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Abstract: To create products that are better fit for purpose, manufacturers require new methods
for gaining insights into product experience in the wild at scale. “Chatty Factories” is a concept
that explores the transformative potential of placing IoT-enabled data-driven systems at the core
of design and manufacturing processes, aligned to the Industry 4.0 paradigm. In this paper, we
propose a model that enables new forms of agile engineering product development via “chatty”
products. Products relay their “experiences” from the consumer world back to designers and product
engineers through the mediation provided by embedded sensors, IoT, and data-driven design tools.
Our model aims to identify product “experiences” to support the insights into product use. To this
end, we create an experiment to: (i) collect sensor data at 100 Hz sampling rate from a “Chatty
device” (device with sensors) for six common everyday activities that drive produce experience:
standing, walking, sitting, dropping and picking up of the device, placing the device stationary on a
side table, and a vibrating surface; (ii) pre-process and manually label the product use activity data;
(iii) compare a total of four Unsupervised Machine Learning models (three classic and the fuzzy
C-means algorithm) for product use activity recognition for each unique sensor; and (iv) present
and discuss our findings. The empirical results demonstrate the feasibility of applying unsupervised
machine learning algorithms for clustering product use activity. The highest obtained F-measure is
0.87, and MCC of 0.84, when the Fuzzy C-means algorithm is applied for clustering, outperforming
the other three algorithms applied.

Keywords: Chatty Factories; Industry 4.0; machine learning; IoT; product use activity; sensors;
clustering

1. Introduction

As “Industry 4.0” draws significant attention, a large number of organizations are
seeking novel methods and techniques of acquiring and processing huge amounts of sensor
data. This is considered the birth of a new industrial revolution [1,2]. The first industrial
Revolution came as a result of the mechanization of production, which affected product
volume dimension. The second Revolution altered the industry by leveraging on the
advent of electricity and mass production. The third Revolution was characterized by the
adoption of Information Technology (IT) and electronics to process automation [3,4]. More
recent discussions are suggestive of the birth of the fourth Industrial Revolution, with the
emergence of “Industry 4.0” and “Smart Factory”. By implication, product design and
manufacturing within the Industry 4.0 paradigm is now more data-driven.

This most recent revolution in technology offers enormous benefits to product design
teams [5,6], such as the capability to leverage sensors to acquire data directly from products.
Understanding customers’ needs, satisfaction, experience, etc., form a critical aspect of
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creating products that satisfy segments of customers and increasing profitability. Manual
processes used to collect customer’s feedback can now be automated by leveraging sensors.
This, in turn, enables the creation and automation of data-driven processes/strategies for
acquiring meaningful product use information that could influence the creation of new
products or the enhancements of existing ones.

Advancements in sensor technology have exponentially increased the number of
Internet-connected products being produced in factories all around the world today. This,
in turn, creates the possibility of collecting massive amounts of product use data that
can now be leveraged by product design teams [5–7]. This is akin to Opresnik et al.’s [8]
opinion that gaining an understanding of product use activities is a data-driven process of
information, which is a feedback loop of collecting, storing, and then analyzing data from
the product-users with a primary goal to discover and identify usage patterns that inform
design suggestions. Therefore, design teams are equipped to tailor products to customers’
needs and wants.

Exploring product-use data strategically gives design engineers a competitive advan-
tage by enabling them to uncover patterns, innovative insights, and knowledge through
data-driven design [9]. Conventional product design involves a technical decision process
that is characterised by the intrinsic performance of the product [10]. Typically, hypo-
thetical market studies are acquired as a collection of design specifications or based on
experiential knowledge, which is subjective and consequently deviates from true customer
satisfaction [11]. Interviews, user experiments, focus groups, etc., were a few of the typical
methods used in acquiring customer requirements. However, this was limiting because
only the customers’ actions and extrinsic behaviors could be captured. Ultimately, this
failed to provide latent customer needs and intrinsic requirements for product perfor-
mances [12].

The data-driven analysis approach towards product design is grounded on the premise
that, when manufacturers know how customers are using the products, they can tailor
their products much better to actual needs. This enables design decisions to be based on
facts and not assumptions [9]

The Chatty Factories concept focuses on the opportunity to collect data from IoT-
enabled sensors embedded in products (Chatty devices) during real-time use by con-
sumers, explores how that data might be immediately transferred into usable information
to inform design, and considers what characteristics of the manufacturing environment
might optimise the response to such data. Figure 1 illustrates the Chatty Factories concept.
A detailed background can be found in Reference [13]. In summary, the concept offers
the potential to accelerate product refinement through a radical product interruption of
‘consumer sovereignty’ based around surveys and market research, to ‘use sovereignty’
and an embedded understanding of consumer behavior—making products that are fit
for purpose based on how they are used. Achieving continuous product refinement in
response to real-time data on product use requires digital tools that can interact with
physical and virtual life. The “Data Annotation” block in Figure 1 is one of the key phases
of the proposed data driven model which requires the use of machine learning models to
identify anomalies, patterns, and points of interest in the data. This is the area we address
in this paper.

Sensor data streaming from the wild can hold key information about how the product
is used by consumers across different locations and cultures. Gathering data from use
in the wild can limit the need for current product research studies, such as post-hoc lab
studies and user experience surveys. Furthermore, in-situ research methods can capture
the intricate and messy relationships between people and products, which may be difficult
to assess through lab-studies [14].

Due to the volume of real-time data created by the sensors and the fact that products
will be used by a large scale of customers, it becomes necessary to employ the use of
unsupervised machine learning models to identify anomalies, patterns, and points of
interests at scale. In general, labeling real time activity data is very difficult. The main
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reason is that, within a single experiment, there may be various types of activities which
makes labeling data very difficult, if not impossible. To this end, this paper compares
a number of unsupervised machine learning models. Their successful implementation
provides evidence to use these approaches for future unlabeled data used for dealing with
product activity analysis in a Chatty Factories framework.

