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A STOCHASTIC FRAMEWORK FOR ATOMISTIC FRACTURE\ast 

MACIEJ BUZE\dagger , THOMS E. WOOLLEY\dagger , AND ANGELA MIHAI\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We present a stochastic modeling framework for atomistic propagation of a Mode I
surface crack, with atoms interacting according to the Lennard--Jones interatomic potential at zero
temperature. Specifically, we invoke the Cauchy--Born rule and the maximum entropy principle to
infer probability distributions for the parameters of the interatomic potential. We then study how
uncertainties in the parameters propagate to the quantities of interest relevant to crack propagation,
namely, the critical stress intensity factor and the lattice trapping range. For our numerical inves-
tigation, we rely on an automated version of the so-called numerical-continuation enhanced flexible
boundary NCFlex algorithm.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . elasticity, interatomic potential, stress, fracture, stochastic modelling, numerical
algorithms

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 74R10, 74S60, 74G15

\bfD \bfO \bfI . 10.1137/21M1416436

1. Introduction. Brittle fracture in crystalline materials is an inherently mul-
tiscale phenomenon where macroscopic crack propagation is determined by atomistic
processes occurring at the crack tip [1]. The usual modeling approach consists in
coupling a high-level, high-accuracy atomistic model, employed in the vicinity of the
crack tip, with a continuum-modeled far field. The atomistic model should ideally
exhibit a quantum level of accuracy, which can be achieved, for instance, with a den-
sity functional theory type model [17]. A more computationally feasible alternative
is to disregard the electrons and model the interatomic interactions instead. In this
framework, atoms are treated as points in a discrete model and the behavior of atoms
is governed by an empirical (but physics-based) interatomic potential. At this level
of description, the two quantities that capture the propagation of a straight crack of
single mode are the critical stress intensity factor Kc and, reflecting the discreteness
of the lattice, the lattice trapping range, (K - ,K+) \subset \BbbR , which was first identified in
[31].

A typical empirical potential has between 2 and 11 parameters (rising to > 1000
for modern machine-learning potentials), and the highly nonlinear nature of the over-
all model necessitates quantifying the uncertainty in their choice and how this prop-
agates to quantities of interest. Usually, this is achieved by employing a Bayesian
approach, whereby one assumes some prior probability distributions for the param-
eters, which are subsequently updated using available data originating from experi-
ments or higher-level theories [10, 21, 34]. However, two main issues can arise with
this approach. First, the prior distribution of each parameter is typically taken to be
a Gaussian (e.g., in [10, 21, 34]), due to the seemingly reasonable assumption that
errors in the reference data set are independent. This may not always be correct, de-
pending on the physical constraints present in the model, such as, for example, when
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parameters must have positive values. Second, while the Bayesian procedure can be
carried out reasonably well for simple quantities of interest, including elastic moduli,
lattice parameters, cohesion energy, and point-defect formation energy, it presents a
computational challenge for more complicated quantities, such as (K - ,K+), for which
analytical formulae do not exist and can only be estimated numerically.

Addressing the first issue and inspired by the recent literature on the topic of
continuum stochastic elasticity [28, 13, 29, 14, 12, 24], we propose an information-
theoretic approach to derive prior distributions for the parameters of the interatomic
potential. Our approach uses a minimal set of physical constraints obtained by cou-
pling the atomistic model via the Cauchy--Born rule with its continuum counterpart.
Regarding the computational challenge, we formalize an automated numerical proce-
dure that allows a reasonably fast computation of Kc and (K - ,K+). This is based
on a recently proposed NCFlex (numerical continuation-enhanced flexible boundary)
scheme [5].

We demonstrate our approach for an idealized model of straight Mode I frac-
ture in a two-dimensional (2D) crystalline material forming a triangular lattice. In
particular, we focus on the Lennard--Jones potential [20], which has two parameters,
one representing the energetic cost of breaking a bond and the other specifying how
difficult it is to break a bond. The relative simplicity of the model ensures that the
stochastic framework can be presented with clarity and allows us to compare our
numerical results with some analytical results available in this case. In particular,
we show that, in our model, the relative strength of lattice trapping is small and
does not depend on the choice of parameters. We further provide evidence that the
continuum-theory based formula for Kc does hold for our model. We also highlight
the interplay between the strength of statistical fluctuations and lattice trapping. In
section 2, we discuss our prerequisites, summarizing the classical continuum frame-
work of linearized elasticity (CLE), and outline the information-theoretic approach,
together with a brief account of how this framework translates to fracture modeling.
In section 3, we present the deterministic atomistic model, which uses CLE as a far-
field boundary condition. Section 4 is devoted to the development of our atomistic
stochastic framework and is followed by the numerical investigation in section 5. Some
detailed calculations are deferred to Appendix A.

2. Prerequisites.

2.1. Classical linearized elasticity. We consider elastic deformations, \bfity : \Omega \rightarrow 
\BbbR 3, of a 3D body, \Omega \subset \BbbR 3, of the form \bfity (\bfitx ) = \bfitx + \bfitu (\bfitx ), where \bfitu : \Omega \rightarrow \BbbR 3

is the displacement field. The linearized strain tensor, \bfitvarepsilon : \Omega \rightarrow \BbbR 3\times 3, is defined by
\bfitvarepsilon (\bfitx ) =

\bigl[ 
\nabla \bfitu (\bfitx ) +\nabla \bfitu (\bfitx )\top 

\bigr] 
/2, and the linear elastic constitutive stress-strain relation

[19] takes the form

(2.1) \bfitsigma (\bfitx ) = \BbbC : \bfitvarepsilon (\bfitx ),

where \BbbC \in \BbbR 3\times 3\times 3\times 3 is a constant fourth-order tensor, known as the elasticity tensor,
and \bfitsigma : \Omega \rightarrow \BbbR 3\times 3 is the stress tensor. In the absence of body forces, equilibrium
configurations can be found by solving the equations

(2.2) \sigma ij,j = 0 for i = 1, 2, 3,

where Einstein summation convention is used, subject to appropriate boundary con-
ditions. Depending on the symmetry class considered, the elasticity tensor \BbbC has up
to 21 independent entries [19], known as elasticities, and admits a second-order tensor
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representation [22], in the form of a symmetric matrix [\BbbC ] \in \BbbR 6\times 6. Then the relation
(2.1) can be equivalently restated as follows:

(2.3)

\left[ 
       

\sigma 11

\sigma 22

\sigma 33

\sigma 23

\sigma 31

\sigma 12

\right] 
       
=

\left[ 
       

\BbbC 1111 \BbbC 1122 \BbbC 1133 \BbbC 1123 \BbbC 1131 \BbbC 1112

\BbbC 2211 \BbbC 2222 \BbbC 2233 \BbbC 2223 \BbbC 2231 \BbbC 2212

\BbbC 3311 \BbbC 3322 \BbbC 3333 \BbbC 3323 \BbbC 3331 \BbbC 3312

\BbbC 2311 \BbbC 2322 \BbbC 2333 \BbbC 2323 \BbbC 2331 \BbbC 2312

\BbbC 3111 \BbbC 3122 \BbbC 3133 \BbbC 3123 \BbbC 3131 \BbbC 3112

\BbbC 1211 \BbbC 1222 \BbbC 1233 \BbbC 1223 \BbbC 1231 \BbbC 1212

\right] 
       

\left[ 
       

\varepsilon 11
\varepsilon 22
\varepsilon 33
2\varepsilon 23
2\varepsilon 31
2\varepsilon 12

\right] 
       
.

In every symmetry class, [\BbbC ] can be decomposed as follows:

(2.4) [\BbbC ] =
n\sum 

i=1

ci\bfitE \bfiti ,

where n ranges from 2 for the fully isotropic case to 21 when a fully anisotropic case
is considered. Here, \{ \bfitE \bfiti \} is the corresponding basis of a subspace of \BbbR 6\times 6 (see, e.g.,
[13]) and

(2.5) \bfitc = (c1, . . . , cn) \in \BbbR n

is the set of independent entries of \BbbC .

