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Quantifying the value of distributed battery storage 

to the operation of a low carbon power system 

William Seward, Meysam Qadrdan and Nick Jenkins

Abstract—Battery storage provides flexibility to the power system 

and supports the increased integration of renewable energy 

sources. Distributed battery storage systems that are behind the 

meter are operated by their local owners, whose objectives may not 

align with those of the national power system. This paper presents 

a Bilevel optimisation approach to investigate the exchange of 

electricity between distributed battery storage and the national 

power system. The independent operating objectives of the battery 

storage systems are explicitly considered to assess their impact on 

the operation of the national power system. A comparison with a 

Centralised optimisation approach, that assumes a single objective 

function for the whole system, shows that the Bilevel optimisation 

approach captures the independencies of distributed battery 

storage objectives, while accounting for its interactions with the 

wider power system. The results show that the Centralised 

optimisation approach tends to overestimate the value of 

distributed battery storage for the power system. The results also 

highlight the influence of the retail contract structure in 

maximising the value of distributed battery storage for the national 

power system. 

Index Terms— Distributed battery storage, price arbitrage, 

flexibility, national power system, local energy system. 

NOMENCLATURE 

Acronyms  

CCGT Combined cycle gas turbine 

KKT Karush-Kuhn-Tucker 

LES Local energy system 

NPS National Power System 

OCGT Open-cycle gas turbine 

PV Photovoltaic 

Indices 

𝑗 Conventional generation index 

𝑡 Time index 

Constants 

𝐶𝑏𝑎𝑡 Total battery energy capacity (MWh) 

𝐶𝑃𝑆 Pumped storage energy capacity (MWh) 

𝐸𝑏𝑎𝑡_𝑚𝑎𝑥  Maximum battery state of charge limit (%) 

𝐸𝑏𝑎𝑡_𝑚𝑖𝑛 Minimum battery state of charge limit (%) 

𝐽  Number of conventional generation types 
𝐾𝑏 Marginal cost of biomass generation 

(£/MWh) 
𝐾ℎ Marginal cost of hydro generation (£/MWh) 

𝐾𝑗
𝑔𝑒𝑛 Marginal cost of conventional generation 

(£/MWh) 
𝐾𝑤 Marginal cost of wind generation (£/MWh) 
𝐾𝑡

𝑒𝑥 LES retail contract sell price (£/MWh) 

𝐾𝑡
𝑖𝑚 LES retail contract purchase price (£/MWh) 

𝑃𝑏𝑎𝑡_𝑚𝑎𝑥 Total battery power capacity (MW) 

𝑃𝑒𝑥_𝑚𝑎𝑥 Maximum power exchange between local 
energy systems and the grid (MW) 

𝑃𝑗
𝑚𝑎𝑥 Maximum power generation limit by 

conventional technologies (MW) 

𝑃𝑗
𝑚𝑖𝑛 Minimum power generation limit by 

conventional technologies (MW) 
𝑃𝑃𝑆_𝑚𝑎𝑥 Maximum pumped storage charge/discharge 

power (MW) 

𝑃𝑡
𝑏 Power generated by biomass (MW) 

𝑃𝑡
ℎ Power generated by hydro (MW) 

𝑃𝑡
𝐿_𝐷 Total local power demand (MW) 

𝑃𝑡
𝑁_𝐷 Inflexible national power demand (MW) 

𝑃𝑡
𝑃𝑉 Total PV power generation (MW) 

𝑃𝑡
𝑤_𝑚𝑎𝑥 Maximum available wind generation (MW) 

𝑅𝐷𝑁𝑗 Conventional generation ramp down limit 
(MW/h) 

𝑅𝑈𝑃𝑗 Conventional generation ramp up limit 
(MW/h) 

𝑇 Number of time steps 
𝜂𝑏𝑎𝑡_𝑐ℎ  Battery charging efficiency (%) 
𝜂𝑏𝑎𝑡_𝑑𝑖𝑠  Battery discharging efficiency (%) 
𝜂𝑃𝑆  Pumped storage round trip efficiency (%) 
𝜏  Time interval (0.5 hours) 

Variables 

𝐸𝑡
𝑏𝑎𝑡 Total energy stored in batteries (MWh) 

𝐸𝑡
𝑃𝑆 Energy stored in pumped storage (MWh) 

𝑃𝑡
𝑏𝑎𝑡_𝑐ℎ Total battery charging power (MW) 

𝑃𝑡
𝑏𝑎𝑡_𝑑𝑖𝑠 Total battery discharging power (MW) 

𝑃𝑡
𝑒𝑥 Power exported from local energy systems 

(MW) 

𝑃𝑡
𝑖𝑚 Power imported to local energy systems 

(MW) 

𝑃𝑡
𝑃𝑆_𝑐ℎ Pumped storage charging power (MW) 

𝑃𝑡
𝑃𝑆_𝑑𝑖𝑠 Pumped storage discharging power (MW) 

𝑃𝑡
𝑤 Wind power injected into grid (MW) 

𝑃𝑡,𝑗
𝑔𝑒𝑛 Conventional power generation (MW) 

I. INTRODUCTION 

A rapid rise in the deployment of renewables has been 
seen in a bid to lower greenhouse gas emissions from the 
power sector. The increase in intermittent renewable 
generation leads to greater variability of generation. This, 
alongside the reduction of fossil fuel generation, a traditional 
source of supply-side flexibility, raises challenges related to 
balancing of supply and demand, ensuring security of power 
supply and effective use of renewables. Power system 
flexibility is the ability to alter generation or consumption in 
reaction to an external signal, to support the balancing of 
electricity supply and demand [1]. The flexibility available 
from storage systems is forecast to significantly increase 
alongside renewable generation, with this increase 



predominantly from battery storage [2]. Battery storage 
systems can provide flexibility to support the integration of 
intermittent renewable generation by managing the balance of 
electricity supply and demand [3].  

