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Thesis Summary 

Uncovering the intricate relationship between the brain’s structure and function remains a 

fundamental goal of the neuroscience field. Significantly, recent advances in the 

neuroimaging field are now allowing for the investigation of this relationship at the 

microstructural level, opening up a wealth of new research possibilities. Of particular interest, 

is the ability to probe the myelin content of the cortex non- invasively and with high 

resolution. 

Notably a close relationship is known to exist between the cyto and myelo architecture of the 

brain and converging lines of evidence point to the potential existence of a relationship 

between myelination of the cortical grey matter and electrophysiological responses. Of 

particular interest in this regard are neural oscillations, which have been widely implicated in 

a variety of cognitive processes and clinical conditions. Thus, this thesis seeks to explore the 

possibility of investigating the relationship between a key aspect of the cortical 

microstructure, namely its myelin content and oscillatory dynamics in-vivo, through the use 

of high resolution 7T MRI in combination with MEG. Ultimately, the novel insights gained 

through this approach could have important implications for the understanding of brain 

structure-function relationships in both health and disease. 
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Chapter 1 

General Introduction 

1.1 Rationale 

 

Recent advances in neuroimaging are enabling the investigation of brain structure and 

function on a much finer scale than ever before. Importantly, such investigations have the 

potential to advance our understanding of structure-function relationships by allowing for 

the estimation of direct correlations between brain microstructure and function in vivo. 

Correspondingly, there has been a renewal of interest in using high resolution quantitative 

MRI techniques in order to probe the microstructure of the brain and in particular its 

myelin content. 

The cortical grey matter contains numerous myelinated fibres, the spatial organization of 

which varies across the cortex. Significantly, a close relationship is also thought to exist 

between the cytoarchitecture and myeloarchitecture of the brain. For example, the 

horizontal myelinated fibres of the cortex have been suggested to correspond to the axon 

collaterals of pyramidal cells (the primary generators of the MEG/EEG signal). Building 

on this close association, a recent study by Helbling et al. (2015) demonstrated that 

estimates of cortical myelin content can predict the magnitude of electrophysiological 

responses derived using MEG, thus demonstrating  the feasibility of using MRI derived 

myelin estimates to investigate structure-function relationships at the microstructural level. 

Neural oscillations are thought to enable the coordinated activity of neuronal populations 

during normal brain functioning and aberrant oscillatory dynamics have been extensively 

implicated in a wide range of clinical conditions. However numerous questions remain 

regarding the generation of these signals and their relation to the underlying 

neuroanatomy. Thus, the objective of the current research is to investigate the relationship 

between the microstructure of the brain and neuronal oscillations at both the local and 

network level, with a view to gaining new insights into the nature of these signals and 

their relation to the underlying neuroanatomy. Ultimately, given the purported role of 

oscillations in cognition, such an investigation could provide new insights into the nature 
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of structure-function relationships and their relevance for cognition and pave the way for a 

greater understanding of the pathophysiology of clinical conditions. 

The aim of this introductory chapter is to provide important contextual information 

regarding the themes of this thesis as well as a detailed overview of the concepts discussed 

in the experimental chapters of this thesis. 

1.2 Structure-function relationships in the brain 

 

It remains a fundamental tenet of the neuroscience field that the structure of the brain and 

its function are closely interrelated. Consequently, the understanding of behaviour, in 

health and disease, is dependent upon knowledge of both these crucial facets of the brain. 

Yet, despite having been the subject of intense research, there remain many unanswered 

questions regarding the complex interplay between brain structure and function. Indeed, 

although significant inroads have undoubtedly been made into the understanding of the 

brain’s neurophysiology, the precise question of how the distinctive structural architecture 

of a given cortical area shapes its function has remained somewhat elusive and is thus the 

subject of ongoing investigation (Weiskopf, Mohammadi, Lutti, & Callaghan, 2015). 

However, in recent years there has been growing recognition of the fact that multimodal 

imaging studies, combining both structural and functional neuroimaging data, could help 

to revolutionise our understanding of structure-function relationships (Calhoun & Sui, 

2016). Such investigations can provide a more in-depth understanding of brain functioning 

and its relevance for cognition by informing our understanding of how the structure of the 

brain shapes its function and providing insight into which aspects of brain physiology 

(both structural and functional) could be important for shaping behaviour and cognition 

(Calhoun & Sui, 2016). 

A key challenge facing investigations of structure-function relationships in the human 

brain is that the cortical neuroanatomy can be understood at many different levels, from 

the microscopic to the macroscopic (Devlin & Poldrack, 2007). In the context of the 

neuroimaging field, given the technical limitations inherent in the available methods, the 

predominant focus with regards to mapping structure to function has necessarily been at 

the macrostructural level. However, from histological investigations the microstructure of 

the cortical grey matter is known to  be exceedingly complex. Indeed, rather than existing 

as a uniform entity, the human neocortex exhibits a highly intricate organised structure, 

typically defined by a six-layer architecture, though some regional differences are 
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apparent (Molyneaux, Arlotta, Menezes, & Macklis, 2007). Within each of these layers, 

distinct populations of neurons can be found, each with their own unique morphological 

characteristics (Molyneaux et al., 2007). 

In total, the human cortex is thought to constitute approximately 100 billion neurons 

(Herculano-Houzel, 2009). Two major classes of neurons account for these figures. The 

first and most abundant  of these are pyramidal cells, located in all cortical layers (except 

layer 1), which constitute roughly 70-85% of the total population of neurons in the brain 

(DeFelipe & Farinas, 1992). A characteristic feature of these cells is their long axons. The 

second predominant class of neurons in the cortex are interneurons which possess short 

axons. These interneurons can also be differentiated into multiple morphological types, 

depending on the cortical area and layer in which they are situated (DeFelipe & Farinas, 

1992). 

Historically, cortical layers have been distinguished by the predominant types, sizes and 

packing density of cells (Palomero-Gallagher & Zilles, 2019). However, the existence of 

myelinated cortical fibres has been known for centuries and examination  of the density of 

such fibres has also proven instrumental to the analysis of cortical layering patterns. Indeed, 

a further key component of the brain’s microstructure is its  myelin content. Myelin is a fatty 

substance composed of lipid bilayers that wrap tightly around axons forming a coating that 

provides a source of insulation (Pirko & Noseworthy, 2007). In the central nervous system 

myelin is produced by glial cells known as oligodendrocytes. Interestingly, although most 

prominent in the white matter of the brain, the cortical grey matter also contains numerous 

myelinated fibres, the spatial organization of which varies across the cortex (Nieuwenhuys, 

2013). On the basis of the density of these myelinated fibres, cortical layers have been 

distinguished. Of note, the borders of cyto and myeloarchitecturally defined layers have also 

been shown to be comparable (Palomero-Gallagher & Zilles, 2019). 

 

Significantly, recent advances in neuroimaging that enable the quantification of brain 

structure and function on a much finer scale than ever before (Weiskopf et al., 2015) make 

it possible to measure microstructural properties of human brain tissue, such as the myelin 

content, non-invasively and with high resolution. Such advancements have raised the 

exciting prospect of being able to estimate direct correlations between the microstructure 

and function of the cortex in vivo (Weiskopf et al., 2015). Correspondingly, cortical myelin 

has garnered  increasing attention over the past few years. . 
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1.3 A Brief History of the Cortical Myeloarchitecture 

 
The term myeloarchitecture, first introduced by Vogt in 1903, can be defined as the 

pattern and distribution of myelinated fibres in the cortex (Nieuwenhuys, 2013). The 

investigation of this particular facet of the cortical microstructure began in in the 18th 

century with Italian neuroanatomist Gennaris’ 1782 discovery of a white stripe in the 

occipital lobe of ex-vivo human brain tissue, now commonly referred to as the Stria of 

Gennari. However, it was not until a number of years later, at the turn of the 20th century, 

that a systematic research program dedicated to elucidating the nature of the cortical 

myeloarchitecture truly came to fruition, thanks to the efforts of Cécile  and Oskar Vogt 

and their numerous collaborators (Palomero-Gallagher & Zilles 2019). 

Throughout the history of neuroscience, the structure of the cortex and its delineation  into 

cortical areas, to which particular functions can be ascribed, has been the subject of 

intense investigation (Geyer, Weiss, Reimann, Lohmann, & Turner, 2011). In order to 

provide a precise mapping of structure and function in the brain, the early 20th century 

witnessed the evolution of two principle neuroanatomical disciplines (Amunts, & Zilles, 

2015). The first of these consisted of histological studies of the cortical cytoarchitecture 

pioneered by Brodmann, who focused on the spatial distribution of cell bodies (Geyer et 

al., 2011). Using this approach Brodmann produced a parcellation of the cortex on the 

basis of its cytoarchitecture, commonly  referred to as the Brodmann maps, which were 

first published in 1908 (Brodmann,1908). These iconic maps became a staple of the 

neuroscience field and  are still in use today. 
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Figure 1.1: Diagram of the cytoarchitectonic and myeloarchitectonic layers of the cortex 

produced by Vogt (1903), taken from Nieuwenhuys, R. (2013). The myeloarchitectonic studies on 

the human cerebral cortex of the Vogt–Vogt school, and their significance for the interpretation of 

functional neuroimaging data. Brain Structure and Function, 218(2), 303- 352. 

 

However, less commonly known, is that around the same time, Cécile and Oskar Vogt 

were focusing on the study of the myeloarchitecture of the brain. Significantly,  akin to the 

cells of the cerebral cortex, the spatial organisation of the myelinated tangential and radial 

fibres that constitute its myeloarchitecture vary across the cortex. On the basis of local 

differences in the morphology of such fibres, it is possible to identify and delineate unique 

cortical areas. This endeavour constitutes the primary aim of the neuroanatomical 

subdiscipline referred to as myeloarchitectonics (Nieuwenhuys, 2013). 

This image has been removed by the author for copyright reasons. 

(See Figure 3 : Nieuwenhuys, R. (2013). The myeloarchitectonic 

studies on the human cerebral cortex of the Vogt–Vogt school, and 

their significance for the interpretation of functional neuroimaging 

data. Brain Structure and Function, 218(2), 303- 352) 

https://link.springer.com/article/10.1007/s00429-012-0460-z/figures/3 



6  

The radial myelinated fibres observed in the cortex typically form bundles and were 

distinguished by the Vogts into three types, namely euradiate (radial fibres that do not 

extend beyond layer 3), supraradiate (radial fibre bundles that transverse almost  the entire 

depth of the cortex) and infraradiate (characterised by short radii that terminate at layer 5) 

(Nieuwenhuys, 2013). In contrast, the tangential myelinated fibres run parallel to the 

cortical surface, characteristically forming layers. Noteworthy examples of these layers of 

tangentially oriented fibres include the inner and outer bands (or stripes) of Baillarger 

(Zilles, Palomero-Gallagher, & Amunts, 2015). 

With regards to the patterns of transverse fibres observed in the cortex, the Vogts also 

distinguished four prominent types: specifically, bistriate, unistriate, unitostriate  and 

astriate. The bistriate type, for example, is characterised by the presence of two distinct 

bands of Baillarger whilst the key feature of the unistriate type is that only the external 

stripe of Baillarger can be distinguished. Although present, the inner band of Baillarger 

cannot be discerned in this type due to a high density of fibres in layer 6 (Nieuwenhuys, 

2013). Examples of each of these different types are illustrated in Figure 1.2. 
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Figure 1.2: Diagram showing the 4 principal classifications of tangential myelinated fibres that 

define myeloarchitectonic areas, according to Vogt. a refers to the bistriate type, b to the unistriate 

type , c to the unitostriate type and d to the astriate type. Produced by Vogt (1910) and taken from 

Nieuwenhuys, R. (2013). The myeloarchitectonic studies on the human cerebral cortex of the Vogt–

Vogt school, and their significance for the interpretation of functional neuroimaging data. Brain 

Structure and Function, 218(2), 303-352. 

Between 1910 and 1970 the Vogts and a number of other collaborators and pioneers of the 

field published extensive studies on the myeloarchitecture of the cortex (Nieuwenhuys, & 

Broere, 2017). On the basis of these efforts the cortex has been suggested to contain roughly 

185 cortical areas (Nieuwenhuys, 2013). 

Despite the existence of this rich body of research, and in contrast to studies of the cortical 

cytoarchitecture, the myeloarchitecture of the brain has been largely neglected over the past 

hundred years (Nieuwenhuys, 2013). However, in recent years the study of cortical 

myelination has received new impetus (see Figure 1.3). This is largely due to the advent of 

more advanced MRI techniques, sensitive to myelin,  that have spurred a corresponding 

renewal of interest in examining the myeloarchitecture of the brain in vivo. 

 

This image has been removed by the author for 

copyright reasons.(See Figure 4 : Nieuwenhuys, 

R. (2013). The myeloarchitectonic studies on the 

human cerebral cortex of the Vogt–Vogt school, 

and their significance for the interpretation of 

functional neuroimaging data. Brain Structure 

and Function, 218(2), 303- 352) 

 

https://link.springer.com/article/10.1007/s00429-

012-0460-z/figures/4 
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Figure 1.3: Analysis of Scopus database search for terms “cortical myelin” and 

“myeloarchitecture” for the years 1964-2020. Scopus is the largest abstract and citation 

database of peer-reviewed literature and indexes abstracts and references from thousands of 

scientific journals. 

 

 
1.4 Myelin Mapping 

 

Significantly, myelin possesses several important properties that make it MR visible, 

including its high lipid content. To date, in-vivo investigations of the cortical 

myeloarchitecture have employed a range of different imaging approaches in order to 

investigate myelin content (e.g., T1-weighted images, T2-weighted images, T1/T2w ratio 

images) (Waehnert et al., 2016). There has been particular interest in using T1 (the 

longitudinal relaxation time) as a biomarker for cortical myelination (Tardif, Gauthier, Steele, 

Bazin, Schäfer, 2016) as, in healthy subjects, T1 is mostly thought to reflect variations in 

myelin content (Lutti, Dick, Sereno, & Weiskopf, 2014). Indeed, a recent histological study 

concluded that myelin is the dominant source of contrast in T1 maps (Stüber, Morawski, 

Schäfer, Labadie, Wähnert, 2014). Thus far, a number of studies have demonstrated the 

efficacy of using T1 (or R1 = 1/ T1) as a biomarker for myelin concentration, having 
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demonstrated robust differences  in T1 linked to myelin density differences both between 

brain areas and across volunteers (Waehnert et al., 2016). Furthermore, in line with histology, 

such studies have also consistently demonstrated a pattern of a decrease in myelin content 

from primary sensory to transmodal areas (Huntenburg, et al., 2017). 

In vivo analyses of the cortical myeloarchitecture based on T1 have employed a variety of 

quantitative MRI techniques in order to produce T1 or R1 maps of the cortex (Lutti et al., 

2014). Quantitative MRI can be seen to confer a number of advantages over traditional 

weighted images in this regard as the parameters produced using such an approach are more 

directly related to the underlying biology than conventional weighed images (Weiskopf et al., 

2015). This is owing to the fact that they are less susceptible to experimental biases such as 

inhomogeneties in the magnetic field (Waehnert et al, 2016). As such, quantitative MRI has 

the potential to provide measures of specific MR parameters (e.g. T1) that can be used as 

biomarkers  of microstructural tissue properties such as myelin (Weiskopf et al. 2015). 

Significantly, thanks to recent developments in the field of MRI, the application of 

quantitative MRI has now become feasible at high resolution within reasonable scan times 

(Tardif et al. 2016). Consequently, investigations of the cortical myeloarchitecture are also 

increasingly taking advantage of the higher resolution afforded by imaging at 7T in order to 

achieve submillimetre isotropic resolutions; thus allowing for the visualisation of a higher 

level of intracortical detail than ever before (Waehnert et al, 2016). 

There are a variety of different imaging approaches that can be applied in order to derive 

quantitative T1 maps of the cortex, with the gold standard technique being the  use of an 

inversion recovery sequence (Tardif et al, 2016). However, the scan times required for such 

experiments at high field can be prohibitively long (Lutti 2014). Other faster approaches have 

been proposed, including the use of variable flip angle methods; though again, a potentially 

prohibitive factor is that such techniques are especially susceptible to biases in the B1 
+ field, 

particularly at field strengths greater than 3T (Tardif et al, 2016). 

Obtaining high resolution images can be viewed as being of particular importance in the 

context of myelin imaging, given the thinness of the myelinated layers of the cortex. For 

example, this consideration can be seen to be of particular importance in the context of 

investigating myelination of the visual cortex, given that the myelinated layers within the 

primary visual cortex (V1) are only 1.1mm in thickness  and the structure of V1 is also highly 
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convoluted. Hence partial volume effects can result in poor definition between the grey and 

white matter boundary in this region (Bock et al., 2013). 

 

 
1.5 Laminar MRI 

 

Traditionally, the laminar structure of the cortex has predominantly been observable through 

the use of invasive histology-based methods, making it a challenging investigative target. 

However, in recent years there has been growing interest in the visualisation of the cortical 

laminae in-vivo. To this end, methodological advances in the field of MRI have been 

harnessed in order to explore the laminar structure of the cortex non-invasively. Early proof 

of concept studies naturally focused on the highly myelinated stria of Gennari, a hallmark 

feature of the primary visual cortex (e.g. Barbier et al., 2002, Turner et al., 2008). However, 

successful visualisation of the layered  structure of the cortex and in particular the inner band 

of Balliarger, has also been achieved in areas outside of the primary visual cortex (Trampel, 

Bazin, Pine & Weiskopf, 2019). 

Within the cortex, myelin density is also known to vary across the cortical laminae. For 

example, myelination is higher in deeper cortical layers compared to those occurring more 

superficially. Significantly, a number of studies have recently demonstrated the feasibility of 

conducting MRI investigations of the cortical laminae  and in particular, intra-cortical 

myelination patterns, using quantitative MRI techniques. For example, Sereno, Lutti, 

Weiskopf & Dick (2013) used quantitative R1 mapping in order to measure local myelination 

patterns within visual areas of the  cortex. Significantly, akin to findings from ex-vivo post-

mortem investigations, they  were able to observe a decrease in R1 values when moving from 

deeper to more superficial layers, with a notable plateauing in the middle layers. A further 

study of the auditory cortex by Dick et al. (2012), again using quantitative R1, also found a 

similar pattern of a decrease in R1 from the grey/white matter border to superficial depths of 

the cortex, with a notable plateau once again evident at middle cortical depths. Such findings 

evidently correspond with the known patterns and distribution  of intracortical myelin, thus 

pointing to the utility of quantitative MRI techniques in  the investigation of depth-specific 

patterns of cortical myelination. 
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Although the aforementioned studies have typically focused on a particular cortical area, 

more recent investigations have employed 7T MRI in order to investigate depth- specific 

patterns of intra-cortical myelination on a whole brain level. For example, Sprooten et al. 

(2019) acquired high resolution T1 maps at 0.5mm isotropic and extracted T1 values 

sampled at 20 cortical depths in 148 different cortical areas. Significantly, in line with 

previous investigations, they were also able to show a decrease in T1, which is inversely 

related to myelin (and R1), from the pial surface to the boundary of the grey and white 

matter. Once again, a slight levelling was also observed, in this instance between 50% and 

75% of the cortical depth. Furthermore, evidence of regional differences including higher 

myelination of sensory cortices was also apparent. 

Intriguingly, recent studies have also highlighted evidence of depth specific changes in 

intracortical myelination during adolescence (Whitaker et al., 2016; Lebenberg et  al., 2019; 

Grydeland et al., 2019). Such results are in line with evidence suggesting that cortical areas 

show differing developmental trajectories with regards to their myelination patterns and 

furthermore that changes in intracortical myelination with maturation are also in evidence at 

the level of cortical layers (Glasser & Van Essen, 2011; Lebenberg et al., 2019; Grydeland et 

al., 2019) 

In recent years, an alternative approach to T1 Mapping, one with reduced sensitivity to RF 

inhomogeneities, has been developed based on the commonly used Magnetization Prepared 

Rapid Gradient Echo (MPRAGE) sequence (Lutti, 2014). This sequence was designed as a 

means of obtaining bias free T1-w images in combination with the estimation of quantitative 

T1 maps at high field (Marques & Grutter, 2013). A particular advantage of the 

Magnetization Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) sequence  is thus 

its suitability for use at high field. Furthermore, the sequence also allows T1 to be 

disentangled from the contribution of other factors such as T2* and proton density that are 

present in standard T1-weighted  images, thus allowing for quantitative  comparisons between 

subjects and scanners (Huntenburg et al., 2017). 