2.2. An information-theoretic approach for continuum elastic mate-
rials. To account for the inherent uncertainty in elastic material parameters, the
elasticity tensor can be modeled as a random variable. At the continuum level, the
randomness typically stems from (i) the presence of uncertainties while modeling the
experimental setup in either forward simulations or inverse identification and (ii) the
lack of scale separation for heterogeneous random materials, resulting in the con-
sideration of mesoscopic apparent properties. In [13], a least-informative stochastic
modeling framework for elastic material is developed by invoking the maximum en-
tropy principle (MaxEnt) [16]. The minimal set of constraints to explicitly construct
a MaxEnt prior probability distribution for \BbbC is as follows:

(P1) The mean value of the tensor is known.
(P2) The elasticity tensor \BbbC , and its inverse, known as the compliance tensor, have

a finite second-order moment (physical consistency).
A more detailed treatment of this class of approaches can be found in [28, 29, 14, 12].
Given the decomposition of [\BbbC ] in (2.4), the object of interest is an \BbbR n-valued random
variable \bfitc , and the constraints (P1)--(P2) (together with the required normalization)
take the form of a mathematical expectation

(2.6) \BbbE \{ \bfitf (\bfitc )\} = \bfith ,

where \bfitf : \BbbR n \rightarrow \BbbR q and \bfith \in \BbbR q. It can be shown [16, 23] that the MaxEnt probability
distribution of the random variable \bfitc from (2.5) is characterized by the probability
density function

(2.7) \rho (c) := 1S(c) exp\{  - \langle \bfitlambda , \bfitf (c)\rangle \BbbR q\} ,

where the set S \subset \BbbR n represents all possible choices of \bfitc \in \BbbR n for which (2.6) is
satisfied, whereas \bfitlambda = (\lambda 1, . . . , \lambda q) is the vector of the associated Lagrange multipliers.
We refer to [13] for an in-depth discussion, and in particular, to their Appendix B,
in which the existence and uniqueness of a MaxEnt probability density function is
addressed, explaining why this takes the form (2.7).
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Fig. 1. Left: A continuum \BbbR 2 \setminus \Gamma 0 in the reference configuration. Middle: The configuration
of a cracked body obtained from the equilibrium displacement field \bfitu from (2.9), with the vicinity of
the crack tip (in which atomistic effects dominate) highlighted. Right: The atomistic structure in
the vicinity of the crack tip.

2.3. Mode I fracture in planar elasticity. Our stochastic framework for
atomistic crack propagation will be presented for the case of a single Mode I crack in
a cubic crystal modeled in the in-plane approximation (see Figure 1). This leads to
considerable simplification of the general theory presented in section 2.1.

In planar elasticity [32] (see [26, Appendix] for a discussion on the plane-strain
and plane-stress reductions of the 3D elasticity theory), the strain components are
\varepsilon 11, \varepsilon 22, \varepsilon 12 and the stress components are \sigma 11, \sigma 22, \sigma 12. In combination with the fact
that, in the cubic symmetry class, [\BbbC ] has three independent entries \bfitc = (c1, c2, c3),
(2.3) simplifies to

\bfitsigma 2D = \BbbC 2D : \bfitvarepsilon \Leftarrow \Rightarrow 

\left[ 
 
\sigma 11

\sigma 22

\sigma 12

\right] 
 =

\left[ 
 
c1 c2 0
c2 c1 0
0 0 c3

\right] 
 
\left[ 
 
\varepsilon 11
\varepsilon 22
2\varepsilon 12

\right] 
 .

As will become apparent when we introduce the atomistic setup in section 3, we
consider in fact a special case, such that

(2.8) c2 = c3 and c3 =
c1  - c2

2
=\Rightarrow c2 =

1

3
c1 = \mu ,

where \mu denotes the shear modulus and represents the only independent entry of the
elasticity tensor. In this case, an equilibrium displacement field, \bfitu : \BbbR 2 \setminus \Gamma 0 \rightarrow \BbbR 2,
around a Mode I crack, with the crack surface described by

\Gamma 0 = \{ \bfitx = (x1, x2) \in \BbbR 2 | x1 < 0 and x2 = 0\} ,

and which satisfies the equilibrium equations (2.2) subject to homogeneous Neumann
boundary condition on \Gamma 0, can be shown [30] to be given by

(2.9) K\widehat \bfitu (\bfitm ) =
K

4
\surd 
2\pi \mu 

\surd 
r

\biggl[ 
3 cos(\theta /2) - cos(3\theta /2)
5 sin(\theta /2) - sin(3\theta /2)

\biggr] 
, \theta \in ( - \pi , \pi ),

where we employ polar coordinates \bfitm = r(cos \theta , sin \theta ) and K \in \BbbR is the stress
intensity factor and enters as a prefactor. According to Griffith's criterion [30], at
the continuum level of description, there exists a critical Kc, so that, when K > Kc,
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it is energetically favorable for the crack to propagate. It can be shown [36] that, in
the case considered, the critical value is

(2.10) \widetilde Kcont = 4

\sqrt{} 
\gamma \mu 

3
,

where \gamma is the surface energy per unit area, which is a material-dependent quantity.
It is well-known [1], however, that the continuum picture is incomplete in the case

of brittle fracture in crystalline materials, and one should not omit atomistic effects
occurring at the crack tip. We will proceed to present the atomistic framework.

3. Deterministic atomistic setup. In this section, we introduce the atomistic
setup by recalling well-established arguments setting out why the continuum picture
is insufficient, followed by a detailed discussion on discrete kinematics, Cauchy--Born
rule, and atomistic fracture.

3.1. Lattice trapping. Cracks in brittle materials are known to propagate via
atomistic mechanisms involving breaking of chemical bonds between atoms at the
crack tip [1]. In particular, as first reported in [31] and confirmed for a model similar
to ours in [27], the discreteness of the lattice implies that the crack remains locally
stable for a range of stress intensity factors

(3.1) I = (K - ,K+) \subset \BbbR ,

also known as the lattice trapping range. This is in contrast with the continuum theory
outlined in section 2.3. At the atomistic level, the critical

(3.2) \widetilde Kat \in I•

corresponds to a unique value for which the atomistic energy is the same both before
and after the crack propagating by one lattice spacing \ell .

3.2. Discrete kinematics. We consider a 2D crystalline material, \Lambda , given by
the infinite triangular lattice (see Figure 2) defined by

(3.3) \Lambda = \ell 
\bigl( 
\bfitM \BbbZ 2  - \widehat \bfitx 

\bigr) 
, \bfitM =

\biggl[ 
1 1

2

0
\surd 
3
2

\biggr] 
, \widehat \bfitx =

\biggl[ 1
2\surd 
3
4

\biggr] 
,

where \BbbZ 2 = \{ (m1,m2) \in \BbbR 2 | m1,m2 \in \BbbZ \} and the prefactor \ell > 0 is the so-called
lattice constant, describing the natural distance between atoms in the material, and

Fig. 2. Left: A defect-free crystalline material \bfLambda . Middle: The vicinity of a Mode I crack tip
with the crack surface depicted as a dotted line. Right: Zoomed-out view of the cracked crystal.
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can be measured experimentally. Conceptually, the 2D domain is to be interpreted
as a cross-section of a 3D material body, which is periodic in the antiplane direction.
For instance, the triangular lattice is known to be obtained as a projection of the
body-centered-cubic lattice [2, Figure 1], which is a crystalline arrangement that can
be found in many real-world materials [18].

The atoms are assumed to interact within a finite interaction range \scrR \subset \Lambda \setminus \{ 0\} ,
which is assumed to respect lattice symmetries, enforced through defining

(3.4) \scrR = (\Lambda \setminus \{ 0\} ) \cap B\ell R\ast 

for some R\ast > 0, where BR is the ball of radius R centered at the origin (see Figure 3).
The rescaling by the lattice constant \ell ensures that R\ast is an independent parameter,
in the sense that R\ast uniquely determines the number of atoms in the interaction
radius, regardless of the lattice constant.