Figure 1. The Chatty Factories vision.

Today, the competitive business environment is putting more pressure on manufactur-
ers to constantly improve/manufacture products that satisfy customer demands, usually
through changes in design and functionality, relying primarily on continuous analysis
of large amounts of data. Product data can be obtained from varying sources; however,
technology advancements in sensor technology has inspired many intelligent products—
“product embedded information devices (PEID)” [15]. Furthermore, The Internet of Things
(IoT), being an ecosystem of such inter-connected devices, makes data transfer even more
possible, thus enabling more efficient product lifecycle data. Products retrofitted with a
wide array of sensors improve the product’s capability to store, compute, and communicate
data (chatty devices), for example, smartphones, tablets, smart wearables, water monitor,
etc. [16–18].

Leveraging product use data/PEID within a well thought out data-driven methodol-
ogy becomes a more precise customer feedback method [15] than the manual processes
of collecting customer feedback previously utilised in product design [19]. It, therefore,
becomes imperative to build on work done around activity recognition that sought to
understand people’s daily lives. In this paper, we seek to understand actual product
experiences, using activity leveraging unsupervised learning methods.

Activity recognition is a well explored research topic. Researchers have typically
focused on Human activity recognition (HAR) because it provides insight into under-
standing the daily lives of people inferred from analysis carried out from raw sensor
inputs [20]. Scholars have successfully investigated Human Activity Recognition in areas,
such as home behavior analysis [21], gesture recognition [22], gait analysis [23], video
surveillance [24], etc.

Real-time feedback acquired from the actual product-use through sensors embedded
in the products would be extremely valuable for product designers to understand how the
product is being used. Human behavior identification/classification by interaction with
the product can play a crucial part in understanding how the product is being used. But so
can producing experiences beyond human activity. For example, a product may roll off
an uneven surface, or be transported in a rough manner—neither are always under the
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direct control of the human. We argue that this additional information about how products
“experience the world” will potentially offer new insights for product design teams.

This study focuses on product activity for the purposes of understanding experiences
in the wild, and informing future versions of its design and manufacture. It seeks to
identify actual product use activity by creating experiments using a “Chatty Device” with
inbuilt sensors, such as Accelerometer, Orientation sensor, Magnetic field, and Angular
Velocity. Since data used in this study suffers from high dimension, a dimension reduction
stage is required. Hence, unsupervised learning approaches because of their power to
reduce the data dimension are the preferred approach in this paper [25]. A sampling
rate of 100 Hz was used to collect data around common product experiences, such as
vibrations, being stationary, drops, and pickups—alongside human activities, while using
products, including walking, standing, and sitting. A total of about 148,778 data points
were collected.

To our knowledge, general research in activity classification has focused on areas,
such as human activity classification, health-related studies, smart homes, etc., while we
explore and investigate product use activity classification in the wild for the first time. We
approach the problem as an unsupervised learning problem, even though we have created
label data. Our rationale is to provide verifiable evidence that allows us to map the actual
product use activity to the identified cluster detected by the algorithm.

In this study, we utilize securely and ethically collected product-use big data to
investigate how unsupervised learning algorithms can be used to understand at scale,
product use in the wild. This is key to the Chatty Factories concept, which is an innovative
industry 4.0 model. In this framework, human behavior identification is crucial as it
will provide valuable information about how and where the products is used for further
analysis by the design team. Product behavior associated with different human activity in
terms of vibrations and orientations met by the product provide valuable insight for the
design team for possible reinforcement of the product to deal with the situations met by
the product as a result of different product use activities. We log sensor data, pre-process
it and label the data according to the product use activity carried out. The activity labels
created are only for validating the clusters mapped to a specific activity. This helps to
evaluate the effectiveness of the clustering method used, thus enabling the authors to justify
the approach of using Unsupervised Machine learning to identify unknown product use
activities. The standpoint of the authors is that Unsupervised Machine Learning methods
can be used effectively to cluster similar product use activities, even if initially unknown.
An unknown product use activity “X” can be discovered, and, after an ethnographic
intervention, a label can be subsequently assigned to “X”, for example, “A drop”.

The following are the main contributions of this study:

• the first approach to detect discrete product use activities in the wild (vibrations,
being stationary, drops, and pickups), enhancing previous approaches that focus only
on human activity (walking, standing, and sitting). Product behavior within each
product use activity can then be studied by the design team for further investigation
and possible modifications for the product;

• the use of the Fuzzy C-means algorithm to effectively and efficiently detect product
use activities. The behavior of product associated with product activities would then
be easy to study as, instead of dealing with large amount of data within each cluster,
the center of cluster can be studied; and

• a novel (publicly available) curated and manually verified dataset consisting of actual
product use activity allowing researchers to conduct further studies in this domain
and compare machine learning results (Dataset is available at: https://doi.org/10.6
084/m9.figshare.11475252.v1, accessed on 3 December 2020) curated and manually
verified dataset consisting of actual product use activity (for further comparative
studies) allowing researchers to conduct further studies in this domain and compare
machine learning results).

https://doi.org/10.6084/m9.figshare.11475252.v1
https://doi.org/10.6084/m9.figshare.11475252.v1
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The rest of the paper is structured as follows: Section 2 provides an overview of related
studies on activity detection. Section 3 discusses the materials used in the study, such as the
sensors, dataset, and product use activities. Section 4 is the Methodology section, which
describes the empirical approach used to carry out the product use activity clustering
using unsupervised machine learning methods, including the data pre-processing and
independent feature selection process. Furthermore, Section 4.4 summarizes the results
and discusses the findings and provides further empirical insights. Section 5 describes the
unsupervised machine learning results, while Section 6 concludes the paper.

2. Related Work

This section provides an overview of related research on the application of machine
learning techniques for activity detection.

