad-CAM++,
and XGrad-CAM all make use of the gradient component to create the weights
for the activations.

Recently, there has been a trend towards a more perturbation based ap-
proach. This is seen in the Ablation-CAM, and Score-CAM techniques. In both
these techniques, the network is perturbed and the output prediction score for
the desired class used as the activation maps weight. With Ablation-CAM,
the activation maps are extracted and iteratively ‘turned off’ by setting them
to 0. This is similar to dropout in the zeroing of filters, but carried out in a
more controlled and structured manner. When these activations are passed
to the classification layers, it gives an indication as to how useful it was to
the networks prediction based on the amount the classification score drops.
Score-CAM is much more similar to RISE in its approach. It extracts the
activation maps from the final convolution layer and iteratively multiplies the
input image with each activation map so as to mask out regions not activated
in the activation map. These are then passed to the network and the prediction
score used as the weight for that activation map. These methods require as
many passes through the network as there are activation maps to weight. In the
case of VGG-16, this is 512 passes (the number of filters in the final convolution

121

5.3. Jitter-CAM

layer). For more modern networks, the number of filters in the final layer has
often significantly increased, for example ResNet [68] uses 2,048 filters in the
final layer, while ShuffleNet [109] and MobileNet [110] use 1,024 and 1,280
respectively. The increase in filters subsequently increases the computational
requirements needed to produce an explanation. In addition, it is notable that
in Ablation-CAM [24], Desai and Ramaswamy suggest that their technique
does not produce explanations as accurate as previous techniques when using
networks that do not posses fully connected layers. Fully connected layers
are now uncommon in newer networks such as ResNet [68], DenseNet [108],
ShuffleNet [109], and MobileNet [110].

Despite all of the above advances in generating better methods of weighting
the activations, a limiting factor of any explanation produced in this manner
is the size of the activations. It is common for newer CNN architectures
[68,108–110] to produce a final activation map with a height and width of 7.
VGG16 [67] is a somewhat of an outlier with a final activation map of 14×14.
The size of the activation map is function of both the input image size, and the
network architecture. The majority of networks use a 224× 224 input image,
however the architectures contain much more variation. Networks newer than
VGG16 are typically able to have many more layers. This often requires the
size of the activation maps to be reduced in size the further into the network
they travel. This allows for these very deep networks to be run efficiently.
When these coarse activation maps are resized to the input image size using
bilinear interpolation, imprecision will be inherent in the explanation. If there
was a method of creating activation maps with a higher resolution than 7×7
then the resultant explanations would likely be more accurate than before. In
the following section, we propose a method of rescaling the input image to
facilitate the production of multiple explanations of the network which can be
combined to produce a high-resolution CAM explanation.

5.3 Jitter-CAM

As we have highlighted over the previous chapters, the limited resolution of
the activation maps is a cause of concern given the prevalence of CAM based
techniques. By offering a technique that allows us to increase the resolution
of the CAMs, we believe that explanations can be produced that are more

122

5.3. Jitter-CAM

Figure 5.1: An overview of the relationship between the image and the CAM

accurate. While other methods have sought to create explanations with larger
resolutions through the use of network perturbation, it is typically achieved
through a large number of iterations (for example RISE using 8,000 passes).
It is not the perturbations themselves that increase the resolution, rather the
more perturbations, the more accurate the initial explanation is able to become.
We propose a method based on increasing the scale of the input image, then
producing explanations for patches of the new image corresponding to the
original image size. These explanations can then be combined to produce a new
explanation with an increased size. Whereas the original CAM prior to resizing
is typically 7×7, we can choose any size of explanation with the understanding
that as sizes increase, so do computation and memory costs required to produce
it. Importantly however, compared to perturbation techniques, we find that
Jitter-CAM is much more efficient. For example: 64 iterations to create a
14× 14 explanation compared to 8,000 to create an 8× 8 explanation using
RISE. To summarise, we are able to increase the spatial resolution of existing
CAM techniques to resolutions similar to those afforded to us by perturbation
techniques, in a much less inefficient manner.

Before outlining our method we suggest the following notation for use
throughout the section. Let the size of the activation map be defined as m×m.
Each element of the activation map corresponds to k pixels in the input image,
where k = p/m. Here, p is the height or width of the input image (i.e. 224
pixels). An example of this relationship is shown in Figure 5.1. To increase the
size of the CAM from m = 7 to m = 10, an increase, d, of 3, we would therefore

123

5.3. Jitter-CAM

need to increase the size of the input image by dk pixels. We increase the
size of the image using bilinear interpolation in an attempt to reduce artefacts
in the image. We call this resized image I. A CAM is created by passing
an image, X, to a CAM explanation function E(X). E(X) returns a CAM
explanation of size m×m.

A Jitter-CAM explanation can be achieved in relatively few steps. An
overview of the following steps is shown in Figure 5.2. We begin by determining
how much we would like to enlarge the size of the CAM prior to resizing. When
this is determined, we resize the input image to the corresponding size. Example:
suppose we would like to increase the CAM size, m, from 7 to 12, an increase
value, d, of 5. For an input image of p = 224, this would be an increase of 5k
where k = 224/7. This would give a new image size of 384×384. Patches of
this enlarged image are taken corresponding to size p× p, and a stride of k.
For a CAM size increase of 5, this would give 36 patches (= (5 + 1)2). As a
side note, we approach the creation of the image patches in a structured way,
creating a grid of patches from the resized image. It is entirely plausible that
this could be achieved using random affine transformation as is used in data
augmentation. However, this is not something that we attempted as part of
this work, although it holds interest for future work.

To create a Jitter-CAM explanation, we need to create and combine CAM
explanations from each of the patches. Extracting these patches from the
resized image I and creating a combined explanation J (of size (m+d)×(m+d))
is done as so:

Ji:i+m,j:j+m = Ji:i+m,j:j+m + E(Iki:ki+p,kj:kj+p), (5.1)

where i, j is the starting location for the explanation to be added to J . Here
i, j = [1...d + 1]. Multiple explanations will be created at any given point,
with more being created corresponding to centre regions. To account for this,
we create a count of how many times each region of the image has had an
explanation created for it. We call this C, a matrix of size (m+ d)×(m+ d),
and define it as:

Ci:i+m,j:j+m = Ci:i+m,j:j+m + 1. (5.2)

Again, i, j = [1...d + 1]. Finally, we produce the pre-resized Jitter-CAM
explanation:

Jitter-CAM = J

C
. (5.3)

124

5.3. Jitter-CAM

Figure 5.2: A high level overview of Jitter-CAM. This example resizes to a new CAM size
of 10 × 10, which uses 16 image patches.

Given this higher resolution CAM, we can now resize it to the original input
image size using bilinear interpolation to give us a familiar looking CAM
explanation.

The key parameter for this technique then is by how much we increase the
size of the CAM. If we increase it too much, we run the risk of the explanations
not being exposed to enough of the image and, therefore, unable to produce
explanations for the object in the image. Too small and we may not offer any
improvement over the standard Grad-CAM method. In Figure 5.3, we show an
example of how the increase in the CAM size affects the final explanation. Here,
we can see that the original Grad-CAM is fairly coarse, highlighting a number
of regions outside of the target object. However, as we begin to increase the
resolution of the CAM, we see that the regions marked as important become

125

5.3. Jitter-CAM

Input

Grad-CAM

10×10

15×15

20×20

25×25

30×30

35×35

40×40

Figure 5.3: Qualitative comparison between differing sizes of CAM and the original
Grad-CAM. Examples taken from ImageNet and explanations produced using ResNet50.

126

5.3. Jitter-CAM

Figure 5.4: Showing how the deletion and insertion scores are affected by the value of the
dimension (k) of the CAM

less coarse and more detailed. For example, notice how the explanation for the
elephant class begins to form around the trunk when resized to a 15×15 CAM.
As the CAM continues to increase in size, we begin to see the explanation
become less cohesive. This is because the network is being given smaller and
smaller regions of the original image to produce explanations for. This figure
also demonstrates that what seems to be an optimal resolution for one image,
may not be the best for another. For example, the goldfish seems to be better
explained using a much larger resolution compared to the elephant. The best we
can hope to achieve, without setting the spatial resolution for each explanation
individually, is to find an optimal size that works well for the entire dataset in
use.

How then do we find the optimal size for a Jitter-CAM explanation? As
with the previous chapter, we are driven by the use of the deletion and insertion
metric from RISE. We experiment using the ResNet50 network, and vary the
size of the CAM from k = 7 (the original Grad-CAM) to k = 20. We then show
the corresponding deletion and insertion charts in Figure 5.4. It is important
to note here that all results in this chapter are based on ImageNet, as such,
these results are currently dataset specific. In the future it would be useful
to see how consistent these results are across multiple datasets. As we saw
with SWAG-V, the insertion metric decreases as the deletion metric increases.

127

5.3. Jitter-CAM

Figure 5.5: Finding the optimal value of k using ResNet50 by combination of the insertion
and deletion scores. Here we find that k = 14 is the optimal value (double the resolution of
the original explanations k.

However, unlike SWAG-V, where the deletion results continues to improve as
we make the superpixels smaller. Here, the deletion score plateaus around
k = 14. As with SWAG-V, we determine the optimal k value by combining
the insertion and deletion scores together: (deletion + (1−insertion)). Taking
the k value at the lowest position should therefore give us the optimal size
for out Jitter-CAM explanations. These results are shown in Figure 5.5 with
the lowest point marked. Here, we see that k = 14 seems to be the optimal
size, double the initial size of the original CAM explanations from a ResNet50
model. For the Inception architecture [145] which has a final activation layer
of 8×8, we experimented with increasing it to 14×14, and 16×16. We found
that Inception gave better results when being explained using a Jitter-CAM
explanation of 16×16.

When we refer to Jitter-CAM it will be with an explanation of double the
original explanations size. This gives ResNet50 and DenseNet a 14×14 CAM
prior to resizing, and Inception a 16×16 CAM.

128

5.4. Experiments

5.4 Experiments

In this section, we present the experiments we will run and their associated
results. We run a number of experiments we have already discussed in this thesis,
namely local accuracy, weak localisation, and efficiency, alongside additional
experiments that are common in the CAM literature. All experiments are
conducted using the ImageNet validation set (50,000 images) over a variety
of models. We use the following pre-trained models from the PyTorch model
zoo: ResNet50 [68], DenseNet121 [108], and Inception V3 [145]. The first
two networks produce CAM explanations of 7×7 prior to resizing, while the
Inception network produces one that is 8×8.

We hypothesise that as Jitter-CAM is able to increase the spatial resolution
of an explanation, local accuracy metrics should become more robust. We
expect that Jitter-CAM will produce good deletion results, but still be outper-
formed in the insertion metric. This is expected from an explanation technique
that increases the spatial resolution compared to coarse explanations. We
expect Jitter-CAM to perform well in weak-localisation metrics. CAM methods
typically perform well at localisation tasks, and we expect that Jitter-CAM
will be able to improve upon this underlying performance by better adhering
to object boundaries thanks to the increased spatial resolution.

5.4.1 Qualitative Inspection of Results

We begin with a qualitative assessment of the explanations. Examples of each
of the CAM methods tested are presented alongside Jitter-CAM examples.
These are shown in Figure 5.6. Here, we see that using Jitter-CAM to double
the size of the explanation prior to resizing, allows us to produce an explanation
that is more compact around the object in the image. We see this clearly in the
first image of a goldfish, where our Jitter-CAM explanation focuses less on the
surrounding tank, and more on the goldfish itself. Also notice, in cases such as
the gymnast or boat, how Jitter-CAM manages to highlight more of the object
than previous methods. Note, that in examples where more regions of an
object are highlighted, Jitter-CAM still adheres strong to the object boundary
than previous CAM methods. This can be seen in the gymnasts leg or the boat.
Perhaps the most striking aspect of the qualitative comparison is how visually
similar all the previous CAM methods are. This is likely because they are

129

5.4. Experiments

Input

Grad-CAM

Grad-CAM++

XGrad-CAM

Ablation-CAM

Score-CAM

Jitter-CAM

Figure 5.6: Qualitative comparison between various CAM methods and Jitter-CAM.
Examples taken from ImageNet using ResNet50 [68].

all constrained to using the same activation maps to form their explanations,
and improvements in scoring their importance will only go so far. Additional
examples for the other architectures tested can be found in Appendix C.

In the following sections, we will show that although the previous CAM
explanations are visually similar there are quantitative differences. We will
compare these to Jitter-CAM and show the strengths of our proposed method.

130

5.4. Experiments

5.4.2 Faithfulness

We begin by discussing faithfulness, a metric that is often deployed in CAM
research [23, 24, 159]. In this section, we show that it is not an appropriate
measure of an explanation, and perhaps should be discontinued as a metric in
future research. First introduced by Chattopadhay et al. [23], the faithfulness
metric was intended to be a measure of how well the regions deemed important
by an explanation aligned to those used by the model. This is achieved by
performing a point-wise multiplication of the explanation and the input image
to create a masked image Ec for class c:

Ec = Lc ◦ I. (5.4)

Here, Lc is the original explanation for class c scaled between 0...1 and I
is the input image. The masked image, Ec is then passed to the model and
the change in the softmax results observed. This softmax score is then used to
inform two measures of faithfulness, namely the average drop (AD), and the
increase in confidence (IIC).

AD is a measure of how much the models confidence drops when shown
the masked image compared to the original image. The intention is that a
good explanation should highlight the regions of an image important to a
network, and give low scores to those that are unimportant. Therefore, Ec will
be an image where useful regions are kept, and those not seen as useful are
suppressed. AD is then measured as:

1
N

N∑
i=1

max(0, Y c
i −Oc

i)
Y c

i

× 100. (5.5)

Here, Y c
i and Oc

i are the models softmax output for class c and the ith input
image, and it corresponding masked image respectively. N is the number of
images in the dataset. For an AD, a lower value is desirable as it reportedly
indicates that the masked image has only kept useful regions.

IIC is the complement to this and seeks to determine if the masked image
results in the models confidence increasing. The idea behind this is that
the explanation has the potential to mask out regions of the image that are

131

5.4. Experiments

detrimental to the networks prediction. Removing these should, therefore,
increase the networks confidence. IIC is given by:

1
N

N∑
i=1

1[Y c
i < Oc

i]× 100, (5.6)

where 1 is an indicator function equal to 1 if the condition in brackets is true,
0 otherwise. For IIC a large value is desirable.

It is notable that the CAM methods that score well on this metric cover
a large region of the image with a heatmap. It transpires that this is not
coincidental. What these metrics are actually rewarding is having a large
number of constant high valued pixels. When all pixels of the original image
are masked evenly, it has the effect of only causing the confidence to drop
slightly (as the image stays relatively the same as the original) and perhaps
more interestingly, increases the model’s confidence. To test this, we propose
a baseline consisting of an explanation which is completely made up of values
of 0.9, except for two random pixels with a value of 1 and 0. These random
pixels ensure that during any rescaling, the constant values are not scaled to
either 0 or 1. We label this baseline as ‘Constant’. In Table 5.1, we show this
baseline compared to Grad-CAM and Grad-CAM++. Here, we can clearly
see that our constant baseline scores exceptionally well compared to the CAM
techniques, while also clearly being a terrible explanation method. While it
made sense that the AD metric would improve as multiplying the input image
be a constant close to 1 should produce little deviation in the models prediction.
It is not immediately obvious though why the IIC score should improve. We,
therefore, extracted an additional measurement from the IIC of the mean
amount of improvement. This is measured as Oc

i −Y c
i for any explanation that

showed an increase the model confidence. We found that the reason that the
constant baseline was able to improve so much over the CAM methods was that
it improved more images, but with a lower mean improvement. The baseline
improved the confidence of 24,094 images, with an average confidence increase
of 0.022. Grad-CAM and Grad-CAM++ improved the confidence of 20,103
and 19,348 images respectively with mean increases 0.091 and 0.081. However,
none of this is represented in these faithfulness metrics. This suggests that
they should be discouraged from future use as they are, at best, misleading
and could lead to the future development of explanation methods that are
inappropriate.