Battery storage systems can provide a number of behind 
and in front of the meter services, such as: frequency 
regulation, voltage regulation, demand response and 
congestion management [4]. Small scale, behind the meter or 
distributed battery storage is a source of demand side 
flexibility that can be used to maximise renewable self-
consumption at a local level [5], [6]. Large numbers of 
distributed battery storage systems can increase system wide 
flexibility, helping to balance supply and demand and 
reducing renewable curtailment [7]. However, distributed 
battery storage systems act to optimise their own operating 
objectives. As a result, the storage operator may choose to 
import/export power at a time that increases operating costs 
for the whole power system. 

The independent nature of the storage operators’ 
objectives raises challenges such as how to realistically 
quantify the value of distributed battery storage for the owner 
and the national power system (NPS). Additionally, how to 
align decisions made by the storage system operator with the 
objectives of the NPS. Hence, it is necessary to address the 
design of retail contracts which can influence the behaviour 
of the storage operator, to align their objectives with the 
whole system.  

The existing literature presents various methodologies 
for investigating the interactions between distributed 
flexibility and NPS operation. According to Awnar et al. [8], 
these can be broadly classified into two categories. The first, 
“Centralised Optimisations” and the second “Strategic 
Market Based methods”. Centralised optimisations consider 
the operation of distributed flexibility from the whole system 
perspective. They tend to be dispatch models, that optimise 
the operation of conventional and renewable generators, as 
well as storage. In centralised optimisations, the demand side 
flexibility tends to be integrated into the whole system, 
assuming centralised control, see Fig. 1.  

 

Fig. 1. Centralised optimisation model structure. The centrally operated 
distributed flexibility is integrated within the whole system. Black arrows are 
power exchange in the national power grid, light blue arrows represent the 
power exchange with the local energy systems. 

As an early example, Roscoe and Ault [9] acknowledged 
the increasing relevance of demand side flexibility, to support 
an increased proportion of renewable generation. In [9], 
simple elastic demand is operated based on dynamic prices. 
More recently, studies have implemented detailed thermal 
models for demand response from electrified heating within 
a centralised whole power system optimisation. Anwar et al. 
[10] considered demand response from electrified heating 
systems to assess the value of load shifting and price 
arbitrage. Similarly, Patteeuw et al. [11] focused on 

understanding the interactions between the demand and 
supply side of the power system with demand response from 
electrified heating. Wang et al. [12] created an integrated unit 
commitment model that assesses the interactions between 
plug-in hybrid electric vehicles, wind power and demand 
response with the wider power system. These studies 
demonstrate the importance of integrated models that 
consider distributed flexibility. However, the flexible assets 
are assumed to be centrally operated. Therefore, these studies 
do not account for the independent objectives and strategic 
behaviour of the flexibility owners. They represent an overall, 
whole system optimal solution, rather than the realistic 
interactions between independent entities.  

Several studies have advanced integrated modelling of 
flexible assets by accounting for the independency of 
wholesale, retail and/or consumer behaviour. Bilevel 
optimisation has been used for modelling such characteristics. 
Sinha et al. [15] define a bilevel optimisation as a 
“mathematical program, where an optimisation problem 
contains another optimisation problem as a constraint”. 
Bilevel optimisations have a hierarchical structure, in which 
each level has its own objective and set of constraints. For 
further details and the mathematical standard form, refer to 
[15]. 

A hierarchical decision-making framework is presented 
by Bahramara et al. [13]. The study investigated the 
interactions between a distribution company and several 
micro-grids. More recently, Anwar and O’Malley [14] 
considered the participation of a demand response aggregator 
in the electricity market. Their work has been advanced with 
the inclusion of a consumer optimisation [8]. These studies 
report bilevel models of energy systems with distributed 
flexibility and compare them with equivalent centralised 
optimisation models. They conclude that centralised models 
tend to overestimate the value of the flexibility for the whole 
system.  

Several studies utilise bilevel optimisation to focus on the 
interactions between actors in the energy system. Zugno et al. 
[16] and Forouzandehmehr et al. [17] studied the interactions 
between retailers and their customers, with demand response 
from electrified heating and energy storage. Bahramara et al. 
[13], [18] and Fateh et al. [19] focused on the behaviour of 
flexible microgrids in relation to prices set by a retailer. 
Although this provides valuable insights into retailer 
profitability when trading with flexible customers, they do 
not account for the impact on the NPS. Bahramara et al. [20] 
also considered flexible assets integrated into distribution 
companies, participating in a wider power system model. 
Anwar and O’Malley [14] integrated consumer thermal 
demand response flexibility with a load aggregator competing 
in wholesale and reserve markets. These studies show the 
importance of accounting for impacts on the whole system. 
However, the strategic behaviour of distributed flexibility 
asset owners is neglected.  In a later study, Anwar et al. [8] 
created a single leader, multiple follower bilevel optimisation 
to evaluate the strategic decision making of a retailer, a 
system operator (clearing the wholesale energy market), and 
consumers. In this case, the objectives of all three actors are 
explicitly considered. The results of this study demonstrate 
the importance of considering independent objectives and the 
major role that retail contract design plays in the value of 
distributed flexibility.  
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Zugno et al. [16] studied dynamic, time-of-use and fixed 
tariffs offered by a retailer, to customers. The dynamic 
contract resulted in reduced market cost for the retailer in 
comparison to time-of-use and fixed contracts. This reduction 
was assumed to reflect an increase in social welfare, which 
was considered as a proxy for the reduction of generation 
cost. This study provides insights into the benefits of dynamic 
price contracts for consumers and retailers. However, it does 
not consider the operation of the whole power system, which 
is a key part of understanding how distributed flexibility can 
support the integration of renewable generation.  

To address the challenges associated with independently 
operated distributed flexibility, an integrated model that 
considers the objectives of all actors is required. To evaluate 
the value of distributed flexibility, the whole system 
operation must be considered. This paper aims to explore the 
efficacy of a Bilevel optimisation approach for studying the 
interactions between multiple actors in a hierarchical energy 
system. Focussing on assessing the value of flexibility from 
distributed battery storage, for application in price arbitrage. 
Furthermore, to investigate distributed battery storage 
operation, in relation to realistic retail contracts and the 
impact of the operation of national generation. The key 
contributions are as follows. 