As noted in section 2.3, we are interested in the in-plane deformations of the
material, described by a function \bfity : \Lambda \rightarrow \BbbR 2, and we will use the notation \bfity \bfitU for

\bfity \bfitU (\bfitm ) = \bfitm +\bfitU (\bfitm ),

where \bfitU : \Lambda \rightarrow \BbbR 2 is the displacement. For any \bfitm \in \Lambda and \bfitrho \in \scrR , the finite
difference of the deformation at sites \bfitm and \bfitm + \bfitrho is defined as D\bfitrho \bfity (\bfitm ) = \bfity (\bfitm +
\bfitrho ) - \bfity (\bfitm ). The discrete gradient is then

\bfitD \bfity (\bfitm ) := (D\bfitrho \bfity (\bfitm ))\bfitrho \in \scrR \in 
\bigl( 
\BbbR 2
\bigr) \scrR 

,

where the convenient ordering short-hand notation
\bigl( 
\BbbR 2
\bigr) \scrR 

refers to the space \BbbR 2\times | \scrR | ,
where | \scrR | \in \BbbN is the number of elements in \scrR . For the identity deformation \bfity \bfzero (\bfitm ) =
\bfitm , note that \bfitD \bfity \bfzero (\bfitm ) = (\bfitrho )\bfitrho \in \scrR and so we will sometimes use the notation (\bfitrho ).

The interaction between atoms is encoded in an interatomic potential V :
\bigl( 
\BbbR 2
\bigr) \scrR 

\rightarrow \BbbR with a site energy given by V (\bfitD \bfity (\bfitm )). In the present study, V is restricted to
be a pair potential admitting a decomposition of the form

Distance between atoms, r

C
on

tr
ib

u
ti

on
to

th
e

en
er

gy
,
φ

(r
)

Fig. 3. Left: The interaction range \scrR from (3.4) for R\ast =
\surd 
3 depicted as a dotted line. All first

and second neighbor interaction bonds highlighted. Middle: The interaction range \scrR from (3.4) for
R\ast =

\surd 
7 depicted as a dotted line with examples of first, second, third, and fourth neighbors shown.

Right: Typical contributions of interaction bonds to the energy for the pair potential \phi defined in
(3.6). Note that when R\ast \geq 

\surd 
3, it is not typically true for the first neighbor distance to coincide

with the minimum of \phi .
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(3.5) V (\bfitD \bfity (\bfitm )) =
\sum 

\bfitrho \in \scrR 
\phi (| D\bfitrho \bfity (\bfitm )| ),

and \phi : \BbbR \rightarrow \BbbR is the Lennard--Jones potential [20] given by

(3.6) \phi (r) = 4a1

\Biggl[ \biggl( 
1

a2r

\biggr) 12

 - 
\biggl( 

1

a2r

\biggr) 6
\Biggr] 

with two parameters a1, a2. Its typical shape is depicted in Figure 3. We note that,
usually, the second parameter a2 is placed in the numerator of the two power terms.
As will be discussed in Remark 4.2, in our work, it is more convenient to have it
introduced as in (3.6) instead.

The lattice constant \ell , from (3.3), can be shown to be uniquely determined by a2
and R\ast in our model, that is,

(3.7) \ell (a2, R\ast ) =

\biggl( 
BR\ast 

AR\ast 

\biggr) 1/6

a - 1
2 ,

where the constants AR\ast , BR\ast depend on how many neighbors there are in the in-
teraction range. For instance, if we only look at nearest neighbors, i.e., R\ast = 1,
then A1 = 1 and B1 = 2. If R\ast =

\surd 
3 (next-to-nearest neighbors also included),

then A\surd 
3 = 656/27 and B\surd 

3 = 35008/729. The relevant calculations are outlined in
Appendix A.

The resulting energy of the system is formally given by

(3.8) \scrE (\bfitU ) =
\sum 

\bfitm \in \bfLambda 

V (\bfitD \bfity \bfitU (\bfitm )).

3.3. Cauchy--Born rule. As investigated in [9, 11, 7, 25], for example (see
also the most recent survey article [8]), a consistent way to link the atomistic model
with its continuum counterpart is through the Cauchy--Born rule. In this framework,
the interatomic potential, V , the interaction range, \scrR , and the lattice, \Lambda , together
give rise to a continuum Cauchy--Born strain energy function W : \BbbR 2\times 2 \rightarrow \BbbR \cup \{ +\infty \} 
through the coupling

(3.9) W (\bfitF ) :=
1

det(\ell \bfitM )
V ((\bfitF \bfitrho )\bfitrho \in \scrR ) ,

where \bfitF \in \BbbR 2\times 2 is the displacement gradient arising from the homogeneous displace-
ment field \bfitU (\bfitx ) = \bfitF \bfitx .

A subsequent expansion of W to second order around the identity yields the
elasticity tensor \BbbC with

(3.10) \BbbC i\alpha j\beta := \partial Fi\alpha Fj\beta 
W (1) =

1

det(\ell \bfitM )

\sum 

\bfitrho ,\bfitsigma \in \scrR 
\partial 2
i\bfitrho j\bfitsigma V ((\bfitrho ))\rho \alpha \sigma \beta .

In the case of a pair potential, it further simplifies to

(3.11) \BbbC i\alpha j\beta =
1

det(\ell \bfitM )

\sum 

\bfitrho \in \scrR 

\biggl[ \biggl( 
\phi \prime \prime (| \bfitrho | )
| \bfitrho | 2  - \phi \prime (| \bfitrho | )

| \bfitrho | 3
\biggr) 
\rho i\rho j + \delta ij

\phi \prime (| \bfitrho | )
| \bfitrho | 

\biggr] 
\rho \alpha \rho \beta .

Thus, unlike in the continuum linear elasticity setup, where the elasticities are the
independent parameters specifying the material model, here, they are derived quanti-
ties and are in effect nonlinear functions of the potential parameters a1, a2, introduced
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in (3.6), and in principle also of \ell and R\ast . A calculation presented in Appendix A
further shows that (2.8) is indeed satisfied and the shear modulus \mu is given by

(3.12) \mu = DR\ast a1a
2
2,

where DR\ast is a known constant depending on R\ast .

3.4. Mode I atomistic fracture. Due to the inherent nonlinearity of the atom-
istic model, it is not possible to obtain an analytic characterization of atomistic equi-
librium configurations around a crack. Away from the crack tip, however, the CLE
model outlined in section 2.1, which can be obtained via the Cauchy--Born rule, as
discussed in section 3.3, approximates the atomistic model well [3].

The CLE solution K\widehat \bfitu from (2.9) is thus a suitable far-field boundary condition.
We impose this by looking at displacements, \bfitU : \Lambda \rightarrow \BbbR 2, of the form

\bfitU (\bfitm ) = K\widehat \bfitu (\bfitm  - \bfitalpha ) + \bfitu (\bfitm ),

where the near-crack-tip atomistic correction \bfitu is constrained to satisfy

(3.13) | \bfitD \bfitu (\bfitm )| \ll | \bfitD \widehat \bfitu (\bfitm )| when | \bfitm | \gg 1.

This is consistent with the idea presented in the middle panel of Figure 1. The
horizontal shift is \bfitalpha = (\alpha , 0) \in \BbbR 2, where \alpha \in \BbbR is introduced as a variable to be able
to track the crack tip position.

The formally defined infinite lattice energy we wish to equilibrate is given by

(3.14) \scrE (\bfitu , \alpha ,K) =
\sum 

\bfitm \in \bfLambda 

V (\bfitD \bfity \bfitU (\bfitm )) - V (\bfitD \bfity \bfzero (\bfitm )),

where \bfity \bfzero (\bfitm ) = \bfitm + K\widehat \bfitu (\bfitm ). Since in this framework the triplet (\bfitu , \alpha ,K) fully
determines the displacement \bfitU , we shall often identify \bfitU = (\bfitu , \alpha ,K).