132

5.4. Experiments

Table 5.1: Faithfulness scores for (IIC) and (AD). For IIC higher is better, for AD lower
is better. We see that the baseline outperforms all methods suggesting this is not a good
metric for explanations.

ImageNet
ResNet50 DenseNet Inception

Method IIC AD IIC AD IIC AD

Grad-CAM 40.21 14.04 39.65 13.22 40.46 16.98
Grad-CAM++ 38.70 14.22 37.54 13.69 38.89 17.02
Constant 48.22 2.70 49.14 1.08 47.36 1.32

5.4.3 Local Accuracy

Faithfulness is often presented alongside the local accuracy measure of dele-
tion and insertion introduced alongside RISE [9]. However, there is a crucial
difference between the two types of metric that is important to measuring ex-
planations. Both measurements alter the input image based on the explanation,
but while the faithfulness metric simply performs a point wise multiplication
(which we have shown is a poor method), deletion and insertion masks pixels
iteratively according to their importance. Masking the input image in this way
allows us to understand how well the explanation ranks the pixels importance.
Indeed, this form of metric has become much more common compared to
faithfulness, with a number of variants of removing or inserting pixels based
on their importance being introduced [9, 10, 58, 65, 102, 160]. As with the
previous chapters, we perform the metric over 28 iterations. The results for
both insertion and deletion are shown in Table 5.2. From these results we
can see that Jitter-CAM is much better at the deletion metric than the other
CAM methods, but this is achieved via a trade-off with the insertion metric.
This suggests that Jitter-CAM is able to better locate the pixels deemed most
important to the models prediction, but in doing so, is less able to determine
which pixels are required when rebuilding the image from scratch. Indeed,
Qi et al. [161] found similar results in their work, showing that as deletion
scores improve, typically insertion scores fall.

5.4.4 Weak Localisation

CAM-based methods are often used for weak localisation tasks. Indeed, the
original CAM method was primarily aimed at the localisation of objects with

133

5.4. Experiments

Table 5.2: Area under the curve for the local accuracy experiment. Lower is better

ImageNet
ResNet50 DenseNet Inception

Method Del Ins Del Ins Del Ins

Random 0.303 0.413 0.280 0.382 0.287 0.425
Centre 0.177 0.420 0.172 0.374 0.165 0.460
Grad-CAM 0.142 0.576 0.137 0.536 0.128 0.585
Grad-CAM ++ 0.147 0.564 0.141 0.524 0.132 0.572
XGrad-CAM 0.142 0.576 0.137 0.540 0.128 0.585
Score-CAM 0.150 0.568 0.142 0.532 0.131 0.579
Ablation-CAM 0.144 0.567 0.140 0.531 0.129 0.577
Jitter-CAM 0.118 0.551 0.120 0.522 0.107 0.570

its explanation properties as an additional trait. The ability of CAM-based
methods to localise an object well has subsequently been used in number of
tasks such as segmentation [162–164], object recognition [165], and person
re-identification [166]. As such, weak localisation metrics are often used in
CAM papers. In this chapter we present two weak-localisation metrics. The
first is the weak-localisation metric we used in the SWAG chapter, which uses
ground truth bounding boxes for the ImageNet validation set. In this method,
the explanation is threshold using one of three methods, and a bounding
box drawn around the thresholded explanation. This is done over a range
of thresholds and the best score for each is presented. The first method of
thresholding is based on scaling the explanation between 0 and 1, then sweeping
through a range of thresholds in range [0 : 0.05 : 0.95]. This is labelled as ‘Val’.
The second set of thresholds is obtained by multiplying the mean value of the
explanation with a value in the range [0 : 0.5 : 10]. This is labelled as ‘Mean’.
The final method is based on thresholding the heatmaps by the percentage of
energy that covers a subset of the explanation in range [0 : 0.05 : 0.95]. This is
labelled as ‘Eng’.

The results for this three methods of thresholding are shown in Table 5.3.
From these results we see that for ResNet50 and DenseNet there is a dramatic
improvement over previous CAM techniques, improving by around 2%− 5%
depending on thresholding technique. The likely reason for this improvement
in localisation ability is seen in the qualitative results. Here, we see that
Jitter-CAM is able to better highlight more reasons of the object than previous

134

5.4. Experiments

Table 5.3: Weak-localisation results as % of localisation error. Lower is better.

ResNet50 DenseNet Inception

Method Val Mea Eng Val Mea Eng Val Mea Eng

Random 57.43 58.96 57.39 57.43 58.96 57.39 57.74 59.10 57.66
Centre 47.58 48.18 47.68 47.58 48.18 47.68 48.56 48.34 47.84
Grad-CAM 45.94 45.89 44.35 45.44 44.99 43.48 44.84 45.29 44.60
G-CAM ++ 45.76 45.83 43.85 44.89 44.88 42.88 45.05 44.94 44.87
XGrad-CAM 45.94 45.89 44.35 45.67 45.38 43.96 44.84 45.29 44.60
Ablat-CAM 45.88 45.88 44.30 45.52 45.26 43.71 45.25 45.34 45.00
Score-CAM 47.53 46.86 45.32 47.29 46.35 44.74 45.72 45.59 45.19
Jitter-CAM 39.83 42.30 40.64 40.24 41.55 40.44 38.38 39.10 39.86

Figure 5.7: An example of a difficult image used in the pointing game. Three classes
are shown in the image: dog, bike, and person. An explanation must point to within the
coloured area to successfully locate the object.

CAM methods. This in turn results in regions that, when thresholded, better
align to the groundtruth bounding boxes.

135

5.4. Experiments

5.4.4.1 Pointing Game

The second weak-localisation metric that is often presented is the pointing
game first introduced by Zhang et al. [64]. This takes a different approach to
the previous weak localisation metric in two ways. The first is that instead of
ImageNet, the COCO dataset [122] is used. This is a dataset of images that
each can contain multiple objects in each picture. There are accompanying
annotated regions for each object in the images. For every class of object in
the image, an explanation is made for that class. The second difference is that
rather than threshold the explanation to find regions which overlap with the
ground truth bounding box, the maximum point on the explanation is used
instead. This maximum point is said to be a hit if it falls on one the correct
annotated region in an image (within a 15 pixel margin of error), otherwise it
is considered a miss. The accuracy of an explanation method is then calculated
as:

Acc = h
h + m , (5.7)

where h is the total number of hits, and m the total number of misses. One
final aspect to the pointing game is that results are presented on all of the
dataset, and a difficult subset of COCO images. For images to be included
in the difficult subset they must meet two criteria. The first is that the total
number of labelled regions for location must be smaller than 25% of the image
by area. An example of a difficult image is shown in Figure 5.7. The second
is that there must be more than one other object from another class in the
image to locate. This results in a set of images with multiple differing classes
of small objects. An example of the explanations created and the subsequent
localisation of the target object is shown in Figure 5.8.

To implement the pointing game, we used the code released by Fong
and Vedaldi [58] along with their pre-trained ResNet50 model. The pointing
game uses images from the COCO dataset without resizing them prior to
input. To accommodate this, the model is altered to be fully convolutional by
changing the linear layer to be 1×1 convolutions. While this does not effect the
generation of CAM-based explanations, it does affect the size of the explanation
map. While, previously, we would always encounter a 7×7 activation map, the
COCO images are scaled to only have their smallest dimension be 224 pixels.

136

5.4. Experiments

Dog Bike Person

Figure 5.8: An example of the results for a single image (from Figure 5.7) in the pointing
game using Jitter-CAM. Top: An explanation is created for each class in the image. Bottom:
The red dot is the maximum point of the explanation, with the blue circle being the 15 pixel
margin of error.

This results in activation maps where only one dimension is of size 7. To allow
Jitter-CAM to work around we simply double the size of whatever activation
map is produced. For example, an image of size 224×292 would create an
activation map of size 7×9, therefore our subsequent Jitter-CAM explanation
would be 14×18 prior to resizing with bilinear interpolation. We were unable
to get Ablation-CAM to work using this method due to the change of the final
linear layer to a fully convolutional one. In making the change, the pre-softmax
score all became negative which broke Ablation-CAMs method of creating the
weights.

The pointing game results for both the complete and difficult dataset using
ResNet50 can be seen in Table 5.4. From these results we can see that as
with the previous localisation metric, Jitter-CAM offers significantly better
localisation abilities than previous CAM methods. By increasing the resolution
of the CAM prior to being resized, we are able to be much more precise in where
we can point to. Previous CAM methods are constrained by the coarseness of
the produced explanation. Interestingly Jitter-CAM also achieves very good
results for the difficult subset of COCO images, easily surpassing the previous
methods scores for either the full or difficult sets.

137

5.4. Experiments

Table 5.4: Pointing game results. High is better. Jitter-CAM outperforms all other CAM
methods easily in both categories.

Method ResNet50
All Difficult

Centre 24.61 17.93
Random 12.33 7.99
Grad-CAM 53.47 49.40
G-CAM++ 47.26 42.93
XGrad-CAM 53.46 49.39
Score-CAM 47.28 42.70
Jitter-CAM 64.08 61.10

5.4.5 Efficiency

Using Jitter-CAM introduces an element of inefficiency to the process of
creating an explanation due to the multiples CAMs required to be generated.
We defined the number of CAMs required previously as the difference in the
original CAM size and the desired size. Using ResNet50 (which would give
a 7×7 CAM) and our proposed Jitter-CAM size of 14×14 would require 64
(= (14−7 + 1)2) CAMs to be created. In contrast, Grad-CAM, Grad-CAM++,
and XGrad-CAM only require a single forward and backward pass, while Score-
CAM and Ablation-CAM require as many passes as there are activations in the
final layer. For ResNet50, this equates to 2,048 forward and backward passes.
Our implementation in PyTorch of Jitter-CAM, Score-CAM and Ablation-
CAM makes use of batching to create an explanation more efficiently. For this
test, we use a batch size of 32.

In Table 5.5, we show the mean time in seconds taken to compute a single
explanation. We compute this average time over 1,000 images. As expected,
the methods requiring only a single pass (Grad-CAM, Grad-CAM++, and
XGrad-CAM) are the most efficient to computer. Score-CAM is by far the
slowest method, even with batching implemented. This is due to the large
number of images required to be generated and passed through the network.
Ablation-CAM, despite also being a perturbation method, is much faster. This
is because the scores for the activation maps can be computed efficiently by only
perturbing the final activations and passing them to the classifier. Score-CAM

138

5.5. Future Work

Table 5.5: Mean computation time in seconds

Method ResNet50 DenseNet Inception
Grad-CAM 0.03 0.07 0.06
G-CAM++ 0.03 0.07 0.06
XGrad-CAM 0.03 0.07 0.06
Score-CAM 3.83 1.92 5.01
Ablation-CAM 0.60 0.30 0.60
Jitter-CAM 0.37 0.40 0.67

on the other hand requires the input image to be altered and passed through
the entirety of the network.

Jitter-CAM is slower than the single pass methods, performing similarly
to Ablation-CAM, but much faster than Score-CAM. We believe that the
additional time increase compared to the single pass methods is justified by
the improvements to the accuracy and weak-localisations metrics.

5.5 Future Work

The use of Jitter-CAM has shown that we are able to increase the spatial reso-
lution of a CAM explanation prior to it being resized. It would be interesting
to see if we could continue this work for use with video inputs as we did with
SWAG-V. Potentially, the techniques discussed in this chapter, could also be
used to increase the resolution of the temporal dimension when applied to
video explanations.

5.6 Chapter Summary

In this chapter, we have proposed Jitter-CAM, a novel method that allows us
to improve the spatial resolution of explanations created existing using CAM
techniques. Rather than spend resources trying to improve the accuracy of
the activation layer weights, we instead rescale the image and take multiple
explanations. These are then combined into a single explanation.

Through both visual inspection and quantitative measurement we show
that this technique improves local deletion accuracy, and greatly improves
weak-localisation ability.

139

5.6. Chapter Summary

A limitation of this chapters work is that we could have conducted both
global accuracy metrics, and additional experiments to see how well Jitter-CAM
can replace other CAM techniques. Additionally, Grad-CAM is often used in
other techniques for it’s localisation ability. For example, in the adversarial
erasing work by Wei et al. [162] , Grad-CAM is used as a guide to remove
regions before retraining to create a more robust network. It would have been
insightful to repeat this process using Jitter-CAM to see if the benefits transfer
for a task such as this.

While this and the previous chapters have focused on creating explanations
that aim to identify the regions of an image that have been used to classify
an image correctly, what happens when the image is misclassified? Current
methods for creating explanations do not take this into account and therefore
provide no, or limited, insight into the reasons a network may fail to make a
correct prediction. In the next chapter, we discuss this further and propose a
method for approaching this problem.

140

CHAPTER

6
Explaining Failure Using

Surprise and Expectation

6.1 Introduction

In this chapter, we discuss the limitations of current explanation techniques
in identifying reasons for a model to misclassify an image. We propose a
novel technique for building an understanding of how a model has learnt to
represent the training data, and then leverage this understanding to identify
reasons for failure. In this context, we understand a model by gaining an
insight into how individual filters in the final convolution layer react to images
from the training set and build distributions for each image class and filter
pair. The final convolution layer is primarily chosen as the activations maps
produced by it are known to be indicative of the networks predictions. This is
the reason they are used in CAM explanation methods. When unseen data is
passed through the network, we can then compare the filter reactions to the
distribution from the training data. For the sake of clarity, we highlight that
the term filter and channel are often used interchangeably in the literature.
However, in this context they both represent an element of a convolution layer
that outputs an activation map.

This novel technique is a different approach to understanding a network
than has previously been taken in this Thesis. Rather than explicitly trying to
find regions of the input image that are important to a networks prediction,
we are instead attempting to identify the importance of individual convolution
filters to the networks output. Using these insights we introduce two concepts

141

6.1. Introduction

based on how the filters react: expectation and surprise. We define expectation
as when a filter expected to be activated highly, does not. Conversely we define
surprise as when a filter that would not typically have activated highly, does.
To assign a quantitative value to how much a filter reacts, we propose a method
that allows us to assign a value to a filter when an image is passed through
the model. This score shows us whether a filter is beneficial or detrimental to
the prediction. Using the above technique allows us to both identify reasons
for misclassification, and visualise them using a modification of our SWAG
technique.

We discussed in the literature review the need for a technique that is able
to take elements from both input centric and network centric technique to
allow for a better appreciation of the causes for failure. We hypothesise that
a greater understanding of the individual features used by the network can
be obtained by bridging the gap between methods such as Grad-CAM that
present an understanding of the final convolution filters for a single image, and
prototypes and criticisms which finds trends across the entire training dataset.
We propose a technique that passes through every image from the training data
and observes how the filters in the final convolution layer react. Of particular
interest is how the filters react to different classes. As the network has learnt
to represent the classes based on features within the image, we should see
similar reactions from the filters to images of the same class. By building a
distribution for each individual and class pair, we would be able to build an
understanding of how images from the same class react and use this to begin
to find outliers.

In this proposed setup, an image typical of one found in the training dataset
should produce none or minimal outliers across the filters. However, if an
image is atypical of the training dataset, we should begin to see outliers occur.
We believe this will start to provide questions to the answers posed earlier
with regards to a lack of features, or a distracting feature causing failure. If
an unseen image causes a filter to have a strong reaction compared to the
distribution from the training data, then this suggests that there is some
feature in the image not typically seen in the training data. If an unseen
images causes a filter to have a very weak reaction compared to the training
data distribution, then this suggests that some feature that is typically present
is missing from the image.

142

6.2. Measuring Surprise and Expectation

6.2 Measuring Surprise and Expectation

So far we have only discussed our technique in broad terms. In this section we
more concretely define the overview of the algorithm, and detail the processes
of each step. The core idea of our method is a two stage process:

• Computing the filter scores.
• Building distributions.

The first stage is to pass all of the images from the training dataset and
generate a score for each individual filter in the final convolution layer. We
store these scores alongside all of the others from the same class. This gives
us a separate distribution of scores for every filter and class pair. The second
stage is to define values that allow us to find outliers when using an unseen
image. In the context of this chapter, we use unseen image to mean any image
that has been taken from the ImageNet validation set. In this way it is distinct
from the images used to train the network, but still allows us access to the
ground-truth class label.