To date a number of publications have demonstrated the utility of the MP2RAGE sequence at 

7T in providing high resolution quantitative T1 maps suitable for studying the 

myeloarchitecture of the brain (Marques, Khabipova, & Gruetter, 2017). Though alternative 

approaches to deriving estimates of myelin, such as Magnetization Transfer (MT) imaging, 

may offer greater specificity for myelin, such techniques provide lower resolution and can be 
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challenging to implement at 7T (Huntenburg et al., 2017). Furthermore, a recent study 

utilising the MP2RAGE sequence at 7T found evidence to suggest that the R1 maps derived 

using this technique provided both higher reliability and reproducibility than other parameters 

(e.g. T1 and T2* images, both weighted and quantitative) (Haast, Ivanov, Formisano, & 

Uludaǧ, 2016). 

However, despite optimisation of the MP2RAGE sequence for use at high field, the resulting 

T1 maps can show some residual transmit field biases. That said, it has been shown that such 

residual sensitivities to B1 
+  inhomogeneities can be removed using information derived 

from a B1 
+  map (Marques & Grutter, 2013). In particular, a  number of studies have 

demonstrated the feasibility of using the Saturation Prepared with 2 Rapid Gradient Echoes 

(SA2RAGE) (Eggenschwiler, Kober, Magill, Gruetter & Marques, 2012)  B1 
+  mapping 

sequence in order to provide a map of the B1
+  field that can be used to correct the T1 maps 

obtained from the MP2RAGE sequence for inhomogeneties in the B1 
+  field (Marques & 

Grutter, 2013). Thus, in the current thesis we proposed to investigate the utility of using the 

MP2RAGE sequence, in combination with a map of the B1 
+ field (acquired using 

SA2RAGE), in order to derive high-resolution, bias free, quantitative T1 maps of the cortex 

that can be used as an in vivo marker of cortical myelination. 

 

 

1.6 Cyto and myeloarchitecture 

 

The aforementioned myeloarchitectonic descriptions of the cortex produced by the Vogts 

were derived using preparations of brain tissue stained with the Weigert method, which has 

the ability to detect myelinated nerve fibres. While this approach undoubtedly led to the 

production of beautifully detailed depictions of the cortical myeloarchitecture (Nieuwenhuys, 

2013), other researchers, such as Braitenberg (1962) sought to develop a more objective, 

quantitative approach to the appraisal of myeloarchitectonics. This was achieved through the 

use of optical measurements of sections of brain tissue, again stained using the Weigert 

method. Using this novel approach, estimates of fibre density could be extracted, based on 

the assumption that  light absorption is exponentially related to the number of fibres per 

volume of the cortex (Braitenberg, 1962). 
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Interestingly, in addition to documenting the fibre density in 14 different cortical areas using 

this approach, Braintenberg also made a number of observations regarding the relationships 

between the myeloarchitecture of the cortex and its functional microcircuitry. Of particular 

interest, in the context of the current thesis, is  Braitenberg’s observation that “Most of the 

horizontal fibres in the strias are, according to Cajal, collaterals of the descending axons of 

pyramidal cells” (Braitenburg, 1962).  Braitenburg further remarks that these horizontal axon 

collaterals leave the descending axons approximately 200-300 µ below the pyramidal cell 

body. Given that pyramidal cells are known to be predominantly located in layers 3 and 5 of 

the cortex, this would consequently produce two main maxima of horizontal fibres in layers 4 

and 6 (when shifted downwards by the aforementioned distance with respect to the location 

of the pyramidal cell bodies). Significantly, these locations correspond to that of two stria, 

also known as the inner and outer bands of Balliager, which constitute a major feature of the 

cortical myeloarchitecture. Figure 1.4 taken from Braitenberg (1962) illustrates this principle 

and shows the estimated contribution of pyramidal cells to the population of myelinated 

fibres in the cortex. 
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Figure 1.4: Graphic representation of the results of Braitenberg’s analysis showing the contribution 

of pyramidal cells and their afferents to the population of myelinated fibres in  the cortex. The numbers 

on the x axis corresponds to the 6 layers of the cortex (given here  in roman numerals). For clarity, the 

original Figure caption is included. Taken from Braitenberg, V. (1962). A note on 

myeloarchitectonics. Journal of comparative Neurology, 118(2), 141-156. 

 

Throughout much of history, studies have tended to focus on explorations of either the 

cytoarchitecture or myeloarchitecture of the cortex, with a much greater emphasis on the 

former evident in the literature. However, the aforementioned observations by Braitenberg 

(1962) point to an important yet often overlooked fact,  namely that a close relationship exists 

between these two facets of the cortical neurophysiology and furthermore that they are likely 

inextricably linked. 

This image has been removed by the author for copyright 

reasons. See Figure 15: Braitenberg, V. (1962). A note 

on myeloarchitectonics. Journal of comparative 

Neurology, 118(2), 141-156. 

 



15  

Indeed, from classical histological investigations, it is evident that the myeloarchitecture and 

cytoarchitecture of the brain are essentially two aspects of the same anatomical reality and 

both reflect the cortical microarchitecture (Nieuwenhuys, 2013). In support of this a further 

study by Hellwig (1993) demonstrated how information derived from the cytoarchitecture 

could be used to estimate myelin density in 14 different cortical areas. Adapting Hellwig’s 

approach, a  recent study has demonstrated that in-vivo quantitative maps of T1-contrast, 

related to myelin, can also be predicted on the basis of cytoarchitectural a-priori information 

(Dinse, Härtwich,Waehnert, Tardif, Schäfer, 2015). Furthermore, it is suggested that this 

modelling approach could also be used to make inferences about the brain’s cytoarchitecture 

by using quantitative T1 maps to make estimates regarding patterns of cytoarchitecture 

(Dinse et al., 2015). 

Grey matter myelin is thought to predominantly occur in the local connections between 

neurons connecting neighbouring layers of the cortex (Allen, et al., 2017). However, in recent 

years, emerging evidence has also suggested that another key feature of the cortical 

microcircuitry, namely inhibitory interneurons, might also be myelinated. Advances in 

neuroanatomy methods have also allowed for important new insights into cortical myelin, by 

allowing for its direct visualisation on the axonal arbours of neurons (Micheva et al., 2016). 

For example, hitherto, the distribution of myelinated  swathes along the length of axons had 

been assumed to be uniform. However, using electron microscopy to produce 3-D 

reconstructions of the axons of individual pyramidal cells, derived from mouse neocortex, 

Tomassy et al. (2014) were able to show evidence of heterogenous profiles of myelination of 

pyramidal cells. Furthermore, myelination patterns were also found to vary in different 

cortical layers, with the superficial layers of the cortex exhibiting the most diverse profiles. 

Using recently developed methods to study myelination in the mouse neocortex, Micheva et 

al. (2016) also found that a significant portion of cortical myelin can be found on the axons of 

parvalbumin-positive basket cells, a type of inhibitory interneurons. Significantly, this 

finding seemingly stands in direct contradiction to the aforementioned assertion of earlier 

authors such as Braitenberg (1962) that the horizontal myelinated fibres of the cortex 

correspond to the axons of pyramidal cells (Turner, 2019). 

A further study by Micheva et al. (2018) using neurosurgically excised tissue obtained during 

surgery for epilepsy treatment also investigated, for the first time, the relative abundance of 

inhibitory myelinated axons in the cortex of the human brain. Significantly, this study also 

found evidence of myelinated parvalbumin interneurons in all layers of the human cortex. 
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However, it is interesting to note that the proportion of myelinated interneurons found in this 

study was far less than that documented in the authors’ earlier study of the mouse cortex. For 

example, based on  their experimental findings, Micheva et al. (2018) estimated the highest 

percentage of inhibitory GABA myelinated axons in the human cortex to be localised to layer 

3,  where they account for roughly 10%. Conversely, in mice, GABA myelinated axons  were 

found to constitute roughly 48% of the axons in layers 2/3 of the mouse cortex. 

However, it should be noted that the human samples utilised in this study were taken  from the 

temporal cortex, whereas those from the mouse model were obtained from the visual and 

somatosensory cortices. Regardless of the obvious challenges arising from inter-species 

comparisons, given that the latter brain regions are known to be more heavily myelinated 

than the temporal cortex, it is therefore rather unsurprising that significant differences in the 

proportion of myelinated GABA axons were found. Notably, the visual cortex is also the 

region of the human brain that has the highest GABA receptor density ( Zilles & Palomero-

Gallagher, 2017). That said, it is interesting to note that the density of non-GABA myelinated 

axons was not found to differ significantly between the human and mouse cortical samples, 

except in the superficial layers of the cortex (layers 1, 2 and 3), where the humans’ cortex 

was found to possess a greater density of non-GABA myelinated axons. Ultimately, further 

research in a more diverse array of brain areas is required in order to disentangle these 

findings. Given that deficits in both pyramidal cells and inhibitory interneuron functioning 

have been implicated in a wide array of psychiatric disorders, such investigations could 

ultimately be of great clinical significance. 

 

Significantly, pyramidal cells and inhibitory interneurons have been implicated in the 

generation of neural oscillations which represent a key facet of neural activity  thought to be 

involved in a wide range of sensory and cognitive processes. 

 

1.7 Neural oscillations 

 

As mentioned above, mapping the myeloarchitecture of the brain in-vivo has the potential to 

significantly enhance our understanding of structure-function relationships by allowing for 

the estimation of direct correlations between microstructure and function in vivo. Thus far, a 

number of studies have already employed high resolution fMRI in combination with 
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structural MRI in order to probe  the relationship between brain structure and function (e.g. 

Dick et al., 2012). However, although fMRI is capable of providing excellent spatial 

resolution, given the  somewhat convoluted dependence of the BOLD signal on both 

haemodynamic and neurovascular coupling parameters, it cannot be interpreted as a 

quantitative index of  neural activity and is thus only able to provide an indirect view (Hall, 

Robson, Morris, & Brookes, 2014, Singh, 2012). 

Electrophysiological techniques, such as MEG on the other hand, whilst offering poorer 

spatial resolution in comparison to fMRI, possess excellent temporal resolution (millisecond 

precision) and are able to provide a direct measure of cortical  current flow (Helbling et al., 

2015). The origin of the MEG signal observed at the scalp is thought to derive from the 

coordinated activity of networks of pyramidal cells and it is estimated that a minimum of 

10,000 to 50,000 pyramidal cells are required in order to produce a signal detectable with 

MEG (Baillet, 2017). 

A key strength of more direct neurophysiological imaging techniques, such as MEG is its 

ability to investigate a rich variety of neural activity, including neural oscillations. Such 

oscillations are a prominent feature of neuronal activity and can be  measured using invasive 

local field potential (LFP) recordings, where they are believed to reflect the summed post-

synaptic potentials of neurons located in close proximity (within a millimetre) of the 

recording electrode (Singh, 2012). However, these signals can also be measured non-

invasively using MEG/EEG. At this macroscopic level these signals are thought to represent 

the synchronous activity of a much larger area of the cortex (Singh, 2012). Significantly, the 

synchronization of oscillatory activity has been touted as a fundamental mechanism sub-

serving neuronal communication (Schnitzler, & Gross, 2005). Indeed, converging evidence 

suggests that neural oscillations represent a central process enabling the coordinated activity 

of neuronal populations during normal brain functioning (Uhlhaas & Singer, 2010). 

Notably, neuronal oscillations are typically categorized into five frequency bands, namely 

delta, theta, alpha, beta and gamma - and there exists ongoing debate within  the neuroscience 

community regarding the functional roles of these different frequencies and whether they 

have distinct physiological roles (Engel, & Fries, 2010). 

Oscillations in the gamma range in particular have garnered much research interest and 

constitute the main focus of Chapters 3, 4 and 5 of this thesis. Though the exact  genesis of 

these oscillations remains the subject of continued investigation, gamma oscillations are 
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thought to be produced by networks of reciprocally connected excitatory pyramidal cells and 

inhibitory interneurons and are thus believed to emerge from the coordinated interaction of 

excitation and inhibition (Buzsaki and Wang, 2012). These oscillations have been attributed a 

wide range of functions and  implicated in a variety of cognitive and behavioural processes, 

including memory (Sederberg et al., 2007) and attention (Bauer, Stenner, Friston, & Dolan, 

2014). Furthermore, they have been suggested to play a role in both local and large-scale 

cortical processing (Uhlhaas & Singer, 2010). 

Recent evidence has also suggested that synchronisation in the gamma band is strongest in 

the superficial layers of the cortex, from which feedforward projections typically originate, 

indicating that gamma oscillations may also subserve feedforward processing in the brain 

(Michalareas et al., 2016). Aberrant oscillatory dynamics in the gamma range have also been 

implicated in a wide range of clinical  conditions including schizophrenia (Uhlhaas & Singer, 

2010; Shaw, et al. 2019), Alzheimer’s disease (Başar et al., 2017) and autism (Simon & 

Wallace, 2016; Seymour et al., 2019 ). However, in addition to their mechanisms of 

generation, the functional and clinical significance of gamma band oscillations remains the 

subject of intense debate. 

As aforementioned, mapping the myeloarchitecture of the brain in-vivo has the  potential to 

significantly enhance our understanding of structure-function relationships by allowing for 

the estimation of direct correlations between microstructure and function in vivo. 

 

1.8 Myelin – functional significance 

 

As outlined above, a growing body of research has considered the spatial distribution  of 

myelin in the brain and its implications for both the accurate delineation of cortical areas and 

the investigation of structure-function relationships. However, discoveries of regional and 

indeed laminar differences in the distribution of cortical myelin revealed by such work 

naturally raises the intriguing question of what the functional significance of these patterns of 

cortical myelination might be. 

In this regard, it is important to consider that myelin itself has also been implicated  in 

subserving brain communication, through its ability to help speed nerve conduction, at least 

in the case of the subcortical white matter (Fields, 2014). 
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According to Turner (2019), however, in comparison to their white matter counterparts the 

myelinated radial fibres found in the cortex are considerably smaller, being typically less than 

2mm in length. Thus, explaining the myelination of these axons in terms of its necessity in 

facilitating high conduction velocities is somewhat unconvincing. Thus, it is likely that other 

functional considerations might also be at play. 

Of note, the timing and synchrony of action potentials is essential for the optimal functioning 

of neuronal networks and intra-cortical myelin has been suggested to play a key role in 

optimization of these parameters (Tardif et al. 2015). To date the majority of studies have 

focused on the importance of white matter myelination and its role in neuronal 

synchronisation. For example, a relationship between white matter myelination and the 

amplitude of electrophysiological responses has previously been demonstrated (Westlye, 

Walhovd, Bjørnerud, Due-Tønnessen & Fjell, 2008). In contrast to the more global, large-

scale integration effects of WM myelin, it is possible that intracortical myelin might also 

influence synchronization occurring within more local neuronal networks, which could in 

turn be reflected in the magnitude of signals recorded using MEG/EEG (Grydeland, Westlye, 

Walhovd & Fjell, 2015). In line with this suggestion, a recent multimodal MRI-EEG study 

found that the amplitude of the ERN response, a putative marker of error and processing and 

cortical control, was positively associated with levels of myelin in the posterior cingulate 

cortex (Grydeland et al., 2015). The authors of this study interpret this finding as suggesting 

that the degree of cortical myelination may play a role in error monitoring through its 

relationship with ERN, possibly by assisting  local neural synchronisation. Thus, this study 

can be seen to provide evidence to  suggest that synchronous activity reflecting error 

processing is related to inter-individual variability in intracortical myelin. 

Myelin has also been proposed to have an important role to play in shaping neural activity, 

for example, by adaptively influencing the establishment of precise temporal relations in the 

brain (Pajevic, Basser & Fields, 2014). In support of this, there is evidence, largely from 

animal models, of a relationship between myelin and electrophysiology. For example, Gibson 

et al. (2014) demonstrated that optogenetic stimulation of the premotor cortex in mice 

promoted oligodendrogenesis, and thus increases in myelination, specifically within the deep 

layers of the premotor cortex and subcortical white matter. Similarly, in a study by Mitew et 

al. (2018) stimulation of somatosensory axons in the mouse brain increased both the 

proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) in the underlying 

white matter. Stimulated axons were also found to display an increased probability of being 
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myelinated compared to neighbouring non-stimulated axons, in addition to being ensheathed 

with thicker myelin. Conversely, attenuating neuronal firing was found to reduce axonal 

myelination in a selective activity-dependent manner, providing compelling evidence for the 

role of neural activity in shaping myelination. 

Intriguingly it has also been observed that more plastic regions of the cortex, such as  those 

located in frontal regions, possess more complex cortical circuitry whilst also exhibiting less 

myelin, compared to, for example, primary sensory areas. Furthermore, there is evidence to 

suggest that myelin-associated factors inhibit both the growth of new axons and synapse 

formation (e.g. Kapfhammer & Schwab, 1994). This in turn might therefore act to reduce the 

plasticity of highly myelinated regions of the cortex (Glasser et al., 2014). Consequently, 

myelin in the cortical grey matter has also been proposed to have a role to play in inhibiting 

the plasticity of cortical microcircuits (Glasser et al., 2014, Turner, 2019). 

Ultimately, a number of intriguing roles have been attributed to myelin in the cortical  grey 

matter and much additional research encompassing a broad array of neuroscientific 

techniques will be required in order to further explore these possibilities. Furthermore, 

moving beyond the functioning of particular brain areas it is important to consider how the 

patterns of myelination observed in the cortex might  also influence and indeed be shaped by 

cortical connectivity. 

 
1.9 Network Perspective 

 

In recent years there has been growing recognition of the fact that inter-areal connectivity and 

network formation is likely of critical importance for brain functioning (Brookes et al., 2016). 

Traditionally, brain-behaviour relationships have been studied on the basis of a univariate, 

regional approach, in line with the view that cognitive functions can be attributed to the 

isolated operations of particular brain areas (Mišić & Sporns, 2016). In contrast, recent years 

have witnessed a relative paradigm shift within the neuroimaging field in line with increasing 

recognition of the importance of dynamic interactions between distributed  neuronal 

populations and brain regions in brain functioning and cognition (Bressler & Menon, 2010). 

Consequently, there has been growing interest in approaching the brain from a network 

perspective. Such an approach has been aided by technical advances within the neuroimaging 
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field that have opened a wealth of new possibilities for studying the structure and function of 

the human brain at the network level (Sporns, 2013). 

A considerable body of research has focused on the role of neural oscillations at the network 

level, and it is thought that these signals may play an important role in global as well as local 

brain communication. Indeed, converging evidence suggests that neural oscillations represent 

a fundamental process enabling the coordinated activity of neuronal populations during 

normal brain functioning (Uhlhaas & Singer, 2010). Measures of association between 

neuronal oscillations can be investigated through the use of both the correlation of their 

relative phase or amplitude and there is a growing evidence indicative of the fact that such 

correlations of frequency-specific oscillations in diffuse cortical networks index the neural 

interactions underlying cognitive processes (Siegel, Donner, & Engel, 2012). 

Inter-regional connectivity has also been consistently found even when the brain is ostensibly 

at rest, and recent years have correspondingly witnessed a rapid growth in  the number of 

resting-state MEG investigations; with such studies having pointed to  the role of oscillations 

in the formation of such intrinsic networks (Brookes et al., 2016). Electrophysiological 

investigations of resting state connectivity represent a valuable tool for investigating the 

nature of intrinsic brain activity, owing  to their rich temporal resolution and ability to 

disentangle the oscillatory frequency-specific origins of resting state networks (Colclough et 

al., 2016). 

Building on this idea, a recent study by Hunt et al. (2016) probed the relationship between 

myelination of the cortex and resting state oscillatory networks and found evidence 

suggestive of a relationship between the microstructure of the brain and its  function at the 

network level. This study was based on the idea that, given evidence  from animal models of 

electrical-activity dependent myelination, if functional networks are indeed representative of 

pathways of electrophysiological communication in the brain, then these pathways might 

therefore shape myeloarchitecture. Hence, a relationship between functional connectivity and 

the myeloarchitecture of the brain might be discernible. In the investigation by Hunt et al., 

(2016) structural covariance of myelination was used in order to derive a structural network. 

The structure of cortical regions is known to show marked inter- individual differences and 

there is also increasing recognition of the fact that inter-individual differences in the structure 

of a brain region often co-varies with inter-individual differences in other brain regions 

(Alexander-Bloch, Giedd, & Bullmore, 2013). This phenomenon is known as structural 
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covariance and shows that inter-individual differences in regional structure are coordinated 

within communities of brain regions that fluctuate together in size across the population 

(Alexander-Bloch, Giedd, & Bullmore, 2013). 

Significantly, Hunt et al. (2016) found that functional networks in the beta and gamma bands 

significantly predicted the spatial pattern of structural covariance, given that brain areas that 

were found to be highly functionally connected also exhibited cross-subject covariation in 

myeloarchitecture. This raises the intriguing possibility that, given the role of myelin in 

speeding neuronal conduction, cortical myelination may be shaped to support functional 

networks as this could maximise the efficiency of their formation. This study can therefore be 

seen to provide compelling evidence of a relation between the microstructure of the brain and 

oscillatory networks, thus demonstrating the feasibility of investigating the relationship 

between the microstructure of the brain and its function in the context of cortical networks. 