• The study accounts for the independencies of different 
actors in the energy system applying bilevel optimisation 
to a case study of a real energy system. Verifying the 
efficacy of bilevel optimisation for multi actor energy 
system modelling, by comparison with a Centralised 
optimisation approach.  

• Different retail contracts are examined and their impact 
on the value of distributed battery storage assessed. 
Specifically, retail contracts are compared to reveal their 
impact on both LES and NPS operating costs. 

The rest of this paper is structured as follows. Section 2 
sets out the overall structure of the Bilevel optimisation and 
defines the upper and lower level optimisations in detail. 
Section 3 specifies the case study and provides input 
parameters. Section 4 describes the results of the Bilevel 
optimisation modelling and discusses the importance of the 
findings. Section 5 summarises and concludes. 

II. METHODOLOGY 

 In the Centralised optimisation approach, the NPS 
schedules the generation plants and the operation of local 
battery storage systems. This model assumes central control 
over distributed flexibility and is demonstrated by replacing 
the “distributed flexibility” box in Fig. 1, with the “Leader” 
structure shown in Fig. 2. The objective function of the 
Centralised optimisation aims to minimise the total cost of 
meeting demand for the whole power system.  

The Bilevel model proposed in this paper considers 
different objectives for two actors in the power system. Their 
interactions are represented by the power exchanged between 
local and national energy systems. Each LES aims to utilise 
their battery storage system to minimise their cost of meeting 
demand. The NPS reacts to the LES power requirements and 
minimises the operational cost of meeting overall national 
demand.  

The LES was assumed to be a price taker in the retail 
market, purchasing electricity through currently available 
retail contracts. The operator of the LES makes the first 

decision (in the context of bilevel optimisation it is known as 
the ‘leader’ or ‘upper level’ problem) and then the operator of 
the NPS schedules the generation plants to meet the 
remaining electricity demand (the operator of the NPS is the 
‘follower’ or ‘lower level’ problem). This structure is shown 
in Fig. 2. 

A. Upper level optimisation: minimising the operational 
cost of the local energy systems 

The LES has onsite renewable generation, which, in this 
case is photovoltaic (PV) panels. The LES also has a battery 
storage system, that is operated in response to a pre-
determined retail contract. A single LES would have little 
impact on the whole power system. Hence, the model 
considers several identical LESs to be aggregated within the 
NPS. The upper level problem is represented by aggregated 
LES operation, seeking to minimise their operational cost. 
The objective function is defined as follows. 

Min   ∑ 𝜏(𝐾𝑡
𝑖𝑚𝑃𝑡

𝑖𝑚

𝑇

𝑡=1

− 𝐾𝑡
𝑒𝑥𝑃𝑡

𝑒𝑥) (1) 

The objective function (1) minimises the LES operating 
cost, which is defined as the difference between the cost of 

importing electricity to satisfy demand (𝐾𝑡
𝑖𝑚𝑃𝑡

𝑖𝑚 ) and the 
revenue from selling electricity back to the grid (𝐾𝑡

𝑒𝑥𝑃𝑡
𝑒𝑥). 

Minimal cost is achieved through control of battery 
charging/discharging. Multiplication by the time interval (𝜏) 
ensures conversion from power to energy. The LES 
optimisation is subject to several constraints that are 
described below. 

𝑃𝑡
𝑃𝑉 + 𝑃𝑡

𝑏𝑎𝑡_𝑑𝑖𝑠 + 𝑃𝑡
𝑖𝑚 = 𝑃𝑡

𝐿_𝐷 + 𝑃𝑡
𝑏𝑎𝑡_𝑐ℎ + 𝑃𝑡

𝑒𝑥 ,     ∀𝑡 ∈ 𝑇 
 (2) 

 0 ≤ 𝑃𝑡
𝑖𝑚 ≤ 𝑃𝑒𝑥_𝑚𝑎𝑥 ,     ∀𝑡 ∈ 𝑇 (3) 

 0 ≤ 𝑃𝑡
𝑒𝑥 ≤ 𝑃𝑒𝑥_𝑚𝑎𝑥 ,     ∀𝑡 ∈ 𝑇 (4) 

Equation (2) ensures the power balance of the system, 
where, at each time step, PV generation ( 𝑃𝑡

𝑃𝑉 ), battery 

discharge (𝑃𝑡
𝑏𝑎𝑡_𝑑𝑖𝑠) and import power (𝑃𝑡

𝑖𝑚) are equal to local 

demand (𝑃𝑡
𝐿_𝐷), battery charging power (𝑃𝑡

𝑏𝑎𝑡_𝑐ℎ) and export 

power (𝑃𝑡
𝑒𝑥). Equations (3) and (4) constrain the power flow 

between NPS and LES. 

 0 ≤ 𝑃𝑡
𝑏𝑎𝑡_𝑐ℎ ≤ 𝑃𝑏𝑎𝑡_𝑚𝑎𝑥 ,     ∀𝑡 ∈ 𝑇 (5) 

Fig. 2. Power exchange diagram showing the interactions between the local 
energy system and the national power system. Black arrows are power in the 
national power system, light blue arrows are power exchange with the local 
energy system. 
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 0 ≤ 𝑃𝑡
𝑏𝑎𝑡_𝑑𝑖𝑠 ≤ 𝑃𝑏𝑎𝑡_𝑚𝑎𝑥 ,     ∀𝑡 ∈ 𝑇 (6) 

𝐸𝑏𝑎𝑡_𝑚𝑖𝑛𝐶𝑏𝑎𝑡 ≤ 𝐸𝑡
𝑏𝑎𝑡 ≤ 𝐸𝑏𝑎𝑡_𝑚𝑎𝑥𝐶𝑏𝑎𝑡 ,     ∀𝑡 ∈ 𝑇 (7) 

𝐸𝑡
𝑏𝑎𝑡 = 𝐸𝑡−1

𝑏𝑎𝑡 + 𝜏 (𝜂𝑏𝑎𝑡_𝑐ℎ𝑃𝑡
𝑏𝑎𝑡_𝑐ℎ −

𝑃𝑡
𝑏𝑎𝑡_𝑑𝑖𝑠

𝜂𝑏𝑎𝑡_𝑑𝑖𝑠
) , ∀𝑡 ∈ 𝑇 

(8) 