The lattice trapping range I from (3.1) can be found by tracing continuous paths
of solutions (0, 1) \ni s \mapsto \rightarrow \bfitU s = (\bfitu s, \alpha s,Ks), such that

(\delta \bfitu \scrE (\bfitU s), \delta \alpha \scrE (\bfitU s)) = 0.

As reported in [5] and earlier in [4], the resulting path s \mapsto \rightarrow \bfity s of equilibrium configura-
tions is expected to be a vertical snaking curve, capturing bond-breaking events, with
Ks oscillating within a fixed interval, which is the lattice trapping interval defined in
(3.1) (see Figure 4 for an example of a numerically computed snaking curve).

We refer to [3, 4] for a rigorous derivation of the infinite lattice model. As will
be noted in section 5, in the present work, we restrict our attention to the case where
(3.13) is satisfied through setting \bfitu (\bfitm ) = 0 \forall \bfitm \in \Lambda , such that | \bfitm | > R0 for some
suitably chosen R0.

We further note that the continuum-theory based prediction for the critical stress
intensity factor given by (2.10) can be computed for the atomistic model, since the
shear modulus \mu and the surface energy \gamma can be computed directly from the atomistic
model. It is in fact widely assumed that, in the infinite lattice, the critical stress
intensity factor in the atomistic description (3.2) and in the continuum description
(2.10) coincide, that is,

(3.15) \widetilde Kat = \widetilde Kcont.

The numerical work presented in section 5 will, among other things, provide evidence
that, in our model, this equality holds, subject to accounting for finite-domain effects.
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Fig. 4. Left: The plot s \mapsto \rightarrow (Ks, \alpha s) showing how K+ and K - are identified. The leftward-tilt
of the curve is a finite-domain effect---for a theoretical infinite domain the solution curve would be
perfectly vertical. Middle and right: atomistic configurations highlighting that a jump by one period
on the snaking curve corresponds to the crack propagating by one lattice spacing.

4. Stochastic atomistic framework.

4.1. An information-theoretic formulation for Lennard--Jones poten-
tial. We aim to quantify how the uncertainty in the choice in the model parameters
propagates to the computed quantities of interest, which in the case of atomistic
fracture are

(4.1) (quantities of interest) I, \widetilde Kat, and \widetilde Kcont.

Inspired by the corresponding work in the continuum setup from [13], outlined in
section 2.2, we invoke the MaxEnt to infer the probability distributions of parameters
present in the model, that is,

(a1, a2, \ell , R\ast ) \in \BbbR 4,

where we recall that a1 and a2 are the potential parameters introduced in (3.6), \ell is
the lattice constant introduced in (3.3), and R\ast is the interaction radius from (3.4).

As noted in (3.7), for the Lennard--Jones potential \phi defined by (3.6), the lattice
constant \ell is uniquely determined by a2 and R\ast , so \ell is not an independent parameter.

We further recognize the special nature of the interaction radius parameter R\ast ,
which is not a parameter that would typically be considered as a random variable, but
rather fixed a priori. Even if it was to be modeled as a random variable, and we note
that the information-theoretic stochastic framework provides us with a way of doing
so, it would be effectively a countable random variable. For the purpose of analysis, in
this section, we consider R\ast fixed and later in the numerical section we will consider
three deterministic choices for R\ast , corresponding to including interaction with up to
first, second, and third nearest neighbors, respectively (see Figure 3).

We gather the remaining independent parameters as

(4.2) \bfitA = (a1, a2) \in \BbbR 2.

Recalling the set of natural constraints (P1)--(P2) in section 2.2, we first restate (P1)
as

(4.3) (P1): \BbbE (\bfitA ) = \bfita ,

where \bfita = (a1, a2) is known, corresponding to default parameters of the potential.
The second constraint (P2) concerns the elasticity tensor, which, through the Cauchy--
Born rule discussed in section 3.3 and the underlying assumption of planar elasticity
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and the pairwise nature of the interatomic potential, simplifies so that the only in-
dependent parameter is the shear modulus \mu , which, as established in (3.12), is a
function of \bfitA . This leads us to recast (P2) as

(4.4) (P2): \BbbE (log(\mu (\bfitA ))) = \nu \bfitA ,

where \nu \bfitA is a given parameter such that | \nu \bfitA | < \infty . For the rationale as to why the
condition of this type ensures (P2) we refer to [13].

Proposition 4.1. Under the constraints (4.3) and (4.4), the MaxEnt probability
density function of the random variable \bfitA defined in (4.2) is given by

\rho \bfitA (\bfita ) = \rho A1
(a1)\times \rho A2

(a2),

where
\rho A1(a1) = 1\BbbR +(a1)k1a

 - \tau 
1 exp\{  - \lambda 1a1\} 

and
\rho A2

(a2) = 1\BbbR +
(a2)k2a

 - 2\tau 
2 exp\{  - \lambda 2a2\} 

with k1 and k2 positive normalization constants and \lambda 1 and \lambda 2 Lagrange multipli-
ers corresponding to (P1). The parameter \tau controls the level of statistical fluctua-
tions and is required to satisfy \tau \in ( - \infty , 1/2). It follows that a1 and a2 are statisti-
cally independent, with a1 Gamma-distributed with shape and scale hyperparameters
(\alpha 1, \beta 1) =

\bigl( 
1 - \tau , a1/(1 - \tau )

\bigr) 
and a2 Gamma-distributed with shape and scale hyper-

parameters (\alpha 2, \beta 2) =
\bigl( 
1 - 2\tau , a2/(1 - 2\tau )

\bigr) 
.

Proof. The constraints in (4.3) and (4.4), together with the normalization con-
straint, can be put in the form of a mathematical expectation as in (2.6), namely,

\BbbE \{ \bfitg (\bfitA )\} = \^\bfitg ,

where \bfitg : \BbbR 2 \rightarrow \BbbR 4 with \bfitg (\bfitA ) = (\bfitA , log(\mu (\bfitA )), 1) \in \BbbR 4 and \^\bfitg = (\bfita , \nu \bfitA , 1) \in \BbbR 4. It
follows from (2.7) that

\rho \bfitA (\bfita ) = 1R2
+
(\bfita ) exp\{  - \langle \bfitlambda , \bfitg (\bfita )\rangle \BbbR 4\} ,

as R2
+ is the largest set on which (4.4) is satisfied. Since

exp\{  - \langle \bfitlambda , \bfitg (\bfita )\rangle \BbbR 4\} = k0 exp( - \lambda 1a1)a
 - \lambda 3
1 exp( - \lambda 2a2)a

 - 2\lambda 3
2 ,

where k0 = exp( - \lambda 4)D
 - \lambda 3

R\ast 
, the result follows by identifying \lambda 3 = \tau and an appropriate

splitting of the normalization constant as k0 = k1k2.

Remark 4.2. The Lennard--Jones potential \phi defined in (3.6) is typically intro-
duced with the second parameter a\prime 2 := a - 1

2 . From the information-theoretic point
of view it is far less convenient to do so, as then the MaxEnt distribution of a\prime 2 can
be shown (using the framework discussed in this section) to be the Gamma distri-
bution with shape and scale hyperparameters (1 + 2\tau , a\prime 2/(1 + 2\tau )), provided that

\tau \in ( - 1
2 ,+\infty ). Thus, the setup where both a1 and a\prime 2 follow the Gamma distribution

would only apply when \tau \in ( - 1
2 , 1), which is more restrictive than what we obtain in

Proposition 4.1.