A considerable body of research in monkeys has also suggested that an intricate relationship 

likely exists between the microstructure of the brain and connectivity (Huntenberg et al., 

2017). For example, long range connections have been preferentially found between brain 

regions that demonstrate similar microstructural properties. As such it has been suggested 

that microstructural features of the cortex, such as its myelin content, may also be related to 

functional connectivity patterns. In line with this suggestion, a multi-modal MRI–fMRI study 

by Huntenberg et al. (2017) has documented evidence of a relationship between intercortical 

myelin and functional connectivity. Indeed, this investigation found that regions that exhibit 

similar myelin content show higher functional connectivity than regions that differ in their 

myelin content. Significantly, this study also controlled for variations of cortical thickness 

and found that intracortical T1 captures variance in functional connectivity beyond what is 

explained by cortical thickness. Hence, this pattern of findings can also be taken to suggest 

that the microstructure of the brain may have an important role to play in shaping 

connectivity in the brain and may be representative of a general wiring rule of the cerebral 

cortex (Huntenburg et al., 2017). 
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Thesis objectives and outline of experimental chapters 

 

Taken together, the converging lines of evidence outlined above suggest that an investigation 

of the relationship between inter-individual variability in intra-cortical myelin and MEG 

signals could provide fascinating new insights into the nature of structure-function 

relationships in the brain and their relevance for cognition. Thus, the principle aim of the 

current project is to determine whether the relationship between the microstructure of the 

brain and its oscillatory dynamics can be explored in vivo. The study will correspondingly 

adopt a multimodal neuroimaging approach utilising high resolution quantitative MRI, in 

combination with MEG, in order to investigate the relationship between cortical myelin and 

MEG signals. More specifically, we propose to investigate the relationship between the 

cortical myeloarchitecture and a key feature of neural activity, known to be of great cognitive 

and clinical relevance: namely, cortical oscillatory dynamics. In sum, the primary aims of the 

current thesis are as follows: 

 

1) To develop a robust and reliable imaging pipeline that allows for the acquisition of high 

resolution quantitative T1 maps that can be used to relate  indices of cortical myelination to in 

vivo markers of electrophysiology. 

2) To replicate findings of an association between MEG signal strength and  myelin density in 

relevant cortical regions. 

3) To explore the relationship between myelination of the cortex and neural  oscillations at both 

the local and network level. 

 

In accordance with these aims we conducted a multi-modal investigation, combining   7T MRI 

and MEG, in which participants completed a number of experimental paradigms designed to 

probe oscillatory dynamics at the local and network levels. The next chapter of this thesis 

(Chapter 2) explores in more detail the methodologies employed in the present investigation 

and in particular the development of our pipeline for deriving high resolution estimates of 

cortical myelin content at 7T. 

In Chapter 3 of this thesis, which constitutes the first experimental chapter proper, the 

relationship between visual gamma oscillations, as measured using MEG, and myelination of 

the primary visual cortex is explored. Significant correlations, between induced peak gamma 
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oscillatory dynamics and myelin, were not found after correcting for multiple comparisons. 

However, further exploratory analyses of the whole frequency spectra did point to an 

intriguing potential relationship between 40 Hz gamma activity and superficial myelin 

content. 

In the second experimental chapter of this thesis (Chapter 4) we exploit the greater specificity 

of computational modelling approaches, and in particular dynamic causal modelling (DCM), 

in order to investigate the potential existence of relationships between the cortical 

microcircuitry and myelin content in the visual cortex. 

 

Ultimately, we did not find evidence of a significant relationship between the DCM  model 

parameters and our cortical myelin estimates. However, methodological limitations may have 

contributed to this null finding. Future avenues of research potentially better suited to 

elucidating the relationship between the cortical myeloarchitecture and the neurophysiology 

of visual gamma are discussed. 

 

Moving beyond the visual cortex Chapter 5 of this thesis details a novel investigation of the 

relationship between inter-individual variability in gamma band auditory steady state 

responses (ASSRs) and myelination across the cortical depth. In this study a trend indicative 

of a positive correlation between the amplitude of the ASSR  and cortical myelination, 

particularly at lower cortical depths, was observed. However, further research is required in 

order to test the validity and  significance of the trend observed. 

The final experimental chapter of this thesis (Chapter 6) adopts a network level approach in 

order to explore the relationship between depth-specific estimates of intra-cortical myelin and 

MEG derived functional connectivity. Notably, here, for the first time, we show evidence of a 

cortical depth-dependent relationship between  cortical myelin and frequency-specific resting-

state MEG networks. 

Lastly, the final chapter of this thesis (Chapter 7) provides a general discussion of the main 

findings of the present thesis and their interpretation in light of the pre-existing literature. 

Important avenues of future research are also discussed. 
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Chapter 2 

Methods 

2.1 Abstract 

 

This chapter provides an overview of the neuroimaging methodologies employed in  this 

thesis. A more detailed description of the analysis procedures and pipelines utilised is 

provided in the relevant experimental chapters. The first neuroimaging technique described in 

this chapter is Magnetoencephalography (MEG) which was used to in order to derive our 

measures of oscillatory dynamics. The remainder of this chapter is dedicated to the second 

neuroimaging technique employed in this thesis, namely magnetic resonance imaging (MRI). 

Finally, the development of the pipeline for acquiring high resolution estimates of cortical 

myelin content at 7T relevant for all the experimental chapters of this thesis is described. 

 

 

 
2.2 MEG – Basic principles 
 

The first key neuroimaging technique employed in this thesis is Magnetoencephalography 

(MEG), a non-invasive functional imaging method which provides a direct window onto 

neural activity in the brain. The use of MEG as a neuroimaging technique was first 

demonstrated by Cohen (1968) who showed that it was possible to detect the magnetic fields 

outside the human head produced by alpha-rhythm currents. This pioneering study was based 

on the use of a single sensor. However, today MEG recordings are typically performed using 

multichannel systems that provide whole head coverage. 

 

The basic principles of MEG rely on the fact that all electrical currents are accompanied by a 

corresponding electromagnetic field perpendicular to the direction of the current (in 

accordance with Ampere’s right hand grip rule). This principle is as true for a current 

carrying wire as it is for the electrical currents produced by neural activity in the brain. 
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Crucially, the strength of the magnetic field produced is dependent on a number of factors 

including the strength, distance, and geometry of the electrical current distribution from 

which it arises (Hari, Parkkonen, & Nangini, 2010). 

 

Significantly, MEG is a neuroimaging technique that is able to measure the resultant 

neuromagnetic fields generated by neural activity in the brain. A key advantage of MEG in 

contrast to EEG is that these neuromagnetic fields are thought to be relatively unaffected by 

the presence of the skull, although significant attenuation occurs for deeper sources (Okada, 

Lahteenmäki, & Xu, 1999). That said, the measurement of these magnetic signals is far from 

trivial, especially when consideration is given to the fact that neuromagnetic fields are 

exceedingly weak, being in the region of 10–100 fT (Hari & Salmelin, 2012), especially in 

contrast to the magnetic fields generated by noise factors in the environment.

Thus, the ability to detect these signals relies on the use of an innovation known as a super-

conducting quantum interference device (SQUID) (Zimmerman, Thiene & Harding, 1970). 

These devices are extremely sensitive detectors of magnetic fields, possessing enough 

sensitivity to measure the weak neuromagnetic fields produced by neural activity in the brain. 

Once detected, SQUIDs have the ability to convert magnetic flux into an electric voltage, 

which is recorded (Hari, Parkkonen, & Nangini, 2010). However, whilst SQUIDS 

undoubtedly exhibit high sensitivity to magnetic fields their configuration is not optimal for 

the detection of those produced by the brain (Vrba and Robinsons, 2001). Consequently, they 

are typically used in conjunction with larger pickup coils, known as gradiometers, the 

geometry of which is optimised to ensure that  external magnetic disturbances, such as those 

more distant from the brain, are reduced (Hämäläinen, Hari, Ilmoniemi, Knuutila & 

Lounasmaa, 1993).  Of  note, a diverse array of configurations of these pickup coils exists 

though there are  four main types, namely Magnetometers, 1st and 2nd order axial 

gradiometers, and planar gradiometers, each if which  detects a different field pattern (Vrba 

and Robinsons, 2001). 
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Figure 2.1 : A) Overview of the generation of a measurable MEG signal (magnetic field) 

from populations of synchronously firing pyramidal cells. B) This part of the figure 

represents the source configurations generated in the MEG sensors by different dipole (single 

focal neuronal source) orientations. In this figure red delineates magnetic fields entering the 

head, whist blue indicates field lines exiting the head. For the radial source orientation, no 

field is measured. Figure taken from Singh (2006) Magnetoencephalography. In Senior, C., 

Russell, T., Gazzaniga, M. S., & Raessens, J. (Eds.). (2006). Methods in mind. MIT press.

This image has been removed by the author 

for copyright reasons. See Figure  12.1 in : 

Singh (2006) Magnetoencephalography. In 

Senior, C., Russell, T., Gazzaniga, M. S., & 

Raessens, J. (Eds.). (2006). Methods in mind. 

MIT press. 
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The main generators of the MEG signal observed at the scalp are thought to be the 

synchronous postsynaptic currents produced by pyramidal neurons (Hämäläinen and Hari, 

2002). This is largely owing to the fact that they typically last longer than action potentials 

whose occurrence is much more rapid (Baillet, 2001). It is estimated that a minimum of 

10,000 to 50,000 pyramidal cells are required in order to produce a signal detectable with 

MEG (Baillet, 2017). A further requirement is that the dendritic processes of these cells 

are spatially aligned in order to allow for the measurement of a detectable signal. The 

apical dendrites of pyramidal cells possess a similar orientation and are arranged parallel 

to one another and perpendicular to the cortical surface. They are thus said to have an 

‘open field’ configuration as the electrical fields from such cells can extend over long 

distances and can thus be detected at a distance from their neuronal source (Murakami, & 

Okada, 2006, da Silva, 2013). 

 

Two key factors determine both the amplitude of neuromagnetic fields and the extent to 

which localisation of the underlying currents is possible. The first of these is the Bio-

savart law, according to which a magnetic field will get weaker with distance from the 

current source. Furthermore, radially oriented current dipoles will not produce a magnetic 

field outside of a spherically symmetric homogeneous volume conductor (Sarvas, 1987). 

On the basis of these principles, MEG has been argued to be insensitive to both deep and 

radially oriented sources (i.e the cortical gyri). However, there is reason to be optimistic, 

at least with regards to the latter point. More specifically, Hillebrand & Barnes (2002) 

found that radial sources form less than 5% of the whole cortical area, and thus source 

orientation does not constitute a significant limitation of the sensitivity of MEG. 

 

A key strength of MEG as a neuroimaging approach lies in its ability to not only measure 

neural activity with millisecond precision, but also to localise the sources of this activity in 

the brain. However, in this regard, a particular challenge in the context of MEG research 

lies in the ill-posed nature of the MEG inverse problem. The MEG inverse problem seeks 

to estimate neural current sources underlying an observed distribution of the magnetic 

field measured using MEG sensors (Baillet, Mosher, & Leahy, 2001). However, this 

inverse problem is said to be ill posed due to non uniqueness. More specifically, the MEG 

inverse problem is known to have no unique solution as there are an infinite number of 

neuronal current distributions that could give rise to the same observed data (Hämäläinen 

et al., 1993, Dassios & Fokas, 2013). 

 



29  

Consequently, it is impossible to derive a solution to the MEG inverse problem on the 

basis of the measured data alone. However, providing that appropriate assumptions about 

the source of interest are made, the solution to the MEG inverse problem can be rendered 

unique (Hämäläinen et al., 1993).  A vast array of methods exist for solving the MEG 

inverse problem, each of which possesses its own unique set of advantages and 

limitations. Once such method, applied in the current thesis, that has proven popular in the 

literature, is the beamforming approach. Put simply, beamformers act as a spatial filter in 

order to discriminate between signals originating from locations of interest in the brain 

and those that derive from elsewhere (Baillet, Mosher, & Leahy, 2001). The key principle 

behind the beamformer approach is that for any given location in the brain it is possible to 

calculate an optimal set of weights, such that the weighted sum of the MEG sensors is able 

to provide an estimate of the neural current at that particular location (Barnes & 

Hillebrand, 2003). There are a number of advantages associated with beamforming 

approaches to source localisation, including the fact that it is ideally suited to the study of 

oscillatory activity (Singh, 2006). 

 

However, a significant limitation of beamformer approaches arises due to the assumption 

of this method that the time series of sources in the brain are not correlated. In such a case, 

where sources are perfectly correlated in a  linear fashion, the beamformer will recover 

little to no power (Hillebrand et al., 2005). Consequently, beamformer approaches are not 

optimal for the study of auditory responses such as the auditory steady state responses 

(ASSR) which are known to give rise to temporally correlated bilateral activation of the 

auditory cortices. 

 

Thus, a further commonly used source localisation approach, known as minimum norm 

estimation, was also used in Chapter 5 of this thesis, in order to localise ASSRs. The 

minimum norm approach uses a distributed source model, in which the amplitude of a 

large number of dipoles is kept fixed (Hämäläinen, Lin & Mosher, 2010). On the basis of 

the measured MEG data the amplitude of these dipoles can then be determined. However, 

this requires additional a priori constraints on the nature of the current density being 

measured (Hämäläinen, Lin & Mosher, 2010). A key advantage of the minimum norm 

approach is that unlike in beamformer implementations, correlated sources will not suffer 

cancellation. Yet a key challenge with this approach is that it can lead to more diffuse 

solutions that favour superficial sources (Singh, 2006). 
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2.3 MRI - Basic Principles 

 

Magnetic resonance imaging (MRI) is a non-invasive neuroimaging technique widely used 

to investigate both the structure and function of the brain. Since the advent of the first 

MRI scan of a human participant in 1977 ( Mansfield & Maudsley, 1977), the technique 

has seen significant growth, both in terms of its methodology and its popularity within 

research and clinical settings. MRI can be broadly categorised into two subtypes, namely 

structural and functional MRI, however the main focus of this thesis will be on the former. 

 

Structural MRI relies on the mapping of the distribution of hydrogen nuclei, which are 

abundant in the human body. Hydrogen nuclei consist of a single proton and consequently 

possess the quantum mechanical property known as spin. As a hydrogen nucleus spins 

around on its own axis, a  magnetic moment or field is induced around it. In this way these 

hydrogen nuclei essentially act as small magnets and have a north and a south magnetic 

pole. Under normal circumstances the magnetic moments of these nuclei are randomly 

oriented and thus produce no overall magnetic effect (the net magnetization is zero). 

However, in the presence of a strong external magnetic field (B0), on aggregate the 

magnetic moments of these hydrogen nuclei align themselves with the direction of the B0 

field either in parallel (spin-up) or anti-parallel (spin-down). Consequently, the orientation 

of the magnetic moments become non-random creating a net magnetization that is 

measurable. More specifically, at any given moment in time there are always slightly more 

nuclei aligned in parallel with the main magnetic field, producing a net magnetisation 

vector parallel to the magnetic field (Abragam, 1961). 

 

The B0 field also has another important impact on hydrogen protons, affecting how fast 

they precess. The application of the B0 field produces an additional secondary precession 

of the nuclei around the main magnetic field. The speed at which these nuclei precess is 

often referred to as the Larmor frequency and is determined by the Larmor equation,  ω = 

γB, where ω is the Larmor frequency (MHz), γ is the gyromagnetic ratio (MHz/tesla) and 

B is the strength of the external magnetic field (B0). The precession frequency is therefore 

directly proportional to the strength of the magnetic field (B0). A typical MRI scan 

involves the perturbation of the alignment of the hydrogen protons with the B0 field , 

through the use of a radio frequency (RF) pulse, applied perpendicular to the B0 field, 
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which produces an oscillating magnetic field known as the B1 
+ field. The purpose of the 

RF field is to cause the hydrogen protons to fall out of alignment with B0 and occurs due 

to the transfer of energy from the RF pulse to the protons. Importantly, the frequency of 

the RF field must be the same as the precessional frequency of the hydrogen protons, in 

order to ensure that energy transfer can occur. This phenomenon is referred to as 

resonance.  

 

There are two main impacts on the hydrogen protons associated with the application of the 

RF field. Firstly, the application of an RF pulse gives energy to the hydrogen nuclei and 

causes the aggregate effect of a net increase in the number of high energy spin-down 

nuclei. Concurrently, the application of the RF pulse causes the hydrogen protons to 

precess in phase. In this context, phase refers to the position of a magnetic moment on its 

precessional path at any given moment in time. Thus, when hydrogen protons precess in 

phase, their magnetic moments are at the same place on the precessional path at a given 

moment in time. As a result of these effects the net magnetization is flipped towards the 

transverse plane. After the application of the RF pulse the hydrogen nuclei seek to return 

to their former low-energy state and their magnetic moments de-phase through the process 

known as relaxation. It is during this process of relaxation that RF waves are emitted from 

the body, which can be measured by receiver coils. It is from this signal that MRI images 

are generated. 

 

The process of relaxation has two key consequences, namely the recovery of longitudinal 

magnetisation (T1 recovery) and the loss of coherent magnetisation in the transverse plane 

(T2 decay). Both of these represent important sources of contrast in MRI images, however 

here we focus on the concept of T1. The process of T1 recovery occurs when hydrogen 

nuclei give up their energy to their surrounding environment and return to equilibrium. 

According to the classical physics explanation, the proportion of spin up and spin down 

nuclei changes allowing the net magnetization vector to realign to the longitudinal plane. 

However, the quantum physics explanation posits that the number of high energy spins 

decreases, whilst the number of low energy spins increases as the high energy spins lose 

energy during the relaxation process. 

 

In 1946 Bloch modelled the process of T1 relaxation as a simple exponential process with 

the time constant T1 ( time taken for the net magnetization to reach 63% of its maximum 

value). The process of T1 relaxation is known to occur at different rates for different 
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tissues according to their unique properties. For example, the T1 (longitudinal relaxation 

time) of water is 2500ms, whereas for the brain’s white matter this has been shown to be 

considerably shorter at 500ms (Westbrook & Talbot, 2018; Steen et al., 1994; Wansapura 

et al., 1999). Notably, given that T1 varies between tissues, it provides an important 

source of contrast in MRI images. Thus, in the case of T1-weighted images, contrast is 

predominantly determined by the T1 properties of the tissues being imaged. Hence, the T1 

contrast between tissues is typically accentuated in order to produce detailed depictions of 

the cortical anatomy. 

 

Spatial encoding is achieved in MRI through the use of specially designed gradient coils. 

The idea that utilising a magnetic field gradient in addition to the main magnetic field 

could be used for signal localisation purposes, given that signals along the gradient will 

have different frequencies, was proposed by Lauterbur in 1973. Thus, in order to gain 

spatial information, gradient coils are used in order to apply an additional magnetic field 

that distorts the main magnetic field in a predictable way, with the precessional frequency 

of protons varying as a function of their position along the direction of the gradient. 

Typically, 3 gradient coils are used in MRI – the X,Y Z gradient coils, each of which acts 

along a different axis. 

 

2.4 T1 and Myelin 

 

Of particular interest in the context of the present study is the fact that the longitudinal 

relaxation time (T1) is sensitive to the myelin content of the brain (Lutti et al., 2014). 

More specifically, T1 has been suggested to be sensitive to factors including myelin bound 

cholesterol (Koenig,1991). To date, a number of studies combining quantitative MRI 

methods and histology have demonstrated evidence of a high correlation between the 

brain’s myelin content and T1 relaxation times, with this relationship having been reported 

to be as high as r =0.89 in post-mortem samples (Schmierer et al., 2008). Of note, such 

studies have focused on examining this relationship in the brain’s heavily myelinated 

white matter. However, as argued by Lutti et al. (2014) there is no theoretical reason to 

suspect  that this relationship will differ in the case of the myelin contained in the cortical 

grey matter. 

 

Although, the relative contribution of particular compounds to MR parameters such  as T1 

remains the subject of ongoing investigation, myelin has been suggested to be the 
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dominant source of contrast in T1 images. For example, Stuber et al., (2014) used a novel 

technique, proton induced X-ray emission (PIXE), in order to investigate the relative 

contributions of iron and myelin as sources of contrast in MP2RAGE derived T1 maps in 

both the grey and white matter of the brain. 

 

Significantly Stuber et al. (2014) found that, on average, myelin had a contribution of 64% 

to R1 (1/T1) contrast in the grey matter of the brain and 90% in the white matter. Iron was 

also found to contribute to R1 contrast, although to a lesser extent, with an average 

contribution of 36% on grey  matter and 10% in white matter. Thus, these results pointed 

to myelin as being the dominant source of contrast in T1 (and R1) maps. 

 

2.5 MP2RAGE 

 

In the present study we chose to utilise the MP2RAGE  sequence in order to derive our 

high resolution       R1 maps. The decision to use this method was guided by the suitability of 

this technique for use at 7T, its ability to acquire high-resolution T1 maps in a relatively 

short acquisition time, and previous studies demonstrating the utility of the method. 