Dealing with product-use activity classification/identification at scale requires the
application of machine learning to identify those patterns and anomalies. There are many
and varied studies on “human activity classification”; however, the context of primarily
focusing on “product-use activity classification” is limited. This has prompted a key
objective of this study. It is believed that detecting activities, like picking up the device,
dropping the device, or exposing the device to a vibrating environment, etc., can provide
useful product design information [8]. For instance, Ankita et al. [26] focused primarily
on improving human activity recognition by combining convolutional layers, long short-
term memory (LSTM), and the deep learning neural network to extract key features in
an automated way and then categorize them with some model attributes. Essentially,
their study did not focus on product activity recognition; they tested their model on a
publicly available dataset of UCI-HAR for Samsung Galaxy S2, which captures various
human activities, such as walking, walking upstairs and downstairs, sitting, standing, and
laying. They did not look at activities that could impact a product, like vibrations within
the environment. Russell et al. [27] also primarily focused on the context of human activity
recognition. They set out to create and validate a field-based data collection and assessment
method to aid human activity recognition in the mountains with terrain and fatigue
variations. An output from their study was an unsupervised labeled dataset of various long-
term field-based activities, such as obstacle climb, stand, run, walk, and lay. Furthermore,
they were keen on the human context rather than product classification. As such, they
were evaluating Fatigue levels by modulating between rested to physical exhaustion.

In this section, we review literature, focusing on activities, such as “vibration”, “drop”,
and “pickup”, and others, like “standing”, “walking”, “sitting”, and “being stationary”,
in order to determine whether existing research on activity detection has achieved the
detection of these activities particularly within the context of application for product-
activity classification. Table 1 summarizes some of the gaps in existing literature.

While still focusing on human activity recognition, Jun and Choi [28], focused on
a slightly different area. They argue that lots of studies have been done recognizing
Adult human activities; however, HAR would be beneficial for the safety and wellness of
newborns or infants because they have poor verbal communication. To this end, they focus
their research on newborn and infant activity recognition by analyzing accelerometer data
by attaching sensors to the body. They classify four types of activities: sleeping, moving
in normal condition, moving in agony, and movement by an external force. Furthermore,
they took an unsupervised learning approach torwards recognizing activies leveraging an
end-to-end deep model using autoencoder and k-means clustering. Similarly, their study
did not take into consideration product activity recognition.

Gao et al. [29] carried out a study on human activity recognition based on Stacking
Demonising Autoencoder (SDAE) and LightGBM (LGB). Their approach uses the SDAE
to remove noise from the raw sensor data to extract valid characteristics of the data with
unsupervised learning. At the same time, the LGB was applied to distinguish the inherent
feature dependencies among categories for accurate human activity recognition. They
test their algorithm on activities, such as walking, going up and down an Elevator and
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Escalator, standing, sitting, lying, etc. The study did not consider product-use recognition
nor evaluate activities, like vibrations from the environment, that could affect a product.

Wyatt, Philipose, and Choudhury [30] considered unsupervised learning methods
in their study positing activities can be differentiated or identified by the objects used.
Presented with the names of these objects, they created models of activities from the web,
and proposed that the models can distinguish twenty-six (26) activities. However, they
did not consider activities, like vibrations, drop and picking up, or stationary position.
Huynh [31] proposed an unsupervised learning model that deals with multiple time scales,
by leveraging multiple eigenspaces. In their study, activities, such as walking, standing,
and sitting, were recognized with four inertial sensors. Li and Dustdar [32] conducted
experiments with the anticipation of adopting unsupervised learning methods in activity
recognition. They put forward a hybrid process that fuses activity classification with
subspace clustering in a bid to handle the curse of dimensionality, but their research did
not look into specific activities, like drop and pickup, vibrations, etc., and Vandewiele and
Motamed [33] looked into a smart home environment with a network of sensors. They
suggest that an unsupervised learning approach would be useful for activity recognition in
such an environment; however, they did not consider activities, such as drop and pickup,
vibrations, walking, stand-in, sitting, or stationary surface. They also did not focus on the
context of application to product-use activity identification.

Trabelsi [34] put forward an unsupervised learning method for human activity recog-
nition by using three accelerometers which were attached to the right thigh, left ankle, and
chest. They used the Hidden Markov Model Regression and proposed that their model
substantially outperformed other unsupervised learning methods and was closely compa-
rable to supervised learning methods. However, for the application of the algorithms, it is
assumed that the number of activities is known. They also did not consider activities, like
vibrations or drop and picking up. Furthermore, a number of scholars have focused on
human activity recognition by leveraging a combination of sensors which are embedded in
cameras [35], mobile devices, wearable computers, etc. Accelerometers are one of the most
frequently used sensors for activity recognition because its functionality helps in measuring
activities performed by users [36]. Some studies employ the use of multiple accelerometers
attached to different locations of the human body. For example, Reference [37] ran exper-
iments that used two or three uniaxial accelerometers to differentiate various activities,
which include people lying down, standing, sitting, descending and ascending stairs, and
also cycling. They, however, fail to consider activities, like vibration or drop and pickup.
Arminian [38] investigated the possibility of using two accelerometers, one attached to
the rear of the thigh and the other on the chest. Foerster and Fahrenberg [39] placed three
uniaxial accelerometers on the sternum, and two uniaxial accelerometers on the right and
left thighs to identify four basic activities (moving, standing, sitting, and lying down).

According to Reference [40], human activity detection can be done using static plat-
forms or wearable platforms. Two major static platforms to detect human motions are
marker-based motion capture system [41] and force plate system [42]. The combination
of these two static platforms may also be used for human activity detection purposes.
Other than static platforms, wearable platforms can be used to detect human motion.
Examples of wearable platforms are accelerometers [43], gyroscopes, magnetometers, elec-
tro/flexible goniometers [44], and sensing fabrics [45]. The combination of these sensors
may also be used for activity detection purposes [40]. In this study, the combination of
accelerometers, gyroscopes, and magnetometers is used for product activity detection. The
fact that all of these sensors are available under iPhone makes it a cheap product activity
detection method.