6.2.1 Grad-AMap: Filter Importance Measure

Perhaps the first important aspect to discuss is how we assign a value to each
filter in the final convolution layer when an image is passed through. We refer
to this as a filter importance measure. It is important to note that in this
Chapter the filter importance measure itself does not give the surprise and
expectation insight. Rather, the understanding gained by assigning a score to
every filter in a network for each image/class combination allows us to gain
this insight. Numerous methods existing for assigning some value to a filter
to gauge its importance, either in the context of a specific prediction, or to
the network as a whole. We find examples of filter scoring techniques in the
explanation literature [15, 23, 70] (specifically CAM related techniques) and
network pruning literature [167–169]. However, while both of these camps
have a common aim of assigning some value to each filter, their motives are
quite different. Scoring methods found in the explanation literature focus
on trying to find how important a specific filter is to a given input. This is
because the filter reacts to features within the image, and a strong reaction
indicates an important feature that is worth highlighting. Scoring methods
found in the network pruning literature have two main differences. The first

143

6.2. Measuring Surprise and Expectation

is that the scoring methods used are looking to forward how important the
filter is to the network as a whole, not just for an individual prediction. The
second is that retraining is an important part of network pruning, so filters
must be scored in such a way as to also take into account their effect on
the stability of the network. As we have noted in previous chapters, CAM
based techniques are a common way of producing visualisations. At the heart
of the method is the weighting of the activation maps prior to visualisation.
The different techniques for producing the weightings is the primary variation
between all of the CAM techniques. More modern CAM methods, such as
Score-CAM [72] or Ablation-CAM [24], iteratively perturb the feature maps
to produce a weighting. The computational requirements of these methods
mean they are unsuited to our proposed method where we need to obtain
scores for every image in a training dataset. A better method from the CAM
techniques is to compute the filter scores using a combination of the gradients
and the activation maps. It is important to note that when discussing the
CAM techniques, that all of the gradients are back-propagated.

The first of these techniques is Grad-CAM [15]. Here, the mean of the
gradient at each filter is used as the weight for each activation map. Using
the mean of the gradient gives an idea of how important the activation map
produced by the filter is the network, a high mean gradient would suggest the
network finds it useful for discrimination, while a low value suggests it does
not.

Grad-CAM++ [23] was proposed as a method to provide both better
visualisation explanations (although we see from accuracy results in Chapter 3
this was not the case) and better weak localisation performance (which we
confirm in Chapter 3). To obtain the weights, only the positive gradient is
used in combination with a weighted activation map.

Axiom-based Grad-CAM (XGrad-CAM) [70] was proposed to satisfy two
axioms: sensitivity and conversation. Sensitivity suggests that each point of
the explanation should be equal to the change observed when removing that
point from the input image. Conservation suggests that the sum of all the
explanation responses should match the magnitude of the model output, that
is the sum of the explanation should equal the prediction score. To achieve
this, Fu et al. [70] propose a method of determining the weights by taking the

144

6.2. Measuring Surprise and Expectation

sum of the product between the activation maps and the gradient maps. To
ensure the conservation axiom is met, the activation map is normalised.

Activation based explanation techniques are not the only methods for
determining the importance of filters, another applicable area is network
pruning. The goal of network pruning is to iteratively remove filters and
retrain a pre-trained network in order to produce a much more compact
network that offers similar prediction properties to the original. Unlike the
discovery of weights for a visual explanation, these methods are trying to
determine the importance of a filter to the network as a whole. However, the
techniques used are very similar. Unlike the activation based the techniques
however, the gradient is back propagated form the loss rather than a class
specific value. This allows these techniques to focus on the network as a whole
rather than the state of the network at a single input. A good example of this
is a technique introduced independently by both Molchanov et al. [167] and
Figurnov et al. [168]. This technique uses the Taylor expansion to approximate
the effect on the network when a filter is removed. The mean of the product of
the activation map and gradient map. The absolute value of the mean value is
taken, to give the the first-degree Taylor polynomial. Molchanov et al. [167]
found that taking the absolute value is beneficial for network pruning as it
takes the score for a very poor performing filter (which would be negative) and
ranks it similar to the best performing filters. The benefit arises during the
retraining, when removing filters that either strongly benefit or disadvantage
the network have the effect of destabilising the network which makes retraining
harder. Taking the absolute value ensures that filters that are the most average
in terms of performance are ranked lowest.

Finally, a much simpler solution was proposed by Li et al. [169] which
uses only the activation map as an indicator of how useful the filter is to the
network. They found that taking the l1-value of the activation map gave an
indication the corresponding filter to the network.

A technique that we do not explore in this section, but is worth discussing
is channel selection. This is a selection of techniques that try to find the
optimal subset of channels for a given task. Channel selection techniques have
found applications in several fields such as medical applications [170] , network
pruning [171] , and Generative Adversarial Networks (GANs) [172] amongst
others. However, a major difference between the techniques mentioned above

145

6.2. Measuring Surprise and Expectation

and channel selection, is that channel selection aims to find an optimal selection
of channels for a given task. As such they often employ techniques such as
greedy algorithms to discard unnecessary channels. The above methods instead
are concerned with assigning a value to each filter regardless of their use to
the network. Due to this reason, we do not experiment with channel selection
methods.

Below are the equations for each of the methods discussed. For each, αc
k

is the weight of filter k for class c. Z is number of individual values in an
activation map, Ak is the activation map for filter k, and y is the prediction
score for class c. The index for the width and height of A are given as i and j
respectivly.

• Grad-CAM [15]:
αc

k = 1
Z

∑
i

∑
j

∂yc

∂Ak
ij

. (6.1)

• Grad-CAM++ [23]:

αc
k =

∑
i

∑
j

 ∂2yc

(∂Ak
ij)2

2 ∂2yc

(∂Ak
ij)2 +∑

i

∑
j A

k
ij{ ∂3yc

(∂Ak
ij)3}

.ReLU
(
∂yc

∂Ak
ij

)
. (6.2)

• XGrad-CAM [70]:

αc
k =

∑
i

∑
j

(
Ak

ij∑
i

∑
j A

k
ij

∂2yc

∂Ak
ij

)
. (6.3)

• Taylor [167, 168]:

αk =
∣∣∣∣∣ 1Z ∑

i

∑
j

∂O

∂Ak
ij

Ak
ij

∣∣∣∣∣. (6.4)

• l1-norm [169]:

αk =
∣∣∣∣∣Ak

ij

∣∣∣∣∣. (6.5)

From the above techniques, we can see two common elements that are used
repeatedly: the activation map and the backpropagated gradients. However,
we believe that a simple method for assigning a score to the filter has been
overlooked. In the above examples, put simply, the activation map is a view
into how much the filters were activated by the input. The gradient map on
the other hand is a view into how useful these activations are to the networks

146

6.2. Measuring Surprise and Expectation

prediction. Simply because a filter was strongly activated by a region of the
input, it does not mean that the region is useful to the models final prediction.

While other techniques have combined the activation map and the gradients
together to create weights. We believe that a simple but effective approach has
been overlooked. In this chapter, we propose to use the product of the signed
gradients and activation maps from the final convolution layer of a network.
We call this Grad-AMap. Using the notation we have established above, our
Grad-AMap method can be shown as:

αc
k = 1

Z

∑
i

∑
j

∂yc

∂Ak
ij

Ak
ij. (6.6)

The intuition behind why this technique has the potential to perform better
than other techniques for measuring a filters importance is due to the combined
use of the activation map and the gradient. These both reveal different aspects
of our network. An activation map that shows a high activation means that
some feature in the input image has triggered that particular filter to activate.
Through the use of the gradient, we gain an insight into which filters are useful
to the network. If a negative gradient is given to a filter then it suggests
that the model found that filter unhelpful in its final prediction. By taking
the product of the two we assign a low score to filters that activated highly,
but were given a negative gradient. For example, an activation map with a
strongly positive score combined with a strongly negative gradient will give a
strongly negative score. We note the similarity of Grad-AMap to the Taylor
series method. However, there are two crucial differences. The first is that to
ensure the Taylor series method is taking the first-degree Taylor polynomial,
the absolute value has to be taken for it to be valid. The second is that
Grad-AMap uses gradients backpropagated from a class specific softmax, while
the Taylor method backpropagates from the overall loss.

6.2.2 Evaluation of Filter Ranking Methods

To measure the ability of each of the discussed methods, we propose an
experiment based on the local accuracy deletion measure by Petsiuk et al. [9]
that we used extensively in the previous chapters. Rather than assigning a
score to pixels in an input image, we assign a score to each filter in a specific
convolutional layer. In the local accuracy measure by Petsiuk et al. , these

147

6.2. Measuring Surprise and Expectation

pixels are iteratively removed (pixels are set to 0) and the accuracy or softmax
is recorded and averaged over all validation images in a dataset. Typically,
regions are removed from most important to least. As the regions are removed,
the accuracy or prediction score for the target class drops accordingly. We follow
this pattern for our experiment, recording the accuracy of the network (which
we normalise to be between 0% – 100%) as we remove the most important
filters first. We do this for every image in the ImageNet validation set. The
better a technique is at producing accurate filter scores, the fewer filters we
should be able to remove before the model can no longer accurately predict
the correct class and the overall model accuracy drops.

In our experiment, we therefore rank the filters in the selected convolution
layer and incrementally zero out the channels of the activation map produced
by a networks final convolution layer based on the filter rankings. Zeroing
out a single channel of an activation map is the equivalent of pruning the
corresponding convolution filter. We increment in steps of 16 filters, for a total
of 32 increments for a layer consisting of 512 filters. To gain a single value
for each method we measure the Area under the Curve (AUC) value as per
the metric used in RISE [9]. An AUC score approaching 0 suggests that a
method is able to better rank the importance of filters, as we are able to rapidly
reduce the accuracy of the network. For this experiment, we use VGG16 and
ResNet18 models to test our method. We use ResNet18 instead of ResNet50
for this experiment for efficiency reasons. ResNet18 contains only 512 filters
in the final convolution layer as opposed to the 2,048 found in ResNet50s. In
addition to experiment with Grad-AMap and the other techniques discussed,
we propose the use of two additional methods. The first is to use a complete
random set of filter rankings as a baseline. Any method that suggests it can
rank filters, should outperfrom this baseline. The second is to use the Taylor
series method, but with gradients obtained by backpropagating from a class
specific score, rather than the overall loss.

The results for filter removal versus model accuracy can be seen in Figure 6.1
and Table 6.1. These results confirm that Grad-AMap, our proposed method
of measuring filter importance, performs the best compared to other common
methods. In particular, we note that Grad-AMap performs better than the
CAM methods for both the ResNet18 and VGG16 networks. Indeed, it seems
that the CAM methods that do use the product of both the activation maps

148

6.2. Measuring Surprise and Expectation

Table 6.1: Filter removal results. A lower AUC score suggests we can identify and remove
the most important filters first, resulting in the network accuracy to drop.

VGG16 ResNet18
Random 0.685 0.733

Grad-CAM++ [23] 0.147 0.230
Grad-CAM [15] 0.079 0.225

XGrad-CAM [70] 0.119 0.225
l1-norm [169] 0.057 0.618

Taylor [167,168] 0.132 0.629
Taylor (class) 0.052 0.392

Grad-AMap (Ours) 0.042 0.146

and gradients perform worse that the gradients only Grad-CAM. The Taylor
series method performs very poorly for both networks, and only narrowly beats
the random baseline for ResNet18. The alternate version using the class specific
gradients (Taylor class) performs much better, indicating how important this
form of the gradients is to creating an input specific filter scoring method that
performs well. Taylor class is still hampered by the use of the absolute values,
while this does not seem to affect the scoring of the filters much when VGG16,
it seems to deeply disrupt the ability to score the filters well for ResNet18.
The l1-norm is unique amongst all of the methods for only using the activation
map to inform the filter scoring. While this seems to perform admirably for
VGG16, the non-linear nature of the ResNet18 seem to deeply inhibit this
method to perform the filter scoring accurately.

An interesting property, displayed in the ResNet18 results, is the small
increase in accuracy as the filters are removed. This is likely happening because
we are pruning a single convolution layers activation, which are then added
back to the activations stored from the previous block. The effect of taking
the absolute value in the Taylor method results in both the best and worst
filters being removed early, which accounts for the earlier bump in accuracy.

6.2.2.1 Aside: Better CAM Explanations?

A question that could be plausibly asked is, if Grad-AMap is so effective at
scoring filters, why can it not be used to inform the weights when creating a

149

6.2. Measuring Surprise and Expectation

0 20 40 60 80 100
Filters Removed (%)

0

20

40

60

80

100

No
rm

al
ise

d
M

od
el

 A
cc

ur
ac

y
(%

)

VGG16
Grad-CAM
Grad-AMap
Taylor
Taylor class
l1
Grad-CAM++
X-CAM
Random

0 20 40 60 80 100
Filters Removed (%)

0

20

40

60

80

100

No
rm

al
ise

d
M

od
el

 A
cc

ur
ac

y
(%

)

ResNet18
Grad-CAM
Grad-AMap
Taylor
Taylor class
l1
Grad-CAM++
X-CAM
Random

Figure 6.1: Showing the percentage of filters than can be removed vs the normalised
model accuracy. Our proposed method is able to quickly decrease the accuracy be removing
important filters.

CAM visualisation and produce better explanations? Indeed, this is an avenue
that we explored and is worth discussing as a brief aside.

The primary difference between creating a visual explanation with a CAM
technique, and scoring filters, is that typically the very final activation maps are
used prior to the classification layer/layers. This means that rather than taking
the activations from a specific convolution layer, we take the activations after
they have passed through all stages of the network. In older architectures, such
as VGG16, this works perfectly well. However, in more modern architectures
the use of batch normalisation [173] has become standard. In a network such

150

6.2. Measuring Surprise and Expectation

Table 6.2: Showing the local accuracy results for various CAM explanation methods
including Grad-AMap. A lower score is better. Observe how Grad-CAM++ and XGrad-
CAM (which combine the gradient and activation) do not score consistently well for networks
with batch normalisation.

VGG16 VGG16-BN ResNet50
Grad-CAM++ [23] 0.111 0.121 0.147

Grad-CAM [15] 0.105 0.107 0.142
XGrad-CAM [70] 0.105 0.108 0.142

Grad-AMap-CAM (Ours) 0.101 0.108 0.144

as ResNet, a batch normalisation layer follows the convolution prior to the
combining with the identity activations. This is problematic for our Grad-
AMap as it relies on the sign of the activation values. If a value is positive,
it is beneficial to the networks prediction, negative if not. When the batch
normalisation process is introduced, any activation maps that pass through it
are shifted to being zero centred. This results in the possibility of what were
once positive values being shifted to have a negative value.

To demonstrate this we use the local accuracy deletion metric to evaluate
various CAM methods against Grad-AMap. Here, we take the final set of
activations from each network to visualise and refer to our method as Grad-
AMap-CAM. We test using both VGG16 and ResNet50, and to ensure that it
is batch normalisation causing the problem as we hypothesised, we also test
VGG16 with batch normalisation (VGG16-BN). The Results can be found in
Table 6.2. From the results we can see that our method performs well with
VGG16, but does not perform as well when using ResNet50 or VGG16-BN.
Also interesting to note is that both Grad-CAM++ and XGrad-CAM, which
also make use of the product of the activations and gradients, show the same
traits. The variation in scores seems to be due to the weighting given to the
activation map when creating the weights. For example, with XGrad-CAM
the activation maps are first divided by the sum of all the activation maps
prior to computing the dot product with the gradient. This has the effect of
giving more prominence to the gradients, which in turn makes it more similar
to Grad-CAM. This is likely why it performs worse than ours for VGG-16 but
better for ResNet50.

151

6.2. Measuring Surprise and Expectation

6.2.3 Building Filter Score Distributions

With a method developed for accurately scoring the effect of a filter on a
model’s prediction, we are able to turn our attention to how these scores can
be combined to allow a better understanding of a network. We do this by
building a distribution of the filter scores for each class/filter pair. For example,
for a 10 class dataset with 512 filters in the final convolution layer, we would
gather 5120 distributions. The filter scores are obtained by passing the entirety
of the training dataset through the network and calculating the Grad-AMap
score for each image. Prior to input into the network the images are resized so
that the smallest edge is 224 pixels in length. A centre crop is then taken at
size 224×224. An example of the distributions created using ImageNet with
VGG16 are shown in Figure 6.2.