 ∑ 𝜏𝑃𝑡
𝑏𝑎𝑡_𝑐ℎ

𝑇

𝑡=1

≤ 𝐶𝑏𝑎𝑡 (9) 

Equations (5)-(9) model the operation of the battery 
storage system. The battery charging/discharging power at 
each time step is restricted by the battery power rating in (5) 
and (6). In (7), the battery state of charge is limited to an 

operating range of energy storage capacity (𝐶𝑏𝑎𝑡), where state 
of charge can be limited to a maximum (𝐸𝑏𝑎𝑡_𝑚𝑎𝑥 ) and 

minimum ( 𝐸𝑏𝑎𝑡_𝑚𝑖𝑛 ) to prolong battery life by reducing 
degradation  [21]. The battery power ratings and energy 
storage capacities are inputs to the model. The energy balance 
of the battery is shown in (8), giving the state of charge 

(𝐸𝑡
𝑏𝑎𝑡), where its value depends on the state of the charge in 

the previous time step (𝐸𝑡−1
𝑏𝑎𝑡) and the charging (𝑃𝑡

𝑏𝑎𝑡_𝑐ℎ) and 

discharging ( 𝑃𝑡
𝑏𝑎𝑡_𝑑𝑖𝑠 ) power. The charging efficiency 

(𝜂𝑏𝑎𝑡_𝑐ℎ) and discharging efficiency (𝜂𝑏𝑎𝑡_𝑑𝑖𝑠) of the battery 
are accounted for. Equation (9) limits the number of 
charge/discharge cycles by limiting the total energy stored in 
the battery over 24 hours. This equation is included to avoid 
excessive number of charge/discharge cycles that leads to 
degradation of the batteries. 

B. Lower level optimisation: minimising the operational 
cost of the national power system 

The lower level NPS optimisation coordinates the 
dispatch of conventional generation, the injection of 
renewable generation to the grid and the operation of pumped 
storage. The dispatch of conventional generation is based on 
merit order of their marginal generation cost. The time series 
of biomass and hydro generation data were given to the 
optimisation as input data. The wind generation time series 
gave the maximum wind power available, where any wind 
power not injected into the grid was curtailed. Pumped 
storage facilities were aggregated in terms of their energy and 
power capacity [14]. 

This problem aims to minimise the operating cost of 
power generation required to meet overall demand seen by 
the NPS. The objective function is defined as follows.  

Min   ∑ 𝜏 (∑(𝐾𝑗
𝑔𝑒𝑛𝑃𝑡,𝑗

𝑔𝑒𝑛
)

𝐽

𝑗=1

+ 𝐾𝑤𝑃𝑡
𝑤 + 𝐾𝑏𝑃𝑡

𝑏 + 𝐾ℎ𝑃𝑡
ℎ

𝑇

𝑡=1

+ 𝐾𝑡
𝑒𝑥𝑃𝑡

𝑒𝑥) 

The objective function (10) comprises the cost of 
electricity generation by conventional technologies 

(𝐾𝑗
𝑔𝑒𝑛𝑃𝑡,𝑗

𝑔𝑒𝑛
), wind (𝐾𝑤𝑃𝑡

𝑤), biomass (𝐾𝑏𝑃𝑡
𝑏), hydro (𝐾ℎ𝑃𝑡

ℎ) 

and purchased power from LESs (𝐾𝑡
𝑒𝑥𝑃𝑡

𝑒𝑥). The power terms 
are multiplied by the time interval (𝜏) to convert from power 
to energy. The NPS optimisation is subject to several 
constraints which are described next. Corresponding dual 
variables are indicated next to each constraint. 

∑ 𝑃𝑡,𝑗
𝑔𝑒𝑛

𝐽

𝑗=1

+ 𝑃𝑡
𝑒𝑥 + 𝑃𝑡

𝑤 + 𝑃𝑡
𝑏 + 𝑃𝑡

ℎ + 𝑃𝑡
𝑃𝑆_𝑑𝑖𝑠

= 𝑃𝑡
𝑖𝑚 + 𝑃𝑡

𝑃𝑆_𝑐ℎ + 𝑃𝑡
𝑁_𝐷 ∶  𝜇𝑡

1,   ∀𝑡 ∈ 𝑇 
 (11) 

The power balance of the NPS is expressed in (11). This 

ensures that the sum of conventional generation ( 𝑃𝑡,𝑗
𝑔𝑒𝑛

), 

aggregated LES export power (𝑃𝑡
𝑒𝑥), wind (𝑃𝑡

𝑤), biomass (𝑃𝑡
𝑏) 

and hydro ( 𝑃𝑡
ℎ ) generation and discharge from pumped 

storage (𝑃𝑡
𝑃𝑆_𝑑𝑖𝑠) is equal to the aggregated LES import power 

(𝑃𝑡
𝑖𝑚), charging of pumped storage (𝑃𝑡

𝑃𝑆_𝑐ℎ) and the inflexible 

national demand (𝑃𝑡
𝑁_𝐷). Inflexible national demand is equal 

to total national demand minus the aggregated demand of 
LESs. Equations (12)-(13) bound the outputs of conventional 
and wind generation. 

 𝑃𝑗
𝑚𝑖𝑛 ≤ 𝑃𝑡,𝑗

𝑔𝑒𝑛  ≤ 𝑃𝑗
𝑚𝑎𝑥   ∶   𝜆𝑡,𝑗

1 , 𝜆𝑡,𝑗
2 , ∀𝑡, 𝑗 ∈ 𝑇, 𝐽 (12) 

 
0 ≤ 𝑃𝑡

𝑤  ≤ 𝑃𝑡
𝑤_𝑚𝑎𝑥     ∶     𝜆𝑡

3, 𝜆𝑡
4,   ∀𝑡 ∈ 𝑇 (13) 

The minimum (𝑃𝑗
𝑚𝑖𝑛) and maximum (𝑃𝑗

𝑚𝑎𝑥) output of 

conventional generation is given in (12), while the 
contribution of wind generation is bounded by available wind 
power (𝑃𝑡