For the model under consideration, the following can be subsequently established
about \widetilde Kcont.
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Proposition 4.3. The critical stress intensity factor \widetilde Kcont, when computed for
the shear modulus \mu and the surface energy \gamma obtained directly from the atomistic
model, satisfies

\widetilde Kcont = CR\ast a1 a
3/2
2 ,

where the constant CR\ast depends only on the interaction range R\ast . If \bfitA is taken to

follow the MaxEnt distribution established in Proposition 4.1, then \widetilde Kcont is a random
variable with the probability density function \rho \widetilde Kcont

given by

\rho \widetilde Kcont
(k) =

1

CR\ast 

\int 

\BbbR 
a
 - 3/2
2 \rho \bfitA 

\Biggl( 
k

CR\ast a
3/2
2

, a2

\Biggr) 
da2.

Proof. At the atomistic level of description, the energetic cost of creating a surface
is equivalent to the energetic cost of breaking interaction bonds between atoms on
opposite sides of the surface. We assume first that R\ast = 1, that is, we only look at
the nearest neighbor interaction. In this case, the lattice constant \ell minimizes the
potential \phi , and in fact \phi (\ell ) =  - a1. The cost of breaking one bond is then

lim
r\rightarrow \infty 

\phi (r) - \phi (\ell ) =  - \phi (\ell ) = a1.

When the crack surface is extended by length L, on the triangular lattice, this corre-
sponds to breaking interaction 2L/\ell bonds. Then the surface energy per unit area \gamma 
from (2.10) is given by

\gamma =
1

L

2L

\ell 

\Bigl( 
lim
r\rightarrow \infty 

\phi (r) - \phi (\ell )
\Bigr) 
= \~C1a1a2,

where \~C1 = 25/6. This follows from (3.7). It is shown in Appendix A that, in the case
of a general R\ast , we have

(4.5) \gamma = \~CR\ast a1a2.

Using (2.10) and (3.12), we then arrive at

\widetilde Kcont =
4\surd 
3

\surd 
\gamma \mu = CR\ast 

\surd 
a1
\surd 
a2
\surd 
a1a2 = CR\ast a1a

3/2
2 ,

as required. The probability density function of \widetilde Kcont follows from a general formula

\rho \widetilde Kcont
(k) =

\int 

\BbbR 

\int 

\BbbR 
\rho \bfitA (\bfita )\delta 

\Bigl( 
k  - CR\ast a1a

3/2
2

\Bigr) 
da1 da2,

where \delta is the Dirac delta. To obtain the result, in the inner integral (in which a2 is

treated as fixed), one performs a change of variables from a1 to \~k = CR\ast a1a
3/2
2 .

5. Computations. In this section, we employ the stochastic framework devel-
oped in section 4.1 to conduct a numerical study of crack propagation.

5.1. Setup. For our numerical computations, we employ the principles of the
recently proposed NCFlex scheme [5]. We fix \~R = 32 and consider a computational
domain

(5.1) \Lambda R = \Lambda \cap BR, where R = \ell ( \~R+ 2R\ast ),
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then look at displacements \bfitU : \Lambda \rightarrow \BbbR 2 of the form
(5.2)
\bfitU (\bfitm ) = K\widehat \bfitu (\bfitm  - \bfitalpha )+\bfitu (\bfitm ), where \bfitu (\bfitm ) = 0 \forall \bfitm \in \Lambda such that | \bfitm | > \ell ( \~R+R\ast ).

The rescaling by \ell ensures that, regardless of the choice of \ell , for a fixed R\ast , the
computational domain consists of the same number of atoms N \sim R2. The truncation
of \bfitu ensures that the finite-dimensional scheme is consistent with (3.13).

We consider three possible choices for R\ast , namely,
(i) R\ast = 1, which corresponds to accounting for only the nearest neighbor inter-

action;
(ii) R\ast =

\surd 
3 (second neighbors included too);

(iii) R\ast = 2 (up to third neighbors included).
The resulting finite-dimensional approximation to (3.14) is given by

\~\scrE (\bfitu , \alpha ,K) =
\sum 

m\in \bfLambda R

V (\bfitD \bfity \bfitU (\bfitm )) - V (\bfitD \bfity \bfzero (\bfitm ))

with \bfity \bfzero as in (3.14).
The essence of the NCFlex scheme is to employ numerical continuation to trace

continuous paths of solutions (0, 1) \ni s \mapsto \rightarrow \bfitU s = (\bfitu s, \alpha s,Ks), such that

(5.3) (\delta \bfitu \~\scrE (\bfitU s), \delta \alpha \~\scrE (\bfitU s)) = 0.

This is a nonlinear system of 2N + 1 equations in 2N + 2 variables, and a numerical
continuation constraint closes the system.

The specific numerical algorithm allows for the quantities of interest to be com-
puted without human supervision. The details are presented in Algorithm 1 and we
note that the numerical continuation routine is implemented in Julia using
BifurcationKit.jl [33].

Algorithm 1 Unsupervised NCFlex scheme

1: Given potential parameters a1, a2 from (3.6) and some tolerance \delta ;
2: Estimate the interval I = (K - ,K+) by fixing \bfitu (\bfitm ) = 0 \forall \bfitm \in \Lambda R in (5.2), and

solving \delta \alpha \~\scrE (\bfitU ) = 0, up to the tolerance \delta , for incremental values of \alpha ranging
from  - \ell to \ell (an idea put forward in [5, section II.C.2]);

3: Fix \alpha = \alpha 0 (e.g., \alpha 0 =  - 0.5), set K = K - (estimate found in the previous
step), and use a conjugate-gradient solver with initial guess (0, \alpha 0,K - ) to find a
static boundary equilibrium \bfitU = (\bfitu , \alpha 0,K - ) satisfying only \delta \bfitu \~\scrE (\bfitU ) = 0, up to
tolerance \delta (typically the other equation in (5.3) will not be satisfied);

4: Repeat the previous step for incremental values of K \in (K - ,K+) (estimate
found in step 2) until one identifies K0 for which \bfitU \bfzero = (\bfitu \bfzero , \alpha 0,K0) is such
that \delta \alpha \~\scrE (\bfitU ) = 0 (up to tolerance \delta ) as well, meaning that (5.3) holds true (a
bisection-type algorithm can be used to speed up the process);

5: With the first solution \bfitU \bfzero of the NCFlex scheme identified, apply the numerical
continuation routine outlined in [5, Algorithm 2.] to compute the path of solutions
s \mapsto \rightarrow \bfitU s.

As noted in section 3.4, the lattice trapping range I and the critical stress intensity
factor \widetilde Kat can be inferred from the computed solution paths (see Figure 4). Note,
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however, that the computed quantities of interest are finite domain approximations.
Hence, in particular, \widetilde KR

at computed for a domain with radius R will not match the

theoretical \widetilde Kat from Proposition 4.3. Therefore, direct comparisons to \widetilde Kcont are not
feasible. Nevertheless, heuristic considerations and numerical evidence point to the
fact that

| \widetilde KR
at  - \widetilde Kat| \sim \scrO (R - 1/2).

5.2. Results. We have considered the following cases in our numerical study:
1. a1 = 1 fixed and a sample of 1000 choices of a2 with a2 = 21/6 and \tau =  - 20;

2. a2 = 21/6 fixed and a sample of 1000 choices of a1 with a1 = 1 and \tau =  - 20;

3. a sample of 1000 choices of \bfitA with a1 = 1, a2 = 21/6 and \tau =  - 20;
4. a combined sample of 1,000,000 of \bfitA obtained by reusing the samples from

(1) and (2);
5. a1 = 1 fixed, a sample of 1000 choices of a2 with a2 = 21/6 and \tau =  - 4,000,000

to test the interplay between the strength of statistical fluctuations and the
strength of lattice trapping.

Figure 5 presents the level of statistical fluctuations present in \phi and how this trans-
lates to the computed snaking curves. There are several universal conclusions that
can be drawn from our numerical investigation, which we shall now discuss and then
refer to in the subsequent subsections detailing each case listed above.