 

The MP2RAGE sequence (see Figure 2.2) was specifically designed as a means of 

obtaining bias free T1-weighted images in combination with the estimation of quantitative  

T1 maps at high field (Marques & Grutter, 2013). The MP2RAGE is an extension  of the 

standard MPRAGE sequence which is frequently used to obtain T1-weighted images of 

the brain. In the MP2RAGE sequence, there are two inversions, and two volumes are 

acquired after each inversion. By acquiring two gradient echo images at different 

inversion times (GRETI1 and GRETI2), whilst keeping other sequence parameters constant, 

both images will be equally affected by the B1 
+  field, proton density and T2* effects. 

Combining these images, by means of a ratio method (see Eq1.) , will therefore result in a 

synthetic image independent of these aforementioned effects. Thus, the MP2RAGE can be 

seen as a method of quickly measuring T1. Given its reduced susceptibility to 

inhomogeneities in the B1 
+  field, the MP2RAGE sequence is also an attractive option for 

T1 imaging at high field ( >3T). 
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Eq1: 

 
 

 
Given the acquisition of two inversion times, the MP2RAGE also provides a quick method 

of calculating T1 maps. In order to calculate these maps, the sequence parameters and 

inversion efficiency of the adiabatic inversion pulse are taken into account (Marques et al., 

2010). Using Bloch simulations of these parameters based on the original equations 

defined in (Marques et al., 2010) the T1 value of each pixel in the image can be calculated 

through linear interpolation. These simulations and the subsequent estimation of the T1 

maps are also integrated into the scanner workflow and thus T1 maps are readily 

accessible following the scan acquisition (Marques et al., 2010). 
 

 

 

 

 

 

 

 

 

Fig 2.2: Diagram of the MP2RAGE sequence taken from Marques, J. P., Kober, T., Krueger, G., 

van der Zwaag, W., Van de Moortele, P. F., & Gruetter, R. (2010). 

MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1- mapping at 

high field. Neuroimage, 49(2), 1271-1281. The two inversion times (TI1 and TI2) are defined as the 

time from the middle of the inversion pulse to the excitation corresponding to the center k-space 

line in the phase encoding in the slab selection direction. MP2RAGETR refers to  the time between 

two successive inversion pulses.  TR is the time between successive excitation pulses in the GRE 

kernel, which is composed of n excitations. 

 

 

2.6  B1 
+  Mapping 

 

This image has been removed by the 

author for copyright reasons. See Figure 

1: Marques, J. P., Kober, T., Krueger, G., 

van der Zwaag, W., Van de Moortele, P. 

F., & Gruetter, R. (2010). 

MP2RAGE, a self bias-field corrected 

sequence for improved segmentation and 

T1- mapping at high field. Neuroimage, 

49(2), 1271-1281. 
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7T MRI allows for the visualisation of the human brain in an unprecedented level of 

detail, owning to its higher contrast and SNR. However, as the popular saying goes,    

‘there’s no such thing as a free lunch’ and these gains come at the expense of the need  to 

grapple with a number of technical challenges associated with imaging at higher field 

strengths (>3T). One of the most challenging problems to navigate, in the context of high 

field imaging, is the issue of inhomogeneity in the B1 
+  (RF) field (Balchandani, & 

Naidich, 2015). These variations in the B1 
+  field are the result of the shorter RF 

wavelength at 7T, in comparison to lower field strengths, which are more similar to the 

dimensions of the human head. Significantly, this can result in a reduction of the strength 

of the B1 
+  field in the brain’s periphery in comparison with the centre of the head. 

Ultimately, this can lead to a number of undesirable effects including changes in image 

contrast and even signal drop out (Balchandani, & Naidich, 2015). 

Unfortunately, these inhomogeneities in the B1 
+ field have been shown to affect the 

majority of quantitative MRI methods, including T1 mapping (Lutti et al., 2012). Indeed, 

despite optimisation of the MP2RAGE sequence for use at high field, the resulting T1 

maps can show some residual transmit field biases. Thus, it is imperative to derive an 

accurate measure of the distribution of the B1 
+ field such that an appropriate correction 

strategy can be employed. Consequently, in the context of quantitative imaging at 7T, the 

use of a robust B1 
+ mapping technique is vital (Lutti et al., 2012). 

A variety of different methods exist for mapping the B1 
+  field, including the relatively 

straightforward double-angle method (Stollberger, & Wach, 1996) and phase-based 

approaches such as the Bloch-Siegert method (Sacolick et al., 2010). However, of 

particular interest in the context of the present thesis, is that studies have already 

demonstrated the feasibility of using a B1 
+  mapping sequence, known as the SA2RAGE, 

in order to provide a map of the B1 
+  field that can be used to correct the T1 maps, 

obtained from the MP2RAGE sequence, for B1 
+ 

 inhomogeneties (Marques & Grutter, 

2013). 

The recently developed SA2RAGE sequence (Eggenschwiler et al., 2012) allows for  a 3D 

acquisition of the B1 
+ 

 field in a short acquisition time and has been shown to possess a 

high degree of accuracy over a wide range of B1 
+  values, whilst maintaining a low 

specific absorption rate (SAR). Furthermore, it is possible to acquire relatively high 

resolution B1 
+ 

 maps using this method (i.e. 2mm isotropic). This is a particular advantage 

in the context of the present study as acquiring a higher resolution B1 
+ 

 map will reduce 
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the likelihood of B1 
+ errors bleeding from the estimations in the skull or fat tissues into 

relevant cortical areas when the B1 
+ maps are interpolated to the same resolution at the 

MP2RAGE images. Full details of the SA2RAGE sequence are shown in Figure 2.3. 

Hence, for the current project, we investigated the utility of using the MP2RAGE 

sequence in combination with a map of the B1 
+ field (acquired using SA2RAGE) in order 

to derive high-resolution, bias free, quantitative T1 maps of the cortex that can be used as 

an in vivo marker of cortical myelination. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 : Schematic of the SA2RAGE sequence. Taken from Eggenschwiler, F., Kober, T., 

Magill, A. W., Gruetter, R., & Marques, J. P. (2012). SA2RAGE: A new sequence for fast B1 + 

mapping. Magnetic Resonance in Medicine, 67(6), 1609-1619. The SA2RAGE consists of a 90° RF 

saturation pulse  followed by two gradient echo blocks. The excitation pulses of  the two (low) flip 

angles α1 and α2 within the gradient recalled echo (GRE) blocks are separated by a short 

repetition time TRflash. TD1= the first delay time, whilst TD2= the second delay time. TRSA2RAGE = 

repetition time. First phase encoding direction = PE1, PE2 = second phase encoding direction. 

. 

 

 

 

 
 

B1 
+  Correction Procedure 

In the current thesis SA2RAGE derived maps of the B1 
+  field were used to correct the T1 

maps produced by the MP2RAGE sequence for residual transmit field biases in order to 

This image has been removed by the author for 

copyright reasons. See Figure 1: Eggenschwiler, 

F., Kober, T., Magill, A. W., Gruetter, R., & 

Marques, J. P. (2012). SA2RAGE: A new 

sequence for fast B1 + mapping. Magnetic 

Resonance in Medicine, 67(6), 1609-1619. 
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produce bias free high-resolution T1 maps. An overview of the steps involved in this 

correction procedure are outlined below. 

 

Each participant’s SA2RAGE derived B1 
+ map was first registered and interpolated to the 

same resolution as the MP2RAGE volumes using FSL's FLIRT registration algorithm. 

This registration is performed using the second inversion contrast image from both the 

SA2RAGE and the MP2RAGE given that these feature high signal intensity and lower 

contrast than the combined images. The spatial transformations derived from this 

registration were then applied to the SA2RAGE B1 
+ 

 maps and the MP2RAGE UNI 

image. The UNI image is a T1-weighted image, referred to as a uniform (UNI) image. 

 

Subsequently, these registered and interpolated B1 
+ 

 maps were then used to correct the 

high resolution MP2RAGE Uniform images and T1 maps for residual RF transmit field 

biases using the methodology outlined in Marques & Gruetter (2013). The code for this B1 

+ 
 correction procedure was kindly supplied by JP Marques and is summarised below. 

 

Firstly, 2D lookup tables (see Figure 2.4) detailing the T1 values associated with particular 

values of The MP2RAGE signal and B1 
+ 

 are calculated. Similarly, a further  2D lookup 

Table containing the B1 
+ 

 values associated with particular values of the SA2RAGE signal 

and T1 were calculated. Examples of these lookup tables are shown in Figure 2.4. 

 

Using these two lookup tables a 2-D interpolation was then iteratively performed for each 

pixel in the images. In the first instance, the B1 
+  was calculated by assuming a constant 

value of T1 throughout the brain (1.5 seconds). The B1 
+ 

 values derived using this 

approach were then used to estimate the T1 values, again this was achieved through the 

2D interpolation of the MP2RAGE lookup table (Figure 2.4 a). This process is then 

repeated using the new T1 estimates for each of the image voxels. Three repetitions of this 

process are conducted after which, variations in both T1 values and B1 
+ 

 have been found 

to be less than 10 −3 on the third and final iteration (Marques & Grutter, 2013). As a result 

of  this process corrected B1 
+ 

 and T1 maps are  produced. Figure 2.5 shows an example of 

the effect of the B1 
+ 

 correction procedure on the T1 maps. 



38  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: This Figure depicts an example of the Lookup tables used to compute: (a) the R1 

(1/T1) maps for the MP2RAGE sequence and (b) the B1 
+  maps for the Sa2RAGE in the original 

work by Marques et al.,(2013). Figure taken from Marques, J. P., & Gruetter (2013). New 

Developments and Applications of the MP2RAGE Sequence-Focusing the Contrast and High 

Spatial Resolution R 1 Mapping. PloS one, 8(7), e69294 
 

Figure 2.5: axial images from a representative subject depicting (a) corrected and (b) 

uncorrected T1 maps (c) T1 difference map (corrected T1 map – uncorrected T1 map) – 

note the different colour scale values in (c) compared to (a) and (b). (d) B1 
+  map 

T1 (ms) T1 (ms) 

T1 (ms) 
B1+ 

This image has been removed by the 

author for copyright reasons. See 

Figure 3: Marques, J. P., & Gruetter 

(2013). New Developments and 

Applications of the MP2RAGE 

Sequence-Focusing the Contrast and 

High Spatial Resolution R 1 Mapping. 

PloS one, 8(7), e69294 
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Figure 2.6: Histogram of corrected (BLUE) and uncorrected (RED) T1 values from 2 

example subjects. 
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Figure 2.6 depicts the T1 values from two example subjects' skull-stripped T1 maps both 

before and after the implementation of the B1 
+ 

 correction procedure. As shown here the 

implementation of the B1 
+ 

 correction procedure led to changes in cortical T1 values. In 

particular, decreases in cortical T1 values were predominant. From Figure 2.6 it is also 

apparent that following the application of the B1 
+ 

 correction procedure the corrected T1 

maps appear to have a narrower distribution. 

 

2.7 Reliability analysis 

 
Prior to the main experimental studies included in this thesis, we sought to determine  the 

reliability of the T1 estimates derived using the methods outlined above. Thus, a small 

reliability study was conducted to investigate the reproducibility of the T1 values derived 

from the corrected MP2RAGE T1 maps. 

 

Participants 

 
4 participants took part in this investigation. All participants were aged between 18- 30 

years and had no history of psychological or neurological disorders. Ethical approval was 

obtained from the Cardiff University School of Psychology Ethics Committee and all 

participants provided written informed consent prior to their participation. 

 

Each participant was scanned on two separate occasions with an interval of 7 days 

between each scan session. 

 

MRI Data Collection 

 
The imaging acquisition protocol was the same for both the initial and repeat scan session. 

Quantitative T1 maps and T1-weighted images were acquired for each participant on a 7T 

MR system (Magnetom, Siemens Healthcare) at submillimetre resolution using the 

MP2RAGE sequence (MP2RAGE acquisition parameters: TR =6s, TD1/TD2 = 0.8/2.7s, 

α1/α2 = 7/5 degrees, TRGRE = 6.4 ms, iPAT = 3 and 6/8 partial Fourier sampling was used 
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in the phase-encoding direction and 6/8 partial Fourier in the slice-encoding direction. 

Resolution = 0.65mm isotropic. TA = 10 min 44s). 

A tailored adiabatic inversion pulse was also used for inversion (Hurley et al. 2010). This 

sequence outputs 4 different imaging volumes: First Inversion image (INV1), Second 

Inversion image (INV2), a T1-weighted image (UNI image) and finally a  quantitative T1 

map. Note the sequence parameters chosen for the MP2RAGE acquisition were based on 

those outlined in Marques et al. (2013) for ‘Protocol A - high CNR’. 

The B1 
+  field was also measured separately using the SA2RAGE sequence (SA2RAGE 

acquisition parameters: TR =2.4s, TD1/TD2 = 0.042/1.8 s, α1/α2 = 4/11 degrees, TRGRE= 

2.1 ms, iPAT= 2 and  6/8 partial Fourier sampling was used in the phase encoding direction 

and 6/8 partial Fourier in slice encoding direction. Resolution = 2x2x2.5 mm. TA = 2 min 

16 s ). 

The SA2RAGE derived maps of the B1 
+ 

 field were used to correct the T1 maps produced 

by the MP2RAGE sequence for residual transmit field biases, in order to produce bias free 

high-resolution T1 maps as outlined in Section 2.6. 

 

 

 
Quantitative T1 Reproducibility Analysis 

 

For both the initial and repeat scan sessions, each subject’s skull-stripped T1 map was 

segmented into three different tissue types (Grey Matter, White Matter, CSF)  using FSL’s 

FAST segmentation algorithm. 

In order to evaluate T1 values in the cortex, the grey matter partial volume maps produced 

using the FAST segmentation algorithm were then thresholded at a probability level of 0.9 

in order to obtain a grey matter mask for each participant. Each participant’s thresholded 

binary grey matter mask was then used to mask their  corrected T1 Maps. 

Mean grey matter T1 values were then extracted from the masked T1 maps, for each 

participant, for both the initial and repeat scan sessions. An ICC analysis was then 

conducted in order to evaluate the reliability of the observed cortical grey matter T1 

values. 
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Results 

 

T1 reproducibility 

 

Table 2.1 : Mean Grey matter T1 values for each subject and scan session 

 

The results of the reproducibility analysis revealed that the corrected quantitative T1 maps 

showed good reproducibility (see Table 2.1). Indeed, corrected cortical Grey matter T1 

values were found to have a strong ICC (single measures ICC= 0.96; average measures 

ICC=0.98) (see Figure 2.7) . 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: ICC plot for repeated scan sessions for the 4 subjects included in the reproducibility 

study. The T1 values here are given in seconds. 
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Interestingly, as illustrated by Figure 2.8 the B1 
+  maps also appeared to show a similar 

distribution of  B1 
+  values across participants. Furthermore, the distribution of  B1 

+    

values also appeared to show scan/re-scan reproducibility within participants. 

 

 

 

 

 

  

  

 

 

 

Figure  2.8 : Axial B1 
+  maps for 2  participants for initial and repeat scan sessions. 

 

2.8 Development of pre-processing pipeline 

 

A significant challenge associated with imaging at 7T concerns the processing of the large 

high-resolution datasets this generates. While significant strides have been made in recent 

years with regards to the development of suitable pre-processing pipelines, the processing 

of high-resolution datasets remains challenging. MP2RAGE images in particular are 

known to present significant problems for commonly used automatic image processing 

pipelines (e.g. Freesurfer), given that  such software tools are typically optimised for use 

with images obtained at lower field strengths (Bazin et al., 2014). 

During the production of this thesis, substantial challenges were encountered with regards 

to attempts to process our high-resolution MP2RAGE data using standard pipelines. In 

particular, skull stripping errors and suboptimal segmentation of the brain’s grey and 

white matter are common issues encountered. 

Consequently, a significant proportion of time was dedicated to designing an optimal 

pipeline for the analysis of these high-resolution datasets, as shown in Figure 2.9. 

The following section thus provides an overview of the approach and rationale used in 

order to derive our depth-specific R1 estimates. 

 

P1 P2 
Initial Initial Repeat Repeat B1 

+   B1 
+   
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Figure 2.9 : Schematic Overview of the Analysis Pipeline 

 

 

As shown in Figure 2.10 the application of the B1 
+  correction procedure results in a clear 

improvement in the delineation of the grey matter border following Freesurfer (Fischl, 2012) 

processing. 

However, in order to improve segmentation outcomes further a number of pre- processing 

steps, including a selection of those recommend by Haast et al. (2018), were performed on 

the different volumes produced by the MP2RAGE sequence (e.g. INV2, UNI). 
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Figure 2.10 : example section of Freesurfer output showing the Freesurfer pial surface 

reconstructions produced using the corrected T1-weighted images (yellow line) and the 

uncorrected T1-weighted  images (blue line) in this temporal region. Here the surfaces have 

been overlaid on the subject’s original T1 map. 

In order to improve skull stripping outcomes, we first bias-corrected each participant’s 

second inversion volume (INV2) from the MP2RAGE using the N4 algorithm, as 

implemented in the ANTS toolbox (Tustison et al., 2010). The N4 bias field correction 

algorithm is a method of correcting intensity non-uniformities (known as a bias field) in 

MRI data that is commonly used during the analysis of such images. The decision to 

utilise the second inversion image in order to derive the  brain mask was driven by the fact 

that this image provides the best contrast between tissues located inside and outside of the 

brain. The bias corrected INV2 volume was subsequently skull stripped using FSL’s BET 

routine in order to produce a brain mask. 

One of the key benefits of imaging at 7T is the ability to visualise the cortex in an 

incredible level of detail. However, with this detail comes a number of further challenges, 

especially given that the majority of image processing software were trained on data 

collected at 1mm in which such a level of detail is not present. For example, on the high 

resolution MP2RAGE images collected for this thesis, the cerebral vasculature can be seen 

in rich detail. As argued by Waehnert et al. (2016) these blood vessels should ideally be 

masked out as they can lead to segmentation errors. Hence, we chose to mask out the 

arteries from our datasets using the CBS tools software (CBS High‐Res Brain Processing 

tools, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, 

https://www.cbs.mpg.de/institute/software/cbs-tools). 

A further key issue relates to the brain’s dura matter, another aspect of its fine structural 

detail that becomes noticeably apparent at higher resolutions. Unfortunately, the dura 

http://www.cbs.mpg.de/institute/software/cbs-tools)
http://www.cbs.mpg.de/institute/software/cbs-tools)
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matter, a thin membrane like structure that surrounds the brain, presents a significant 

challenge for image segmentation algorithms in the context of high resolution 7T datasets 

as its intensity is similar to that of the cortical grey matter (Bazin et al., 2014). For 

example, in the case of Freesurfer reconstructions, this can lead to the erroneous inclusion 

of the dura matter in the pial surface. In order to circumvent this issue, we again chose to 

remove the dura matter from our datasets. This was achieved by masking out the dura 

matter using the techniques provided in the CBS tools software. Finally, a   further common 

issue encountered during the processing of our high resolution 7T data sets was the 

misclassification of CSF as grey matter in some brain regions. Thus, a CSF mask was 

created using the first inversion image (INV1), as this image  provides good contrast 

between the CSF and GM of the brain. This mask was subsequently applied to the B1 
+  

corrected T1-weighted  image. 

 

Surface reconstruction 

 

Following pre-processing of the MP2RAGE T1-weighted  images a surface-based analysis 

was conducted. Surface based approaches represent an attractive option for the study of 

the cortex given that many characteristic features of cortical areas, such as their columnar 

and laminar organization, are best understood in the context of the morphology and 

geometry of the cortical surface ( Dale, Fischl, & Sereno, 1999). 

Whilst a number of different tools are available for surface-based reconstruction, here we 

utilised the popular Freesurfer software, which provides an automatic set of tools for the 

reconstruction of the cortical surface (Dale, Fischl, & Sereno, 1999, Fischl, 2012). 

Examples of the Freesurfer surface reconstructions are shown in Figure  2.11. 
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Figure 2.11: Example A) Right Pial surface and B) Right Inflated surface reconstructions produced 

using the Freesurfer v7 recon- all pipeline. In these surface representations red indicates a cortical 

sulcus and green indicates the presence of a cortical gyrus. 

 

 

Equi-volume layering 

 

Until recently, the predominant method of modelling the cortical laminae has been 

through the use of equi-distant approaches in which the cortical surfaces (layers) are 

constructed in such a way that a constant distance is kept between these surfaces and the 

boundaries of the cortex. However, this ignores the fact that a high degree of folding is 

exhibited by the cerebral cortex. Furthermore, intracortical surfaces constructed in an 

equi-distant manner have been found to diverge from the anatomical  layers observed using 

high resolution post-mortem MRI scans, calling into question the anatomical accuracy of 

this approach (Waehnert et al., 2014). 