From the distributions, we observe that they are typically skewed unimodal
suggesting that when a filter activates for a given class, it tends to do so
in a similar way for the remainder of the images in that class. From these
distributions we can discover the mean activation for every filter in each class:
µcn, where c is the class and n is the filter index. Knowing the mean value
of the distribution is important, as we have seen that the distributions are
unimodal, so activations should all fall close to the mean value. If an input
were to cause the filter to score in a way that could be considered an outlier
then this may be reason to the flag the input for further investigation. For
example, we would expect a filter that has learnt to activate on dog faces to
activate highly when a dog is present and weakly if not. If an image from the
dog class does not subsequently activate the ‘dog face’ filter then this could be
seen as something interesting to follow up on.

6.2.4 Definition of Surprise and Expectation

By building the distributions for each filter/class pair, we are able to begin
to building concepts that will be important to help discuss how the network
reacts to a given input image. A method such as the one introduced by Kim et
al. [20] seeks to find images whose features are not captured by the network.
This is a useful approach and the rationale is that by understanding which
images are not modelled well allows an insight into how the model has learnt
how to represent the classes of the dataset. However, in work by Kim et al. [20],

152

6.2. Measuring Surprise and Expectation

Figure 6.2: Examples of four typical distributions of filter importance scores made using
Grad-AMap with ImageNet and VGG16. Each distribution shown here represents a class
filter pair (i.e. class 30, filter 100).

the images that are not captured well are given the binary label of criticism.
With such a binary approach, there is little understanding as to which regions
of the images are problematic to the network other than a visual assessment.
Having only a visual assessment as the means to understanding why an image
may be not be captured is problematic, as it introduces a users bias to how
they think the model might have capture the information of a certain class.

In this section, we begin to show how we can use our technique to anchor the
explanations of why models fail to individual filters within the final convolution

153

6.2. Measuring Surprise and Expectation

layer of the network. We propose that an image fails to be successfully predicted
as a certain class for two primary reasons. The first is that it is lacking some
feature that the network has learnt to represent that class with, the other is
that some feature present in another class is overpowering the other features
in the image and confusing the network. We call the first concept expectation,
that is the network was expecting to see some feature in the image that was
missing. The second concept we call surprise which suggests that the network
is surprised to see a certain filter score so highly. We use the expressions
surprise and expectation because unlike in previous chapters, we assume that
we have access to the ground truth for any input. This allows us to explore how
the network reacts to what would have been the correct class, and compare
to how it learnt to represent it from the training data. More concretely, we
define these two concepts as occurring when there is a filter that is given a
Grad-AMap score that is clearly an outlier compared to the distribution built
on the training data. As our distributions are not normal, we define surprise
and expectation as happening when filters score outside of a certain percentile.
More specifically, we define the filter as surprising if αn > Pcn(99.9) and the
filter expecting if αn < Pcn(0.1). Where Pcn(x) is the xth percentile, c is the
ground truth class and n is the filter index. These percentile values were chosen
through experimentation and observation of the results. In the future it would
be beneficial to take a more rigorous approach to uncover how this effects the
results. Values that fall within these percentiles are considered to be within the
expected values for that class and filter combination. These two percentiles
are noticeably very close to the limit of what the model is expecting to see,
and when compared to the training data, it is a very rare occurrence to see
any filter activate past these percentiles. However, we did find that often in
practice filters would be flagged as an expectation filter when they had barely
registered any Grad-AMap score. It transpired that this was due to the a filter
scoring very lowly over the training data, but then scoring even lower for an
unseen image. To ensure that we are only working with filters that have some
bearing on the prediction, we calculate the mean value µcn for each of the
filters n for a given class c. As a side point, we chose the mean for expediency,
it is possible that other methods such as using the median or variance could
produce useful results too. We, then, check that the mean of the filters for our

154

6.3. Exploration of Failure

unseen image is greater than than the mean of the all of the filters for that
class:

1
N

N∑
n=1

µcn. (6.7)

This prevents filters with a very low µcn from being labelled as expected if an
even lower αn is encountered.

6.2.5 Deviation from Mean Filter Activation – β

While surprise and expectation will be useful for understanding how the
individual filters react to an unseen image, we would also like to develop
an understanding of how an unseen image as a whole is represented by the
network. It stands to reason that if an input image is modelled well by the
learnt distribution, we should expect our unseen αn to fall somewhere close
to µcn. Once the Grad-AMap filter scores (αn) have been created for an
unseen image we can asses them using their deviation from the training mean
(αn − µcn). The more the value deviates from 0, the more the filter is under-
or over-performing.

We also propose doing this over the entire set of filters for a given image
to compute a value, β, that measures how a filter’s importance scores, αn, for
an unseen image, deviate from the mean µcn of the target class training data.
For every unseen image in the ImageNet validation set, we subtract the mean
of the training data from their importance scores and take the mean of those
values:

β = 1
N

N∑
n=1

(αn − µcn). (6.8)

Large values of β signify that an image is a strongly typical representative of
the training set while small β values suggest that the image is strongly atypical
of the training set.

6.3 Exploration of Failure

At this point, we now have two techniques developed that allow us to explore
possible reasons for failure. The surprise and expectation measure is suitable for
understanding the behaviour of individual filters, while the β score is applicable
to understanding how the entire image is represented by the network. In this

155

6.3. Exploration of Failure

section, we explore possible reasons for failure using these techniques. We
begin with a look at the overall dataset using the β before moving on to look
at individual examples of failure using our surprise and expectation metrics.
We explore the ImageNet dataset using pretrained models from the PyTorch
model zoo [132]. Specifically, we use the VGG16 and ResNet50 architectures.
We use the ResNet50 architecture for this section as it is a more commonly
used network than ResNet18, and allows our surprise and expection technique
to be tested more fully due to the 2,048 filters present in the final convolution
layer.

6.3.1 Understanding the Reasons for Failure

Throughout this chapter we have been asking what are the reasons for an
images class to fail to be predicted successfully. Is it due to a lack of features
the network is expecting to see or is there some overpowering feature that is
causing confusion. Using the β score we can now begin to seek answers to
these questions.

We begin by passing all of the 50,000 images from the ImageNet validation
set through the network and storing the β scores for each image along with the
corresponding predicted class, pre-softmax prediction score, and the softmax
score. When these values are plotted we observe some very striking patterns.
In Figure 6.3, we show the β scores plotted against the pre-softmax scores
for both VGG16 and ResNet50. The first thing to note is just how linear the
relationship between the β score and pre-softmax prediction score is. It seems
that having an unseen image with a low β score makes it much more likely that
the network will struggle to give a strong prediction score. This relationship
holds across both VGG16 and ResNet50 suggesting that it is not a phenomena
limited to a singe architecture type. To ensure that this relationship is also not
purely limited to ImageNet, we show alternative plots for models trained on
the CUB200 and Food-101 datasets in Figure 6.4. As we see, this relationship
remains consistent. While the pre-softmax score is often indicative of an image
being classified correctly, the network is trained using a softmax layer. This has
the effect of normalising the scores into a probability distribution which has the
effect of reducing all values to fit into [0, 1]. In Figure 6.5, we show the plots for
β scores versus the softmax scores. Here, we see that a relationship still exists

156

6.3. Exploration of Failure

just not as pronounced as with the pre-softmax scores as they have now been
normalised to fit into the new range of values. A problem with plotting the all
50,000 β values in this way is that it is difficult to discern the relationships
between images in a single class. For example, there is significant overlap
between correctly and incorrectly predicted values around the β = 0 region. It
could be that images from the same class are actually forming clusters rather
than displaying the same linear relationship as the entire dataset does. We
investigate this by plotting only images from within a selection of randomly
chosen class, these are shown in Figure 6.6. The intention of this figure is to
allow ease of viewing of the β scores. By disentangling the classes from the
dataset as a whole we can observe how the relationships play out in images
related to each other. We again see a strikingly linear relationship between the
β scores and the pre-softmax score. With the softmax scores we see that that
the majority of images are given a high prediction score which then reaches a
β value before the score begin to decrease and they are no longer able to be
classified correctly.

While we can clearly see visible trends for the classes that we have visualised,
it is desirable to obtain some idea of how these extend to the dataset as a
whole. To achieve this we perform Spearman rank correlation between all the
β values within a class, and the prediction scores both pre- and post-softmax
for each image. For VGG16, the mean Spearman score over all the classes
between β values and the pre-softmax predictions is 0.998 while the score for
post-softmax predictions is 0.782. For ResNet50, the mean Spearman score
over all the classes between β values and the pre-softmax predictions is 0.999
while the score for post-softmax predictions is 0.801. These results clearly
indicate that β is a reliable measure of how well an unseen image is represented
by the network.

So far, we have been focusing on the relationship between β and the
networks predictions scores. However, we set out to try and understand and
explain failure. It is, therefore, worthwhile to look at the relationship between
whether an image was classified correctly or incorrectly and its β value. For
the images classified incorrectly, we found that for VGG16 86.60% of them
had a negative β value, while only 45.88% of correct classifications have a
negative value. For ResNet50 we found these values to be 90.20% and 47.67%
respectively. This suggests that the majority of images fail to be classified

157

6.3. Exploration of Failure

VGG16

0.0004 0.0002 0.0000 0.0002 0.0004
 Value

0

10

20

30

40

50

60

70

Pr
ed

ict
io

n
Sc

or
e

correct
incorrect

ResNet50

0.0004 0.0002 0.0000 0.0002 0.0004
 Value

0

5

10

15

20

25

30

35

40

Pr
ed

ict
io

n
Sc

or
e

correct
incorrect

Figure 6.3: All β values for the validation images within ImageNet using VGG16 (top)
and ResNet50 (bottom).

correctly because they lack the features the network is expecting, rather than
that something in the image is surprising the network and overpowering other
features.

To try and understand how these unseen images are being represented
by the network, we take images from a handful of classes and display them
according to their assigned β value. For the 50 images present in a selected
class from the ImageNet validation set, we show (from left to right) images

158

6.3. Exploration of Failure

CUB200

0.0004 0.0002 0.0000 0.0002 0.0004
 Value

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Pr
ed

ict
io

n
Sc

or
e

correct
incorrect

Food-101

0.0004 0.0002 0.0000 0.0002 0.0004
 Value

0

5

10

15

20

25

30

35

Pr
ed

ict
io

n
Sc

or
e

correct
incorrect

Figure 6.4: All β values for the validation images from CUB200 (top) and Food-101
(bottom) using the ResNet50 architecture.

ranked as so: [1,13,25,37,50]. Here, 1 is the image with the lowest β score in
the class, and 50 is the highest. The images can be found in Figure 6.7. From
these we can see that images with a higher β score look like they could almost
be the perfect representation of the class. For example, the final images across
all the classes show all of the object, at a sensible scale and are typical of what
you would expect for the class. At the other end of the range of images are
those that have a very low β score. These seem to be atypical of the class

159

6.3. Exploration of Failure

VGG16

0.0004 0.0002 0.0000 0.0002 0.0004
 Value

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Sc

or
e

correct
incorrect

ResNet50

0.0004 0.0002 0.0000 0.0002 0.0004
 Value

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Sc

or
e

correct
incorrect

Figure 6.5: All β values for the validation images within ImageNet using VGG16 (top)
and ResNet50 (bottom) showing the relationship between the β values and the softmax
scores. Note the β values are identical to those in Figure 6.3. The β values are still able to
differentiate between good and bad, however the softmax has the effect of moving most of
these values close to either 0 or 1.

at best or often not contain the object class at all. For example the second
image in the pizza class. At this stage we make no differentiation between
images that have been classified correctly and those that have not. However, in
the following sections we separate misclassified images into two groups, those
with a very high β value and those with a very low β. By separating the

160

6.3. Exploration of Failure

0.0004 0.0002 0.0000 0.0002 0.0004
 Value

0

10

20

30

40

50
Pr

ed
ict

io
n

Sc
or

e
correct
incorrect

0.0004 0.0002 0.0000 0.0002 0.0004
 Value

5

10

15

20

25

Pr
ed

ict
io

n
Sc

or
e

correct
incorrect

0.0004 0.0002 0.0000 0.0002 0.0004
 Value

10

12

14

16

18

20

22

Pr
ed

ict
io

n
Sc

or
e

correct
incorrect

0.0004 0.0002 0.0000 0.0002 0.0004
 Value

10

12

14

16

18

20

Pr
ed

ict
io

n
Sc

or
e

correct
incorrect

0.0004 0.0002 0.0000 0.0002 0.0004
 Value

0

10

20

30

40

50

Pr
ed

ict
io

n
Sc

or
e

correct
incorrect

0.0004 0.0002 0.0000 0.0002 0.0004
 Value

5

10

15

20

25

30

35

Pr
ed

ict
io

n
Sc

or
e

correct
incorrect

0.0004 0.0002 0.0000 0.0002 0.0004
 Value

5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5

Pr
ed

ict
io

n
Sc

or
e

correct
incorrect

0.0004 0.0002 0.0000 0.0002 0.0004
 Value

2
4
6
8

10
12
14
16

Pr
ed

ict
io

n
Sc

or
e

correct
incorrect

Figure 6.6: Class specific β values using VGG16 (left column) and ResNet50 (right column).

misclassified images into these two groups, we are able to explore the more
obvious reasons for failure. Looking at misclassified images with a mid-range
β value may be inconclusive, or at worst, misleading as we use our own biases
to infer what we think is wrong with the image.

161

6.3. Exploration of Failure

Figure 6.7: Each row consists of images from the same class. The images with the lowest β
are on the left, moving up to the highest on the right. These image are taken from ImageNet
using ResNet50.

6.3.1.1 Misclassification with High β Values

We begin by looking at images that were misclassified but still obtained a high
β value. This class of images is somewhat of an anomaly and, by looking at the
plots in Figure 6.3 and Figure 6.5, there seems to be much more uncommon
than misclassified images with a low β value. We suggest that this is anomalous
because an image having a high β value suggests that every filter activated
in the way it was supposed to for that class. If this is the case, how can
an image activate the filters in an expected way, but still be misclassified?

162

6.3. Exploration of Failure

We hypothesise that what is happening is that two classes share very similar
features, if an image accidentally posses slightly more of some feature, it
can push it over into the other classes expected activations. We visualise
misclassified unseen images with high β scores for both VGG16 and ResNet50
in Figure 6.8. For each image, we show the predicated label and the ground
truth label. From viewing these, it becomes clear that our hypothesis seems to
be correct. All of the images containing very high β scores seem to be both
typical of both the ground truth class and the predicted class. This could
either be because they are visually similar, as in the case of the horned viper /
horner rattlesnake or the terrapin / mud turtle, or they are typically co-located
‘in the wild’. Examples of co-located objects are the the drum / drumstick
and the mortarboard / academic gown. Clearly these objects are commonly
located with one another, so without some additional help at training, it may
be difficult for the network to learn to differentiate between the two classes.

6.3.1.2 Misclassification with Low β Values

While misclassified images with a high β value appear to be typical of both the
predicted class and the ground truth class, is the opposite true for misclassified
images with low β values? We have seen previously in Figure 6.7 that images
with low β values seem to be atypical of the class, however we previously
looked at all images from the dataset. In this section, we specifically discuss
unseen misclassified images with a low β value. As before, we found the best
way to begin was to visualise a selection of the relevant images from the unseen
validation set. In Figure 6.9, we show both misclassified images with very
low beta values β alongside an image from the same class that is classified
correctly with a high β value. Presenting the images this way allows us to
begin to understand the reasons that these images may have failed.

From Figure 6.9 we see some clear trends. The first is that some misclassified
images are simply not typical of the medium that the remainder of the dataset
represents the images in. The examples of this are the giant panda, ticks,
and oxcart images. While these are all the images of the class they purport
to be, they are visually distinctly different. Both the tick and oxcart are
drawn representations, while the panda seems to be an origami version. While
a human may be able to classify these image correctly, there are obviously
features that are missing that the network requires to classify these correctly.