1.00 1.25 1.50 1.75 2.00

Distance between atoms, r

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

φ
(r

)

0.96 0.98 1.00 1.02 1.04 1.06

Distance between atoms, r

−1.00

−0.98

−0.96

−0.94

−0.92

−0.90

φ
(r

)

25 26 27 28

K

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

α

26.625 26.650 26.675 26.700 26.725

K

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

α

Fig. 5. Statistical fluctuations for \tau =  - 400 (left column) and \tau =  - 4,000,000 (right column).
Top row: plot of the interatomic potential \phi for the mean value of parameters (dark blue) and
a sample of 100 choices of parameters a1, a2 (light blue, on the right zoomed-in around unity to
actually see the fluctuations). Bottom row: the resulting computed snaking curves.
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First, it will be numerically verified that the relative strength of the lattice trap-
ping, which we measure as 1 - (K - /K+), in our model is not a function of a1 or a2,
but merely of R\ast . On a heuristic level, this reflects the fact that the lattice constant \ell 
is a linear function of a2 and is consistent with the work presented in [6]. Our results
will also corroborate our conjecture that, in the model considered, K+ and K - , for a
fixed domain radius R, exhibit the following dependence on a1, a2, and R\ast ,

(5.4) K+ = C+
R\ast 

a1 a
3/2
2 , K - = C - 

R\ast 
a1 a

3/2
2 ,

differing from \widetilde Kcont from Proposition 4.3 only by a constant which depends on R\ast .
In particular, we will present numerically obtained values for C\pm 

R\ast 
. This is strong

evidence that, in fact, the equality \widetilde Kat = \widetilde Kcont from (3.15) holds true for our model.
Second, the generally nonlinear dependence of quantities of interest on the pa-

rameters, as established in Proposition 4.3 and in (5.4), should warrant caution when
employing a purely deterministic approach to modeling atomistic fracture. This can
be seen, for instance, when comparing \BbbE (K+) with K+(a1, a2), the relative difference
between which will be shown to surpass the strength of the lattice trapping, as inferred
also from Table 1. This point is further underlined by looking at the probability of
the crack propagating at a given K, to be computed as \sansP (K \geq K+), which will be
shown to remain nontrivial (i.e., not close to nullity or unity) over a relatively large
interval (see Figure 9). It is expected that such issues, which are still manageable in
our model, will become even more pronounced for more realistic models (see also the
concluding remarks in section 6).

Third, the value of the parameter \tau from Proposition 4.1 plays a crucial role in
determining whether the extent of lattice trapping is negligible or not. For \tau =  - 20, it
most certainly is, and hence, for this case, since \widetilde Kat lies somewhere between K - and
K+, we can safely focus on the outer quantities only. However, as \tau \rightarrow  - \infty , lattice
trapping starts to dominate over statistical fluctuations. We show this by considering
the extreme case with \tau =  - 4,000,000.

We now present the results of our numerical study.

Case (1): \bfita \bfone = 1 fixed, \bfita \bftwo sampled with \bfittau =  - 20. We first consider the
case where a1 = 1 remains fixed and the parameter a2 is sampled from the MaxEnt
probability distribution established in Proposition 4.1, with a2 = 21/6 (corresponding

to the lattice constant \ell = 1 when R\ast = 1) and \tau =  - 20. The sample is \{ a(i)2 \} Si=1,
where S = 1000. The probability density function from which the sample was drawn
and the histogram of the sample are presented in Figure 6. In this figure, we also
present the quantities of interest from (4.1) for R\ast = 1,

\surd 
3, 2, that is, the probability

density function and the histogram of \{ \widetilde K(i)
cont\} computed via Proposition 4.3, and the

histograms of \{ K(i)
\pm \} , with a probability density function fitted according to (5.4).

Table 1
Case (1), relevant data as R\ast varies: the relative strength of the lattice trapping measured as

1 - K+/K - ; the expected value of K+; the deterministic value of K+ and constants CR\ast , C
+
R\ast 

, C - 
R\ast 

from Proposition 4.3 and (5.4).

R\ast 1 - K - /K+ \BbbE (K+) K+ at a2 CR\ast C - 
R\ast 

C+
R\ast 

1 0.0005676 26.9643 26.6874 21.6864 22.4286 22.4414\surd 
3 0.0006815 29.9944 29.6865 24.2825 24.9462 24.9632
2 0.0007081 31.3467 31.0249 25.4237 26.0702 26.0887
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Fig. 6. Case (1). Top left: The normalized histogram of a sample of 1000 choices of a2 drawn
from the MaxEnt probability distribution established in Proposition 4.1, with a1 = 21/6 and \tau =  - 20,
together with the probability density function \rho A2

. Top right: The histogram and probability density

function for \widetilde Kcont from Proposition 4.3 for R\ast = 1,
\surd 
3, 2. Bottom: The resulting numerically

computed histogram of values of K - (left) and K+ (right). The dotted lines are numerically predicted
probability density functions, based on (5.4), with values of C+

R\ast 
, C - 

R\ast 
reported in Table 1. The dashed

vertical lines correspond to the mean value of each sample.

Table 1 complements the analysis by gathering the relevant data. In particular, we
report that the relative strength of the lattice constant only varies with R\ast and is
rather small, varying from just 0.05\% for R\ast = 1 to 0.07\% for R\ast = 2. The data
in Table 1 confirms that \BbbE (K+) does not equal the deterministic K+ computed for

the mean value of a2 (the same applies to K - and \widetilde Kcont). We also report on the
numerically computed values for C+

R\ast 
and C - 

R\ast 
from (5.4) and how they compare with

CR\ast , which can be obtained analytically based on the proof of Proposition 4.3.

Case (2): \bfita \bftwo = 2\bfone /\bfsix fixed, \bfita \bfone sampled with \bfittau =  - 20. Next, we assume that
a2 = 21/6 remains fixed and the parameter a1 is sampled from the MaxEnt probability
distribution established in Proposition 4.1, with a1 = 1 and \tau =  - 20. The sample

is \{ a(i)1 \} Si=1, where S = 1000. Figure 7 and Table 2 summarize our findings for this
case. We note that these results can be obtained very quickly, as the NCFlex scheme
only has to be run once due to the following remark.

Remark 5.1. Assume that \bfitU = (\bfitu , \alpha ,K) specifies an equilibrium configuration

\bfity \bfitU (\bfitm ) = \bfitm +K\widehat \bfitu (\bfitm  - \bfitalpha ) + \bfitu (\bfitm )

that solves (5.3) for some choice of the parameters a1 and a2 from the interatomic
potential (3.6). It follows from (2.9) that a multiplicative inverse of the shear modulus
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Fig. 7. Case (2). Top left: the normalized histogram of a sample of 1000 choices of a1 drawn
from the MaxEnt probability distribution established in Proposition 4.1, with a1 = 1 and \tau =  - 20,
together with the probability density function \rho A1

. Top right: the histogram and probability density

function for \widetilde Kcont from Proposition 4.3 for R\ast = 1,
\surd 
3, 2. Bottom: the resulting numerically

computed histogram of values of K - (left) and K+ (right). The dotted lines are numerically predicted
probability density functions, based on (5.4), with values of C+

R\ast 
, C - 

R\ast 
reported in Table 2. The dashed

vertical lines correspond to the mean value of each sample.

Table 2
Case (2), relevant data as R\ast varies: the relative strength of the lattice trapping measured as

1 - K+/K - ; the expected value of K+; the deterministic value of K+ and constants CR\ast , C
+
R\ast 

, C - 
R\ast 

from Proposition 4.3 and (5.4). The only differences compared to the data for Case (1) presented
in Table 1 are highlighted in bold.