Significantly, Bok (1929) observed that the thickness of cortical layers actually varies 

across the cortex and is related to cortical curvature (see Figure 2.12). Based upon his 

observations in this regard, he argued that layer thickness changes occur in order to 

compensate for cortical folding patterns, thus allowing cortical segments to preserve their 

volume. Inspired by these findings, Waehnert et al. (2014) developed a  novel method for 

modelling the cortical laminae that, akin to Bok’s observation of the cortical anatomy, 

allows for the preservation of volume and changes in layer thickness in order to 

compensate for cortical folding in the gyri and sulci of the cortex. 
 

A) B) 
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Figure 2.12 : Sketch from Bok 1929 of a cortical cross section depicting the six cytoarchitectonic 

layers of the cortex. Notable in this diagram is the fact that at locations of  high curvature a layer 

is relatively thick, whereas at locations of low curvature layers are comparatively thin. Figure 

taken from Waehnert, M. D., Dinse, J., Weiss, M., Streicher, M. N., Waehnert, P., Geyer, S., ... & 

Bazin, P. L. (2014). Anatomically motivated modelling of  cortical laminae. Neuroimage, 93, 210-

220. 

Significantly, this method has been found to perform better than equi-distant approaches 

when applied to ultra-high resolution post-mortem MRI data and even  in-vivo MRI data 

acquired at 0.7 mm isotropic resolution (Waehnert et al., 2014). Thus, in order to derive 

depth-specific R1 estimates in the cortex, we employed an  equi-volume layering approach. 

This was implemented using the code provided in  the following GitHub toolbox : 

https://github.com/kwagstyl/surface_tools. The equations for generating the surfaces in 

this toolbox are derived from the original work by Waehnert et al. (2014). 

More specifically, we generated 11 equi-volumetric cortical surfaces within the cortex. 

However, to reduce the risk of partial voluming between the different tissue types present 

in the cortex (e.g. grey matter, white matter, CSF) the 2 surfaces closest to the pial and 

white matter borders were excluded. Hence only 7 of these surfaces are examined in the 

experimental chapters of this thesis. R1 values were subsequently systematically sampled 

along these 7 surfaces by mapping the R1 maps onto these surfaces using the Freesurfer 

mri_vol2surf function, which assigns the values from a given volume to each surface 

vertex. 
 

   

This image has been removed by the author for 

copyright reasons. See Figure 1: Waehnert, M. D., 

Dinse, J., Weiss, M., Streicher, M. N., Waehnert, P., 

Geyer, S., ... & Bazin, P. L. (2014). Anatomically 

motivated modelling of  cortical laminae. Neuroimage, 

93, 210-220. 
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Figure 2.13 : Average R1 Values sampled in the primary visual cortex for each of 7 

cortical depths. 

The final stage of our MRI analysis pipeline involved the extraction of R1 values across 

the cortical depth in Freesurfer-defined regions of interest. In Figure 2.13, R1 values in the 

primary visual cortex (averaged over 35 subjects), obtained using our analysis pipeline 

and sampled at 7 different cortical depths using the aforementioned  equi-volume layering 

approach, are shown. Notably, in line with the known myeloarchitecture of the cortex 

there is a clear increase in R1 (myelin) when sampling from the pial surface to the white 

matter border, thus validating our approach outlined in this chapter. 



50  

Chapter 3 

Investigating the Relationship Between 

Cortical Myelination and Visual 

Oscillatory Dynamics In Vivo 
 

 
3.1 Abstract 

 

A close relationship exists between the cyto and myeloarchitecture of the cortex. In 

support of this, Helbling et al. (2015) demonstrated that MRI derived estimates of cortical 

myelin were positively correlated with the strength of MEG auditory Evoked  Response 

Fields (ERF). Myelin has also been suggested to aid oscillatory synchrony, which has been 

widely implicated in cognition and an array of clinical disorders. However, the precise 

neural underpinnings of oscillatory activity remains the subject  of intense research. The 

present study combined high-resolution 7T MRI of R1, a myelin-sensitive MRI metric, 

with MEG to test the hypothesis that visual gamma oscillatory dynamics are related to 

myelination of the primary visual cortex (V1). We also investigated whether such a 

relationship might be specific to a particular cortical depth. The results of this 

investigation did not reveal evidence of a significant correlation between either the peak 

amplitude of the initial evoked gamma spike, or the later sustained gamma response, and 

R1 estimates in primary visual cortex. Similarly, no relationship was found between 

cortical myelin and peak frequency estimates. However, further exploratory analyses of 

the whole frequency spectra did point to a potential relationship between 40 Hz gamma 

activity and superficial myelin which requires further investigation. 
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3.2 Introduction 

The structure of the brain and its function are known to be closely intertwined. Yet, 

despite having been the subject of decades of research, many unanswered questions  

remain regarding the complex interplay between brain structure and function. To date our 

knowledge of the brain’s microstructure has largely been informed by ex-vivo post-

mortem histological studies and by extrapolating from animal models (Edwards, Kirilina, 

Mohammadi, & Weiskopf, 2018). However, recent developments in the field of MRI are 

now enabling the quantification of brain structure and function on a much finer scale than 

ever before. Indeed, it is now possible to non-invasively measure microstructural 

properties of human brain tissue, such as the myelin content, with high resolution 

(Weiskopf, Mohammadi, Lutti, & Callaghan, 2015). Such investigations can be seen to 

provide a unique opportunity to  move beyond classical approaches by allowing for the 

investigation of the brain’s microstructure in vivo (Weiskopf et al., 2015). 

In recent years there has been a corresponding renewal of interest in using high resolution 

quantitative MRI techniques in order to probe the microstructure of the brain and in 

particular its myelin content (Waehnert, Dinse, Schäfer, Geyer, Bazin, 2016). Significantly, 

although most prominent in the white matter of the brain, the cortical grey matter also 

contains numerous myelinated fibres, the spatial organization of which varies across the 

cortex (Nieuwenhuys, 2013). 

As is evident from previous histological investigations, a close relationship exists between 

the cytoarchitecture and myeloarchitecture of the brain, (Nieuwenhuys, 2013). Of note, the 

horizontal myelinated fibres of the cortex have been proposed to correspond to the axon 

collaterals of pyramidal cells (the primary generators of the MEG/EEG signal). These 

pyramidal cells are most prominent in layers III and V of the cortex, producing two 

maxima of horizontal fibres thought to be consistent with the inner and outer bands of 

Baillarger, two major myeloarchitectural features of the cortex (Dinse et al., 2015). 

Building on the close relationship between the cyto and myeloarchitecture of the brain, 

Helbling et al., (2015) demonstrated that MRI derived estimates of cortical myelin could 

be used to both refine MEG source location estimates and predict the magnitude of 

electrophysiological signals. This study was based on the assumption that given the close 

relationship between the cyto and myeloarchitecture of the brain,  local myelin density is 

expected to be positively correlated with the density of pyramidal cells. Utilising a 

combination of MEG and structural MRI measures, Helbling et al. (2015) reported 
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evidence of a positive correlation between the magnitude of MEG signals derived from an 

auditory pitch perception paradigm and myelin estimates in relevant auditory cortical 

regions. Whilst a number of MRI metrics were  employed to probe the cortical 

myeloarchitecture, R1 was also found to be the best predictor of MEG dipole strength. 

In the above study auditory Evoked Response Fields (ERF’s) and dipole moment strength 

were utilised as an index of neural activity. However, a key advantage of a more direct 

neuroimaging technique such as MEG lies in its ability to explore the rich assortment of 

neural activity, including neural oscillations (Singh, 2012). Such oscillations are a 

prominent feature of neuronal activity and the synchronization of oscillatory activity has 

been proposed as a fundamental mechanism sub-serving neuronal communication 

(Schnitzler, & Gross, 2005). Indeed, converging lines of evidence suggest that neural 

oscillations may act to enable the coordinated activity of neuronal populations during 

normal brain functioning (Uhlhaas & Singer, 2010). Notably, neuronal oscillations are 

typically categorized into five frequency bands, namely delta, theta, alpha, beta and 

gamma. Oscillations in the gamma range in particular have been the subject of intense 

research and will be the focus of this chapter. 

The exact genesis of visual gamma oscillations remains the subject of continued 

investigation and debate. However, one widely regarded hypothesis (PING model) 

contends that these signals are produced by networks of reciprocally connected excitatory 

pyramidal cells and inhibitory interneurons. They are thus believed to emerge from the 

coordinated interaction of excitation and inhibition (Buzsaki and Wang, 2012). 

Gamma oscillations have been attributed a wide range of functions and implicated in  a 

variety of sensory, cognitive and behavioural processes, including memory (Sederberg et 

al., 2007) and attention (Bauer, Stenner, Friston, & Dolan, 2014). Furthermore, they have 

been suggested to play a role in both local and large-scale cortical processing (Uhlhaas & 

Singer, 2010). Aberrant oscillatory dynamics in the gamma range have also been 

extensively implicated in a wide range of clinical conditions including schizophrenia 

(Uhlhaas & Singer, 2010), Alzheimers disease (Başar et al., 2017) and autism (Simon & 

Wallace, 2016). However, in addition to their mechanisms of generation, the functional 

and clinical significance of gamma band oscillations remains the subject  of considerable 

debate. 

Gamma oscillations are observed in many brain regions during both wake and sleep 

(Buzsaki and Wang, 2012). However, the visual cortex has been particularly well 

characterised (Gilbert,1983, Tong, 2003) making it an ideal substrate for investigating 
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structure-function relationships in the brain. Gamma oscillations can be  reliably induced in 

the visual cortex using high contrast square wave grating stimuli. In response to such 

stimuli the visual cortex produces two characteristic responses, namely an initial evoked 

response and a later induced narrow band response. The evoked gamma response is also 

commonly referred to as the gamma spike or broadband gamma given the broad range of 

its frequency content (~30 - 100+  Hz). This transient response occurs ~ 0 - 300ms after 

stimulus onset. The later, narrow band oscillations, which are usually lower in frequency, 

are also commonly referred to as sustained gamma. This response typically lasts for the 

duration of the stimulus (Swettenham, Muthukumaraswamy & Singh, 2009). 

 

Significantly, these two variants of gamma activity are commonly conflated in the 

literature (Ray & Maunsell, 2011). However, recent work by Bartoli et al. (2019) has 

highlighted the different response properties of these oscillatory signals, pointing to the 

potential importance of considering these two types of gamma activity as separate 

phenomena. For example, in their study, whilst both broad and narrow band gamma 

oscillations demonstrated an increase in amplitude with increasing stimulus contrast, only 

the narrow band oscillations demonstrated a characteristic change in peak frequency 

dependent on stimulus contrast. Interestingly, this study also found that narrowband 

oscillations occurred most reliably in response to grating stimuli and reddish hues, in 

addition to natural images in which these features are present . Conversely, broadband 

gamma oscillations were found reliably for all stimulus types under investigation. 

Notably, controversy also surrounds the origins of the high frequency broadband gamma 

responses observed in the visual cortex. For example, utilising recording in anaesthetised 

cats Castelo-Branco, Neuenschwander & Singer (1998) found that high frequency gamma 

activity (60 -120 Hz) is generated in the retina, before propagating to the LGN and visual 

cortex, by means of feedforward synchronisation. In contrast, their results pointed to lower 

frequency gamma oscillations (30-60 Hz) as being generated solely by cortical 

mechanisms. However, other investigations, such as that by Heinrich &  Bach (2004), 

conducted in humans, contend that oscillations in the gamma range in the retina and visual 

cortex are in fact distinct phenomena. Thus, much controversy surrounds both the 

existence of different types of gamma oscillations in the visual cortex, the potentially 

distinct functions of these signals and indeed their origins. 

 

Furthermore, evidence such as that outlined above can be seen to raise a number of 

intriguing questions regarding the way in which gamma oscillations are currently 
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conceptualised. Thus, in light of recent work highlighting the importance of considering 

narrow and broadband gamma oscillations as both spectrally and functionally distinct 

responses, in this work we consider both the initial narrowband  gamma spike in addition 

to the broadband gamma response. 

Despite the many unanswered questions regarding gamma frequency oscillations in the 

visual cortex, two key characteristics of these phenomena, namely their amplitude and 

frequency, have been found to be highly reliable within participants (Tan, Gross & 

Uhlhaas, 2016; Muthukumaraswamy et al., 2010). Intriguingly, the amplitude and 

frequency of these signals is also known to show considerable inter- individual variability, 

the mechanistic basis of which remains the subject of ongoing investigation (Perry et al., 

2013). However, a likely candidate source of such inter- individual differences could be 

the underlying structure and physiology of the visual  cortex itself (Shaw et al., 2017; Shaw 

et al., 2019). Furthermore, variability in peak gamma frequency has been shown to be 

genetically determined (van Pelt, Boomsma, & Fries, 2012). 

To date, a number of studies have attempted to explore the structural correlates of visual 

gamma oscillations. However, thus far, such efforts have yielded somewhat mixed results 

that are far from conclusive. For example, although Schwarzkopf et al. (2012) and 

Gregory et al. (2016) reported evidence of a positive correlation between gamma peak 

frequency and the size of primary visual cortex (V1), further studies such as that by Perry 

et al. (2013) have failed to replicate this association. More recently, a study by Van Pelt, 

Shumskaya and Fries (2018), that employed a considerably larger sample of participants 

than the aforementioned studies (158 subjects), actually reported a negative correlation 

between gamma peak frequency and the size of V1 in addition to a positive correlation 

with cortical thickness. A similarly confusing picture emerges when considering purported 

relationships between gamma frequency and concentrations of the inhibitory 

neurotransmitter GABA in the visual cortex, with studies again reporting contradictory 

findings (e.g. Muthukumaraswamy et al. 2009; Cousijn et al., 2014). However, owing to 

the aforementioned advances in the field of MRI there is now the potential to harness the 

greater specificity of microstructural imaging methods to investigate direct correlations 

between important microstructural properties of the brain, such as its myelin content and 

gamma oscillatory dynamics. 

Interestingly, myelin itself has also been implicated in subserving brain communication 

through its ability to increase the speed of nerve conduction (Fields, 2014). Indeed, intra-

cortical myelin is thought to play a key role in optimizing the timing and synchrony of 
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action potentials, a necessity for the optimal functioning of neuronal networks (Tardif et 

al., 2016). To date, the majority of studies have focused on the importance of white matter 

myelination and its role in neuronal synchronisation. However, it is possible that 

intracortical myelin might also influence synchronization occurring within more local 

neuronal networks, which could in turn be reflected in the magnitude of signals recorded 

using MEG/EEG (Grydeland, Westlye, Walhovd & Fjell, 2015). In line with this 

suggestion, a recent multimodal MRI-EEG study found that an increase in amplitude of an 

electrophysiological marker (ERN response) of error and processing and cortical control, 

was associated with higher levels of myelin in the posterior cingulate cortex (Grydeland et 

al., 2015). Such a finding can be taken to suggest synchronous activity  reflecting error 

processing is related to inter-individual variability in intercortical myelin. Barratt et al. 

(2017) also found evidence of a diminished gamma band response in the visual cortex of a 

cohort of MS patients compared to controls and suggested that one potential interpretation 

of this finding is that the widespread cortical demyelination observed in MS may provide 

explanation for the reduced visual gamma amplitude observed in this population (Barratt 

et al., 2017). 

A growing body of evidence has also suggested that synchronisation in the gamma band is 

strongest in the superficial layers of the cortex, from which feedforward projections 

typically originate, indicating that gamma oscillations may also subserve feedforward 

processing in the brain (Michalareas et al., 2016). To date much of the evidence in support 

of this theory has come from animal studies, with direct evidence in humans remaining 

sparse, though recent MEG studies have attempted to investigate the laminar hypothesis 

non-invasively by utilising modelling approaches in combination with improvements in 

the SNR of MEG data (Bonaiuto et al., 2018). Notably this study by Bonaiuto et al. (2018) 

demonstrated the feasibility of distinguishing between activity arising from the deep and 

superficial layers of the cortex. Still, direct evidence of the layer-specific origins of 

gamma oscillations in human participants remains lacking. 

Investigations of cortical myelination are also increasingly taking advantage of the 

benefits conferred by imaging at high field. Imaging at 7T allows for the acquisition of 

datasets at submillimetre isotropic resolution with increased contrast to noise ratio 

conferring a number of important advantages from the perspective of myelin imaging 

(Waehnert et al., 2016). In particular, such high-resolution images have the potential to 

allow exploration of the laminar structure of the cortex, which would be of great relevance 

to attempts to relate the cortical microstructure to oscillatory dynamics. 
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In sum, the precise neurobiological underpinnings of gamma oscillations, their 

mechanisms of generation and indeed their functional significance, remain the subject of 

ongoing debate. Yet, given the wide-ranging functions attributed to these signals, gaining 

a greater understanding of the nature of gamma oscillations and their relation to the 

cortical microstructure could provide valuable new insights into their functional roles in 

both health and disease. Thus, here we focus on gamma oscillations and aim to extend the 

approach adopted by Helbing et al. (2015) to further explore the relationship between the 

microstructure of the cortex and gamma oscillatory dynamics, with a view to gaining new 

insights into the nature of these signals and their relation to the underlying neuroanatomy.  

More specifically, given  that gamma oscillations are suggested to be generated by 

superficial pyramidal cells within the cortical columns of V1, we hypothesised that 

gamma oscillatory dynamics should depend on the density of pyramidal cells, whose 

axons are myelinated. Hence, we hypothesised, akin to Helbling et al. (2015), that a 

relationship might therefore exist between myelin in V1 and visual gamma oscillations.    

 In addition, the study also aims to acquire higher resolution images than previous 

investigations in order to assess myelination at different cortical depths and its relation to 

gamma oscillatory dynamics. The present study will therefore adopt a multimodal 

neuroimaging approach utilising high resolution quantitative MRI in combination with 

MEG in order to investigate the relationship between depth-specific cortical myelin 

estimates and gamma oscillatory dynamics. In this study visual gamma oscillations are 

elicited using a visual grating paradigm, given that such stimuli are known to induce 

strong gamma band responses in participants’ visual cortex (Muthukumaraswamy & 

Singh, 2009). 

 

It is hypothesised that the magnitude of visual gamma oscillatory signals will be positively 

correlated with the concentration of myelin in the primary visual cortex and furthermore 

that a relationship might also exist between other aspects of oscillatory morphology such 

as peak frequency estimates and the cortical myeloarchitecture. 
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3.3 Methods  

 
Participants 

38 healthy participants took part in this study. All participants were aged between 18-30 

years and had normal or corrected to normal vision, normal hearing, and no 

history of psychological or neurological disorders. Ethical approval was obtained from the 

Cardiff University School of Psychology Ethics Committee and all participants provided 

informed consent prior to their participation. 

 
MEG Methods 
 

Visual Motor Experiment Design 

 
Stimuli consisted of stationary, black/white, square-wave vertical gratings (spatial 

frequency = 3 c.p.d, size = 8° x 8° of visual angle) presented at maximum contrast  on a 

grey background. Stimuli were presented to the lower left visual field with a small red 

fixation square located at the top right-hand edge of the stimulus. Each stimulus appeared 

on the screen for a jittered duration of 1.5-2s. This was followed by an inter-trial interval 

of 4s seconds during which only the red dot was present. Participants were instructed to 

maintain fixation on the red dot throughout the experiment and to make an abduction of 

their right index finger when the grating disappeared from the screen. The experiment 

consisted of a total of 100 trials (approx. 10mins). 

 

The Stimulus presentations were implemented in MATLAB (The Mathworks, Inc.: 

Natick, MA, USA) and displayed using a ProPixx projector system (VPixx Technologies) 

with a refresh rate set to 100  Hz. 
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Figure 3.1: Illustration of visual grating paradigm 

 

 

 

MEG Data Acquisition 

 
Whole head MEG recordings were acquired using a 275 channel CTF axial gradiometer 

system at a sampling rate of 1200 Hz. For the purpose of noise rejection, an additional 29 

reference channels were recorded and the primary sensors were analysed as synthetic 

third-order gradiometers (Vrba and Robinson, 2001). Participants were seated in an 

upright position during the recording sessions. Prior to the MEG recording, participants 

were fitted with three electromagnetic head coils located at a fixed distance from the 

nasion and the two pre-auricular points, the location of which was recorded continuously 

for MRI co-registration purposes. The location of these markers was verified afterwards 

using high resolution digital photographs. 

Co-registration – co-registration was performed using the T1-weighted  UNI image from 

the  MP2RAGE sequence. Each subject’s UNI image was first downsampled to 1mm 

isotropic resolution and co-registered to the MEG data by marking the points on the MR 

image corresponding to the position of the fiducial coils. These fiducial coils are head 

localisation coils. They are placed at key anatomical landmarks referred to as the fiducial 

points, namely the left and right pre-auricular points and the nasion.  
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MEG Data Processing 

 

The MEG analyses presented in this chapter were performed using the Fieldtrip toolbox 

(Oostenveld, Fries, Maris, & Schoffelen, 2011) and custom Matlab scripts.  