Previous research typically employed machine learning methods to investigate activity
recognition; however, Table 1 highlights some gaps based on some specific activities that
could potentially facilitate product design. This study focuses on activity recognition of
product use. It presents the application of unsupervised machine learning models on a
novel real-time product use activity dataset derived from sensors embedded in a “chatty”
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product. This will underpin an understanding of how the product is used at scale and
could inform product design modification in a way hitherto not possible.

Table 1. Summary of activity recognition on vibration, drop and pickup, standing, sitting, walking, and stationary position.

Paper Activities
Application in

Product-Use
Activity Identification

Drop & Pickup Vibrations Walking Standing Sitting Stationary Position

[23,26,29,31,34,37–39,46–72], 0 0 X X X 0 0

[27,73–78] 0 0 X X 0 0 0

[23,79–86] 0 0 X 0 0 0 0

[33,87–89] 0 0 0 0 0 0 0

[90] 0 0 0 0 X 0 0

[35,91] 0 0 X 0 X 0 0

[30,92] 0 0 0 X 0 0 0

This Paper X X X X X X X

3. Materials

For this study, a dataset was created by conducting expected product use activities,
such as placing the device on a vibrating surface, dropping and picking up of the device,
walking with the device, sitting with the device, placing the device stationary on a side
table, and standing with the device. A 6th generation Apple iPad was used as the “Chatty
device” for this study because it has all the inbuilt sensors that enable the research team to
measure and detect these activities. Modern mobile iOS and Android devices are equipped
with a rich variety of sensors, thus presenting an ideal medium to collect data for research.
Apple devices typically offer a number of functionalities that leverage the inbuilt sensors
in the devices. These include proximity sensors, accelerometers, ambient light sensors,
gyroscope, and more [93], which, for example, can enable a user shake the device to undo
an action or dim the screen when the device is held at face level, etc. Figure 2 illustrates the
flow of the experiment.

Figure 2. Flow of work.

The data was collected from the following four in-built sensors.

• Acceleration: 3-axes acceleration data,
• Orientation: Azimuth, Pitch, and Roll,
• Angular Velocity: 3-axes gyroscopes for rotational motion,
• Magnetic Field: 3-axes magnetic field.
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Acceleration on 3-axes: This sensor is used to measure the linear acceleration of the
device. The sensor has the capability to function in two modes ± 2 g and ±8 g. Both
modes can sample data at 400 Mhz or at 100 Mhz. Apple uses a default of ±2 g mode
(100 Mhz) [94].

Azimuth, roll, pitch (Orientation): Another sensor pre-built into the device is a vibra-
tional gyroscope. It functions by utilizing a plate called a “proof mass”. When a signal
is applied to capacitor plates, it oscillates. When an individual displaces the device in a
rotational manner, the proof mass is displaced in the X, Y, Z directions an ASIC processor
measures the capacitance change of the plates [94].

Magnetic Field on 3-axes: This sensor can measure the strength of the magnetic field
surrounding the device. Hence, the device is equipped with the ability to determine its
“heading” in line with the geomagnetic North Pole, thus acting as a digital compass [94].

Angular Velocity on 3-axes: The angular velocity also known as rotational velocity,
can be explained as the rate of velocity that an object or a particle rotates around a defined
point at a given time.

4. Methodology

In this section, we describe the methodology adopted for conducting the experi-
ments/study.

4.1. Data Acquisition

The MATLAB Mobile application was used to stream data from the in-built sensors of
the iPad (Chatty-device). MATLAB is a purposed built scientific environment for running
experiments. It is created for engineers and scientists with a robust set of Apps and
toolboxes prepackaged and rigorously tested for a broad range of scientific and engineering
applications [95]. The MATLAB mobile app application is convenient and freely available
for individuals with an academic email. Hence, the research team decided to use the
MATLAB mobile app, which runs on both Android and iOS devices and is user friendly.
Some open-source applications can also collect data from mobile devices; however, the
majority of them are platform-dependent and, most times, not free. The product use data
was streamed into a MathWorks Cloud drive account at a sampling rate of 100 Hz per
activity. The research team collected about four (4) minutes of sensor data for every activity
through a total of a total of 148,778 data points. The following steps were taken:

1. The MATLAB mobile app was installed and configured on the Chatty device through
the Apple App store.

2. A registered user account was used, and the device was connected to MathWorks
Cloud account.

3. Using the MATLAB Mobile interface, the sensors were turned “on”.
4. A sampling rate of 100Hz was selected, and the log button was used to initiate

recording of the sensor data readings.
5. After the expected duration, the logged results were saved to the Cloud and given

file names which corresponded to the activities carried out.

Two subjects (an adult female and male) held the device while carrying out the product
use activities—dropping and picking up, standing, walking, and sitting. Product use data
was also collected while the device was placed on a vibrating and non-vibrating stationary
surface. Figure 3 highlights the acceleration plots for the three axes (X, Y, Z) for each of
the six activities. Walking is a more energetic activity so when compared with the others,
its X, Y, Z values vary significantly. Standing, sitting, device on vibrating surface, and
stationary on a side table are more dormant activities; thus, their X, Y, and Z values are
almost constant. The drop and pickup activity plots indicate sudden spikes in the signals
which come as a result of the sudden drop events that occurred. One interesting thing to
observe is that, for walking, standing, sitting, vibrating surface, and stationary on a side
table, the “Z” values have the larges accelerations. This is because the force of gravity
affects the entire acceleration in the direction of the center of Earth.
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Figure 4 highlights the angular velocity for the three axes (X, Y, and Z) for each of
the six activities. Large spikes can also be observed on the drop and pickup activity plot,
which indicates the sudden drop events that occurred. For walking and drop and pickup
activities, the X, Y, and Z values significantly change. For standing, sitting, stationary on a
side table and vibrating surface, the X, Y, and Z values are much smaller (<0.3 rad/s).

