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Poisson Equation in the Kohn-Sham Coulomb Problem
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We apply the Poisson equation to the quantum mechanical Coulomb problem for many-particle sys-
tems. By introducing a suitable basis set, the two-electron Coulomb integrals become simple overlaps.
This offers the possibility of very rapid linear-scaling treatment of the Coulomb contribution to Kohn-
Sham theory.
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Consider a charge density r�r� describing an N-particle
system. The classical Coulomb energy is given by

EJ �r� �
1
2

Z
dr1

Z
dr2

r�r1�r�r2�
jr1 2 r2j

, (1)

and the cost of evaluating it scales formally quadratically
with N . This O �N2� scaling makes the Coulomb evalua-
tion a major bottleneck in Kohn-Sham theory [1] applied to
systems of many electrons. In such theories r is expanded
in a set of functions (which may be of direct product form)

r�r� �
X

i

dixi�r� , (2)

and the Coulomb energy is then written (with summation
over repeated indices) EJ � 1

2 diJijdj , where

Jij �
Z

dr1

Z
dr2

xi�r1�xj�r2�
jr1 2 r2j

. (3)

Linear scaling can be achieved by suitable partitioning
of the Coulomb interaction into short- and long-ranged
parts and continuous fast multipole methods [2–6]. Even
though the number of short-range Coulomb integrals scales
linearly in such methods, each integral is inherently rather
time consuming to compute, despite huge advances in in-
tegral evaluation technology. In this Letter we present
a linear-scaling method for evaluating EJ in which the
Coulomb integrals become exceptionally simple.

Theory.—Coulomb fitting methods have seen consider-
able success in speeding up the evaluation of the Coulomb
energy [7,8]. The idea is to form a model density r̃�r�,

r̃�r� �
X
a

caja�r� , (4)

with �ja� a smaller basis than �xi�, and then to minimize
the error

D �
1
2

Z
dr1

Z
dr2

�r�r1� 2 r̃�r1�� �r�r2� 2 r̃�r2��
jr1 2 r2j

(5)

to determine the coefficient vector c. This forms one of
the key elements of the current approach.

A previous study pertaining to the evaluation of the
Coulomb potential on an integration grid [9] revealed that
explicit use of the Poisson equation does not lead to com-
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petitive methods; nevertheless, it is the Poisson equation
that forms the second key element of our paper. To sim-
plify the notation we write P � 2�4p�21=2. The Poisson
equation,

Py�r� � r�r� , (6)

relates the density r to the Coulomb potential,

y�r� �
Z

dr0
r�r0�

jr 2 r0j
. (7)

Now we choose a basis of the form �Pja� in which to
perform our Coulomb fitting. Thus

r̃�r� �
X
a

caPja�r� , (8)

and from Eqs. (6) and (8) we can immediately write down
the Coulomb potential ỹ arising from the density r̃:

ỹ�r� �
X
a

caja�r� . (9)

For a function f�r� vanishing at large r faster than r21,
the integral identityZ

dr0
=2f�r0�
jr 2 r0j

� 24pf�r� (10)

holds [10]. This identity allows us to reduce (without ap-
proximation) the Coulomb matrix elements in the auxiliary
basis from 6- to 3-dimensional integrals,

Jab �
Z

dr1

Z
dr2

�P1ja�r1�� �P2jb�r2��
jr1 2 r2j

�
Z

dr ja�r�Pjb�r� , (11)

and the mixed-basis integrals become overlaps:

Jai �
Z

dr1

Z
dr2

�P1ja�r1�� �xi�r2��
jr1 2 r2j

�
Z

dr ja�r�xi�r� . (12)

To clarify the situation we contrast the properties of these
integrals in the case of a standard basis and the basis
proposed in this Letter: the Jab are ordinarily 2-center,
6-dimensional integrals, whose values decay only slowly
(an inverse power) with the distance between the functions
ja, jb , whereas now they are 3-dimensional overlap-like
© 2001 The American Physical Society 163001-1
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integrals, analogous in form to kinetic energy integrals;
the Jai , ordinarily 3-center, 6-dimensional Coulomb inte-
grals, are now 3-center, 3-dimensional overlap integrals.
For Gaussian functions, commonly used in quantum chem-
istry, both of these types of integrals can be evaluated ana-
lytically and extremely quickly [11].