 
Pre-processing- Each participant’s data set was epoched from 2 seconds before stimulus 

onset to 2 seconds after stimulus onset. Artefact rejection was then performed manually. 

Specifically, each participant’s data was visually inspected to identify eye, muscle, and 

head movement artefacts. Each dataset was subsequently  band-pass-filtered between 30-

80  Hz. 

 

Source Reconstruction 

 

Each participant’s co-registered MRI was segmented into the following tissue types: brain, 

skull and scalp. A volume conduction model of the head was then created based on the 

subjects segmented MRI using the ‘single-shell’ method (single-shell volume conduction 

model (Nolte, 2003). This head model was chosen for this analysis as it is the method 

recommended by Fieldtrip for most MEG analyses. 

The source model was then constructed using a high-resolution 1mm grid in order to 

improve SNR. In this step an inverse warping procedure was also utilised in order to allow 

for the creation of source grids that are consistent across participants. In brief, a template 

grid based on a template MRI in  Montreal Neurological Institute (MNI) space available in 

SPM12 (Ashburner et al., 2014) was used. Each participant’s MRI was warped to this 

template MRI. The inverse transformation matrix was then applied to the template grid. 

As a consequence of this procedure, it is possible to create source grids that are consistent 

across subjects thus allowing for equitable comparisons. The leadfield matrix was then 

constructed for each grid point taking into account the previously computed head model 

and channel positions. 

Beamforming - An LCMV Beamformer analysis was then performed for source 

localisation purposes. In this procedure the signals at each source location are 

reconstructed by weighting the signals at each sensor by a set of beamformer weights. In 

this way these beamformer weights essentially act as a spatial filter. This  method allows 

 

  

 

     



60  

for the estimation of activity at any given brain location. The calculation of these 

beamformer weights depends on two key factors, namely the leadfield matrix and the data 

covariance. Here we chose to use an LCMV beamformer which relies on source estimates 

calculated in the time domain. 

In order to ensure that any difference between the stimulus and baseline conditions were 

not simply due to differences in the beamformer weights, the source estimates were 

calculated for the stimulus and baseline epochs using common filters  (i.e. the same set of 

beamformer weights were used). These ‘common weights’ were derived by calculating the 

covariance matrix using both the baseline and stimulus epochs. 

After projecting the gamma power through the common beamformer weights separately 

for both the stimulus (0.3s to 1.5s) and baseline (-1.5s to -0.3s) epochs the contrast 

between these two conditions was then calculated. More specifically, the percentage 

change between the stimulus and baseline conditions for each voxel location was 

estimated. The peak voxel showing the greatest increase in gamma power (30-80 Hz) in 

the occipital cortex, measured as percentage change from baseline, was then identified for 

each subject. 

Virtual sensors - Finally, virtual sensor time series data were reconstructed at these 

locations of peak gamma activity by multiplying the data by the corresponding 

beamformer weights. This resulted in the construction of an activity time-series for each 

trial at this peak location. Time frequency analyses were then performed using the Hilbert 

transform in order to explore the characteristics of both the initial evoked gamma spike (0-

0.3s) and the later sustained gamma response (0.3-1.5s). The resulting time frequency 

plots were visually inspected for quality control purposes. Three subjects did not show an 

identifiable visual gamma response and thus their data was excluded from the subsequent 

analyses, leaving a final MEG data sample size of 35. 

The peak amplitude (percentage change from baseline) and frequency of the sustained 

gamma response (30-80 Hz) was calculated for each participant. The peak amplitude 

(percentage change from baseline) and frequency of the earlier (0 - 0.3s),  evoked gamma 

response (30-160 Hz) was also estimated. 
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Figure 3.2: Example visual gamma spectrograms from two representative subjects 

depicting both the initial gamma spike and later sustained gamma response. 
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MRI Data Collection 

 

Quantitative T1 maps and T1-weighted images were acquired for each participant on a 7T 

MR system (Magnetom, Siemens healthineers, Erlangen, Germany.) at submillimetre 

resolution using the MP2RAGE sequence (MP2RAGE acquisition parameters: TR 

=6s, TD1/TD2 = 0.8/2.7s, α1/α2 = 7/5 degrees, TRGRE= 6.4 ms, iPAT = 3 and 6/8 partial). 

Fourier sampling was used in the phase encoding direction and 6/8 partial Fourier in the 

slice encoding direction. Resolution = 0.65mm isotropic. TA = 10 min 44s. A tailored 

adiabatic inversion pulse was also used for inversion (Hurley et al. 2010). 

This sequence outputs 4 different imaging volumes (1st inversion image INV1, second 

inversion image INV2, a T1-weighted image (UNI image) and finally a quantiative T1 

MAP). Given that the T1 maps derived from the MP2RAGE sequence can show some 

residual sensitivity to inhomogeneities in the B1 
+ field, the B1 

+ field was also  measured 

separately using the SA2RAGE sequence (SA2RAGE acquisition parameters: TR = 

2.4s,TD1/TD2 = 0.042/1.8 s, α1/α2 = 4/11 degrees, TRGRE= 2.1 ms, iPAT= 2 and 6/8 

partial Fourier sampling was used in the phase encoding direction and 6/8 partial Fourier in 

the slice encoding direction. Resolution = 2x2x2.5mm.TA = 2 min 16 s.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Example T1 map at 0.65mm isotropic resolution. 
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Calculation of R1 maps and B1 
+ correction procedure 

 

The SA2RAGE derived maps of the B1 
+  field were used to correct the T1 maps produced 

by the MP2RAGE sequence for residual transmit field biases, in order to produce bias free 

high resolution T1 maps. Each participant’s SA2RAGE derived B1 
+  map was first 

registered and interpolated to the same resolution as the MP2RAGE volumes using FSL's 

FLIRT registration algorithm. Subsequently these registered and interpolated B1 
+  maps 

were utilised to correct the high resolution MP2RAGE Uniform images and T1 maps for 

residual RF transmit field biases using the methodology outlined in Marques & Gruetter 

(2013). 

Following this correction procedure each participant’s corrected T1 map was converted to 

an R1 map ( R1=1/T1) for ease of interpretation given the positive correlation between R1 

and myelin. 

 

MRI Pre-processing and Analysis 

 
In order to improve segmentation outcomes a number of pre-processing steps, including a 

selection of those recommend by Haast et al. (2018), were performed on the different 

volumes produced by the MP2RAGE sequence (e.g. INV2,UNI). In brief, each 

participant’s second inversion volume (INV2) was first bias corrected using the N4 

algorithm. This volume was subsequently skull stripped using FSL’s BET routine in order 

to produce a brain mask. Finally, the CBS tools software package was also used to remove 

additional non-brain tissue (arteries and dura) from the corrected T1-weighted  image 

(UNI image). A common issue encountered during the processing of these images is the 

misclassification of CSF as grey matter in some brain regions. Thus, a CSF mask was also 

created using the first inversion image (INV1) and applied to the corrected T1-weighted 

image. 

Each participant’s pre-processed B1 
+  corrected T1-weighted  image was then processed at 

native 0.65 mm resolution using the Freesurfer 7 ‘recon all’ pipeline, which performs all 

of the Freesurfer cortical surface reconstruction steps,  in order to construct a 

representation of the cortical surface. The resultant surfaces were visually  inspected for 

quality control purposes and manual corrections were performed where necessary. 
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Following Freesurfer processing, participants’ individual quantitative R1 volumes were 

then mapped onto the cortical surfaces. Initially, each subject’s quantitative R1 map was 

sampled on their cortical surface using the Freesurfer mri_vol2surf function by averaging 

between 20-80% of the cortical depth to reduce the risk of partial voluming. 

 
Cortical depth analysis - A cortical depth analysis was also performed by projecting the 

R1 maps onto the cortical surface using an equi-volume layering approach (Waehnert, et 

al., 2014). This involved the creation of 11 different surfaces. R1 values were then 

systematically sampled along these surfaces. Again, to reduce the risk of partial voluming 

only 7 of these surfaces were included in the subsequent analyses (the 2 surfaces closest to 

the pial and white matter surfaces were excluded from the subsequent analysis). Thus, we 

chose to only use equi-volume surfaces at the following fractional cortical depths 

(projecting from the pial surface):  0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8. Accordingly, estimates of 

myelin content at 7 cortical depths were derived. In the remainder of this chapter the 

following naming convention will be used to refer to the different cortical depths 

investigated depth: 1, 2, 3, 4, 5, 6, 7. Depth 1 is closest to the pial surface whereas depth 7 

is the closest to the GM/WM border. 

 

Extraction of V1 myelin content - For each participant we first extracted the mean R1 

value (sampling at 20-80 % of the cortical depth, from the white matter surface) in the 

Freesurfer-defined pericalcarine label to give an estimate of the myelination of  each 

subject’s primary visual cortex .We then repeated this process for each of the equi-volume 

surfaces. In this way a mean R1 for the Freesurfer defined pericalcarine label was derived 

for each subject  at each of the 7 cortical depths. Following quality assessment of 

participants’ MRI scans and Freesurfer surfaces 3 scans were found to be unusable and 

were excluded from the ensuing analysis. Thus,  data from only 32 participants was 

included in the multi-modal analysis (6 datasets were removed in total following the 

quality assessment of  participants’ visual gamma responses and MRI data). 
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Multimodal analysis 

 

R1 and visual gamma amplitude - In order to investigate the relationship between  R1 

values in the primary visual cortex and participants’ visual gamma responses a correlation 

analysis was conducted. This was done for R1 values in each layer and, additionally for 

the mean R1 averaged across 20%-80% of the cortical depth. Correlations between these 

R1 values and gamma amplitudes were performed for  two visual responses: the initial 

evoked gamma spike and the sustained induced gamma response. It was hypothesised that 

there would be a positive correlation between the amplitude  of these MEG responses and 

R1 in the primary visual cortex. 

 

We first calculated the correlation between participants’ R1 values in the primary visual 

cortex averaged across 20-80% of the cortical depth and the amplitude of the initial 

evoked gamma spike. Given the non-normal distribution of the amplitude data  (Shapiro-

Wilk Test sig. = < 0.05), the Spearman’s correlation coefficient was used for this analysis. 

Similarly, we also investigated the correlation between participants’ R1 values in primary 

visual cortex averaged across 20-80% of the cortical depth and the amplitude of the 

sustained gamma response. Again, the Spearman’s correlation coefficient was used, given 

the non-normal distribution of the amplitude data (Shapiro-Wilk Test sig. = < 0.05). 

 

In order to investigate the depth specificity of any relationship between cortical myelin 

(R1) and visual gamma amplitude, the correlation between the amplitude of  both the 

gamma spike and sustained gamma responses was investigated in relation to the R1 values 

at each of the 7 cortical depths. Again, it was hypothesised  that any relationship between 

depth specific R1 values and the amplitude of the visual gamma responses would be 

positive. 

 

R1 and visual gamma peak frequency – An exploratory analysis was also conducted to 

investigate a possible relationship between myelination of the primary  visual cortex and 

the peak frequency of participants’ visual gamma responses. We first calculated the 

Spearman’s correlation between participants’ R1 values in primary visual cortex averaged 

across 20-80% of the cortical depth and the peak frequency of the evoked gamma spike. 

The Spearman’s correlation coefficient was used in this instance given the non-normal 

distribution of the data (Shapiro-Wilk Test sig. = < 0.05). The Pearson’s correlation 

between participants’ R1 values in primary visual cortex averaged across 20-80% of the 
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cortical depth and the peak frequency of the sustained gamma response was also 

calculated. 

In order to investigate the depth specificity of any relationship between cortical myelin 

(R1) and visual gamma peak frequency the Spearman’s correlation between R1 values at 

each of the 7 cortical depths and the peak frequency of the evoked gamma spike was 

estimated. Finally, the Pearson’s correlation between the peak frequency of the sustained 

gamma response and R1 values at each of the 7 cortical depths was calculated. 

 

Whole spectra analysis – In addition to assessing correlations between the peak 

amplitude and frequency of the visual gamma response and R1, the relationship between 

depth-resolved R1 values and the full frequency spectra was also investigated. For this 

analysis, the baseline (-1.2s – 0s) and stimulus (0.3s - 1.5s) periods of participants’ virtual 

sensor time courses were extracted. A spectral analysis was then performed on each of 

these epochs using a multi-taper frequency  transformation (mtmfft) and discrete prolate 

spheroidal sequence (dpss) filter. The frequency range was set as 0-100  Hz. Following 

this analysis, the percentage change in power between the stimulus and baseline 

conditions was calculated in order to derive a third condition consisting of the difference 

spectra. 

 
In order to investigate the relationship between power across the frequency spectra and R1 

a correlation analysis was then conducted for each of the three conditions. Specifically, the 

Pearson’s correlation across subjects was calculated between R1 values at each depth and 

power at each frequency. In this way correlation coefficients were derived describing the 

relationship between R1 at each of the 7 cortical depths and each frequency point for each 

condition. Plots were then produced to provide a visual representation of these correlations 

between R1 and the spectra for each condition. 
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3.4 Results 
Gamma spike amplitude and R1 – A non-significant relationship was found between R1 

values in primary visual cortex averaged across 20-80% of the cortical  depth and the 

amplitude of the initial gamma spike ( r =0.037, p = 0.420). As shown in Table 3.1, the 

correlations between the gamma spike amplitude and R1 values sampled at different 

cortical depths were also non-significant. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1: Table showing the correlations (R-values) and corresponding p-values  for the 

relationship between R1 values in primary visual cortex at each cortical depth and the 

amplitude of the initial gamma spike. 

 

Sustained gamma amplitude and R1 – A non-significant relationship was found  

between R1 values in primary visual cortex averaged across 20-80% of the cortical  depth 

and the amplitude of the sustained gamma response ( r = 0.077, p = 0.337). As shown in 

Table 3.2 the correlations between the gamma spike amplitude and R1 values sampled at 

different cortical depths were also non-significant. However, all correlations were found to 

be positive. 
 



68  

 

 

 

 

 

 

 

 

 

 

 

Table 3.2: Table showing the correlations (R-values) and corresponding p-values for the 

relationship between R1 values in primary visual cortex at each cortical depth and the 

amplitude of the sustained gamma response. 

 

Gamma spike peak frequency and R1 - A non-significant negative relationship  was 

found between R1 values in primary visual cortex averaged across 20-80% of  the cortical 

depth and peak frequency of the gamma spike ( r = -0.006, p =0.974). As shown in Table 

3.3 the correlations between the gamma spike peak frequency and R1 were also not 

significant. 
 

 

 

 

 

 

 

 

 

 

 

Table 3.3: Table showing the correlations (R-values) and corresponding p-values for the 

relationship between R1 values in primary visual cortex at each cortical depth and the 

peak frequency of the gamma spike. 
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Sustained gamma peak frequency and R1 - A non-significant negative relationship was 

also found between R1 values in primary visual cortex averaged across 20-80% of the 

cortical depth and the sustained gamma peak frequency ( r =-0.091, p =0.621). As shown 

in Table 3.4 the correlations between the sustained  gamma peak frequency and R1 values 

sampled at different cortical depths were also all negative. However, once more, these 

relationships did not meet the threshold for statistical significance. 

 

 

 

 

 

 

 

 

 

 

Table 3.4: Table showing the correlations (R-values) and corresponding p-values for the 

relationship between R1 values in primary visual cortex at each cortical depth and the 

peak frequency of the sustained gamma response. 
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Whole spectra analysis – For the baseline spectra the strongest correlations were 

observed between lower frequencies (~15-20  Hz) and myelin values sampled deep in the 

cortex (depth 7) ( see Table 3.5). 
 

 

Table 3.5: Table showing the frequencies and corresponding cortical depths at which 

significant correlations were found between R1 values in primary visual cortex and MEG 

amplitude in the baseline spectra.  

 

In the case of the spectra derived for the stimulation period, the strongest correlations are 

observed between myelin values at more superficial depths of the  cortex (depth 2) and ~ 

40 Hz ( see Table 3.6). 
 

Frequency (Hz) R-val P-val Depth 

38 0.36 0.043 2 

39 0.36 0.043 2 

39 0.36 0.045 2 

40 0.37 0.037 2 

41 0.36 0.041 2 

43 0.36 0.042 2 

44 0.36 0.043 2 

 

Table 3.6: Table showing the frequencies and corresponding cortical depths at which 

significant correlations were found between R1 values in primary visual cortex and MEG 

amplitude in the spectra for the stimulation period. 

 

Frequency (Hz) R-val P-val Depth 

14 0.39 0.028 7 

14 0.38 0.032 7 

15 0.36 0.044 7 
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Finally, for the difference spectra, the strongest correlations were again found between R1 

values sampled at superficial-mid regions of the cortex (depths 2-4) and ~ 40 Hz ( see 

Table 3.7). 

 

 

 

 

 

 

 

 

 

Table 3.7: Table showing the frequencies and corresponding cortical depths at which 

significant correlations were found between R1 values in primary visual cortex and MEG 

amplitude in the difference spectra. 

 

As detailed in Tables 3.5-3.7 this analysis revealed evidence of significant positive 

correlations between the amplitude of participants’ responses in the beta and low  gamma 

bands and R1 values sampled at particular cortical depths. However, it should be noted 

that these results would not survive multiple comparisons correction. Multiple 

comparisons correction refers to the process of adjusting the significance level (p-value)  

in order to reduce the risk of false positives when  performing multiple statistical tests. 

The pattern of results from the full spectra analysis can be clearly observed in Figures 3.4-

3.6 which depict visual representations of the correlations (and corresponding p- values) 

between MEG activity at each frequency and R1 sampled at the 7 cortical depths 

investigated in this study. As shown in Figure 3.4, which represents these relations in the 

baseline period, the strongest correlations are observed between R1 at lower cortical 

depths and activity at approximately 15-20 Hz. 
 

Frequency (Hz) R-val P-val Depth 

38 0.35 0.049 3 

40 0.35 0.047 2 

40 0.36 0.0441 3 

40 0.35 0.049 4 
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Figure 3.4: Visual representations of A) the correlations between MEG activity at each 

frequency during the baseline period and R1 values at the 7 cortical depths and B) the 

corresponding p-values, plotted here as -log10. 
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In Figure 3.5, which shows the relationship between MEG activity in the stimulation 

period and R1, the strongest correlations can be observed between R1 at more superficial 

cortical depths  (depth 2) and activity at approximately 40 Hz. There is also a hint of a 

relationship between activity in the alpha and beta ranges and R1 sampled deep in the 

cortex (depth 7). 

 

 

 

 

 

 

Figure 3.5: Visual representation of A) the correlations between MEG activity at each 

frequency during the stimulation period and R1 values at the 7 cortical depths and R1 

values at the 7 cortical depths and B) the corresponding p-values, plotted here  as -log10.
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Finally in Figure 3.6, which shows the relationship between the difference spectra and R1, 

the strongest correlations can again be observed between R1 at more superficial cortical 

depths (depths 2-4) and activity at approximately 40 Hz. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Visual representation of A) the correlations between MEG activity at each 

frequency in the difference spectra and R1 values at the 7 cortical depths and B) the 

corresponding p-values, plotted here as -log10. 
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3.5 Discussion 

 

The present study investigated the relationship between the microstructure of the  cortex 

and visual gamma oscillatory dynamics. It was hypothesised that, given the close 

relationship between the myeloarchitecture of the cortex and its cytoarchitecture, a 

positive association might therefore exist between the amplitude of visual gamma 

oscillations and MRI derived estimates of cortical myelin content in primary visual cortex. 

Furthermore, the relationship between R1 estimates and another key oscillatory parameter, 

namely peak frequency, was  also explored. The results of this investigation did not reveal 

evidence of a significant correlation between the peak amplitude of the initial evoked 

gamma spike or the later sustained gamma response and R1 estimates in primary visual 

cortex. Similarly, non-significant relationships were found between R1 in primary  visual 

cortex and the peak frequency of either the initial evoked gamma spike or the sustained 

gamma response. Thus, in sum, this investigation did not find evidence of a relationship 

between either the peak amplitude or frequency of visual gamma oscillations and myelin 

estimates (R1) in primary visual cortex. 

The results of the present study did not, therefore, replicate the findings of Helbling et al. 

(2015) of an association between R1 and the amplitude of MEG derived responses. 

However, our inability to replicate the findings of Helbling et al. (2015) could potentially 

be related to distinct differences in the methodologies employed by each study, including 

the choice of neural activity to be investigated. While the present study investigated the 

relationship between oscillatory dynamics and R1, ERP’s were employed in the study by 

Helbling et al., (2015). Inherent differences in these two distinct types of neural activity, 

and  in particular their mechanisms of generation, might therefore go some way towards 

explaining the discrepant findings. Furthermore, the present study focused on the visual 

cortex, whereas the auditory cortex was the substrate investigated by Helbling et al. 