Figure 3. Acceleration signals for the six activities.

Figure 4. Angular velocity signals for the six activities.
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4.2. Data Pre-Processing and Feature Selection

All the logged product use sensor data was stored in the MathWorks cloud account with
a “.mat” file extension. The files were downloaded and imported into MATLAB desktop
application. MATLAB allows for variables to be created and used to house data. Hence, a
variable was created for each recorded sensor activity. The variable contained the time-stamp
and X, Y, Z axis data for each of the sensors. A MATLAB timetable file for each of the sensors
was exported to a CSV file and labeled according to each product use activity carried out.

To create the Labels for each activity and assign them to their respective data points,
the research team had to preprocess each data table independently before combining them.
The MATLAB sensor log file that was downloaded from cloud drive for each activity held
the sensor reading for the Accelerometer, Magnetic-field, Orientation, and Angular Velocity
sensors. Each sensor Table had timestamp, X, Y, and Z data readings. All sensor tables
where then concatenated by columns and then a new column with header “Activity” was
created and assigned a value corresponding to the name of the activity carried out. This
was done iteratively for each activity distinctively with their labels assigned accordingly.
Finally, the research team merged all tables into one master file.

A master data CSV file was created using Microsoft Excel. It contains the combined
set of sensor readings of the experiments which were arranged according to the sensors
following the sequence of the activities carried out. The timestamp variables were treated
as data-time variables on excel and stored accordingly. The CSV file was imported into
WEKA for pre-processing and feature selection. WEKA is an open-source data analysis
software [96,97] (The tool is available at: http://www.cs.waikato.ac.nz/ml/weka/index.
html, accessed on 10 December 2020.) developed by the University of Waikato and has
been used with its default setting [96–100].

A total of sixteen (16) independent variables were collected including the following:
Acceleration X, Acceleration Y, Acceleration Z, Timestamp-Acceleration, Angular Velocity
X, Angular Velocity Y, Angular Velocity Z, Timestamp-Angular Velocity, Magnetic Field X,
Magnetic Field Y, Magnetic Field Z, Timestamp-Magnetic Field, Orientation X, Orientation
Y, Orientation Z, and Timestamp-Orientation.

Each sensor is unique and, thus, may have a slightly different sampling rate. To
this end, we collected data for each of the four sensors and also recorded their respective
timestamps to each data-point.

As part of the data preparation exercise, an activity column was created to capture
each specific activity. It contained the labeled activities carried out in the experiment, which
also represents the dependent or response variable for the experiment. These are the class
variables (product use activities) that we seek to detect with the unsupervised learning
algorithms

The response variables or classes are six-fold and are as follows:

• dropping and picking up,
• vibrating,
• non-vibrating stationary surface,
• standing,
• walking, and
• sitting.

In prior research [101], the CfsSubsetEval feature evaluator in WEKA has been iden-
tified as the evaluator with the best performance for feature selection using its search
methods (BestFirst, Ranker search, and Forward selection). In order to remove noisy fea-
tures from the experiment or features with a weak predictive power, the BestFirst feature
selection method of the CfsSubsetEval evaluator in WEKA was used to identify a subset of
features that have a high predictive ability in relation to the dependent or response variable
(product use Activity). In other words, it identifies a subset of features with a high correla-
tion with the classes but low intercorrelation. This feature selection algorithm searches the
space of attribute subsets by greedy hill climbing augmented with a backtracking facility.

http://www.cs.waikato.ac.nz/ml/weka/index.html
http://www.cs.waikato.ac.nz/ml/weka/index.html


Sensors 2021, 21, 4991 11 of 23

In addition to the BestFirst technique, a 10-fold cross validation technique was used to
identify the features that maintain a high predictive power in all 10-folds. This technique
involves randomly dividing the dataset into k groups or folds of approximately equal size.
The first fold is kept for testing and the model is trained on k− 1 folds.

As a result of the feature selection process, the eight (8) features or independent
attributes with the highest predictive power and used in the experiment are as follows:
Acceleration Y, Angular Velocity X, Angular Velocity Y, Angular Velocity Z, Magnetic Field
X, Orientation X, Orientation Y, and Orientation Z.

4.3. Finding an Optimal Number of Clusters

This study is aimed at identifying suitable machine learning models for the identi-
fication of product use activity in order to relay product usage insights back to product
designers, engineers, and manufacturers. This will aid the enhancement of products used
in the wild, as well as user satisfaction.

While it is known in advance what activities are in the collected dataset for this study
(labeled dataset which should naturally constitute a classification or supervised machine
learning problem) having collected the dataset in a controlled environment (as described
in Section 3), products are generally used in the wild and the distinct usage activities will
not be predetermined. Based on this premise, we want to identify suitable (unsupervised)
clustering techniques that can identify product use activities sharing similar attributes
and evaluate the performance of these clustering techniques using external performance
functions based on the labels (classes) in our dataset. The labels in our dataset are, therefore,
solely used to evaluate the accuracy of the clustering algorithms applied in this study,
to provide an estimate of how well they will perform on product use datasets gathered
from the wild. As we are resolving a clustering problem, it is imperative to identify an
optimal number of clusters to use in our experiments, given that the number of product
use activities will be unknown in the wild.

Among different methods to find the optimal number of clusters, the elbow method
is selected [102]. In this algorithm, the center of clusters is estimated using the K-means
clustering algorithm (to perform the clustering) and then the Within-Cluster-Sum-of-Squares
(WCSS) is estimated for each cluster (WCSS is the sum of squares of the distances of each
data point in all clusters to their respective centroids.) [103,104].