R\ast 1 - K - /K+ \BbbE (K+) K+ at a1 CR\ast C - 
R\ast 

C+
R\ast 

1 0.0005676 \bftwo \bfsix .\bfeight \bfone \bffour \bfsix 26.6874 21.6864 22.4286 22.4414\surd 
3 0.0006815 \bftwo \bfnine .\bfeight \bftwo \bfeight \bfzero 29.6865 24.2825 24.9462 24.9632
2 0.0007081 \bfthree \bfone .\bfone \bfseven \bftwo \bfseven 31.0249 25.4237 26.0702 26.0887

\mu enters as a prefactor in \widehat \bfitu , whereas, from (3.12), it follows that the shear modulus
\mu depends on a1 linearly. In a pointwise sense, the equilibrium \bfity \bfitU satisfies, for each
\bfitm \in \Lambda R, \sum 

\bfitrho \in \scrR 

\Bigl[ 
\phi \prime \bigl( | D\bfitrho \bfity 

\bfitU (\bfitm  - \bfitrho )| 
\bigr) 
 - \phi \prime \bigl( | D\bfitrho \bfity 

\bfitU (\bfitm )| 
\bigr) \Bigr] 

= 0,

and since a1 enters as a prefactor in \phi \prime , it readily follows that

(5.5) \widetilde \bfitU = (\bfitu , \alpha ,K a1/ \widetilde a1)

specifies an equilibrium configuration for the model in which the first parameter in
the interatomic potential from (3.6) is set to \widetilde a1. As a result, a snaking curve s \mapsto \rightarrow 
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\bfitU s obtained by running the NCFlex scheme for one value of a1 gives rise to the
corresponding snaking curve s \mapsto \rightarrow \widetilde \bfitU s via the transformation in (5.5).

This observation implies that working with the 2D random variable \bfitA defined in
(4.2) is only as computationally costly as working with a2, so we proceed to Cases (3)
and (4).

Case (3): \bfita \bfone and \bfita \bftwo sampled with \bfittau =  - 20. We now examine the case
where both a1 and a2 are sampled simultaneously from the MaxEnt probability dis-
tribution established in Proposition 4.1, with a1 = 1, a2 = 21/6 (corresponding to
the lattice constant \ell = 1 when R\ast = 1) and \tau =  - 20. In particular, the sample is

\{ (\~a(i)1 , \~a
(i)
2 )\} Si=1, where S = 1000. We present the resulting data in the form a scat-

ter matrix plot to emphasize the bivariate dependence between the random variables
involved. This is shown in Figure 8 for the case when R\ast = 1. The perfect linear
dependence between \widetilde Kcont and K+ provides further numerical evidence that, in fact,

(5.4) holds true, rendering the ratio \widetilde Kcont/K+ a function of R\ast only (for a fixed R).
This again strongly hints at the veracity of (3.15). We further see the statistical
independence of a1 and a2 (by design) and the qualitatively different dependence of
the quantities of interest on a1 and a2.

Case (4): combining samples of \bfita \bfone and \bfita \bftwo when \bfittau =  - 20. In this case,

we take the samples \{ a(i)1 \} from Case (2) and \{ a(i)2 \} from Case (1) into a combined

1,000,000 sample \{ (a(i)1 , a
(j)
2 )\} Si,j=1, where, as before, S = 1000. This is made easy by
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Fig. 8. Case (3) when R\ast = 1: a scatter matrix plot for variables a1, a2, \widetilde Kcont,K+, highlight-
ing bivariate relationships between them (off-diagonal). On the diagonal, histograms of the variables

are presented. The plots in particular confirm that K+ is determined by \widetilde Kcont (and the fixed pa-
rameters \~R and R\ast ). Note that the vertical axis for the plots on the diagonal is different from the
ones off-diagonal, hence the placing of the a1 label in the top-right corner.
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the observation in Case 2, which implies that the NCFlex scheme only has to be run a
1000 times and not a 1,000,000 times. In particular, our focus is on the probability of
a crack propagating or not propagating. Due to the phenomenon of lattice trapping,
one can distinguish three possibilities:

(4A) if K < K - , then the crack will definitely not propagate;
(4B) if K - \leq K < K+ (in other words, K \in I), then the crack remains lattice-

trapped;
(4C) if K \geq K+, then the crack will definitely propagate.

In the lattice-trapped case, thermal fluctuations, typically present at a temperature
above absolute zero, imply that there is a nonzero probability of the crack propa-
gating. This is a highly nontrivial case, which we do not delve into, but note that
such questions can be approached by combining our approach with the framework of
transition state theory [15]. The key quantity here is the energy barrier at different
values of K within the lattice trapping range, which can be achieved with the NCFlex
scheme. In our stochastic framework, (4A) can be restated as \sansP (K < K - ), (4B) as
\sansP (K \in I), and (4C) as \sansP (K \geq K+). At \tau =  - 20, case (4B) is negligible, hence we
omit it from plots and only show (4A) and (4C), both obtained analytically and from
the data in Figure 9.

Case (5): as in Case (1), but with \bfittau =  - 4,000,000. Finally, we revisit
the setup from Case (1), but adjust the statistical fluctuations parameter to \tau =
 - 4,000,000. In this case, the support of the probability density functions is heavily
concentrated around the mean, to the point where the strength of the lattice trapping
is comparable with statistical fluctuations. This implies that Case (4B) ceases to be
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Fig. 9. Case (4) when R\ast = 1,
\surd 
3, 2: the probability of the crack propagating at a given

K, computed as \sansP (K \geq K+) and of not propagating, computed \sansP (K < K - ) compared with the
deterministic interval I = (K - ,K+) computed for the mean values a1 and a2. Note that when
\tau =  - 20, the lattice trapping strength is negligible compared to the statistical fluctuations and I can
be, effectively, treated as a single value. We further note that the probabilities were computed both
analytically (using (5.4) and Proposition 4.3), as well as from data and for a sample of this size
they are indistinguishable.
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Fig. 10. Case (5) when R\ast = 1. Top left: The normalized histogram of a sample of 1000
choices of a2 drawn from the MaxEnt probability distribution established in Proposition 4.1, with
a1 = 21/6 and \tau =  - 4,000,000, together with the probability density function \rho A2 . Top right: The
histogram for K - and K+, with the dashed curves representing numerically predicted probability
density functions, using (5.4). In the top plots, the dashed vertical lines correspond to the mean
value of each sample. Bottom: the probability of crack propagation at a given K, as in Figure 9.

negligible. As seen from Figure 10, at this level of statistical fluctuations, there is a
significant shift between the probability density functions of K - and K+. As a result,
for the values of K within the lattice trapping range, \sansP (K < K - ) and \sansP (K \geq K+)
are not complementary, in the sense that they do not add up to approximately 1, as
can be seen by the considerable probability of \sansP (K \in I) in-between the mean values
of K - and K+. Thus the strength of the lattice trapping begins to dominate over
the strength of statistical fluctuations. This effect can be more pronounced already
at more reasonable values of \tau in other models where the lattice trapping range is not
as small as in our case.

This concludes our numerical investigation, where we explored an implementation
of the stochastic framework introduced in section 4.1.

6. Conclusion. We introduced in this study an information-theoretic stochas-
tic framework for atomistic crack propagation in the analytically tractable case of
the so-called theoretical Lennard--Jonesium 2D solid, with the ground state of a tri-
angular lattice and undergoing a pure Mode I fracture. In particular, we invoked
the MaxEnt to argue that, when little information is available, except for the mean
values of the parameters, the parameters in the Lennard--Jones potential should be
modeled as independent, Gamma-distributed random variables. Due to the relative
simplicity of the model, we were able to infer how the uncertainty in the choice of
these parameters propagates to quantities of interest, which in the case of atomistic
fracture is the range of lattice trapping and the value of the critical stress intensity
factor. This was followed by an extensive numerical study of stochastic atomistic
fracture, made possible by an automated formulation of the NCFlex scheme from [5],
which, in particular, highlighted the limitations of a purely deterministic approach.
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In future work, we aim to develop a more general information-theoretic approach
to uncertainty quantification in atomistic material modeling and further explore the
stochastic effects within the lattice trapping range.