(2015). Although these sensory cortices undoubtedly share some common features, for 

example with regards to their organisation, microstructure and neural mechanisms 

(Rauschecker, 2015), it is possible that a different interplay of factors may determine the 

characteristics of gamma oscillatory activity in visual cortex compared to the auditory 

cortex. Hence, it could be the case that the relationship documented by Helbling et al. 

(2015) is  not generalisable to the visual cortex. 

It should also be noted that a number of other factors may have precluded our ability to 

detect a relationship between R1 and visual gamma oscillatory dynamics. For example, by 
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averaging our R1 estimates over the whole of the V1 label we may have inadvertently 

diluted any potential relationship between cortical myelin and visual gamma metrics. This 

issue also speaks to the broader challenge of reconciling the differing spatial resolutions of 

MEG and MRI data (particularly 7T MRI data). Furthermore, visual gamma oscillations 

are known to  possess a large degree of individual variability and a wide range of factors 

have been proposed as potential sources of such variability (Muthukumaraswamy et al., 

2010; van Pelt, Shumskaya & Fries, 2018). Thus, it is possible that other sources of 

variance may have led to larger individual differences in our oscillatory measures, 

weakening our ability to detect a relationship between the cortical microstructure and 

oscillatory dynamics. For this reason, it would be beneficial for future investigations to 

adopt a larger sample size than was possible in this study in order to offset this high 

degree of variability. On a related point it should also be considered that healthy adult 

subjects, from a restricted age range, were utilised in the present study. In such a 

population, individual differences in cortical myelin are likely to be subtle. Therefore, it 

may be of benefit for future investigations to investigate the relationship between the 

cortical myeloarchitectural and oscillatory dynamics in populations in which a larger 

degree of individual variability in cortical myelin might be expected, such as in the case of 

demyelinating disorders or differing age groups. 

To date a number of studies have employed dynamic causal modelling approaches as a 

means to investigate the precise neurobiological mechanisms underlying individual 

differences in visual gamma oscillations. For example, Pinotsis et al. (2016) demonstrated 

that variability in visual gamma responses was related to changes in the balance of 

excitation and inhibition and furthermore that such variability is likely explained by inter-

individual differences in the intrinsic connections involving interneurons in PING 

(pyramidal-interneuron) networks. Furthermore, a study by Shaw et al., (2016) 

showed that inter-individual differences in intrinsic connections between superficial 

pyramidal cells and inhibitory interneurons were the primary determinants of variation in 

visually induced gamma responses. Conversely, connections between interneurons and 

pyramidal cells in deeper layers of the cortex were found to mediate variations in beta 

responses. A key advantage of adopting a modelling approach such as this lies in its ability 

to afford greater mechanistic insights compared to more traditional analyses of such 

physiological signals. Such models have thus been suggested to have the potential to 

provide greater insights into the mechanisms underlying variability (Shaw et al, 2016). 

Such an approach also confers the advantage of being able to model a number of other key 

factors thought to be involved in the genesis and morphology of gamma oscillations (e.g. 
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cortical excitation inhibition balance). Thus, it may be of benefit to harness the greater 

specificity of such models for application to the current dataset. Consequently, such an 

approach will be adopted in a later chapter of this thesis. 

Whilst the initial part of this investigation focused on assessing the relationship  between 

the peak amplitude of visual gamma oscillations and cortical myelin content, the 

relationship between R1 and the full frequency spectra was also explored. Interestingly, 

the results of this whole spectra analysis pointed to the existence of a relationship between 

superficial myelin content and induced gamma oscillations occurring at a frequency of 

approximately 40 Hz. Furthermore, with regards to the baseline spectra, the strongest 

correlations were observed between lower frequencies (~15-20  Hz) and R1 values 

sampled deep in  the cortex. This relationship is also evident, though to a lesser extent, in 

the spectra for the stimulation period. Alpha and beta peaks are often suppressed during 

stimulation; hence it is not surprising that a stronger relationship is observed with these 

lower frequency oscillations in the baseline period. It should be noted that these 

correlations would not survive the threshold for multiple comparisons testing. 

Nevertheless, this pattern of results is certainly intriguing and further investigation and 

replication in a larger sample would be of benefit. 

Significantly, the findings of the whole spectra analysis are in accordance with the large 

body of literature, principally derived from animal models, that has implicated the 

superficial layers of the cortex as being the likely origin of gamma oscillations. Indeed 

Figure 3.6, which depicts the correlation between R1 values sampled across the cortical 

depth and the difference spectra, bears a striking resemblance to results derived from 

animal models regarding the layer specificity of gamma oscillations. For example, Figure 

3.7 is taken from a study  examining LFP oscillatory activity in the macaque monkey and 

shows gamma activity at approximately 40 Hz in both the mid and superficial cortical 

layers. Similar work derived from animal models and indirect approaches (e.g. modelling 

and simulations) has also pointed to the deeper cortical layers as being the likely source of 

lower frequency oscillatory activity occurring in the alpha and beta ranges. 
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Figure 3.7 : Taken from - Xing, D., Yeh, C. I., Burns, S., & Shapley, R. M. (2012). Laminar 

analysis of visually evoked activity in the primary visual cortex. Proceedings of the 

National Academy of Sciences, 109(34), 13871-13876. This Figure depicts the power 

spectrum of the local field potential (LFP) plotted as a function of cortical  depth. Here the 

Power spectrum represents the averaged relative power in the period of 0.3s to 2s after 

stimulus onset). 

To date much of the evidence suggesting that higher frequency oscillations originate 

superficially in the cortex in the supragranular layers, whereas lower frequency activity 

originates in the deeper infragranular layers has come from animal studies, with direct 

evidence in humans remaining sparse. However, recent MEG studies have attempted to 

investigate the laminar hypothesis non-invasively by utilising modelling approaches in 

combination with improvements in the SNR of MEG data gained through the use of a 

novel head-cast technology (Bonaiuto et al., 2018). The results of the present study can be 

seen to provide further compelling evidence in humans of the laminar specific hypothesis. 

Significantly, such a finding has important implications for the understanding of  brain 

function and its relationship to the underlying microstructure. 

The localisation of the relationship between visual gamma and myelin density to  activity 

occurring at approximately 40 Hz also poses a number of intriguing questions with regards 

to the significance of this particular frequency. Whilst 40 Hz activity is commonly seen in 

This image has been removed by the author for 

copyright reasons. See Figure 3(a) : Xing, D., 

Yeh, C. I., Burns, S., & Shapley, R. M. (2012). 

Laminar analysis of visually evoked activity in 

the primary visual cortex. Proceedings of the 

National Academy of Sciences, 109(34), 

13871-13876. 

https://www.pnas.org/content/pnas/109/34/138

71/F3.large.jpg 
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the auditory cortex and has been proposed as  its resonant or ‘working’ frequency, very 

little concurrent evidence exists with regards to visual cortex. However, of note, there is a 

real sparsity of studies investigating the presence of a resonant frequency in visual cortex. 

The limited literature that does exist on this subject has also reported rather mixed 

findings, though there is somewhat of a consensus that the peak response in visual cortex 

is found in the lower frequency alpha and beta ranges. 

Despite the relative dearth of studies examining 40 Hz frequency responses in the human 

visual cortex, in recent years activity at this frequency has been garnering  increasing 

attention for its proposed therapeutic benefits. Intriguingly, studies utilising mouse models 

of Alzheimer’s disease have demonstrated that visual stimulation and entrainment at 40 

Hz, but not at other frequencies, lead to a reduction in amyloid levels and stimulated the 

activity of microglia (Iaccarino et al., 2016). Such findings have led to the suggestion that 

40 Hz gamma entrainment might provide neuroprotective effects in the case of 

neurodegenerative disease (Adaikkan & Tsai 2020). Although the focus of these studies 

has been on evoked gamma activity, our finding of a relationship between induced gamma 

activity at 40 Hz and myelin in visual cortex might also be seen to have implications for 

such studies, especially given that myelin abnormalities have also been widely implicated 

in neurodegenerative disorders such as Alzheimer’s disease. Future studies examining 40 

Hz visual gamma activity, its functional correlates and relations to the underlying cortical 

microstructure might therefore represent a valuable avenue for future research. 

One potential explanation for our finding that participants’ peak gamma amplitudes did 

not correlate with cortical myelin content, unlike 40 Hz activity, is that these may reflect 

distinct sub-types of gamma activity. For example, it could be speculated that in addition 

to the commonly investigated gamma spike and later sustained gamma responses, 

individuals also exhibit a further gamma response at approximately 40 Hz. Significantly, 

these distinct types of gamma activity might originate from different neural populations 

and have differing mechanisms of generation, with 40 Hz activity being more closely 

related to populations of myelinated neurons in the cortex. 

In conclusion, the present study did not find evidence of a statistically significant 

relationship between the peak amplitude and frequency of visual gamma oscillations and 

R1 estimates in relevant cortical regions. A number of factors, including methodological 

limitations of this study, may have contributed to this finding. Thus, without further 

investigation it is not possible to state that these results provide evidence against the 

notion of a relationship between myelination of visual cortex and gamma oscillatory 
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dynamics. Intriguingly, the results of the whole spectra analysis did however point to the 

potential existence of a relationship between superficial cortical myelin and 40 Hz gamma 

activity. This finding warrants further investigation and replication in a larger sample of 

subjects before definitive conclusions can be drawn. 
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Chapter 4 

Microcircuits and Microstructure: An 

Investigation of the Relationship Between 

Neurophysiologically-Informed Modelling 

of Oscillatory Responses and Cortical 

Myelination 
 

 

4.1 Abstract 

 
In-vivo investigation of the underlying cortical microcircuitry responsible for generating  

neural responses remains a key aim of the neuroimaging field. Of particular interest is the 

understanding of the neurophysiological mechanisms underpinning gamma oscillations, 

given their purported role in cognition and increasing association with a wide array of 

neuropsychiatric disorders. Computational modelling approaches, such as dynamic causal 

modelling (DCM) of oscillatory dynamics, represent an attractive method for investigating 

the cortical microcircuits responsible for the generation of these signals. However, often 

neglected, is that in addition to its cytoarchitecure, the cortical myeloarchitecture also 

represents a key component of the cortical microstructure. Furthermore, there is increasing 

recognition that these two facets are likely inextricably linked. Thus, here we extended the 

body of work outlined in Chapter 3 of this thesis by combining DCM modelling of visual 

gamma oscillatory responses with high-resolution MRI estimates of cortical R1 ( myelin), 

in order to investigate whether a relationship might exist between specific parameters of 

the DCM model and depth-specific cortical myelin estimates. Ultimately, we did not find 

evidence of a significant relationship between the DCM model parameters and our cortical 

myelin estimates. However, methodological limitations associated with this study may 

have contributed to this null finding. Thus, future avenues of research are discussed that 

might be better suited to elucidating the relationship between the cortical 



82  

myeloarchitecture, and the neurophysiology of visual gamma oscillations, using 

computational modelling approaches. 

 

4.2 Introduction 

 
The synchronization of oscillatory activity has been touted as a fundamental mechanism 

sub-serving neuronal communication (Schnitzler, & Gross, 2005). Indeed, converging 

lines of evidence suggest that neural oscillations represent a central process enabling the 

coordinated activity of neuronal populations during normal brain functioning (Uhlhaas & 

Singer, 2010). Notably, in addition to the growing body of literature highlighting their  

cognitive and clinical significance, there is also compelling evidence to suggest that 

frequency-specific oscillations are generated in distinct neuronal circuits through the 

interactions of particular neuronal cell types (Buzsáki & Wang, 2012; Shaw et al., 2017) 

making them an attractive target for investigation. 

 

Oscillations in the gamma range have been the subject of much attention for numerous 

reasons outlined below and are observed in many brain regions during both wake and 

sleep (Buzsaki and Wang, 2012). Though the exact genesis of these oscillations remains 

the subject of continued investigation, they are thought to be produced by networks of 

reciprocally connected excitatory pyramidal cells and inhibitory interneurons and are thus 

believed to emerge from the coordinated interaction of excitation and inhibition (Buzsaki 

and Wang, 2012). Evidence from animal studies and modelling approaches have also 

suggested that synchronisation in the gamma band is strongest in the superficial layers of 

the cortex, from which feedforward projections typically originate (Michalareas et al., 

2016). Of particular interest, is that gamma oscillations have been suggested to play a key 

role in a number of facets of cognition, from early sensory processing to higher-order 

cognitive functions (Mathalon & Sohal, 2015). Gamma oscillations are also of great 

relevance to the study of clinical populations. Indeed, aberrant gamma oscillatory 

dynamics have been extensively and increasingly implicated  in the pathophysiology of a 

wide range of clinical conditions (Mathalon & Sohal, 2015). Thus, further exploration of 

these potentially crucial neural signals can be seen to have great import for the 

understanding of brain function and cognition in both health and disease. 

 

The previous chapter of this thesis explored the relationship between visual gamma 

oscillatory dynamics and myelination of the primary visual cortex. This study was based 
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on the hypothesis that given the close relationship between the cyto and myeloarchitecture 

of the cortex (Nieuwenhuys, 2013; Helbling et al., 2015; Dinse et al., 2015), and the 

potential role of cortical myelination in facilitating oscillatory synchrony (Tardif et al., 

2016), a relationship might therefore exist between cortical myelin measured using MRI 

and oscillatory dynamics derived using MEG. In this investigation  no significant 

relationship was found between visual gamma peak frequency or amplitude, and myelin 

estimates in the primary visual cortex. 

 

However, it is notable that multiple factors are thought to influence visual gamma 

oscillatory dynamics, including those intrinsic to the cortex. Hence, it is possible that a 

lack of specificity with regards to the precise microcircuitry involved in the generation of 

gamma oscillations might have precluded our ability to detect the existence of a potential 

relationship between cortical myelin and oscillatory dynamics. Consequently, it might 

therefore be of benefit to extend our previous investigation by harnessing the greater 

specificity afforded by computational modelling approaches in order to probe the  

relationship between particular facets of the cortical microcircuitry and grey matter 

myelination. 

 

One of the most pertinent aims in the neuroimaging field, is the ability to interpret 

experimental findings in terms of their underlying neuronal mechanisms. Key to the 

realisation of this aim has been the use of computational models, encompassing realistic 

descriptions of neural dynamics, of which Dynamic Causal Modelling (DCM) is a 

commonly used example (Reis et al., 2019). Notably, in recent years, a growing number of 

studies have employed DCM to investigate the underlying microcircuitry involved in 

generating cortical responses such as visually induced gamma oscillations (Shaw et al., 

2017; Sumner et al., 2018; Shaw e al., 2019). A key strength of this method, touted as 

providing a “mathematical microscope”, lies in its ability to make inferences about 

cellular processes utilising non-invasive electrophysiological recordings (Moran et al., 

2011). More specifically, using this technique it is possible to make inferences about 

laminar-specific aspects of cortical connectivity on the basis of MEG derived spectra 

(Shaw et al, 2017). 

 

The key principle behind DCM is the conceptualisation of the brain as a dynamic system  

that can be influenced by inputs to produce certain outputs (Friston, Harrison, & Penny, 

2003). The aim of this approach is to perturb this system and subsequently measure the 
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response (Friston, Harrison, & Penny, 2003). More specifically, DCM can be used to 

make inferences about the coupling of neuronal sources in the brain and how this 

relationship is influenced by experimental aspects (David et al., 2006). This modelling 

approach is based on the principles of effective connectivity, which can be defined as the 

influence a given neural system exerts over another (Friston, Harrison, & Penny, 2003). 

Of particular relevance to the study of visual gamma oscillations, DCM allows for 

inferences to be made about the connections between neuronal populations thought to be 

involved in their genesis, namely inhibitory interneurons and pyramidal cells (Moran, 

Stephan, Dolan & Friston, 2011, Shaw et al., 2017, Sumner et al., 2018). To date a number 

of studies have employed DCM approaches as a means to investigate the precise  

neurobiological mechanisms underlying individual differences in visual gamma 

oscillations. For example, Pinotsis et al. (2016) demonstrated that variability in visual 

gamma responses was related to changes in the balance of excitation and inhibition and 

furthermore that such variability is likely explained by inter-individual differences in the 

intrinsic connections involving interneurons in PING (pyramidal interneuron) networks. 

Furthermore, Shaw et al. (2017) showed that inter-individual differences in intrinsic 

connections between superficial pyramidal cells and inhibitory interneurons were the 

primary determinants of variation in visually induced gamma responses. Conversely, 

connections between interneurons and pyramidal cells in deeper layers of the cortex were 

found to mediate variations in beta responses. 

 

A key advantage of modelling approaches such as DCM lies in its ability to afford greater 

mechanistic insights compared to more traditional analyses of physiological signals, 

including neural oscillations. Consequently, this approach has been suggested to  have the 

potential to provide greater insights into the precise factors governing variability in neural 

dynamics (Shaw et al., 2017). Thus, in sum, it may be of benefit to extend the work 

documented in Chapter 3, by exploiting the greater specificity afforded by the DCM 

approach. 

 

The present study therefore employed DCM in order to investigate the potential 

relationship between cortical myelin and individual variability in visual gamma 

oscillations in vivo. More specifically, there is evidence to suggest that the horizontal 

myelinated fibres of the cortex correspond to the axon collaterals of pyramidal cells, the 

primary generators of the MEG/EEG signal (e.g. Braitenberg, 1968). 
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In recent years, evidence has also emerged suggesting that the axons of inhibitory 

interneurons might also be myelinated (Micheva et al., 2016). According to the widely 

accepted PING model, it is reciprocally connected networks of pyramidal cells and 

inhibitory interneurons that contribute to the generation of gamma oscillations (Buzsaki 

and Wang, 2012). Thus, given the close relationship between these cell types and the 

cortical myeloarchitecture we sought to examine whether our myelin estimates might be  

related to the DCM model parameter estimates. The myelin estimates utilised in this study 

were derived using high resolution MRI, allowing for the estimation of R1 values at 

different cortical depths. Consequently, a further key aim of the present study was to 

examine the depth-specificity of any potential relationships between our R1 estimates and 

the DCM model parameters investigated in this study. 

 

4.3 Methods 

 
The 32 MEG and MRI datasets described in Chapter 3 were utilised in this study. 

 

Virtual sensor data 

 

In the previous chapter, an LCMV beamformer analysis was conducted in order to identify  

the location of the peak gamma response in the visual cortex for each participant. Virtual 

sensors were then constructed for each participant at the location of this peak response by 

multiplying the data by the corresponding beamformer weights. This resulted in the 

construction of an activity time-series for each trial at this peak location. These virtual 

sensor data were utilised as the input to the DCM model. 

 
DCM 

 

Dynamic causal modelling for steady state responses (DCM-SSR) was conducted on the 

virtual sensor data for all 32 participants. The DCM implementation adopted in the present  

study utilised the method outlined in Shaw et al. (2017). It is a modified version of the 

standard approach found in the SPM8 package (Moran et al., 2009) and is optimised to 

reflect the properties of the primary visual cortex. Full details of this DCM analysis 

approach can be found in the publication by Shaw et al. (2017). However, a summary of 

the methodology is provided below. 
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The neural model used in this instance was a variation of the canonical microcircuit 

(CMC) consisting of 4 laminar-resolved cell populations (see Figure 4.1). In the CMC 

model excitatory pyramidal cells are found in the both the superficial and deep cortical 

layers. These two populations of pyramidal cells are separated by stellate cells located in 

layer four. The final cell population in the model consists of inhibitory interneurons 

located in all layers. As noted by Shaw et al. (2017), such a model is undoubtedly a 

simplification of the actual cytoarchitecture of the cortex. However, it is important to 

strike  a balance between complexity (in this case of the cortical microcircuitry), and 

model estimability, in order to ensure that a robust solution can be reached (Shaw et al., 

2017). The approach outlined by Shaw et al. (2017) allows for such a balance to be 

attained and was guided by both the existing DCM literature, and anatomical evidence of 

the columnar  structure of primary visual cortex. Notably, this approach has been shown to 

successfully capture neuronal dynamic perturbations induced by pharmacological 

manipulations, thus  demonstrating the sensitivity and specificity of the model (Shaw et al., 

2017). 

 

Through DCM analysis it is possible to characterise the local synaptic connectivity 

between the 4 populations of cells included in the neural model, namely deep and 

superficial pyramidal cells, stellate cells, and inhibitory interneurons. These connections  

are shown in Figure 4.1 taken from Shaw et al. (2017) and includes both reciprocal and 

non- reciprocal connections. The full list of parameters included in the model and their 

corresponding functions are detailed in Table 4.1. 
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Figure 4.1: Taken from - Shaw, A. D., Moran, R. J., Muthukumaraswamy, S. D., Brealy, 

J., Linden, D. E., Friston, K. J., & Singh, K. D. (2017). Neurophysiologically-informed 

markers of individual variability and pharmacological manipulation of human cortical 

gamma. Neuroimage, 161, 19-31. This Figure depicts the canonical microcircuit (CMC) 

used in the DCM analysis in this study. Here, the excitatory connections are represented 

in blue, whilst the inhibitory connections are portrayed in red. Finally, the grey arrows are 

representative of self-inhibition of each of the excitatory cell populations. 