The fundamental idea of the elbow method is to adopt the square of the distance
between the sample points in each cluster and the centroid of the cluster to give a series of K
values. The Within-Cluster-Sum-of-Squares (WCSS) is adopted as a performance indicator
and we can iterate over the K-value and calculate the WCSS [105]. Smaller values indicate
that each cluster is more convergent. When the number of clusters is set to approach the
number of real clusters, WCSS shows a rapid decline. When the number of clusters exceeds
the number of real clusters, WCSS will continue to decline, but it will quickly become
slower. The K value can be better determined by plotting the K-WCSS curve and by finding
the inflection point where the curve yields an angle.

The elbow method is adopted as it is visual, more intuitive, and examines each data
point within each cluster in comparison to the cluster’s centroid. In addition, the elbow
method is mainly a decision rule, compared to other methods, such as silhouette, which is
a metric used for validation while clustering. As such, it can be used in combination with
the elbow method. Based on this premise, the elbow method and the silhouette method are
not alternatives to each other for finding the optimal K. Rather, they are tools which can
complement each other for a more confident decision [102].

The corresponding graph is plotted with respect to the number of clusters and WCSS
(as in Figure 5). The optimal number of clusters is the point at which increasing the number
of clusters does not improve the clustering index considerably. Figure 5 demonstrates cor-
responding graph for all six classes or product usage activities in our dataset. Considering
this figure, the optimal number of clusters selected is 6 for all classes.



Sensors 2021, 21, 4991 12 of 23

Figure 5. Elbow method to select number of clusters.

4.4. Experiments

The unsupervised machine learning experiments were carried out based on the knowl-
edge of the optimal number of activities (k) in order to gain a good understanding of
the performance of unsupervised machine learning methods on each of the sensors for
product use activity recognition. Given that the optimal k was known (as described in
Section 4.3, k = 6), which is also equivalent to the number of classes in this case (the ac-
tivity response variable), we used the “Classes to clusters evaluation” clustering mode
in WEKA and applied the following three classic unsupervised machine learning algo-
rithms (with k = 6, using the default options for each clustering algorithm [106]): K-means,
Expectation-Maximization (EM), and Farthest First. These three unsupervised machine
learning algorithms have also been explored in a prior study.

In addition, we carried out another experiment using fuzzy C-means algorithm [107,108],
which was implemented in Python using skfuzzy package as they are unavailable in WEKA.
We selected this additional algorithm because it enables us to consider activity as belonging
to more than one discrete cluster. This means multiple concurrent activities (e.g., walking
and dropping) can belong to different clusters to different degrees, given the activity is
performed in real time. We anticipate that defining cluster memberships to different degrees
will improve the performance of an activity-focused clustering approach. In addition, we
wanted to conduct a more robust and comprehensive accuracy comparison of unsupervised
machine learning algorithms with different features, complexities, and strengths. All four
algorithms are further described below.

4.4.1. WEKA

In WEKA, we used the Classes to clusters evaluation clustering mode when perform-
ing the clustering. Using the Classes to clusters evaluation mode, in the training phase,
WEKA ignores the classes or label attribute and generates the clustering based on a selected
clustering algorithm. The testing phase then proceeds after that. During the testing phase,
classes are assigned to the clusters, based on the majority value of the class attribute within
each cluster. Finally, the classification error is computed. Based on this assignment a
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corresponding confusion matrix is derived, from which we can compute the evaluation
metrics (precision, recall and f-measure) described in Section 4.5.

K-Means

This algorithm is a well-used clustering algorithm [109]. It is a distance-based technique
which functions in an iterative manner. At the initiation of the K-means algorithm, k objects
would be randomly selected to be the centers of the clusters. All objects are then grouped into
k clusters based on the minimum squared-error criterion (Only one assignment to one center
is possible. If multiple centers have the same distance to the object, a random one would be
chosen.). This helps to measure the distance between an object and the cluster center. At this
point, the new mean is calculated for each cluster and then a new iteration process is carried
out until the cluster centers remain the same [110,111].

Let X = {xi}, i = 1, 2, . . . , n be the n objects to be clustered, S = S1, S2, . . . , Sk is the
set of clusters. Let µ be the mean of cluster Si. The squared-error between µi and the
objects in cluster Si is defined as WCSS(Si) = ΣXj∈Si‖Xj − µi‖2. The K-means algorithm
aims to minimize the sum of the squared error over all k clusters, that is min(WCSS(S)) =
argmins ∑k

i=1 ∑Xj∈Si ‖Xj − µi‖2, where WCSS denotes the sum of the squared error in the
inner-cluster. A drawback to K-means algorithm is that it requires the specification of the
number of ”k“ (clusters) beforehand and also and the inappropriateness for discovering
non-convex clusters [112].

Expectation-Maximization (EM)

This algorithm functions by determining the members of each data object according
to a probability [113]. EM consists of maximization steps and expectation. The cluster
probability of each object is calculated by the expectation step while the maximization step
calculates the distribution parameters that maximize the likelihood of the distributions
given the data [110,111]. The EM algorithm has one notable advantage, which is being
stable and easy to implement. However, a drawback is that it is slow to converge and
intractable expectation and maximization steps [114]. This is represented by the formulas:

Q(θ | θ(t))EZ |X ,(T)θ [logL(θ; X, Z)]andθt+1) = argmaxθQ(θ | θ(t)).

Farthest First

This algorithm is a fast and greedy algorithm. In summary, k points are initially
selected as cluster centers. The first center is randomly selected. The second center is
greedily selected as the point furthest from the first, while the remaining centers are
obtained by greedily selecting the point farthest from the set of already chosen centers. The
remaining data points are added to the cluster whose center is the closest to it [115].

For each Xi = [xi, 1, xi, 2, . . . , xi,m ] in D that is described by m categorical attributes,
we use f (Xi,j | D) to denote the frequency count of attribute value xi,j in the dataset. A
scoring function is designed for evaluating each point, and this is defined as:

Score(Xi) =
m

∑
j=1

f (Xi,j | D).