163

6.3. Exploration of Failure

VGG16 ResNet50

Bighorn Mortarboard Barber Chair Drum

(Ram) (Academic Gown) (Barbershop) (Drumstick)

Trailer Truck Electric Locomotive Coffeepot Oboe

(Moving Van) (Passenger Car) (Espresso Maker) (Flute)

Beer Bottle Cuirass Toilet Tissue Typewriter Keyboard

(Pop Bottle) (Breastplate) (Paper Towel) (Space Bar)

American Lobster Terrapin Racket Ice Cream

(Crayfish) (Mud Turtle) (Tennis Ball) (Chocolate Sauce)

Wall Clock Shield Poncho Horned Rattlesnake

(Analog Clock) (Breastplate) (Stole) (Horned Viper)

Figure 6.8: Examples of unseen, misclassified images with high β values. The caption
under each image is the predicted class with the corresponding ground truth in parentheses.

164

6.3. Exploration of Failure

A second mode of failure seems to be the scale of the image. This is either
where the object is to small in the image, or too large. Examples of this is found
in the jay, peacock, and electric locomotive images, where the misclassified
images appear to be much smaller in scale than those that were classified
correctly with a high β value. In these examples, it seems that although the
object does clearly exist within the image, the features are not present in the
correct scale for the network to classify them correctly.

A final mode of failure that we detected seems to be where the object itself
is only an ancillary part of some other object. Examples of this are seen in the
mortarboard and bottlecap images. In both of these the target object is not
the focus of the main image. In the mortarboard image, it would be hard to
argue that the focus of the image was not the dog and the bottlecap image is
primarily a model plane with the bottlecap being a component of that.

6.3.2 Visualising Surprise

So far in our analysis of why images fail, we have only looked at the macro
reasons exposed through the use of the β value. Through this we discussed
the high-level reasons for failure such as images being visually similar to
another class, or being the wrong scale or visually distinct. So far, we have
not distinguished our technique from those such as Kim et al. [20] who are
able to find training images that are typical and atypical of the training data.
Because we have tied the β value to individual filters, we are able to work
back and identify the effect of individual filters through their surprise and
expectation values. This is distinct to the method from Kim et al. who use the
values extracted from the final classification layer, meaning there is no direct
route back to individual filters for further analysis. In this section, we use our
proposed surprise measurement to visualise images that appear to have some
surprising feature.

The first hurdle that needs to be overcome is how to visualise the filters
that have been flagged as surprised. Simply visualising the individual filter as
we may have done with Grad-CAM would have been too coarse to accurately
identify specific features that activate a certain filter. However, through the
use of SWAG we are able to identify much more detailed regions of the image
due to the use of superpixels. To enable us to view the effects of a single filter,
we use SWAG with a number of variations.

165

6.3. Exploration of Failure

VGG16 ResNet50

Giant Panda Snail

Tick Mortarboard

Jay Bottlecap

Peacock Hourglass

Electric Locomotive Oxcart

Figure 6.9: Misclassified images with low β values on the left of each column alongside an
image from the same class that both classifies correctly and has a high β value, suggesting it
displays features the network desires. Captions are the ground truth.

166

6.3. Exploration of Failure

First we use regular SLIC superpixels rather that any of the proposed
variants. This is because we want to maximise the alignment with regions in
the image space so as to better draw comparisons with other images. Second,
we only visualise 50 superpixels rather than the 300 used previously. This is
because we want to visualise a single contiguous region, rather a small region
that could be part of a larger feature. Third, we use vanilla gradients rather
than guided-backpropagation to weight the superpixels.

We found vanilla gradients to perform better in this context. Possible
reasons for vanilla gradients better performance is discussed in Section 6.4.1.
The final, and perhaps most important variation, is that to ensure we only
visualise the regions important to a specific filter, we zero out all gradients
produced by filters in the same layer as the surprised one. This has the effect of
only backpropagating the gradients back to the input pixels that are relevant to
the surprised filter. Our original SWAG method produced a heatmap however,
to improve clarity for this particular task, we instead draw a border around
the superpixel that scores the highest.

Another consideration is that once we have outlined a region of the image
that we suspect of being surprising to the network, how do we put this into
the context of how the network is representing that feature? To remedy this,
alongside the image showing the region that represents the surprising feature,
we place images from the entire training set that most activated the filter.
Doing this allows us to view both the feature in the misclassified unseen image,
alongside the training data that most represents the filter. To find the training
images that most activate the filter we pass all the training images through the
network and observe the mean value of each activation map. The images that
have the highest mean activations for a specific filter are stored. To remove
regions of the stored image that are not important to the network, we multiple
the resized activation map for the specific filter with the image and display
this.

We place examples of these images in Figure 6.10. Here, we display
a misclassified image with the region that activates the surprising feature
outlined in yellow. Alongside each misclassified image are the three images
from the training set that most activated the surprising filter. These images
are selected based on their Grad-AMap score, the three shown being the highest
scoring for that class and filter combination. The masked images are created

167

6.3. Exploration of Failure

by passing the image through the network and visualising the product of the
selected filters activation map and the input image. Viewing these images like
this allows us to begin to draw conclusions as to why the image may be being
misclassified. For example, the top image is an image from the goldfish class
misclassified as being from the roundworm class. It seems that the bottom
fish highly activates a surprising filter. When we view the training images
that activate the filter, we see that they are wheels. This high activation of
the ‘wheel’ filter is presumably what causes the image to be misclassified as a
roundworm. Indeed, we show in Section 6.4.1 that this image could be made
to classify correctly by removing the bottom fish. For other images, such as
the velvet misclassified as swimming trunks, it is easy to see how a filter that
activates highly for jigsaw may have fired, but not clear why it contributes to
the swimming trunks class.

6.3.3 Visualising Expectation

Visualising the filters that did not activate highly is problematic due to a
lack of features in the image that activate the specific filters. By identifying
misclassified images that have an expected filter we are able to find images
from the training set’s target class that maximally activate the expected filter.
Displaying these next to the misclassified image gives us an indication as to why
the image may be misclassified. The results can be seen in Figure 6.11. We find
that these images take two forms. The first is where the misclassified image
simply does not seem to contain the correct features. For example, with the
‘gila monster’, the expected filter is highly activated by white objects around
the gila monster rather than the animal itself. This potentiality indicates a
bias in the training data that the model has learnt to represent. A second
example of this is the image of the partridge surrounded by barren branches. In
contrast, the regions of the partridge training images that maximally activate
the expected filter seem to be leaves or foliage. Again, this indicates a possible
underlying bias within the partridge class. The second type of misclassified
image seems to be where the target object is present, but small within the
image and the expected filter does not activate highly due to the scale of the
features. The image of the violin is a good example of this, although the violin
and bow are present in the image, they are small. The filter that expected to

168

6.4. ‘Fixing’ Incorrect Classifications

Input Highest Activations

Roundworm (Goldfish)

Wooden Spoon (Ladle)

Swimming Trunks (Velvet)

Figure 6.10: A misclassified image shown alongside the images from the training data
that activates the surprising filter, masked to show the regions that activate the filter. The
yellow boundary shows the region important to the filter. The caption is the predicted class
with the ground truth in parentheses.

be activated more is one that seems to activate highly on the bow region of
the training data. The peacock image is similar to the violin, where the target
object is present, but the expected filter seem to activate highly on a peacock’s
tail, as well as the crest on its head. Although these features are present in
the misclassified image, they are not there in the scale required.

6.4 ‘Fixing’ Incorrect Classifications

To this point in our analysis we have only focused on what visual observation
of the dataset can tell us. However, as we have mentioned throughout the

169

6.4. ‘Fixing’ Incorrect Classifications

Input Highest Activations

G
ila

M
on

st
er

Pa
rt
rid

ge
Pe

ac
oc
k

V
io
lin

Figure 6.11: A misclassified input image (left column) is shown alongside the top four
images (top row for each input) that maximally activates the expected filter from the training
data within the same class. The bottom row for each input image is the product of the
corresponding top four image and the expected filter.

170

6.4. ‘Fixing’ Incorrect Classifications

thesis, relying on visual assessment alone allows human biases to creep in. In
this section we move away from visual assessment and attempt to ‘fix images’
that have been misclassified. In this case fixing an image means modifying the
existing image so that the network now classifies it correctly. No changes to the
model itself are made. The following techniques are all supervised, they require
knowledge of the ground truth class to ‘fix’ the image. As such they could
not be deployed at runtime. However, they can be used post-hoc to visualise
the reasons for failure in a more concrete way than visual assessment alone.
Because of the separate approaches required to address the defects within
images that cause surprise and expectation, we approach each one separately.

6.4.1 Suppressing Surprise

We begin by looking at the images that have activated a filter that is surprising
to the network. This is the easier of the two tasks as there must be something
present in the image that activated the filter. Knowing that there is some
feature present in the image allows us an opportunity to locate and remove it.

We begin by passing every image from ImageNet’s validation set and
identifying any images with surprising filter activations as per Section 6.2.4.
We then use our modified SWAG technique (Section 6.3.2) to identify the
regions in the image that are surprising the filter. Unlike the visualisation
of surprise where we highlighted a single large superpixel, we use a range of
superpixel sizes and amounts to remove and then iteratively delete them by
setting any pixels within the superpixels to 0. At each iteration we check to
see if the image is classified correctly or not. This should have the effect of
suppressing the amount of surprise occurring in the identified filter allowing
the network to use the other features present to better classify the image.
Alongside our proposed method of using SWAG filtered through the surprised
filter, we also conduct the same experiment using SWAG without the filtering.
If our hypothesis that identifying the surprising filter is correct then we should
be able to ‘fix’ more images than using the unfiltered gradients.

We show the results for this experiment in Figure 6.12 using VGG16
and ImageNet. This figure shows the number of image that were initially
misclassified but are now able to be classified correctly. This value is shown
for each combination of the amount of superpixels ([100, 200, 300, 400])

171

6.4. ‘Fixing’ Incorrect Classifications

Initial Superpixels (approx)

1
2
3
4
5

10
20
30
40
50

100

Su
pe

rp
ix

el
s R

em
ov

ed 781 673 620 539
1068 936 832 745
1251 1060 962 871
1320 1149 1048 952
1396 1247 1113 1021
1357 1408 1329 1290
928 1380 1424 1439
501 1167 1393 1459
236 917 1271 1409
100 705 1082 1316
40 113 405 706

Surprise Filtered Backpropagation

100 200 300 400
Initial Superpixels (approx)

1
2
3
4
5

10
20
30
40
50

100

Su
pe

rp
ix

el
s R

em
ov

ed 913 791 718 709
1058 974 891 908
1126 1098 997 981
1137 1118 1051 1033
1124 1172 1098 1069
935 1135 1151 1177
460 871 1065 1180
234 675 903 1022
103 478 748 923
55 322 608 770
40 58 172 304

Vanilla Backpropagation

Figure 6.12: Results for suppressing the superpixels of both vanilla backpropagated
gradients, and only the gradients backpropagated through the most surprising filter. These
results are for VGG16.

and the number of superpixels set to 0 ([1,2,3,4,5,10,20,30,40,50,100]). Here,
we see that the use of gradients backpropagated only through the surprised
filter allows us to more precisely locate the detrimental regions of the image
compared to backpropagating through all filters. This results in our method
being able to ‘fix’ more misclassified images. Using VGG16 and sweeping
through all the superpixel sizes and removal amounts, we are ultimately able to
‘fix’ 5,116 misclassified images, using our technique versus 4,554 using vanilla

172

6.4. ‘Fixing’ Incorrect Classifications

backpropagation without surprise filtering. This is approximately ∼ 36% and
∼ 32% of the misclassified images respectively.

Interestingly, we found that using guided-backpropogation instead of the
vanilla gradients actually performed poorer despite giving the best results
for visual explanations when combined with SWAG in Chapter 3. When we
conducted our experiment using guided-backpropagation with surprise filtering,
we were only able to fix 4,841 misclassified images, a reduction of 275 images.
We hypothesise that this is potentially due to the guided element of guided
backpropagation where the gradients are only kept if they were positive during
the forward pass. This in turn may may it less suitable for scoring pixels for a
class that has not been predicted strongly. However, further experiments are
needed to confirm this.

A nice by-product of performing this experiment is that we are able to
produce visual explanations of the regions causing the misclassification such
as those shown in Figure 6.13. These are distinct to the images used for
visualising the surprise in Section 6.3.2 where we used a rough estimate (by
simply visualising a large superpixel) to allow us to draw visual connections
between the misclassified image and the training data. The visual explanations
now created are much more precise in their identification of features through
the use of superpixels produced at multiple scales and removal amounts. It
is likely that more accurate explanations could be produced by using smaller
intervals in both our superpixel amount and removal amounts, although this
would increase the computational requirements. However, note that the region
identified for the misclassified goldfish image from Figure 6.10 is shown to align
closely with the region of the image deleted to make it classify correctly.

6.4.2 Correcting Expectation

A more challenging application of our method is correcting images that failed
due to an expected filter not activating. This means the image did not contain
enough of a certain feature to adequately activate the filter to ensure a correct
classification. This becomes a difficult task as it is not a case of identifying and
removing pixels as with suppressing surprise, rather we are required to identify
and enhance or insert the required features. An example of this can be seen as
the input in Figure 6.14. This shows an image from the ImageNet class gila

173

6.4. ‘Fixing’ Incorrect Classifications

Figure 6.13: Surprise suppression examples from VGG16. All images initially misclassified,
but ‘fixed’ using our method. Here the gray areas are those that have been deleted (set to
0).

monster that fails to be classified correctly. By visualising the training images
that maximally activate the most expected filter, we gain an insight into which
features the network is expecting to see. In Figure 6.14, we visualise the top six
images for the expected filter. The first interesting aspect to notice is that none
of the images seem to be activate the filter with the gila monster itself. Rather,
the region surrounding the animal seems to activate the expected filter. The
second is that all the images that activate the filter appear to have a regions
surrounding the animal that is lightly coloured. We hypothesise that altering
the surface found in our misclassified image to a colour more consistent with
the training data will boost this filters activation score and the overall score
from the network. Using a photo editing tool, we select the magenta pixels
from the surface and make them white. This image now classifies correctly
suggesting that our proposed technique has correctly highlighted the pixels in
the input image that were inconsistent with the training data. This suggests
there is a bias towards gila monsters that are located on certain surfaces. This
technique has the potential to be a powerful addition to a developer’s toolkit
when trying to debug a network. However, the additional analysis required
by a user makes it difficult to use in practice. Whereas the technique used to
visualise or suppress surprise was fully automated, a large amount of human

174

6.5. Future Work

Figure 6.14: Top left: input. Top right: ‘fixed’ image. Bottom: the images and masked
regions that most activate the expected filter.

intuition is currently required to produce corrected images from expected
filters.

6.5 Future Work

We have shown that using the techniques proposed in this chapter, we are able
to locate regions in an image that cause failure. A natural next step would
be to see if we could modify the training data that causes the most confusion.
This could be achieved by suppressing the regions of images (setting to 0) that
a pre-trained model suggest causes surprise. In addition to this it would be
interesting to see how this technique could work using other modalities. For
example this could include video data or audio data in the form of spectro-
grams. The networks used to predict a classification for these forms of data are
fundamentally similar to image networks, so should allow for our techniques
to be easily transferable. For example using spectrograms to represent audio,

175

6.6. Chapter Summary

we would potentially be able to locate certain groups of frequencies that are
confusing the network for a given prediction. This could potentially be a very
valuable technique for the community as a whole.

6.6 Chapter Summary

In this chapter we have introduced a number of complimentary techniques, the
first of which is an accurate way of ranking the importance of a convolution’s
filters. This in turn allows us to accurately build distributions representing
how each filter reacts to every class present in the training data. With this pair
of techniques we can begin to investigate a dataset using the β values for each
image. Here the β value is the mean deviation across all filters when compared
to the mean filter scores for the target class. We showed, using the β values,
how the images of an unseen dataset can be explored to offers potential reasons
for failure. We then showed that using our SWAG technique from Chapter 3,
we can highlight regions within an image and remove them, allowing images to
be classified correctly. Finally we show a method of exploration to visualise
potentially missing features from an image, although in its current state this
is a difficult undertaking.