𝑤_𝑚𝑎𝑥) during each time step, shown in equation 

(13). Any available wind that is not utilised, is curtailed 

 
0 ≤ 𝑃𝑡

𝑃𝑆_𝑐ℎ ≤ 𝑃𝑃𝑆_𝑚𝑎𝑥      ∶     𝜆𝑡
5, 𝜆𝑡

6,   ∀𝑡 ∈ 𝑇 (14) 

 
0 ≤ 𝑃𝑡

𝑃𝑆_𝑑𝑖𝑠 ≤ 𝑃𝑃𝑆_𝑚𝑎𝑥    ∶   𝜆𝑡
7, 𝜆𝑡

8,     ∀𝑡 ∈ 𝑇 (15) 

 
0 ≤ 𝐸𝑡

𝑃𝑆 ≤ 𝐶𝑃𝑆   ∶     𝜆𝑡
9, 𝜆𝑡

10,     ∀𝑡 ∈ 𝑇 (16) 

𝐸𝑡
𝑃𝑆 = 𝐸𝑡−1

𝑃𝑆 + 𝜏(𝜂𝑃𝑆𝑃𝑡
𝑃𝑆_𝑐ℎ − 𝑃𝑡

𝑃𝑆_𝑑𝑖𝑠)  ∶  𝜇𝑡
2,   ∀𝑡 ∈ 𝑇 

 (17) 

Pumped storage is operated based on equations (14)-(17). 

The charging power (𝑃𝑡
𝑃𝑆_𝑐ℎ) constraint is shown in (14) and 

the discharging power (𝑃𝑡
𝑃𝑆_𝑑𝑖𝑠) constraint is shown in (15). 

The pumped storage state of charge (𝐸𝑡
𝑃𝑆) limit is given in 

equation (16). The energy balance of pumped storage is given 
in (17), where the state of charge is related to the value of 
state of the charge in the previous time step and the charging 
and discharging power. The round-trip efficiency (𝜂𝑃𝑆 ) is 
applied to the charging process.  

As the lower level problem is linear, the Bilevel 
optimisation was solved using a set of Karush-Kuhn-Tucker 
(KKT) conditions that reformulated the problem as a single 
level non-linear optimisation. The non-linearities were 
linearized using the Fortunay-Amat application of the Big-M 
method [22]. Details of the reformulation are presented in the 
Appendix. The resulting single level optimisation is a mixed-
integer linear optimisation problem, which was solved using 
commercial software. In this work, the problem was 
implemented in GAMS and solved using the CPLEX solver.  

III. NUMERICAL CASE STUDY 

The settlement period of the GB electricity market is 30 
minutes [23]. Therefore, half hourly time intervals were used, 
over a 24-hour time horizon of operation. The analysis was 
carried out for a typical summer weekday during school 
holidays. 

(10) 

 



A. Local energy system characteristics 

A school in Cardiff with 50 kW of PV panels and a 
planned battery storage of 20 kWh storage capacity and 10 
kW power rating was used for the case study. Maximum 
import/export power flows, from all LESs, were set at 5 GW. 
The charging and discharging efficiencies of batteries were 
defined as 98% and 96% respectively [21]. The state of 
charge when 𝑡 = 0 was 50% of the battery energy capacity. 
In this study, the state of charge of the batteries were able to 
vary between 0 and 100% of the storage capacity (i.e. 

𝐸𝑏𝑎𝑡_𝑚𝑖𝑛 = 0 and 𝐸𝑏𝑎𝑡_𝑚𝑎𝑥 = 1). The battery state of charge 
at the final time step was equal to or larger than 50% of the 
battery energy capacity. 50,000 identical LESs were used to 
increase their impact on the NPS. PV generation and local 
demand were defined inputs to the model and are shown in 
Fig. 3. Assuming identical LESs is a limitation of this work. 
However, having a more diverse selection of LES archetypes 
would not change the conclusions of the study. 

B. National power system characteristics 

The NPS was based on a representation of the GB 2030 
national generation mix. Three conventional generation 
technologies were considered: combined cycle gas turbine 
(CCGT), nuclear and open cycle gas turbine (OCGT). For 
CCGT and OCGT, their aggregated capacity within GB were 
given as their maximum power output. As the output of 
nuclear generation does not vary significantly over 24 hours, 
power output was limited to a small range, typical of a day 
during summer school holidays. Capacity, as well as marginal 

generation costs for conventional generation technologies are 
shown in Table 1. Conventional generation ramp rates were 
not accounted for in this study. 

TABLE I 
CONVENTIONAL GENERATION INPUT DATA [24], [27]–[29] 

Technology Maximum 

capacity (MW) 

Minimum 

generation (MW) 

Marginal cost 

(£/MWh) 
CCGT 15,536 0 57 
Nuclear 4,570 4,560 10.4 
OCGT 1,126 0 83 

Biomass and hydro generation, available wind 
generation and inflexible national demand were real time 
series data from a typical day during summer school holidays 
and were inputs to the optimisation model. A case with high 
national wind generation was used to emphasise the use of 
flexibility with high penetrations of renewable generation. 
Available power generation from wind was taken from 
historic data from the 31st July 2019, which was during 
summer school holidays [24]. The available wind generation 
and inflexible national demand are shown in Fig. 4. 

Depending on levels of demand and generation from 
must run technologies (i.e., nuclear, hydro and biomass), a 
proportion of available wind generation could be curtailed. 
The inputs for national demand and wind, biomass and hydro 
generation were scaled in line with National Grid projections, 
to give inputs for 2030 [25]. Inflexible national demand was 
assumed to be the total national demand, minus the 
aggregated school demand. The pumped storage had a round-
trip efficiency of 75% [26], while the energy storage capacity 

 

 

 

Fig. 3. School PV generation and demand for a typical weekday during 
summer school holidays. Steady demand throughout the day due to empty 
school, PV generation exceeding local demand at times during the day. 

 Fig. 4. Inflexible national demand and available wind generation for a 
typical weekday during summer school holidays. Demand is low during 
the night, increases in the morning and peaks in early evening. 

 

 

 

Fig. 5. Electricity import price in different retail contracts considered for 
comparing the value of battery storage in LESs. Two contracts increase 
prices during peak times. Three contracts reduce prices during the night. 