4.4.2. Fuzzy C-Means

Unlike K-means and other classical clustering algorithms in which data just belongs
to a certain cluster, in fuzzy C-means clustering algorithm, data may belong to two or more
clusters at certain degree [116]. The degree of membership in fuzzy C-means algorithm can
accept any value from the interval [0, 1]. This type of representation is more expressive
of the data which includes a better detailed view of the data and relationships among
clusters [117]. It may, as well, alleviate the problem associated with K-means clustering,
which is basically the assignment of an appropriate cluster to data when it is on the same



Sensors 2021, 21, 4991 14 of 23

distance with respect to center of clusters [118], in which case, the degree of membership
assigned by fuzzy C-means is equal for the two clusters.

The fuzzy C-means algorithm as proposed in 1983 is to find fuzzy membership
functions which minimize the following cost function [119].

Jm(U, R) =
N

∑
i=1

K

∑
j=1

µm
ij |xi − rj|2, (1)

subject to:

µij ∈ [0, 1];
k

∑
j=1

µij = 1 ∀i; 0 <
n

∑
i=1

µij < N, ∀N, (2)

where X = {xi}N
i=1 is the set of data points, U = {µij}NK

i,j=1 is the matrix of membership

degrees, k ∈ N is the number of clusters, R = {ri}k
i=1 is the set of representatives, and

m is a measure of fuzziness of the cluster. In case m → 1, the fuzzy C-means becomes
standard K-means method. Moreover, |.| represents the Frobenius norm of its arguments.
An iterative algorithm is summarized in a few steps, as follows (Algorithm 1).

Algorithm 1: Calculate fuzzy C-means.

Require: X = {xi}N
i=1 and k

return U and R
U0 is randomly initialized
while |Uk+1 −Uk| > e do

Calculate rj as follows.

rj =
∑n

i=1 µm
ij xi

∑n
i=1 µm

ij
, j = 1, ..., k

Update uij as follows.

uij =
1

∑C
i=1

(∣∣∣ xi−rj
xi−rk

∣∣∣) 2
m−1

end while
End

Fuzzy partition coefficient (FPC) is used to find the optimal number of the clusters
associated with fuzzy c-means algorithm. This algorithm measures the amount of overlap
between clusters. The resulting coefficient belongs to the interval [0, 1] with its maximum
value at one corresponding to no overlap between clusters. Fuzzy partition coefficient
method is a simple yet effective algorithm which computes the coefficients associated with
fuzzy clustering with certain number of clusters as follows [119].

FPC =
1
N

N

∑
i=1

K

∑
j=1

µ2
ij. (3)

This index is computed for different number of clusters, and the number of clusters
corresponding to maximum number of FPC is considered as the optimal value of clusters
for performing fuzzy C-Means.

After performing clustering, each cluster is assigned to the class whose members
mostly belong to. In this way, multiple clusters represent a single class. Since the distribu-
tion of data in each class may not be just around a single mean value, using multiple clusters
makes it possible to find multiple separate points around which data corresponding to a
class is distributed.
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4.4.3. Fuzzy Partition Coefficient

As mentioned earlier, FPC is used for finding the optimal number of clusters for fuzzy
clustering. This index is iterated versus different number of clusters. The results of this
experiment are depicted in Figure 6. Higher FPC corresponds to better fuzzy C-means
prediction. As can be seen from this figure, the optimal number of clusters need to be
considered using fuzzy C-means is 10.

Figure 6. Fuzzy partition coefficient versus number of partitions.

4.4.4. Cluster Class Assignment

Similar to the procedure performed under WEKA for classification, the fuzzy C-means
algorithm ignores class labels during training, and it builds clusters based on similarity
between features, as described earlier. During the testing phase, new data points are assigned
to clusters based on the fuzzy C-means learned model from the training phase—with similar
data points clustered together. Predicted class labels are then assigned to each cluster,
based on the majority value of the class labels associated with the data points assigned to
each cluster. The corresponding confusion matrix is then derived from the real labels and
the predicted ones, from which the evaluation metrics (precision, recall, and f-measure)
described in Section 4.5 are measured.

4.5. Evaluation Metrics

Maheshwari et al. [120] used F-measure and the area under a ROC (Receiver Operating
Characteristic) curve (AUC) measures for evaluating classifiers with imbalanced data set because
accuracy can be misleading when used to evaluate algorithms on imbalanced data sets.

On the other hand, Shepperd et al. [121] emphasized that “determining classification
performance is more subtle than it might first appear since we need to take into account both chance
aspects of a classifier (even guessing can lead to some correct classifications) and also what are
termed unbalanced data sets where the distribution of classes is far from 50:50”.
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Since we are dealing with a multi-class (sitting, vibrating, walking, etc.) classifica-
tion problem, we adapt the evaluation measures used by Maheshwari et al. [120] and
the Matthews Correlation Coefficient (MCC) for dealing with imbalanced data (unequal
distribution of classes) [121], taking the average measures for all classes as we cannot
guarantee an even distribution of instances or occurrences per product usage activity or
class in the wild.

The performance measures used in this study are described as follows:

• F-measure: The F-measure performance metric uses recall and precision for perfor-
mance measurement, and it is a harmonic mean between them. In practice, high
F-measure value ensures that both recall and precision are reasonably high [120].
Precision is used to measure the exactness of the prediction set, as well as recall its
completeness. These can be represented mathematically as:

Precision =
TP

TP + FP
, (4)

Recall =
TP

TP + FN
, (5)

F–measure =
2 ∗ Precision ∗ Recall

Precision + Recall
, (6)

where: TP = True Positives; TN = True Negatives; FP = False Positives; FN = False
Negatives.