176

CHAPTER

7
Conclusion

In this chapter, we summarise the contribution of each of the four chapters
that form the body of this thesis, and how they answer our original research
questions. In addition to this we also discuss the future work that could be
undertaken to develop these contributions further.

This thesis was motivated by the need to have accurate, medium-grained
methods for explaining why a CNN has produced a particular prediction. In
addition to this we highlighted an area where current explanations were unable
to contribute - the explanation of failure. To this end, three novel methods
were proposed: two methods for creating medium-grained explanations, and
one for explaining the reasons behind a networks failure.

The first of these methods, Superpixels Weighted by Average Gradient
(SWAG), was presented in Chapter 3. This contribution addresses our first
research goal, the understanding of whether gradients can be pooled into
regions to create medium-grained explanations in an efficient manner. In
SWAG, we proposed a method that allows the coarseness of the explanation
to be defined. Previously this was only available to perturbation methods,
which often take a considerable amount of time to compute. By defining the
regions to explain we then showed that they could be weighted effectively
using backpropagated gradients. A secondary contribution that arose during
this chapter was the use of backpropagated gradients to inform the superpixel
creation process. By creating superpixels using a modified implementation

177

of SLIC, we were able to show that using these bespoke superpixels created
regions that were allowed more accurate explanations to be made. Using
SWAG and its associated superpixel creation methods, we demonstrated that
we could produce explanations that had better local and global accuracy
than coarse-grained methods, but were more interpretable than fine-grained
methods.

With SWAG, we showed that explanations could be created successfully
for CNN’s that took an image as an input. In Chapter 4, we extended SWAG
to work with video inputs (SWAG-V). This addressed our second research goal.
We did this through the use of superpixels that used both spatial and temporal
dimensions. This addressed an existing problem with a number of methods for
creating video explanations whereby they were unable to accurately represent
the temporal element. This was due to the compression of the temporal element
throughout the CNN. Using SWAG-V, we were able to define regions that
spanned the entire temporal element, and weight them using backpropagated
gradients. We showed that this produced both better explanations in terms of
accuracy, as well as being able to better localise the action occurring within
the video.

While our SWAG methodologies presented in Chapters 3 and 4 showed
that we could offer improvements over existing methods, activation-based
methods remain popular. In particular, they were shown to be able to better
localise objects when using images as an input, and provide better results in
interpretability metrics. CAMs are a popular method of using activations from
the final layer of a network, and as such there have been numerous methods
introduced to create explanations in this manner. However, the majority of
these techniques aim to improve the way that these activations are weighted
prior to being combined to form the explanation.

Our third research goal was to investigate whether multiple CAM explana-
tions could be combined to produce explanations that are finer than existing
CAM methods. In Chapter 5, we introduced Jitter-CAM. By rescaling the
original input image and generating multiple CAM explanations over this new
image, we were able to produce explanations that were more accurate with
only a small drop in interpretability. An additional benefit to this was a much
improved ability to localise the objects within an image compared to previous
CAM methods. While we contributed Jitter-CAM in this chapter, we also

178

7.1. Future Work

demonstrated that a common metric in the CAM literature, faithfulness, is
not a reliable measure of a good explanation technique. We proposed that this
metric be discontinued in future explanation research.

The research in the Chapters 3, 4, and 5 was based around creating expla-
nations that could offer some insight into why a network made the prediction
it did. However, these techniques are primarily aimed at understanding why a
predict correction was made. In Chapter 6, we explored how we could under-
stand the reasons for failure. We proposed the use of surprise and expectation
as a measure of how much an unseen image activated the filters of a convolution
layer compared to those of the training images. In doing so we introduced
a method for ranking the importance of a convolution layers filters that was
shown to be more accurate than comparable methods. Using this method we
were able to better understand how the model learnt to represent the training
data, which in turn allowed us to begin to understand the reasons for failure.
Taking this technique a step further, we were able to combine our SWAG
technique as a method for showing which regions of the image were responsible
for a significant subset of the misclassified images.

7.1 Future Work

Throughout this thesis, we have suggested additional work that could be
undertaken to further our contributions. In this section, we present these
suggestions.

With SWAG we showed that we could create medium grained explanations
and out of all the contribution in this thesis was the one we were able to explore
the most with. Indeed, one of the main potential avenues of future work (the
use of SWAG with videos) was explored further. However, there were a number
of interesting aspects of the work that we would like to investigate further. The
first is to address the weak localisation ability of the SWAG technique. This
could either be achieved through the creation of alternative superpixels, or
through a different attribution method. Secondly, by focussing on measuring
both the local and global accuracy, we concentrated on the deletion metrics. In
the future we would be interested to run the insertion metrics for the SWAG
work.

179

7.1. Future Work

We extended SWAG to work with video inputs for use in action recognition
networks, however, there are many aspects of these explanations that could
still be explored. Primarily this involves extending SWAG-V to work with two-
stream action recognition networks. This could be a fruitful area of research
for explaining action recognition networks and is could allow the motion to be
explained separately to the combined appearance and motion stream.

With Jitter-CAM we showed that we could improve the spatial resolution
of existing CAM techniques. There a couple of avenues of future work that
we would like to investigate further. Of particular interest would be to see if
we could apply a similar technique to improve the temporal resolution when
trying to explain networks using a video input. In addition we would like
to investigate the possibility of combining explanations created at different
resolutions. This could allow explanations that combine the best aspects of
the various levels of coarseness that we have investigated in these chapters.

Finally, with surprise and expectation we would like to apply the techniques
we proposed to investigate if the training data can be altered to remove regions
which are detrimental to the network. Doing so could potentially allow us
to improve the classification accuracy of the network. Another interesting
improvement that could be made to this work is to combine it with techniques
that apply labels to the filters. Doing so would allow us to further explain the
reasons for failure e.g. a misclassified image activated surprisingly highly on
the ‘striped’ filter.

180

Bibliography

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016.

[2] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel. Backpropagation applied to handwritten zip
code recognition. Neural Computation, 1(4):541–551, 1989.

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet
classification with deep convolutional neural networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems (NIPS) 25, pages 1097–1105.
Curran Associates, Inc., 2012.

[4] Facebook. Announcing PyTorch 1.0 for both research and
production. https://developers.facebook.com/blog/post/2018/05/02/
announcing-pytorch-1.0-for-research-production/, 2018.

[5] Finale Doshi-Velez and Been Kim. Towards a rigorous science of inter-
pretable machine learning. arXiv, 2017.

[6] Andre Esteva, Alexandre Robicquet, Bharath Ramsundar, Volodymyr
Kuleshov, Mark DePristo, Katherine Chou, Claire Cui, Greg Corrado,
Sebastian Thrun, and Jeff Dean. A guide to deep learning in healthcare.
Nature medicine, 25(1):24–29, 2019.

181

https://developers.facebook.com/blog/post/2018/05/02/announcing-pytorch-1.0-for-research-production/
https://developers.facebook.com/blog/post/2018/05/02/announcing-pytorch-1.0-for-research-production/

Bibliography

[7] Waqas Sultani, Chen Chen, and Mubarak Shah. Real-world anomaly
detection in surveillance videos. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2018.

[8] Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song, Joel
Pazhayampallil, Mykhaylo Andriluka, Pranav Rajpurkar, Toki Migi-
matsu, Royce Cheng-Yue, et al. An empirical evaluation of deep learning
on highway driving. arXiv preprint arXiv:1504.01716, 2015.

[9] Vitali Petsiuk, Abir Das, and Kate Saenko. RISE: randomized input
sampling for explanation of black-box models. In British Machine Vision
Conference 2018, BMVC, 2018.

[10] Piotr Dabkowski and Yarin Gal. Real time image saliency for black box
classifiers. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, page 6970âĂŞ6979, Red Hook,
NY, USA, 2017. Curran Associates Inc.

[11] Ruth C Fong and Andrea Vedaldi. Interpretable explanations of black
boxes by meaningful perturbation. In The IEEE International Conference
on Computer Vision (ICCV), pages 3449–3457, Oct 2017.

[12] Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsupervised
visual representation learning by context prediction. In International
Conference on Computer Vision (ICCV), 2015.

[13] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should
I trust you?”: Explaining the predictions of any classifier. In 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1135–1144, 2016.

[14] Yun He, Soma Shirakabe, and Hirokatsu Kataoka. Human action recog-
nition without human. ECCV 2016 Workshops. ECCV 2016. Lecture
Notes in Computer Science, 9915, 2016.

[15] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakr-
ishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-CAM: Visual
explanations from deep networks via gradient-based localization. In
The IEEE International Conference on Computer Vision (ICCV), pages
618–626, Oct 2017.

182

Bibliography

[16] Marko Robnik-Šikonja and Marko Bohanec. Perturbation-based expla-
nations of prediction models. In Human and machine learning, pages
159–175. Springer, 2018.

[17] Matthew D Zeiler and Rob Fergus. Visualizing and understanding
convolutional networks. In European Conference on Computer Vision,
pages 818–833. Springer, 2014.

[18] Todd Kulesza, Simone Stumpf, Margaret Burnett, Sherry Yang, Irwin
Kwan, and Weng-Keen Wong. Too much, too little, or just right? ways
explanations impact end users’ mental models. In 2013 IEEE Symposium
on Visual Languages and Human Centric Computing, pages 3–10, 2013.

[19] Tim Miller. Explanation in artificial intelligence: Insights from the social
sciences. Artificial Intelligence, 267:1–38, 2019.

[20] Been Kim, Rajiv Khanna, and Sanmi Koyejo. Examples are not enough,
learn to criticize! Criticism for interpretability. In Advances in Neural
Information Processing Systems (NIPS), 2016.

[21] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Tor-
ralba. Network dissection: Quantifying interpretability of deep visual
representations. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3319–3327, July 2017.

[22] Ramprasaath R. Selvaraju, Prithvijit Chattopadhyay, Mohamed El-
hoseiny, Tilak Sharma, Dhruv Batra, Devi Parikh, and Stefan Lee.
Choose your neuron: Incorporating domain knowledge through neuron-
importance. In The European Conference on Computer Vision (ECCV),
pages 540–556, September 2018.

[23] Aditya Chattopadhyay, Anirban Sarkar, Prantik Howlader, and Vi-
neeth N. Balasubramanian. Grad-CAM++: Generalized gradient-based
visual explanations for deep convolutional networks. In IEEE Winter
Conference on Applications of Computer Vision, pages 839–847, 2018.

[24] Saurabh Desai and Harish Guruprasad Ramaswamy. Ablation-CAM:
Visual explanations for deep convolutional network via gradient-free
localization. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), March 2020.

183

Bibliography

[25] Scott Mayer McKinney, Marcin Sieniek, Varun Godbole, Jonathan God-
win, Natasha Antropova, Hutan Ashrafian, Trevor Back, Mary Chesus,
Greg S Corrado, Ara Darzi, et al. International evaluation of an AI
system for breast cancer screening. Nature, 577(7788):89–94, 2020.

[26] Li Shen, Laurie R Margolies, Joseph H Rothstein, Eugene Fluder, Russell
McBride, and Weiva Sieh. Deep learning to improve breast cancer
detection on screening mammography. Scientific reports, 9(1):1–12, 2019.

[27] G Sreenu and MA Saleem Durai. Intelligent video surveillance: a review
through deep learning techniques for crowd analysis. Journal of Big
Data, 6(1):1–27, 2019.

[28] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort,
Urs Muller, Jiakai Zhang, et al. End to end learning for self-driving cars.
arXiv preprint arXiv:1604.07316, 2016.

[29] Christoph Molnar. Interpretable Machine Learning. 2019. https://
christophm.github.io/interpretable-ml-book/.

[30] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep in-
side convolutional networks: Visualising image classification models and
saliency maps. In 2nd International Conference on Learning Representa-
tions, ICLR 2014, Workshop Track Proceedings, 2014.

[31] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Mar-
tin A. Riedmiller. Striving for simplicity: The all convolutional net. In
3rd International Conference on Learning Representations, ICLR 2015,
Workshop Track Proceedings, 2015.

[32] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning
important features through propagating activation differences. In 34th
International Conference on Machine Learning (ICML), volume 70 of
Proceedings of Machine Learning Research, pages 3145–3153. PMLR,
06–11 Aug 2017.

[33] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution
for deep networks. In Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, page 3319âĂŞ3328. JMLR.org,
2017.

184

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

Bibliography

[34] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio
Torralba. Learning deep features for discriminative localization. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2921–2929, 2016.

[35] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler,
Fernanda Viegas, and Rory Sayres. Interpretability beyond feature
attribution: Quantitative testing with concept activation vectors (TCAV).
In International Conference on Machine Learning (ICML), volume 80
of Proceedings of Machine Learning Research, pages 2668–2677. PMLR,
10–15 Jul 2018.

[36] Alexandros Stergiou, Georgios Kapidis, Grigorios Kalliatakis, Chris-
tos Chrysoulas, Remco Veltkamp, and Ronald Poppe. Saliency tubes:
Visual explanations for spatio-temporal convolutions. arXiv preprint
arXiv:1902.01078, 2019.

[37] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and
Manohar Paluri. Learning spatiotemporal features with 3D convolu-
tional networks. In The IEEE International Conference on Computer
Vision (ICCV), ICCV ’15, pages 4489–4497, Washington, DC, USA, 2015.
IEEE Computer Society.

[38] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun,
and Manohar Paluri. A closer look at spatiotemporal convolutions for
action recognition. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6450–6459, 2018.

[39] Karen Simonyan and Andrew Zisserman. Two-stream convolutional
networks for action recognition in videos. In Proceedings of the 27th
International Conference on Neural Information Processing Systems -
Volume 1, NIPS’14, pages 568–576, Cambridge, MA, USA, 2014. MIT
Press.

[40] Christoph Feichtenhofer, Axel Pinz, and Richard Wildes. Spatiotemporal
residual networks for video action recognition. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 29. Curran Associates, Inc.,
2016.

185

Bibliography

[41] Zhenqiang Li, Weimin Wang, Zuoyue Li, Yifei Huang, and Yoichi Sato.
Towards visually explaining video understanding networks with perturba-
tion. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV), pages 1120–1129, January 2021.

[42] Liam Hiley, Alun Preece, Yulia Hicks, Supriyo Chakraborty, Prudhvi Gur-
ram, and Richard Tomsett. Explaining motion relevance for activity recog-
nition in video deep learning models. arXiv preprint arXiv:2003.14285,
2020.

[43] Alun Preece, Dan Harborne, Dave Braines, Richard Tomsett, and
Supriyo Chakraborty. Stakeholders in explainable AI. arXiv preprint
arXiv:1810.00184, 2018.

[44] Thomas Hartley, Kirill Sidorov, Christopher Willis, and David Mar-
shall. Gradient weighted superpixels for interpretability in CNNs. In
BMVC 2019: Workshop on Interpretable and Explainable Machine Vision,
Cardiff, UK, September 2019.

[45] Thomas Hartley, Kirill Sidorov, Christopher Willis, and David Marshall.
SWAG: Superpixels weighted by average gradients for explanations of
CNNs. In Proceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision (WACV), pages 423–432, January 2021.

[46] Thomas Hartley, Kirill Sidorov, Christopher Willis, and David Marshall.
Explaining failure: Investigation of surprise and expectation in CNNs.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, June 2020.

[47] J. R. Quinlan. Induction of decision trees. MACH. LEARN, 1:81–106,
1986.

[48] Deboleena Roy, Priyadarshini Panda, and Kaushik Roy. Tree-CNN: A
hierarchical deep convolutional neural network for incremental learning.
Neural Networks, 121:148–160, 2020.

[49] Zachary C. Lipton. The mythos of model interpretability. Commun.
ACM, 61(10):36âĂŞ43, September 2018.

[50] Quanshi Zhang, Xin Wang, Y. Wu, Hui lin Zhou, and Song-Chun Zhu.
Interpretable cnns for object classification. IEEE transactions on pattern
analysis and machine intelligence, 2020.