The principles of the framework presented in this work are general enough to be
applicable to any interatomic potential, including EAM and modern machine-learning
potentials. In practice, however, there remain significant, but perhaps manageable,
obstacles. In the case of empirical potentials, such as EAM, the key problem is the
nonlinear nature of the functional forms, which implies that, unlike in the case of the
Lennard--Jones potential, there is no closed form formula for the lattice constant \ell .
In such cases, the equivalent of Proposition 4.1 would establish an intractable joint
probability density for the parameters. A promising alternative comes in the form of
modern implementations of empirical potentials, which typically use splines to keep
functional forms simpler [35]. For instance, one can think of separating neighbors'
contributions. In the case of modern machine-learning potentials, the dependence on
parameters is typically linear and we hope to exploit the freedom of choice when it
comes to defining basis elements, so that the form of the MaxEnt prior distribution
of the parameters remains tractable.

Appendix A. Determining the lattice constant, the shear modulus, and
the surface energy. In this appendix, we present calculations confirming the
veracity of the formulae given by (3.7) and (3.12). Such calculations are well known
in the literature but worth elaborating upon since they are central to our stochastic
framework. We start with the formally defined energy

\scrE (\bfitU ) =
\sum 

\bfitm \in \bfLambda R

V (\bfitD \bfity \bfitU (\bfitm )),

where \Lambda R = \Lambda \cap BR. We recall that \bfitU is the displacement and \bfity \bfitU (\bfitm ) = \bfitm +\bfitU (\bfitm )
is the deformation. A formal Taylor expansion of this energy around \bfity \bfzero to second
order yields

\scrE (\bfity \bfitU ) = \scrE (\bfity \bfzero ) + \langle \delta \scrE (\bfity \bfzero ), \bfitU \rangle + \langle \delta 2\scrE (\bfity \bfzero )\bfitU , \bfitU \rangle + h.o.t.,

where

\langle \delta \scrE (\bfity \bfzero ), \bfitU \rangle =
\sum 

\bfitm \in \bfLambda R

\nabla V ((\bfitrho )) : \bfitD \bfitU (\bfitm ) =
\sum 

\bfitm \in \bfLambda R

\sum 

i,\bfitrho 

\partial i\bfitrho V ((\bfitrho ))D\bfitrho Ui(\bfitm )

and

\langle \delta 2\scrE (\bfity \bfzero )\bfitU , \bfitU \rangle =
\sum 

\bfitm \in \bfLambda R

\nabla 2V ((\bfitrho ))\bfitD \bfitU (\bfitm ) : \bfitD \bfitU (\bfitm )

=
\sum 

\bfitm \in \bfLambda R

\sum 

i,\bfitrho ,j,\bfitsigma 

\partial 2
i\bfitrho j\bfitsigma V ((\bfitrho ))D\bfitrho Ui(\bfitm )D\bfitsigma Uj(\bfitm ).

For a uniform displacement \bfitU of the form \bfitU (\bfitx ) = \bfitF \bfitx , for some suitable \bfitF \in \BbbR 2\times 2,
we have D\bfitrho \bfitU (\bfitx ) = \nabla \bfitU (\bfitx )\bfitrho . This implies that, for uniform displacements,

(A.1) \langle \delta \scrE (\bfity \bfzero ), \bfitU \rangle =
\sum 

\bfitm \in \bfLambda R

2\sum 

i,\alpha =1

Li\alpha \partial \alpha Ui,
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where, due to the form of the potential, we have

(A.2) Li\alpha =
\sum 

\bfitrho \in \scrR 

\phi \prime (| \bfitrho | )
| \bfitrho | \rho i\rho \alpha .

It is natural to assume that the potential in place admits the perfect lattice as an equi-
librium configuration, and for that to be the case, it is necessary that \langle \delta \scrE (\bfity \bfzero ), \bfitU \rangle = 0
for any uniform displacement \bfitU . It follows that the potential parameters a1 and a2
in (3.6) and the lattice constant l have to be chosen so that

(A.3)

2\sum 

i,\alpha =1

Li\alpha \partial \alpha Ui = 0

for any \bfitU . A direct calculation reveals that

Li\alpha = 24a1a
 - 6
2

\sum 

\bfitrho \in \scrR 
\rho i\rho \alpha | \bfitrho |  - 14

\bigl( 
| \bfitrho | 6  - 2a - 6

2

\bigr) 
.

Due to the lattice symmetries in the interaction range \scrR , it is immediate that, for
i, \alpha \in \{ 1, 2\} , Li\alpha = \^L\delta i\alpha , where \delta ij denotes the Kronecker delta and

\^L = 24
a1a

 - 6
2

\ell 12
\bigl( 
AR\ast \ell 

6  - BR\ast a
 - 6
2

\bigr) 
.

The constants depending on R\ast are

AR\ast =
\sum 

\^\bfitrho \in \^\scrR 

\^\rho 21| \^\bfitrho |  - 8 BR\ast =
\sum 

\^\bfitrho \in \^\scrR 

2\^\rho 21| \^\bfitrho |  - 14,

where \^\scrR = \scrR /\ell (i.e., with lattice constant normalized to unity). It follows that the
lattice constant \ell is a function of R\ast and a2, since

(A.4) Ai\alpha = 0 \forall i, \alpha =\Rightarrow \ell =

\biggl( 
BR\ast 

AR\ast 

\biggr) 1/6

a - 1
2 .

A similar line of reasoning can be used to establish (3.12). The lattice symmetries
present in \scrR imply that the only nonzero entries of the associated elasticity tensor \BbbC 
from (3.11) are \BbbC iiii (i = 1, 2) and \BbbC iijj = \BbbC ijij (i = 1, 2 and j = 1, 2, j \not = i), and, in
fact,

\BbbC iiii =
1

det(\ell \bfitM )
a1
\sum 

\^\bfitrho \in \^\scrR 

\^\rho 41
\bigl( 
(B1 +B3)| \^\bfitrho |  - 16  - (B2 +B4)| \^\bfitrho |  - 10

\bigr) 
,

\BbbC iijj =
1

det(\ell \bfitM )
a1
\sum 

\^\bfitrho \in \^\scrR 

\^\rho 21\^\rho 
2
2

\bigl( 
(B1 +B3)| \^\bfitrho |  - 16  - (B2 +B4)| \^\bfitrho |  - 10

\bigr) 

for known constants B1, . . . , B4 depending only on R\ast . As a result, we have the shear
modulus given by

(A.5) \mu =
1

3
\BbbC 1111 = \BbbC 1122 = \BbbC 1212 = DR\ast a1a

2
2,
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where the dependence on a2 enters through (A.4). Finally, we also show the surface
energy computation that confirms (4.5). Let dn denote the distance to the nth neigh-
bor in the triangular lattice, with lattice constant equal to unity, and let N\ast be the
unique value such that dN\ast \leq R\ast , but dN\ast +1 > R\ast . For example, if R\ast = 2, then
N\ast = 3, since d1 = 1, d2 =

\surd 
3, and d3 = 2. If the crack surface is extended by L, then

mnL/\ell bonds of length dn additionally cross from one side of the crack to another.
For example, m1 = 2 (two nearest-neighbor bonds cross the surface in the triangular
lattice if we extend the surface by one lattice spacing) and m2 = 4. Importantly, mn

is a fixed constant for each n. The energetic cost of breaking each such bond is given
by  - \phi (dn\ell ). In the light of the above, a general formula for the surface energy \gamma can
be stated as

\gamma =
1

L

L

\ell 

\Biggl( 
N\ast \sum 

n=1

 - mn\phi (dn\ell )

\Biggr) 
.

For a general R\ast , the relationship between \ell and a2 established in (3.7) implies that,
for any scalar \alpha , we have

\phi (\alpha \ell ) = 4a1a
 - 6
2 \alpha  - 6AR\ast 

BR\ast 

a62

\biggl( 
a - 6
2 \alpha  - 6AR\ast 

BR\ast 

a62  - 1

\biggr) 
=: Ca1,

where the constant C depends only on \alpha and R\ast , as the terms involving a2 cancel
each other. Putting it all together, by gathering all the different constants depending
only on R\ast we conclude that

\gamma = \~CR\ast a1a2,

where the constant \~CR\ast only depends on R\ast .
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