• Matthews correlation coefficient (MCC): MCC is a correlation coefficient between
the observed and predicted classifications. This measure takes into account TP, FP,
TN, and FN values and is generally regarded as a balanced measure, which can be
used even if the classes are unbalanced. This measure returns a value between −1 and
+1. A coefficient of +1 represents a perfect prediction, 0 means a random prediction,
and −1 indicates total disagreement between prediction and observations [121,122].
The MCC is computed as follows:

MCC =
(TP ∗ TN)− (FP ∗ FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN).
(7)

5. Results

Table 2 presents the empirical results from the unsupervised machine learning exper-
iments. It shows the Precision, Recall, F-measure, and MCC for each of the six machine
learning techniques used. The applied algorithms generated 6 clusters of similar data
instances during the training phase. And in the testing phase, the algorithms attempted
a 1-1 mapping of each of the actual six classes/labels shown in Table 3 to each of the
generated or predicted (six) clusters. The accuracy metrics were then generated based on
the correctness of this mapping.

Table 2. Overall Precision, Recall, F-measure, and MCC.

Precision Recall F-Measure MCC Classes Mapped to Clusters

K-means 0.58 0.57 0.57 0.45 All 6
Expectation-maximization (EM) 0.79 0.80 0.79 0.78 All 6
Farthest first 0.57 0.67 0.61 0.31 Only 3
Fuzzy C-means 0.87 0.87 0.87 0.84 All 6
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Table 3. Precision, Recall, F-measure, and MCC for fuzzy C-means.

Evaluation Metrics Class #1 Dropping Class #2 Sitting Class #3 Standing Class #4 Stationary Class #5 Vibrating Class #6 Walking
and Picking Up on Side Table Surface

Precision 0.94 0.82 0.84 0.76 0.99 0.94
Recall 1. 1. 0.69 0.99 0.53 1.
F-measure 0.97 0.90 0.76 0.86 0.69 0.97
MCC 0.96 0.88 0.72 0.84 0.69 0.96

Based on the last column in Table 2, the comparison results between the classical
clustering approaches of K-means, EM and farthest first shows that only the K-means and
EM clustering algorithms are able to map all 6 classes to the 6 clusters generated during
the training phase. The farthest first algorithm is unable to map all classes to the 6 clusters
given the high proportion of false positive and false negatives derived during the training
phase of the algorithm as compared to the total number of instances in the dataset.

Furthermore, looking at the F-measure and MCC of the K-means and EM unsuper-
vised machine learning algorithms, we can deduce that the EM algorithm (with F-measure
of 79% and MCC of 0.78) outperforms the k-means algorithm (with F-measure of 57% and
MCC of 0.45), both in terms of F-measure and MCC. The K-means invariably outperforms
the Farthest first algorithm, given that the Farthest first algorithm was only able to correctly
cluster or map 3 out of the 6 classes from the dataset to clusters, and resulted in a lower
number of correctly classified instances overall (or of all 3 algorithms applied).

The results obtained for fuzzy C-means for clustering are reported with the number of
clusters equal to 10 as previously obtained from FPC method in Section 4.4.3. Considering
the results associated with fuzzy C-means algorithm in Table 2, it can be concluded that
this approach results in superior performance when compared to the classical clustering
approaches of K-means, EM and farthest first. Furthermore, the optimal number of clusters
estimated in this paper for fuzzy C-means algorithm is 10, which is multiple clusters per
class. This means that fuzzy C-means can effectively cluster data samples in cases where
data associated with a class are distributed in multiple separate clusters.

For a deeper evaluation of the best performing algorithm, Table 3 presents the break
down of the results obtained for fuzzy C-means in terms of evaluation indexes of precision,
recall, f-measure, and MCC for each class, separately. It can be observed that the activities
of dropping and picking up, sitting, and walking, which correspond to the classes of 1, 2,
and 6, are recognized with higher performance than the other three classes of standing,
stationary on side table and vibrating on surface, which correspond to classes number 3,
4, and 5. This could be because the clusters generated by fuzzy C-means for movement
characteristics observed by sensors for the cases of dropping and picking up, sitting,
and walking are more easily separated than the rest of classes, making them easier to be
distinguished. In other words, the movement characteristics observed by sensors for two
classes of standing and vibrating on a surface have more similarity to each other, making it
more difficult for the software to recognize such activities, which may, in turn, also explain
why the fuzzy clustering method has improved on other more static approaches.

6. Conclusions

Four different clustering algorithms were applied in this study for the clustering of
a sensor-generated product use activity dataset. K-means algorithm is a simple and easy
way to classify datasets through assumed k clusters with fixed a priori. EM algorithm is
based on the probability or the likelihood of an instance to belong to a cluster following the
expectation and maximization steps. The Farthest First algorithm is an iterative, fast and
greedy algorithm in which the center of the first cluster is selected at random. Other than
these classical clustering techniques, fuzzy C-means algorithm is also used for performing
the clustering to test our assumption that results would improve if we enabled multi-
activity clusters, where activities belong to multiple clusters to different degrees during
real-time behavior/experiences.
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The highest accuracy (in terms of both the F-measure and MCC model evaluation
metrics for dealing with imbalanced datasets) obtained is 0.87 (F-measure) and 84% (MCC)
for the fuzzy C-means algorithm—outperforming the other three algorithms applied on
the dataset. We also show that the ability to classify different activity types is consistently
high. There are no activities that the best performing model struggled to detect.

The results demonstrate that the detection of “unknown” product use activity in the
wild from in-built activity sensors using unsupervised machine learning algorithms is a
feasible approach. This could be applied practically to achieve the first stage of the “Chatty
Factories” concept—product “experience” collection from product use in the wild, and
automated methods to detect product usage activities. This allows the product design
process to move beyond traditional customer feedback or manual consumer research, to
include augmented information about how the product is actually used based on usage-
data. This advances the manufacturing sector’s ability to redesign products such that
they are better fit for purpose. Moreover, product refinement can be accelerated using
the proposed methods, as designers will become less dependent on longer-term studies,
such as consumer market research, from small samples of consumers. Product usage data
gathered using our proposed methods can provide near real-time insights from consumers
at scale—across time, space, and social cultures, enabling continuous product refinement.
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