 Fig. 6. Electricity export price in different retail contracts considered for 
the comparing the value of battery storage in LESs. The Agile contract 
has reduced export price during night and high export price during peak, 
following wholesale electricity price.  
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and power output capacity were 38,450 MWh and 2,744 MW 
[25], respectively. The state of charge at 𝑡 = 0 was 50% of 
total pumped storage capacity. In the final time step, the 
pumped storage state of charge was equal to or more than the 
first time step. 

C. Retail contracts 

Several retail contract designs were compared in this 
study. The retail contracts used were based on real retail 
contracts offered by existing UK retailers. The schools 
existing retail contract consisted of a day and night price for 
imported electricity and no contract to sell excess electricity 
back to the grid. The remaining retail contracts were defined 
as follows: 

• Octopus Fixed tariff – import and export prices were 
fixed for all times of the day. 

• Bulb Smart tariff – export price was fixed. Import price 
was increased during peak hours (16:00-19:00).  

• Octopus Go – import price was reduced at night (00:00-
04:00). No export price was permitted with this contract. 

• Octopus Agile – import and export prices tracked 
wholesale electricity price. 

The Octopus Agile price was calculated by multiplying the 
wholesale electricity price by a factor, then increasing the 
price during peak hours. Customers would receive prices the 
prior evening so could plan energy used for the following day. 
For more information on the Octopus Agile tariff, refer to 
[30]. All other contracts were fixed time-of-use tariffs. The 
retail contracts are shown in Fig. 5 and Fig. 6. 

IV. RESULTS AND DISCUSSION 

A benchmark case was defined in which the Centralised 
optimisation approach was used to minimise the operational 
cost of the NPS and LESs considering no battery storage in 
the schools. The total operational cost of the NPS for the 
benchmark case was £7.541 million. The NPS operating cost 
was the sum of generation cost in the power system. For the 
existing retail contract, the LESs operating cost for the 
benchmark case was £275,011, equating to a cost of £5.50 per 
school. 

A. Operation of battery storage 

The operation of the NPS and LESs with battery storage 
were modelled using the Centralised optimisation approach 
and Bilevel optimisation approach. For different approaches, 
the change in the operating costs of NPS and LES compared 
to the benchmark are shown in Fig. 7. The results from the  
Centralised optimisation approach shows that while installing 
battery storage in LESs reduces the operating cost of the NPS, 
the operating costs of the LESs increases. LES operating cost 
was calculated as the difference between the cost of importing 
energy and the revenue from exporting energy. LES operating 
cost was not explicitly considered in the Centralised 
optimisation approach but was calculated outside the 
optimisation, by multiplying import/export power values by 
the retail price. In reality, direct control contract would ensure 
the LESs benefit from allowing centralised control of their 
battery storage system. This result shows that centrally 
operated distributed battery storage systems can financially 
benefit the NPS. In the Centralised optimisation, the benefits 
for the LESs are limited by the terms of the direct control 
contract and retail contract. 

Bilevel optimisation is a method used to explicitly consider 
the objectives of the LESs. The change in NPS and LES 
operating cost from the benchmark (with no battery storage) 
to the Bilevel optimisation approach (with battery storage) is 
shown on the right-hand side of Fig. 7. When the LESs 
operate their battery storage according to their objective, they 
can lower their operating costs in comparison to the 
benchmark (with no battery storage). Although, reducing 
their own costs results in an increase in the NPS operating 
cost. This result shows that where distributed battery storage 
systems are operated independently, they can have a negative 
impact on the NPS. This result is in agreement with previous 
comparisons of Centralised and Bilevel optimisation 
approaches [8], [13], [14].  

 To further highlight the impact of considering the 
distributed battery storage operating objectives, the change in 
wind curtailment is shown in Fig. 8. Where both are 
compared to the benchmark case. Fig. 8 shows that centrally 
operated distributed battery storage systems can reduce 
curtailed wind energy in the NPS. In contrast, distributed 

 

 

 Fig. 7. Changes in operating cost from the benchmark to the Centralised 
optimisation (with battery storage) for all LESs and the NPS (left). As 
well as the changes in total operating cost from the benchmark to the 
Bilevel optimisation (with battery storage) for all LESs and the NPS 
(right). LES operating cost was found outside of the Centralised 
optimisation, by multiplying import/export powers with retail prices.  

 

Fig. 8. Change in total curtailed wind energy over the 24-hour time 
horizon, relative to the benchmark case, shown for Centralised (light 
blue) and Bilevel (blue) optimisations. Comparison is made using the 
existing retail contract. 
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battery storage operated by its local owners can lead to an 
increase in curtailed wind energy. This negative impact on the 
whole system is due to a lack of coordination between the 
operation of the distributed battery storage and the NPS. This 
too demonstrates the objectives of the distributed battery 
storage system operator must be accounted for when 
investigating the whole system impacts. 

Fig. 9 shows the power exchange between the NPS and 
the LESs, for the Centralised and Bilevel optimisation 
approaches with the Octopus Agile retail tariff. Power 
exported from LESs to the NPS is shown as positive and 
power imported from the NPS to the LESs is shown as 
negative. The results shown in this figure demonstrate the 
difference in operating behaviours of LESs in the Centralised 
and Bilevel optimisation approaches. From 00:00-01:00, the 
LESs export power in the Centralised approach and import 
power in the Bilevel approach. In addition, for periods 10:00-
11:00 and 16:30-17:30, the LESs import power in the 
Centralised approach and have no power exchange in the 
Bilevel approach. Finally, in period 21:00-23:00, the LES 
imports power in the Centralised approach and imports 
significantly less power in the Bilevel approach. These results 
show that the Centralised approach does not account for the 
import/export costs/revenue for the LES. Whereas the Bilevel 
approach does, and therefore reduces import power instead of 
exporting, as the export price is lower than import price. The 
result shows that in the Bilevel approach, the LESs operate 
according to their own objectives. 