186

Bibliography

[51] Mengnan Du, Ninghao Liu, and Xia Hu. Techniques for interpretable
machine learning. Commun. ACM, 63(1):68–77, December 2019.

[52] W. James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl,
and Bin Yu. Definitions, methods, and applications in interpretable
machine learning. Proceedings of the National Academy of Sciences,
116(44):22071–22080, 2019.

[53] Stan Benjamens, Pranavsingh Dhunnoo, and Bertalan Meskó. The
state of artificial intelligence-based fda-approved medical devices and
algorithms: an online database. NPJ digital medicine, 3(1):1–8, 2020.

[54] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe,
Katja Hansen, and Klaus-Robert Müller. How to explain individual
classification decisions. J. Mach. Learn. Res., 11:1803–1831, August
2010.

[55] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick
Klauschen, Klaus-Robert Müller, and Wojciech Samek. On pixel-wise
explanations for non-linear classifier decisions by layer-wise relevance
propagation. PLoS ONE, 10(7), 07 2015.

[56] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg. Smooth-
Grad: removing noise by adding noise. ICML workshop on visualization
for deep learning, June 2017.

[57] Luisa M. Zintgraf, Taco S. Cohen, Tameem Adel, and Max Welling.
Visualizing deep neural network decisions: Prediction difference analysis.
In 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017.

[58] Ruth Fong and Andrea Vedaldi. Understanding deep networks via
extremal perturbations and smooth masks. In The IEEE International
Conference on Computer Vision (ICCV), 2019.

[59] Scott M Lundberg and Su-In Lee. A unified approach to interpreting
model predictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems (NIPS) 30, pages 4765–4774. Curran
Associates, Inc., 2017.

187

Bibliography

[60] Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. To-
wards better understanding of gradient-based attribution methods for
deep neural networks. In International Conference on Learning Repre-
sentations, 2018.

[61] Matthew D Zeiler, Graham W Taylor, and Rob Fergus. Adaptive de-
convolutional networks for mid and high level feature learning. In 2011
International Conference on Computer Vision, pages 2018–2025. IEEE,
2011.

[62] Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech
Samek, and Klaus-Robert Müller. Explaining nonlinear classification
decisions with deep taylor decomposition. Pattern Recognition, 65:211–
222, 2017.

[63] Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, and Anshul
Kundaje. Not just a black box: Learning important features through
propagating activation differences. CoRR, abs/1605.01713, 2016.

[64] Jianming Zhang, Sarah Adel Bargal, Zhe Lin, Jonathan Brandt, Xiao-
hui Shen, and Stan Sclaroff. Top-down neural attention by excitation
backprop. International Journal of Computer Vision, 126(10):1084–1102,
2018.

[65] Andrei Kapishnikov, Tolga Bolukbasi, Fernanda Viegas, and Michael
Terry. XRAI: Better attributions through regions. In The IEEE Interna-
tional Conference on Computer Vision (ICCV), October 2019.

[66] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lip-
son. Understanding neural networks through deep visualization. arXiv
preprint arXiv:1506.06579, 2015.

[67] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. In International Conference on Learning
Representations (ICLR), 2015.

[68] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 770–778, June 2016.

188

Bibliography

[69] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. In
Yoshua Bengio and Yann LeCun, editors, 2nd International Conference
on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Conference Track Proceedings, 2014.

[70] Ruigang Fu, Qingyong Hu, Xiaohu Dong, Yulan Guo, Yinghui Gao, and
Biao Li. Axiom-based Grad-CAM: Towards accurate visualization and
explanation of CNNs. In British Machine Vision Conference, 2020.

[71] GrÃľgoire Montavon, Wojciech Samek, and Klaus-Robert MÃĳller. Meth-
ods for interpreting and understanding deep neural networks. Digital
Signal Processing, 73:1 – 15, 2018.

[72] Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Sirui
Ding, Piotr Mardziel, and Xia Hu. Score-CAM: Score-weighted visual
explanations for convolutional neural networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, June 2020.

[73] Sylvestre-Alvise Rebuffi, Ruth Fong, Xu Ji, Hakan Bilen, and Andrea
Vedaldi. Normgrad: Finding the pixels that matter for training. arXiv
preprint arXiv:1910.08823, 2019.

[74] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convo-
lutional networks for biomedical image segmentation. In Nassir Navab,
Joachim Hornegger, William M. Wells III, and Alejandro F. Frangi,
editors, Medical Image Computing and Computer-Assisted Intervention
2015 - 18th International Conference, volume 9351 of Lecture Notes in
Computer Science, pages 234–241. Springer, 2015.

[75] Lloyd S Shapley. A value for n-person games. Contributions to the
Theory of Games, 2(28):307–317, 1953.

[76] Mengjiao Yang and Been Kim. Benchmarking Attribution Methods with
Relative Feature Importance. CoRR, abs/1907.09701, 2019.

[77] Mukund Sundararajan, Jinhua Xu, Ankur Taly, Rory Sayres, and Amir
Najmi. Exploring principled visualizations for deep network attributions.
In IUI Workshops, volume 4, 2019.

189

Bibliography

[78] Anh Nguyen, Jason Yosinski, and Jeff Clune. Multifaceted feature
visualization: Uncovering the different types of features learned by each
neuron in deep neural networks. arXiv preprint arXiv:1602.03616, 2016.

[79] Aravindh Mahendran and Andrea Vedaldi. Understanding deep image
representations by inverting them. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5188–5196, 2015.

[80] Alexey Dosovitskiy and Thomas Brox. Inverting visual representations
with convolutional networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

[81] Dumitru Erhan, Y Bengio, Aaron Courville, and Pascal Vincent. Visualiz-
ing higher-layer features of a deep network. Technical Report, UniveristÃľ
de MontrÃľal, 01 2009.

[82] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang,
Eric Tzeng, and Trevor Darrell. Decaf: A deep convolutional activation
feature for generic visual recognition. In Proceedings of the 31st Interna-
tional Conference on International Conference on Machine Learning -
Volume 32, ICML’14, page IâĂŞ647âĂŞIâĂŞ655. JMLR.org, 2014.

[83] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism:
Going deeper into neural networks, 2015.

[84] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature
visualization. Distill, 2(11):e7, 2017.

[85] Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig
Schubert, Katherine Ye, and Alexander Mordvintsev. The building blocks
of interpretability. Distill, 3(3):e10, 2018.

[86] Andrej Karpathy. t-SNE visualization of CNN codes. https://cs.stanford.
edu/people/karpathy/cnnembed/.

[87] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using
t-SNE. Journal of machine learning research, 9(11), 2008.

[88] Shan Carter, Zan Armstrong, Ludwig Schubert, Ian Johnson, and Chris
Olah. Activation atlas. Distill, 4(3):e15, 2019.

[89] Donglai Wei, Bolei Zhou, Antonio Torrabla, and William Freeman.
Understanding intra-class knowledge inside CNN. arXiv preprint
arXiv:1507.02379, 2015.

190

https://cs.stanford.edu/people/karpathy/cnnembed/
https://cs.stanford.edu/people/karpathy/cnnembed/

Bibliography

[90] Yann Le Cun, John S. Denker, and Sara A. Solla. Optimal Brain Damage,
pages 598–605. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1990.

[91] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio
Torralba. Object detectors emerge in deep scene CNNs. In International
Conference on Learning Representations (ICLR), 2015.

[92] Ruth Fong and Andrea Vedaldi. Net2Vec: Quantifying and explaining
how concepts are encoded by filters in deep neural networks. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
July 2018.

[93] Amirata Ghorbani, James Wexler, James Y Zou, and Been Kim. To-
wards automatic concept-based explanations. In Advances in Neural
Information Processing Systems, pages 9273–9282, 2019.

[94] K. S. Gurumoorthy, A. Dhurandhar, G. Cecchi, and C. Aggarwal. Effi-
cient data representation by selecting prototypes with importance weights.
In 2019 IEEE International Conference on Data Mining (ICDM), pages
260–269, 2019.

[95] BBC. Uber in fatal crash had safety flaws say us investigators. https:
//www.bbc.co.uk/news/business-50312340, 2019.

[96] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? A
new model and the kinetics dataset. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 6299–6308, 2017.

[97] Liam Hiley, Alun Preece, Yulia Hicks, David Marshall, and Harrison
Taylor. Discriminating spatial and temporal relevance in deep Tay-
lor decompositions for explainable activity recognition. arXiv preprint
arXiv:1908.01536, 2019.

[98] Sarah Adel Bargal, Andrea Zunino, Donghyun Kim, Jianming Zhang,
Vittorio Murino, and Stan Sclaroff. Excitation backprop for rnns. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

[99] J. Donahue, L. A. Hendricks, M. Rohrbach, S. Venugopalan, S. Guadar-
rama, K. Saenko, and T. Darrell. Long-term recurrent convolutional
networks for visual recognition and description. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(4):677–691, 2017.

191

https://www.bbc.co.uk/news/business-50312340
https://www.bbc.co.uk/news/business-50312340

Bibliography

[100] Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber,
Kristof T Schütt, Sven Dähne, Dumitru Erhan, and Been Kim. The (un)
reliability of saliency methods. arXiv preprint arXiv:1711.00867, 2017.

[101] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz
Hardt, and Been Kim. Sanity checks for saliency maps. In Advances in
Neural Information Processing Systems (NIPS), pages 9525–9536, 2018.

[102] Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim.
A benchmark for interpretability methods in deep neural networks. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems
32, pages 9734–9745. Curran Associates, Inc., 2019.

[103] Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian La-
puschkin, and Klaus-Robert Müller. Evaluating the visualization of what
a deep neural network has learned. IEEE transactions on neural networks
and learning systems, 28(11):2660–2673, 2017.

[104] Pieter-Jan Kindermans, Kristof T. Schütt, Maximilian Alber, Klaus-
Robert Müller, Dumitru Erhan, Been Kim, and Sven Dähne. Learning
how to explain neural networks: PatternNet and pattern attribution. In
International Conference on Learning Representations, 2018.

[105] Richard Tomsett, Dan Harborne, Supriyo Chakraborty, Prudhvi Gurram,
and Alun Preece. Sanity checks for saliency metrics. In Thirty-Fourth
AAAI Conference on Artificial Intelligence, 2020.

[106] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of
neural networks. In International Conference on Learning Representa-
tions, 2014.

[107] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel
attack for fooling deep neural networks. IEEE Transactions on Evolu-
tionary Computation, 23(5):828–841, 2019.

[108] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Wein-
berger. Densely connected convolutional networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017.

192

Bibliography

[109] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet:
An extremely efficient convolutional neural network for mobile devices.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

[110] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

[111] Ertunc Erdil, Sinan Yildirim, Mujdat Cetin, and Tolga Tasdizen. Mcmc
shape sampling for image segmentation with nonparametric shape priors.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[112] Zhuowen Tu and Song-Chun Zhu. Image segmentation by data-driven
markov chain monte carlo. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(5):657–673, 2002.

[113] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based
image segmentation. International journal of computer vision, 59(2):167–
181, 2004.

[114] David Stutz, Alexander Hermans, and Bastian Leibe. Superpixels: An
evaluation of the state-of-the-art. Computer Vision and Image Under-
standing, 166:1–27, 2018.

[115] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi,
Pascal Fua, and Sabine Süsstrunk. SLIC superpixels compared to state-
of-the-art superpixel methods. IEEE transactions on Pattern Analysis
and Machine Intelligence, 34(11):2274–2282, 2012.

[116] Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis, and Yannick
Berthoumieu. Texture-Aware Superpixel Segmentation. In IEEE Inter-
national Conference on Image Processing, Taipei, Taiwan, September
2019.

[117] David Weikersdorfer, David Gossow, and Michael Beetz. Depth-adaptive
superpixels. In Proceedings of the 21st international conference on pattern
recognition (ICPR2012), pages 2087–2090. IEEE, 2012.

193

Bibliography

[118] Commission International de L’Eclairage. Colorimetry. CIE Pub, 15(2):29–
30, 1986.

[119] Jorg Wagner, Jan Mathias Kohler, Tobias Gindele, Leon Hetzel,
Jakob Thaddaus Wiedemer, and Sven Behnke. Interpretable and fine-
grained visual explanations for convolutional neural networks. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 9089–9099, June 2019.

[120] Vitali Petsiuk, Abir Das, and Kate Saenko. RISE: randomized input sam-
pling for explanation of black-box models. https://github.com/eclique/
RISE, 2018.

[121] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba. Places: A
10 million image database for scene recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 40(6):1452–1464, 2018.

[122] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco:
Common objects in context. In European Conference on Computer
Vision, pages 740–755. Springer, 2014.

[123] Finale Doshi-Velez and Been Kim. Considerations for evaluation and
generalization in interpretable machine learning. In Notions and Concepts
on Explainability and Interpretability, pages 3–17. Springer, 2018.

[124] Andrea Vedaldi and Stefano Soatto. Quick shift and kernel methods
for mode seeking. In European Conference on Computer Vision, pages
705–718. Springer, 2008.

[125] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should I
trust you?”: Explaining the predictions of any classifier. https://github.
com/marcotcr/lime, 2016.

[126] Andrei Kapishnikov, Tolga Bolukbasi, Fernanda Viégas, and Michael
Terry. Xrai: Better attributions through regions. https://github.com/
PAIR-code/saliency, 2019.

[127] Irwin Sobel and G. Feldman. A 3x3 isotropic gradient operator for image
processing. Pattern Classification and Scene Analysis, pages 271–272, 01
1973.

194

https://github.com/eclique/RISE
https://github.com/eclique/RISE
https://github.com/marcotcr/lime
https://github.com/marcotcr/lime
https://github.com/PAIR-code/saliency
https://github.com/PAIR-code/saliency

Bibliography

[128] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015.

[129] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and
P. Perona. Caltech-UCSD Birds 200. Technical Report CNS-TR-2010-001,
California Institute of Technology, 2010.

[130] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-
Fei. Novel dataset for fine-grained image categorization. In First Work-
shop on Fine-Grained Visual Categorization, IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), Colorado Springs, CO,
June 2011.

[131] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classifi-
cation over a large number of classes. In Proceedings of the 2008 Sixth
Indian Conference on Computer Vision, Graphics and Image Processing,
pages 722–729, 2008.

[132] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
imperative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

[133] Chunshui Cao, Xianming Liu, Yi Yang, Yinan Yu, Jiang Wang, Zilei
Wang, Yongzhen Huang, Liang Wang, Chang Huang, Wei Xu, Deva
Ramanan, and Thomas S. Huang. Look and think twice: Capturing
top-down visual attention with feedback convolutional neural networks.
In The IEEE International Conference on Computer Vision (ICCV),
pages 2956–2964, December 2015.

[134] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet
classification with deep convolutional neural networks. In F. Pereira,

195

Bibliography

C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[135] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung,
Rahul Sukthankar, and Fei Fei Li. Large-scale video classification with
convolutional neural networks. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 1725–
1732, 2014.

[136] Karen Simonyan and Andrew Zisserman. Two-stream convolutional net-
works for action recognition in videos. In Advances in neural information
processing systems, pages 568–576, 2014.

[137] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.

[138] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convolu-
tional Two-Stream Network Fusion for Video Action Recognition. Cvpr,
(i):1933–1941, 2016.

[139] Gul Varol, Ivan Laptev, and Cordelia Schmid. Long-term Temporal
Convolutions for Action Recognition. Hal-01241518, pages 1–9, 2015.

[140] Georgia Gkioxari and Jitendra Malik. Finding action tubes. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2015.

[141] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3D convolutional neural
networks for human action recognition. IEEE transactions on pattern
analysis and machine intelligence, 35(1):221–231, 2013.

[142] Moez Baccouche, Franck Mamalet, Christian Wolf, Christophe Garcia,
and Atilla Baskurt. Sequential deep learning for human action recognition.
In International Workshop on Human Behavior Understanding, pages
29–39. Springer, 2011.

[143] Rohit Girdhar, Deva Ramanan, Abhinav Gupta, Josef Sivic, and Bryan
Russell. Actionvlad: Learning spatio-temporal aggregation for action
classification. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017.

196

Bibliography

[144] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan,
Oriol Vinyals, Rajat Monga, and George Toderici. Beyond short snippets:
Deep networks for video classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4694–
4702, 2015.