We can now set up our Coulomb fitting equations.
The error in Eq. (5) is minimized when Jabcb � Jaidi ,
from which the energy can easily be shown to be ẼJ �
1
2 diJia�J21�abJbjdj .

Analysis and discussion.—We have presented a for-
malism for evaluating the Coulomb energy of a charge
distribution in which the Coulomb integrals simplify to
3-dimensional overlap integrals or integrals with kernel =2.
This simplification relies on first applying the Poisson op-
erator P to a Coulomb fitting basis, and then undoing its
action to obtain the Coulomb potential. This is legitimate
as the integration constants are fixed by the known asymp-
totic form of the potential, y�r� � Z�r, where Z is the
total charge of the system.

Owing to the choice of the auxiliary basis we have
Z

dr r̃�r� � 0 (13)

so we see that without further modification the method
is applicable only to electrically neutral systems. In the
context of quantum chemistry, this suggests that we may
consider neutral molecules, providing we include both
electrons and nuclei in the density. Since the nuclei are
described by Dirac d functions, we must be careful about
our definition of integration [12], and put

Z
dr1

Z
dr2

d�r1�d�r2�
jr1 2 r2j

def
� 0 . (14)

This restriction, however, confers a great advantage: we
effectively represent the Coulomb potential in the basis set
�ja�, and the short-ranged nature of the Coulomb potential
for a neutral system will allow an accurate description
without too large a basis. To illustrate this, the electronic,
nuclear, and total Coulomb potentials for the hydrogen
atom are shown in Fig. 1. The total potential is singular
at the nuclei, so special basis functions are required to
describe the singularity at short range but which vanish
at long range. A suitable choice is

fA�r� � ZA
erfc�

p
p jr 2 Aj�2�
jr 2 Aj

(15)

for a nucleus of charge ZA centered at A. The coefficients
of the PfA in the density are fixed at unity to give an
exact description of the singularities. Then the rest of the
basis �ja� is used to describe the sum of the electronic
and long-ranged nuclear potentials. These potentials are
illustrated for hydrogen in Fig. 1, where it will be seen
that the quantity to be described by the remaining basis
functions is extremely small, smooth, and short ranged,
contributing less than 3% to the total Coulomb energy. By
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FIG. 1. Coulomb potentials for the hydrogen atom. Solid
lines: electronic, nuclear, and total Coulomb potentials. Dashed
lines: long-range nuclear potential [erf�

p
p r�2��r] and the sum

of the electronic and long-range nuclear potentials.

performing the calculation with a single function of the
form ar exp�2br2�, we obtain 20.687423 hartree for the
total Coulomb energy of the hydrogen atom, comparing
with the exact value of 20.6875 hartree.

To demonstrate the method for a molecule we optimized
basis sets for hydrogen and fluorine by minimizing the
error in Eq. (5) for, respectively, the H2 and F2 molecules
at their equilibrium bond lengths using the cc-pVDZ
orbital basis set [13]. The uncontracted even-tempered
Gaussian basis sets are 12s6p4d1f and 4s4p1d for
fluorine and hydrogen, respectively. Kohn-Sham calcu-
lations were then performed for the HF molecule using
the local density approximation [14,15] and the Coulomb
contribution treated either exactly or with the current
method. The total energy differs by 0.002 hartree, and the
true and approximated dipole moments are, respectively,
0.7358 a.u. and 0.7363 a.u. The corresponding equilib-
rium bond lengths and harmonic stretching wave numbers
are 1.767 and 1.761 bohr and 3946 and 3965 cm21. These
errors are similar to those found in standard Coulomb
fitting methods, and lend confidence to the hope that the
proposed technique will offer comparable accuracy, but
with very significantly reduced computational resources.
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