To realistically quantify the benefits of distributed 
battery storage systems, their independent objectives must be 
explicitly considered. The Centralised approach maximises 
the benefits for the whole power system. Nevertheless, this 
may not accurately represent the strategic decisions of the 
distributed battery storage owners and can lead to 
exaggerated estimates of distributed battery storage value to 
the NPS. The Bilevel result is sub-optimal for the whole 
system. Though, its purpose is to improve the representation 
of distributed battery storage system objectives. 

B. Value of distributed battery storage 

In view of the discussion in the previous section, this 
section assesses the influence of retail contracts on the value 
of distributed battery storage systems for their owners and the 
NPS. Notably, the value of distributed battery storage is two-
fold. It can provide reduced energy import costs and increased 
PV self-consumption for the schools. It can also reduce 
reliance on fossil fuel based technologies for the NPS, leading 
to lower generation cost and minimising renewable 
curtailment [6], [8].  

To understand the value of battery storage for the school, 
several retail contracts were compared with the benchmark 
case. The Bilevel optimisation was used to produce the results 
shown in Fig. 10. This figure shows that the addition of 
battery storage results in a reduction in the cost of meeting 
electricity demand for the school, regardless of the retail 
contract. Although, the retail contract does have an impact on 

 

Fig. 9. Power exchanged between the NPS and LESs over a 24-hour time horizon, shown for the Centralised optimisation (light blue, dashed) and the Bilevel 
optimisation with the Octopus Agile retail tariff (blue, solid). Power exported from the LES to the NPS is shown as positive values and the power imported 
from the NPS to the LES is shown as negative. 

 

 

 

Fig. 10. Changes in operating cost of a single school for the 24-hour time 
horizon. These bilevel optimisation results are relative to the benchmark case 
with the existing retail contract and no battery storage. 

 Fig. 11. Change in NPS operating cost for the 24-hour time horizon. These 
Bilevel optimisation results are relative to the benchmark case with the 
existing retail contract and no battery storage. 
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the level of cost savings and therefore on the value of the 
battery storage for the school. Introducing a battery storage 
system without changing the existing retail contract resulted 
in the smallest reduction in operating cost. Whereas the 
Octopus Agile tariff resulted in the highest operating cost 
reduction for the school. This contract provides prices for 
import and export electricity that track the wholesale 
electricity price. Higher variations in price allow the school 
to store cheap energy and export while the price is high.  

While battery storage reduced the operating costs for the 
school, high penetrations of distributed storage can impact the 
NPS in different ways, depending on the retail contract. The 
Bilevel optimisation was used to investigate the impacts of 
distributed battery storage systems on the operating cost of 
the NPS, shown in Fig. 11. The figure shows the change in 
the NPS operating cost relative to the benchmark case. Three 
of the retail contracts caused an increase in NPS operating 
cost. The addition of a battery storage system without 
changing the existing contract resulted in the largest increase 
in operating cost for the NPS. Although some contracts 
increase the NPS operating cost, Octopus Go and Octopus 
Agile resulted in a reduction in the NPS operating cost. These 
results show that the retail contract design can impact the 
operating costs for the distributed battery storage owner but 
also the impact they can have on the NPS operating cost. The 
fixed retail contract creates no incentive for the distributed 
battery storage to be operated in line with NPS objectives. 
They simply encouraged the self-consumption of PV 
generation to reduce operating cost. The fixed time-of-use 
tariffs (Bulb Smart Tariff and Octopus Go) encourage the 
distributed battery storage operator to shift their demand to 
off peak times. This can reduce NPS operating cost, as 
cheaper generating technologies can be used to meet low 
demand. However, as the Bulb Smart Tariff shows, these 
contracts are fixed and may not always reduce NPS operating 
cost. In addition, they can lead to peaks at different times of 
the day/night. The Octopus Agile tariff tracks the wholesale 
electricity price, allowing the coordinated operation of 
distributed battery storage and the NPS. This tariff 
encourages the LES to shift demand from high-cost times to 
low-cost times, depending on the actual available generation 
in the power system. The result demonstrates that distributed 
battery storage can be beneficial or detrimental to the 
operating cost of the NPS. Retail contract design can 
influence their behaviour, facilitating the alignment of their 
objectives with the NPS. 

V. CONCLUSION 

This paper aimed to quantify the realistic value of 
distributed battery storage. Two approaches for integrated 
modelling of distributed battery storage and national power 
system interaction were compared. The first approach, termed 
‘Centralised Optimisation’, assumed centralised control of 
battery storage operation. The other approach, termed 
‘Bilevel optimisation’, explicitly considered the objectives of 
the battery storage system owners. A comparison between the 
approaches showed the Centralised operation of distributed 
battery storage reduces the national power system operating 
cost. In contrast, including the stakeholder objectives resulted 
in reduced energy costs for the schools and an increase in the 
national power system operating cost. This result highlights 
the importance of accounting for the objectives of the 
distributed storage operator when assessing its system wide 
benefits.  

The impact of retail contracts on the value of distributed 
battery storage was also assessed. Several pre-determined 
retail contracts were compared. The introduction of battery 
storage allowed the school to reduce their energy costs for all 
retail contracts. On the contrary, some retail contracts 
increased the national power system operating costs, while 
others reduced them. This result demonstrates the influence 
that retail contract design can have on the value of distributed 
battery storage for both the stakeholders and the national 
power system. 

A. Limitations and future works 

The modelling and results presented in this paper have 
several limitations. Firstly, the use of 50,000 identical local 
energy systems limits the variability of their decision making. 
This assumption can be addressed through the introduction of 
a range of local energy system archetypes. Additionally, the 
modelling formulation does not account for battery 
degradation. Future work can integrate battery degradation 
constraints into the model. Furthermore, there is only one 
source of distributed flexibility (battery storage), which is not 
representative of the possible technologies available to 
provide distributed flexibility. To address this, the proposed 
Bilevel optimisation can include other technologies such as 
soft open points, thermal demand response, flexible loads 
and/or other energy storage technologies. Moreover, perfect 
coordination of local energy system flexibility is assumed. 
This neglects the impact of profit driven aggregators who 
would aggregate distributed power demand to participate in 
the wholesale electricity market. Future developments of the 
Bilevel optimisation can include an actor, such as a retailer or 
aggregator. Finally, all actors have perfect foresight of 
renewable generation and demand. To address this, 
uncertainties for renewable generation and electricity 
demands can be included.  
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APPENDIX 

In the Bilevel optimisation approach, the LES cost 

minimisation is the leader and the NPS cost minimisation is the 
follower. A common method for solving bilevel optimisations is by 
reformulating the bilevel model as a single level optimisation 
problem, using KKT conditions [31]. For any linear programming 
problem, a result that satisfies the KKT conditions, is guaranteed to 
be an optimal solution. Therefore, the KKT conditions that 
correspond to the follower optimisation can be formulated and 
included in the leading optimisation. This embeds the follower 
optimisation in the leading optimisation, guaranteeing an optimal 
solution for both problems, simultaneously. For the reformulation 
standard form, refer to [31].  