[145] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2818–2826, 2016.

[146] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-temporal repre-
sentation with pseudo-3D residual networks. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Oct 2017.

[147] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101:
A dataset of 101 human actions classes from videos in the wild. CoRR,
abs/1212.0402, 2012.

[148] Bernard Ghanem Fabian Caba Heilbron, Victor Escorcia and Juan Carlos
Niebles. Activitynet: A large-scale video benchmark for human activity
understanding. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 961–970, 2015.

[149] Haroon Idrees, Amir R Zamir, Yu-Gang Jiang, Alex Gorban, Ivan Laptev,
Rahul Sukthankar, and Mubarak Shah. The THUMOS challenge on
action recognition for videos “in the wild”. Computer Vision and Image
Understanding, 2016.

[150] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier,
Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back,
Paul Natsev, et al. The Kinetics human action video dataset. arXiv
preprint arXiv:1705.06950, 2017.

[151] Jose M Chaquet, Enrique J Carmona, and Antonio Fernández-Caballero.
A survey of video datasets for human action and activity recognition.
Computer Vision and Image Understanding, 117(6):633–659, 2013.

[152] Yun He, Soma Shirakabe, Yutaka Satoh, and Hirokatsu Kataoka. Human
action recognition without human. In European Conference on Computer
Vision, pages 11–17. Springer, 2016.

197

Bibliography

[153] João Carreira, Eric Noland, Andras Banki-Horvath, Chloe Hillier, and An-
drew Zisserman. A short note about Kinetics-600. CoRR, abs/1808.01340,
2018.

[154] João Carreira, Eric Noland, Chloe Hillier, and Andrew Zisserman. A short
note on the Kinetics-700 human action dataset. CoRR, abs/1907.06987,
2019.

[155] Jingen Liu, Jiebo Luo, and Mubarak Shah. Recognizing realistic actions
from videos “in the wild”. In Computer vision and pattern recognition,
2009. CVPR 2009. IEEE conference on, pages 1996–2003. IEEE, 2009.

[156] Kishore K Reddy and Mubarak Shah. Recognizing 50 human action
categories of web videos. Machine Vision and Applications, 24(5):971–981,
2013.

[157] Jan C. van Gemert, Mihir Jain, Ella Gati, and Cees G. M. Snoek. Apt:
Action localization proposals from dense trajectories. In Proceedings of
the British Machine Vision Conference (BMVC), pages 177.1–177.12.
BMVA Press, September 2015.

[158] Saumya Jetley, Nicholas A. Lord, Namhoon Lee, and Philip Torr. Learn to
pay attention. In International Conference on Learning Representations,
2018.

[159] Hyungsik Jung and Youngrock Oh. LIFT-CAM: Towards better expla-
nations for class activation mapping. arXiv preprint arXiv:2102.05228,
2021.

[160] David Alvarez-Melis and Tommi S. Jaakkola. Towards robust inter-
pretability with self-explaining neural networks. In Proceedings of the
32nd International Conference on Neural Information Processing Sys-
tems, NIPS’18, page 7786âĂŞ7795, Red Hook, NY, USA, 2018. Curran
Associates Inc.

[161] Zhongang Qi, Saeed Khorram, and Li Fuxin. Visualizing deep networks by
optimizing with integrated gradients. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(07):11890–11898, Apr. 2020.

[162] Yunchao Wei, Jiashi Feng, Xiaodan Liang, Ming-Ming Cheng, Yao Zhao,
and Shuicheng Yan. Object region mining with adversarial erasing: A

198

Bibliography

simple classification to semantic segmentation approach. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July
2017.

[163] Huu-Giao Nguyen, Alessia Pica, Jan Hrbacek, Damien C. Weber,
Francesco La Rosa, Ann Schalenbourg, Raphael Sznitman, and Meritxell
Bach Cuadra. A novel segmentation framework for uveal melanoma in
magnetic resonance imaging based on class activation maps. In M. Jorge
Cardoso, Aasa Feragen, Ben Glocker, Ender Konukoglu, Ipek Oguz,
Gozde Unal, and Tom Vercauteren, editors, Proceedings of The 2nd In-
ternational Conference on Medical Imaging with Deep Learning, volume
102 of Proceedings of Machine Learning Research, pages 370–379, London,
United Kingdom, 08–10 Jul 2019. PMLR.

[164] Y. Wang, F. Zhu, C. J. Boushey, and E. J. Delp. Weakly supervised
food image segmentation using class activation maps. In 2017 IEEE
International Conference on Image Processing (ICIP), pages 1277–1281,
2017.

[165] Kun Fu, Wei Dai, Yue Zhang, Zhirui Wang, Menglong Yan, and Xian Sun.
MultiCAM: Multiple class activation mapping for aircraft recognition in
remote sensing images. Remote Sensing, 11(5), 2019.

[166] Wenjie Yang, Houjing Huang, Zhang Zhang, Xiaotang Chen, Kaiqi
Huang, and Shu Zhang. Towards rich feature discovery with class activa-
tion maps augmentation for person re-identification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[167] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz.
Pruning convolutional neural networks for resource efficient inference.
CoRR, abs/1611.06440, 2016.

[168] Mikhail Figurnov, Aizhan Ibraimova, Dmitry P Vetrov, and Pushmeet
Kohli. PerforatedCNNs: Acceleration through elimination of redundant
convolutions. In Advances in Neural Information Processing Systems,
pages 947–955, 2016.

[169] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Pe-
ter Graf. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710, 2016.

199

Bibliography

[170] Ye Yuan, Guangxu Xun, Fenglong Ma, Qiuling Suo, Hongfei Xue, Kebin
Jia, and Aidong Zhang. A novel channel-aware attention framework for
multi-channel eeg seizure detection via multi-view deep learning. In 2018
IEEE EMBS International Conference on Biomedical Health Informatics
(BHI), pages 206–209, 2018.

[171] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo,
Qingyao Wu, Junzhou Huang, and Jinhui Zhu. Discrimination-aware
channel pruning for deep neural networks. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

[172] Hao Tang, Dan Xu, Nicu Sebe, Yanzhi Wang, Jason J. Corso, and Yan
Yan. Multi-channel attention selection gan with cascaded semantic guid-
ance for cross-view image translation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

[173] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In Francis
Bach and David Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pages 448–456, Lille, France, 07–09 Jul 2015. PMLR.

200

APPENDIX

A
Additional SWAG Examples

Additional examples of explanations created using the datasets experimented
with in Chapter 3 can be found here.

• Examples of explanations for the Stanford Dogs dataset can be found
in Figures A.1 and A.2.

• Examples of explanations for the Caltech-UCSD Birds 200 dataset
can be found in Figures A.3 and A.4.

• Examples of explanations for the Oxford Flowers dataset can be found
in Figures A.5 and A.6.

201

Input SWAGI SWAGI+G SWAGG GB

V
G
G
16

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

R
es
N
et
50

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

V
G
G
16

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

R
es
N
et
50

G-CAM G-CAM++ LIME RISE XRAI

Figure A.1: Qualitative comparison between methods using examples from Stanford Dogs
with ResNet50 and VGG16.

202

Input SWAGI SWAGI+G SWAGG GB

V
G
G
16

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

R
es
N
et
50

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

V
G
G
16

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

R
es
N
et
50

G-CAM G-CAM++ LIME RISE XRAI

Figure A.2: Qualitative comparison between methods using examples from Stanford Dogs
with ResNet50 and VGG16.

203

Input SWAGI SWAGI+G SWAGG GB

V
G
G
16

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

R
es
N
et
50

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

V
G
G
16

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

R
es
N
et
50

G-CAM G-CAM++ LIME RISE XRAI

Figure A.3: Qualitative comparison between methods using examples from CUB200 with
ResNet50 and VGG16.

204

Input SWAGI SWAGI+G SWAGG GB

V
G
G
16

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

R
es
N
et
50

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

V
G
G
16

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

R
es
N
et
50

G-CAM G-CAM++ LIME RISE XRAI

Figure A.4: Qualitative comparison between methods using examples from CUB200 with
ResNet50 and VGG16.

205

Input SWAGI SWAGI+G SWAGG GB

V
G
G
16

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

R
es
N
et
50

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

V
G
G
16

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

R
es
N
et
50

G-CAM G-CAM++ LIME RISE XRAI

Figure A.5: Qualitative comparison between methods using examples from Oxford Flowers
with ResNet50 and VGG16.

206

Input SWAGI SWAGI+G SWAGG GB

V
G
G
16

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

R
es
N
et
50

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

V
G
G
16

G-CAM G-CAM++ LIME RISE XRAI
Input SWAGI SWAGI+G SWAGG GB

R
es
N
et
50

G-CAM G-CAM++ LIME RISE XRAI

Figure A.6: Qualitative comparison between methods using examples from Oxford Flowers
with ResNet50 and VGG16.

207

APPENDIX

B
Additional SWAG-V Examples

Additional examples of explanations created for Chapter 4 using Kinetics 400
and both R(2+1)D and C3D. The following classes are shown:

• Skiing slalom in Figure B.1 (R(2+1)D) and Figure B.2 (C3D).
• Bobsledding in Figure B.3 (R(2+1)D) and Figure B.4 (C3D).
• Bungee jumping in Figure B.5 (R(2+1)D) and Figure B.6 (C3D).
• Skiing crosscountry in Figure B.7 (R(2+1)D) and Figure B.8 (C3D).

208

In
pu

t
G

-C
A

M
G

-C
A

M
+

+
S-

Tu
be

s
SW

A
G

-V
I

SW
A

G
-V

I+
G

SW
A

G
-V

G

Figure B.1: An explanation for the Kinetics 400 class skiing slalom using R(2+1)D.

209

In
pu

t
G

-C
A

M
G

-C
A

M
+

+
SW

A
G

-V
I

SW
A

G
-V

I+
G

SW
A

G
-V

G

Figure B.2: An explanation for the Kinetics 400 class skiing slalom using C3D.

210

In
pu

t
G

-C
A

M
G

-C
A

M
+

+
S-

Tu
be

s
SW

A
G

-V
I

SW
A

G
-V

I+
G

SW
A

G
-V

G

Figure B.3: An explanation for the Kinetics 400 class bobsledding using R(2+1)D.

211

In
pu

t
G

-C
A

M
G

-C
A

M
+

+
SW

A
G

-V
I

SW
A

G
-V

I+
G

SW
A

G
-V

G

Figure B.4: An explanation for the Kinetics 400 class bobsledding using C3D.

212

In
pu

t
G

-C
A

M
G

-C
A

M
+

+
S-

Tu
be

s
SW

A
G

-V
I

SW
A

G
-V

I+
G

SW
A

G
-V

G

Figure B.5: An explanation for the Kinetics 400 class bungee jumping using R(2+1)D.

213

In
pu

t
G

-C
A

M
G

-C
A

M
+

+
SW

A
G

-V
I

SW
A

G
-V

I+
G

SW
A

G
-V

G

Figure B.6: An explanation for the Kinetics 400 class bungee jumping using C3D.

214

In
pu

t
G

-C
A

M
G

-C
A

M
+

+
S-

Tu
be

s
SW

A
G

-V
I

SW
A

G
-V

I+
G

SW
A

G
-V

G

Figure B.7: An explanation for the Kinetics 400 class skiing crosscountry using R(2+1)D.

215

In
pu

t
G

-C
A

M
G

-C
A

M
+

+
SW

A
G

-V
I

SW
A

G
-V

I+
G

SW
A

G
-V

G

Figure B.8: An explanation for the Kinetics 400 class skiing crosscountry using C3D.

216

APPENDIX

C
Additional Jitter-CAM

Examples

Additional examples created for Chapter 5 using ImageNet.. The following
models are used:

• Explanations created for ResNet50 are shown in Figure C.1.
• Explanations created for DenseNet121 are shown in Figure C.2.
• Explanations created for InceptionV3 are shown in Figure C.3.

217

Input Grad-CAM Grad-CAM++ XGrad-CAM Ablation-CAM Score-CAM Jitter-CAM

Figure C.1: Additional examples for ResNet50 using ImageNet.

218

Input Grad-CAM Grad-CAM++ XGrad-CAM Ablation-CAM Score-CAM Jitter-CAM

Figure C.2: Additional examples for DenseNet121 using ImageNet

219

Input Grad-CAM Grad-CAM++ XGrad-CAM Ablation-CAM Score-CAM Jitter-CAM

Figure C.3: Additional examples for InceptionV3 using ImageNet.

220

	Introduction
	Motivation
	Research Goals
	Contributions
	Thesis Structure

	Background
	Introduction
	Interpretability Techniques
	Inherently Interpretable Models vs Post-hoc Explanations
	Input-Centric Explanations
	Gradient Based Methods
	Improvements to Gradient Based Methods
	Activation Based Methods
	Perturbation Based Methods

	Analysis of Input Centric Methods
	Network Centric Explanations
	Deep Visualization
	Filter Importance and Labelling
	Prototypes and Criticisms

	Analysis of Network Centric Methods

	Video Interpretability Techniques
	Activation Based Methods
	Perturbation Based Methods
	Gradient Based Methods
	Analysis of Video Interpretability Techniques

	Post-hoc Explanation Evaluation Metrics
	Qualitative Techniques
	Explanation Accuracy
	Local vs Global Accuracy
	Local Accuracy
	Global Accuracy

	Gap Analysis Summary
	Chapter Summary

	SWAG: Superpixels Weighted by Average Gradients
	Introduction
	Motivation
	Superpixels Weighted by Average Gradients (SWAG)
	Superpixels Designed for Explanations
	Definition of Superpixels
	Gradient-Based Superpixels

	Metric Implementation
	Local Accuracy
	Global Accuracy
	Weak-Localisation
	Attribution Accuracy
	Efficiency

	Superpixel Optimisation
	Justification of Superpixel Method Choice
	Natural Alignment
	Superpixel Consistency
	Computational Efficiency
	Conclusion

	Choice of Superpixel Count
	Choice of Attribution Method
	Gradient Sanity Check
	Choice of Pooling Method
	Choice of Weights for SWAGI+G
	Final Parameter Choices

	Experiment Results
	Qualitative Inspection of Results
	Explanation Accuracy
	Local Accuracy
	Global Accuracy

	Superpixel Replacement for LIME
	Weak Localisation
	Efficiency
	Attribution Accuracy

	Chapter Summary

	SWAG-V: Explanations for Action Recognition
	Introduction
	Action Recognition Review
	Deep Learning Approaches For Action Recognition
	Two Stream Approaches
	Two Stream Approaches
	Combined Spatio-Temporal Approaches
	Joining the Two Techniques

	Datasets
	Kinetics
	UCF101

	SWAG for Video: SWAG-V
	Optimisation
	Attribution Method
	Choice of Weights for SWAG-VI+G
	Initial Superpixel Count
	Final Parameter Choices

	Experiments
	Qualitative Inspection of Results
	Local Accuracy
	Implementation
	Results

	Weak-Localisation
	Results

	Efficiency

	Future Work
	Chapter Summary

	Jitter-CAM: Improving the Spatial Resolution of CAMs
	Introduction
	Related Works and Motivation
	Jitter-CAM
	Experiments
	Qualitative Inspection of Results
	Faithfulness
	Local Accuracy
	Weak Localisation
	Pointing Game

	Efficiency

	Future Work
	Chapter Summary

	Explaining Failure using Surprise and Expectation
	Introduction
	Measuring Surprise and Expectation
	Grad-AMap: Filter Importance Measure
	Evaluation of Filter Ranking Methods
	Aside: Better CAM Explanations?

	Building Filter Score Distributions
	Definition of Surprise and Expectation
	Deviation from Mean Filter Activation –

	Exploration of Failure
	Understanding the Reasons for Failure
	Misclassification with High Values
	Misclassification with Low Values

	Visualising Surprise
	Visualising Expectation

	`Fixing' Incorrect Classifications
	Suppressing Surprise
	Correcting Expectation

	Future Work
	Chapter Summary

	Conclusion
	Future Work

	Bibliography
	Additional SWAG Examples
	Additional SWAG-V Examples
	Additional Jitter-CAM Examples