The bilevel optimisation defined in equations (1)-(17) is 
reformulated and the following set of KKT conditions are defined. 

  𝐾𝑗
𝑔𝑒𝑛𝜏 − 𝜆𝑡,𝑗

1 + 𝜆𝑡,𝑗
2 + 𝜇𝑡

1 = 0, ∀𝑡, 𝑗 ∈ 𝑇, 𝐽 (18) 

 𝐾𝑤𝜏 − 𝜆𝑡
3 + 𝜆𝑡

4 − 𝜇𝑡
1 = 0,     ∀𝑡 ∈ 𝑇 (19) 

 −𝜆𝑡
5 + 𝜆𝑡

6 + 𝜇𝑡
1 + 𝜏𝜂𝑃𝑆𝜇𝑡

2 = 0,     ∀𝑡 ∈ 𝑇 (20) 

 −𝜆𝑡
7 + 𝜆𝑡

8 − 𝜇𝑡
1 − 𝜏𝜇𝑡

2 = 0,     ∀𝑡 ∈ 𝑇 (21) 

 −𝜆𝑡
9 + 𝜆𝑡

10 − 𝜇𝑡
2 + 𝜇𝑡+1

2 = 0,     ∀𝑡 ∈ 𝑇 (22) 

 
0 ≤ 𝜆𝑡,𝑗

1 ⊥ (𝑃𝑡,𝑗
𝑔𝑒𝑛 − 𝑃𝑗

𝑚𝑖𝑛) ≥ 0,     ∀𝑡, 𝑗 ∈ 𝑇, 𝐽 (23) 

 
0 ≤ 𝜆𝑡,𝑗

2 ⊥ (𝑃𝑗
𝑚𝑎𝑥 − 𝑃𝑡,𝑗

𝑔𝑒𝑛
) ≥ 0,     ∀𝑡, 𝑗 ∈ 𝑇, 𝐽 (24) 

 0 ≤ 𝜆𝑡
3 ⊥ (𝑃𝑡

𝑤) ≥ 0,     ∀𝑡 ∈ 𝑇 (25) 

 0 ≤ 𝜆𝑡
4 ⊥ (𝑃𝑡

𝑤_𝑚𝑎𝑥 − 𝑃𝑡
𝑤) ≥ 0,     ∀𝑡 ∈ 𝑇 (26) 

 0 ≤ 𝜆𝑡
5 ⊥ (𝑃𝑡

𝑃𝑆_𝑐ℎ) ≥ 0,     ∀𝑡 ∈ 𝑇 (27) 

 0 ≤ 𝜆𝑡
6 ⊥ (𝑃𝑃𝑆_𝑚𝑎𝑥 − 𝑃𝑡

𝑃𝑆_𝑐ℎ) ≥ 0,     ∀𝑡 ∈ 𝑇 (28) 

 0 ≤ 𝜆𝑡
7 ⊥ (𝑃𝑡

𝑃𝑆_𝑑𝑖𝑠) ≥ 0,     ∀𝑡 ∈ 𝑇 (29) 

 0 ≤ 𝜆𝑡
8 ⊥ (𝑃𝑃𝑆_𝑚𝑎𝑥 − 𝑃𝑡

𝑃𝑆_𝑑𝑖𝑠) ≥ 0,     ∀𝑡 ∈ 𝑇 (30) 

 0 ≤ 𝜆𝑡
9 ⊥ (𝐸𝑡

𝑃𝑆) ≥ 0,     ∀𝑡 ∈ 𝑇 (31) 

 0 ≤ 𝜆𝑡
10 ⊥ (𝐶𝑃𝑆 − 𝐸𝑡

𝑃𝑆) ≥ 0,     ∀𝑡 ∈ 𝑇 (32) 

The stationary constraints are defined in equations (18)-(22). 
They are derived from the first order derivatives of the Lagrangian 
function, with respect to the five decision variables of the follower 

optimisation problem ( 𝑃𝑡,𝑗
𝑔𝑒𝑛

, 𝑃𝑡
𝑤 , 𝑃𝑡

𝑃𝑆_𝑐ℎ , 𝑃𝑡
𝑃𝑆_𝑑𝑖𝑠 , 𝐸𝑡

𝑃𝑆 ). The 

complementary slackness constraints are defined in equations (23)-
(32), where 0 ≤ 𝑎 ⊥ 𝑏 ≥ 0 is equivalent to 0 ≤ 𝑎, 𝑏 ≥ 0 and 𝑎𝑏 =
0. The latter constraint makes these conditions non-linear. They are 
linearized using the Fortuny-Amat transformation [22]. This is when 
each complementary slackness condition, given by 0 ≤ 𝑎 ⊥ 𝑏 ≥ 0, 
can be replaced by the following: 

0 ≤ 𝑎, 0 ≤ 𝑏, 𝑎 ≤ 𝑀𝑈, 𝑏 ≤ 𝑀(1 − 𝑈), 

where 𝑀 is a sufficiently large enough constant and 𝑈 is a binary 
variable that corresponds to each complementary slackness variable. 
The bilevel optimisation problem has now been reformulated as a 
single-level, linear mathematical program with equilibrium 
constraints (MPEC). The final model is a single-level mixed-integer 
linear program (MILP), with the objective function defined in 
equation (1), subject to the constraints defined in (2)-(8), (11)-(17), 
(18)-(22) and the linear equivalents of (23)-(32). 
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