 

 

 

 

 

 

 

 

 

This image has been removed by the author for 

copyright reasons. See Figure 2 (Left) : Shaw, A. 

D., Moran, R. J., Muthukumaraswamy, S. D., 

Brealy, J., Linden, D. E., Friston, K. J., & Singh, 

K. D. (2017). Neurophysiologically-informed 

markers of individual variability and 

pharmacological manipulation of human cortical 

gamma. Neuroimage, 161, 19-31. 
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Table 4.1. Taken from - Shaw, A. D., Moran, R. J., Muthukumaraswamy, S. D., Brealy, J., 

Linden, D. E., Friston, K. J., & Singh, K. D. (2017). Neurophysiologically-informed 

markers of individual variability and pharmacological manipulation of human cortical 

gamma. Neuroimage, 161, 19-31. This table describes each of the parameters utilised to 

define the model. The prior values (PI) and precision (sigma) of these parameters is also 

shown. 

 

In the CMC model time-differential equations are used to estimate the membrane 

potentials and postsynaptic currents of these interacting cell populations. In this way, a 

time course of the voltages and postsynaptic currents of the cell populations can be 

generated. In the context of the present study, DCM-SSR works by modifying these 

equations to also include a frequency-domain transfer function. Significantly, the resulting 

model output, which is in the frequency-domain, can then be compared with the spectra 

derived from each participant’s virtual sensor data. The parameters of the model are then 

This image has been removed by the author for 

copyright reasons. See Figure 2 (right) : Shaw, A. 

D., Moran, R. J., Muthukumaraswamy, S. D., 

Brealy, J., Linden, D. E., Friston, K. J., & Singh, 

K. D. (2017). Neurophysiologically-informed 

markers of individual variability and 

pharmacological manipulation of human cortical 

gamma. Neuroimage, 161, 19-31. 
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optimised in order to achieve the best fit of the model spectra to the true data spectra 

derived from the MEG virtual sensors. This model fitting is achieved using a Bayesian 

inference procedure incorporated within DCM. 

 

As noted in Shaw et al. (2017) the following parameters have been found to have a 

negligible effect on the fitted spectral density: G1, G3,G10 and G13. Hence, we chose to 

fix these parameters in our subsequent analysis. Similarly, the T1 parameter, which 

represents the time constant of the spiny stellate cells, was also fixed as even slight 

variations in this parameter have been demonstrated to have a profound impact on the 

model stability (Shaw et al., 2017). 

 

The CMC model was first fitted to the mean spectra in order to derive initial starting 

values for the parameters included in the model. These values were then utilised as the 

priors when fitting the DCM-SSR model to each of the individual datasets. The DCM-SSR 

analysis output consisted of individual estimates of the model parameter strengths for each 

participant which were used in our subsequent multi-modal analysis. 

 

The DCM analysis conducted in this study allows for the assessment of synaptic coupling 

between cell populations in the model. However, of particular interest, in the context of 

the present study, is that such an approach also confers the ability to conduct an 

exploration of the model parameters that best determine particular spectral features (Shaw 

et al., 2018). Thus, we sought to determine the model parameters influencing oscillatory 

dynamics, specifically the amplitude and frequency of visual gamma oscillations. Given 

our hypothesis of a potential relationship between oscillations and the cortical 

myeloarchitecture we also investigated whether the DCM model parameters, particularly 

those influencing visual gamma oscillatory dynamics, might therefore also be related to 

estimates of myelin density in the primary visual cortex. 

 

Alpha, beta and gamma peaks can be recovered in the majority of participants’ spectra, 

following the implementation of a pre-whitening procedure to remove the strong power  law 

known to dominate neural signals (Shaw et al., 2017). Thus, akin to Shaw et al. (2017), we 

also chose to model the alpha frequency peak within each participant’s spectral response 

utilising a gaussian function constrained between frequencies 8 Hz to 13 Hz. In contrast, the 

beta and gamma response peaks are recovered from the output of the CMC model itself. 
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More specifically, the beta and gamma peaks are generated by the synaptic rate constants 

and intrinsic connectivity of the CMC utilised in this study which is depicted in Figure 4.1. 

 

In this way we were able to derive estimates of oscillatory dynamics for each participant  

and in particular the amplitude and frequency of the alpha, beta and gamma responses 

observed in participants’ spectra. 

 

Multi-modal Analysis 

 

In order explore the existence of a potential relationship between the DCM analysis 

outputs and R1 estimates in primary visual cortex, a correlation analysis, across 

participants, was conducted. The R1 estimates utilised in this instance were sampled 

across  the cortical depth as detailed in Chapter 3. Briefly, for each participant we extracted 

the mean R1 value of the Freesurfer-defined pericalcarine label, which approximates the 

primary visual cortex location of the visual gamma response, at each of the 7 cortical 

depths, derived using an equi-volume layering approach. In this way a mean R1 value for 

the primary visual cortex was derived for each subject at each of the 7 cortical depths 

investigated in this study. In this way it was possible to examine the depth-specificity of 

any potential relationship between the DCM model outputs and cortical myelin. 

 

We sought to examine whether our myelin estimates might be related to the model 

parameter estimates. Hence, we assessed the relationship between the local synaptic 

connection parameter (G) outputs from the model (see Table 4.1 for descriptions of each 

parameter) and our myelin estimates. Of particular interest, were the G11 and G8 

parameters given that these have previously been shown to correlate positively with 

gamma amplitude (Shaw et al., 2017). The Pearson’s correlation coefficient was 

calculated  between these parameters and the depth-specific myelin estimates. 

 

The gamma amplitude and frequency estimates from the model showed a non-normal 

distribution. Hence in this instance, the Spearman’s correlation coefficient was calculated 

between these values and our R1 estimates. 

 

Given that axonal myelination should also influence the time constant of neuronal cell 

populations we also hypothesised that there might be a relationship between the time 

constant model parameter estimates and our myelin data. Thus, we also chose to calculate 
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the Pearson’s correlation coefficient between the time constant parameters (T2, T3 and 

T4)  and the depth specific cortical myelin estimates. 

 

 

 

 

4.4 Results 

 
Parameters influencing Gamma oscillatory dynamics 

 

Akin to the results of Shaw et al. (2017) the correlation analysis revealed that the G11 

parameter, which is representative of the inhibitory connection between the inhibitory 

interneurons and superficial pyramidal cells, was significantly correlated with the peak 

amplitude of visual gamma oscillations when correcting for multiple comparisons (r = 

0.78, p=<0.0001). Similarly, a significant positive correlation was also observed between 

the G6 parameter (deep pyramidal cell connection to inhibitory interneurons) and peak 

gamma amplitude. A Positive correlation was observed between the G8 (spiny stellate 

connection to superficial pyramidal cells) and gamma amplitude; however, this 

relationship did not survive multiple comparisons correction. 

 

We did not find any significant correlations between Gamma peak frequency and the  

model parameter estimates (Table 4.2). There was a negative correlation observed 

between T3 and peak gamma frequency, though this relationship would not survive 

multiple comparisons correction. 
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Parameter Peak Gamma Frequency Peak Gamma Amplitude 

G4 0.36 (p=0.045) -0.19 (p=0.290) 

G7 0.32 (p=0.074) -0.16 (p=0.385) 

G11 0.07 (p=0.691) 0.78 (p=<0.001) 

G12 -0.17 (p=0.349) -0.35 (p=0.048) 

G8 0.17 (p=0.359) 0.49 (p=0.005) 

G5 -0.08 (p=0.664) 0.24 (p=0.186) 

G6 0.09 (p=0.618) 0.58 (p=0.001) 

G9 -0.19 (p=0.286) -0.37 (p=0.036) 

T2 0.26 (p=0.155) 0.36 (p=0.045) 

T3 -0.42 (p=0.018) -0.28 (p=0.116) 

T4 -0.02 (p=0.926) -0.36 (p=0.044) 

 

Table 4.2. Correlations between gamma oscillatory dynamics and the parameter estimates 

derived from the DCM model fitting and the corresponding p-values (uncorrected). The r- values 

highlighted in red are significant at p=<0.05, when using the Bonferroni correction for multiple 

comparisons (0.05/11=0.004). 

 

 

R1 and Oscillatory Parameters 

 

As shown in Table 4.3 positive correlations were observed between Gamma amplitude 

and  the R1 estimates. This relationship was strongest with R1 values sampled at the most 

superficial cortical depth investigated in this study (r=0.239, p=0.094), however none of 

these relationships were found to be statistically significant. We did not find evidence of a 

relationship between R1 estimates and either alpha or beta oscillatory amplitude. 

 

With regards to the relationship between gamma frequency and R1, the majority of 

correlations were positive, with the strongest relationship being observed with R1 values 

sampled at mid-cortical depth. However, once again, none of these relationships met the 

threshold for statistical significance. Non-significant positive correlations were also found 

between the R1 estimates and alpha peak frequency at the majority of cortical depths. 
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A significant negative correlation was found between beta frequency and R1 estimates 

sampled superficially in the cortex (r = -0.345, p= 0.047). However, this relationship 

would not survive multiple comparisons correction. 

Table 4.3. Correlations between gamma oscillatory dynamics and depth-specific R1 values and 

the corresponding p-value (uncorrected). Here depth 1 is the most superficial, whereas depth 7 is 

the closest to the white matter. 

 

R1 and Connection Parameters 

 

Non-significant negative correlations were observed between the depth-specific R1 

estimates and the G4 parameter (see Table 4.4). The relationships between G5 and R1 

were  found to be positive, however again these relationships did not meet the threshold for 

statistical significance. A negative correlation was observed between the G6 parameter 

and  the depth-specific R1 estimates. These correlations were also observed to be strongest 

at deeper cortical depths. However, these relationships did not meet the corrected 

threshold for statistical significance. In the case of the G7, G8, G9 and G11 parameters , 

no significant relationships were once again found between the model estimates and the 

R1 values. Finally, negative correlations, strongest at mid-superficial cortical depths, were 

observed between the G12 parameter and the depth specific R1 values, though again these 

correlations did not meet the threshold for statistical significance. 

 

Cortical 

Depth 

Gamma 

Amplitude 

(R-val) 

Gamma 

Amplitude 

(P-val) 

Gamma 

Frequency 

(R-val) 

Gamma 

Frequency 

(P-val) 

1 0.239 0.094 -0.017 0.463 

2 0.126 0.245 0.092 0.309 

3 0.016 0.464 0.198 0.139 

4 0.079 0.333 0.262 0.074 

5 0.093 0.306 0.238 0.095 

6 0.130 0.240 0.257 0.078 

7 0.118 0.259 0.180 0.162 
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Table 4.4. Correlations between Depth-specific R1 values and the parameter estimates 

derived from the DCM model fitting. Depth 1 refers to myelin values sampled the most 

superficially in the cortex, whereas depth 7 refers to the R1 values sampled closest to the 

white matter. 

 

R1 and Time Constant Parameters 

Non-significant positive correlations were found between the T2 parameter and the depth  

specific R1 estimates (see Table 4.5). Similarly, no significant correlations were found 

between the R1 estimates and both the T3 and T4 time constant parameters. 

 

Table 4.5. Correlations between Depth-specific R1 values and the parameter estimates derived 

from the DCM model fitting. Depth 1 refers to myelin values sampled the most superficially in the 

cortex, whereas depth 7 refers to the R1 values sampled closest to the white matter. 
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4.4 Discussion 

 
Here, for the first time, we explored the relationship between aspects of the cortical 

microcircuitry derived using neurophysiologically informed modelling and myelin, a key 

feature of the cortical microstructure. However, we did not find evidence of a statistically 

significant relationship, across participants, between our depth-specific myelin values and 

the DCM model parameter estimates for any of the relationships explored in this study. 

 

Akin to the results of Chapter 3, the present study also did not find evidence of a 

significant relationship between participants’ peak gamma response amplitudes derived 

from the cortical microcircuit model and cortical myelin. However, it is notable that this 

relationship was found to be positive and was also strongest at more superficial cortical 

depths, from which gamma oscillations are thought to originate. Given the relatively small 

sample size employed in this study, it is possible that a further investigation of this 

relationship in a larger sample might provide further insight into the veracity of the trend 

observed here. We also explored the relationship between cortical myelin and the 

amplitude of participants’ alpha and beta peaks, however no significant correlations 

between these factors were found. 

 

With regards to the estimated oscillatory frequency parameters, alpha and gamma peak 

frequency estimates were also found to be non-significantly correlated with our myelin 

estimates. There was a trend towards a negative correlation between beta peak frequency 

and cortical myelin sampled superficially in the cortex. However, this relationship would 

not survive multiple comparisons correction. Again, further exploration in a larger sample 

size might be of benefit to further investigate the validity of this observed trend. 

 

Akin to Shaw et al. (2017), we did find evidence of a relationship between gamma 

amplitude and relevant parameters of the DCM model, namely the G11 parameter, 

pointing to the success of the model fitting. However, unlike this previous investigation 

we did not find significant correlations between relevant model parameters and gamma 

peak frequency estimates in our sample of participants, although some trends were 

evident. One potential explanation for this slight discrepancy is that the study by Shaw et 

al. (2017) utilised a much larger sample of participants (93). Of note, it is possible that the 

looser coupling between oscillatory dynamics and the DCM model parameters in our 
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sample might in turn have led to a weakening of the relationships between our R1 

estimates and the model parameters. Thus, this once again points to the potential utility of 

exploring these relationships in a further larger sample of individuals. 

 

However, a number of other factors may have contributed to the null findings of this 

study. For example, a significant limitation of the present study, and indeed studies 

employing DCM in general, is that the neural models utilised in such investigations are 

likely an over-simplification of the true cytoarchitecture of the cortex. We employed the 

methods of Shaw et al. (2017), whose choice of neural model was optimised for the 

known neurophysiology of the visual cortex and was carefully selected in order to strike a 

balance between neurophysiological validity and model estimability. The model employed 

here has previously been validated in pharmacological manipulation studies 

(Muthukumaraswamy, et al., 2015; Shaw et al., 2017) that have demonstrated the 

sensitivity of the model to such perturbations. Furthermore, this particular model has also 

recently been shown to be sensitive to the effects of clinical disorders such as 

schizophrenia (Shaw et al., 2020). However, with regards to the specific aims of the 

present study, in future it may be of benefit to conduct further validation studies in order 

to investigate whether the model is sufficiently complex to accurately examine the impact 

of myelin perturbations on the model parameters. For example, one possibility would be to 

employ the model in a clinical population in which myelin abnormalities are well 

documented, such as Multiple Sclerosis. Of note, previous studies have demonstrated 

evidence of a diminished visual gamma band response in MS patients compared to healthy 

control subjects (Barratt et al., 2017). 

 

On a related point, given that the present study employed a sample of healthy young 

adults, it is possible that individual differences in both our DCM parameter estimates and 

R1 measures may have been too subtle to allow for the detection of a relationship between 

these two variables. Thus, in future, investigating this relationship in a clinical population, 

in which demyelination represents a key feature, in addition to a healthy control group, 

would likely be of benefit. A further potential limitation of the present investigation is that 

the quantitative R1 estimates utilised in this study will likely be affected by multiple 

variations in the underlying microstructure (Weiskopf et al., 2015). Although validation 

against histological data has shown that cortical T1 (R1=1/T1) contrast is reflective of its 

myelin content, it should be noted that iron has also been shown to contribute to T1 

contrast in the cortex (Stuber et al., 2014). However, as noted in Chapter 3, given that 
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myelin and iron are typically strongly co-localised in the cortex, it has been argued that, 

independent of the exact contribution of iron and myelin, T1 can be justified as largely 

reflecting the distribution of intracortical myelin (Huntenburg et al., 2017). That said, this 

issue points to the potential importance of employing multiple MR contrasts in order to 

accurately resolve specific in-vivo histological measures of the brain’s microstructure 

(Weiskopf et al., 2015). Interestingly, of late, there has been increasing interest in using a 

novel quantitative and local contrast technique known as Quantitative Susceptibility 

Mapping (QSM) to investigate the microstructure of the brain (Deistung et al., 2013). The 

main contributors to contrast observed in QSM are iron and myelin (Deistung et al., 2013). 

However, a significant advantage of QSM lies in its potential to distinguish paramagnetic 

from diamagnetic contributions, given their different magnetic properties (Marques, 

Khabipova, & Gruetter, 2017). Intriguingly, utilising QSM in combination with T2* could 

thus help to disentangle the contribution of iron from myelin (Duyn, 2017). This is 

because whilst myelin, which is diamagnetic, has a negative magnetic susceptibility, iron 

is paramagnetic and has a higher magnetic susceptibility. Indeed, it has been demonstrated 

that modelling approaches utilising information from susceptibility values and R2* 

(combined with estimates of myelin content from magnetisation transfer contrast) can 

allow for the quantification of iron and myelin content (Schweser, Deistung, Lehr, 

Sommer, & Reichenbach., 2011). Thus this approach may be of value in future studies of 

cortical myelination and in combination with the T1 imaging approach employed here, 

might offer the potential to obtain cortical myelination maps clean of iron/paramagnetic 

contributions (Marques, Khabipova, & Gruetter, 2017). 

 

Significantly, owing to recent innovations in the neuroimaging field, there is now also the 

potential to unify structural and functionally derived biophysical models (Freund et al., 

2016). In the present study we explored the relationship between estimates of the cortical 

microstructure derived using high resolution quantitative MRI and the output of a 

functional biophysical model applied to MEG data. However, whilst beyond the scope of 

the present work, in future studies it may be of benefit to adopt a slightly different 

approach whereby information about the cortical microstructure derived from high field 

MRI is incorporated into this model. For example, the neural model used in the DCM 

analysis could be modified and further developed to incorporate myelin estimates as 

anatomically informed priors. One way to implement this might be to use myelin estimates 

as a proxy for pyramidal cell density in specific cortical layers, given that the axons of 

these cells are known to be myelinated. Such an approach might be able to further 
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elucidate the relationship between cortical myelin and neural dynamics as well as having 

the potential to enhance the DCM model itself and its sensitivity to such phenomena. Such 

an approach is not without precedent. For example, a previous study by Stephan et al. 

(2009) utilised diffusion imaging in combination with tractography in order to specify 

anatomically informed priors for DCM models of fMRI data. The study compared this 

approach to DCM models that did not include such anatomically informed priors. 

Significantly, the authors found that the best DCM model was that which included the 

anatomically informed priors (Stephan et al., 2009). 

 

In conclusion, this study did not find strong evidence of a relationship between potentially 

relevant aspects of the cortical microcircuitry and myelination of the cortex. However, it is 

possible that a number of limiting factors might have reduced our ability to detect the 

presence of any such relationships. Of particular importance is that further validation 

studies are required in order to evaluate the suitability of the modelling approach 

employed here, in the context of investigating the potential influence of cortical 

myelination and individual differences thereof on aspects of the cortical microcircuitry. 

Furthermore, future investigations might also wish to explore the utility of adopting an 

alternative approach whereby information about the cortical myeloarchitecture is 

explicitly included in the DCM model in the form of anatomically informed priors. 
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Chapter 5 

An Investigation of the Relationship 

Between Inter- Individual Differences in 

Auditory Steady State Responses and the 

Cortical Microstructure 
 

 
5.1 Abstract 

 

Gamma band Auditory Steady State Responses (ASSRs) have been suggested to provide a 

window onto the ability of the auditory cortex to support oscillatory activity. Intriguingly, 

to date, considerable inter-individual differences in morphological aspects of these 

responses have been documented in both health and disease. Indeed, impaired gamma 

ASSRs have been demonstrated in a range of psychiatric and neurodevelopmental 

disorders. Thus, the understanding of the mechanisms underlying such individual 

variability can be seen to be of great clinical significance. Of particular interest is the 

relationship between a key aspect of the cortical microstructure, namely its myelin 

content, and variability in the gamma ASSR, owing to the close association between 

myelin and cell populations thought to be involved in the generation of gamma 

oscillations. Furthermore, a role  for myelin in aiding neural synchrony has also been 

proposed. Thus, in a sample of healthy young adults, we conducted a novel investigation 

of the relationship between inter-individual variability in gamma band ASSRs elicited 

using an auditory chirp stimulus and myelination across the cortical depth. Significant 

correlations were not observed between either the amplitude, peak frequency, or phase 

consistency of participants’ ASSRs and myelination (R1) of the primary auditory cortex. 

However, a trend indicative of a positive correlation between the amplitude of the ASSR 

and cortical myelination, particularly at lower cortical depths, was observed. Further 
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research will be essential to unravelling the significance of the trends observed here and 

their relevance to the understanding of the pathophysiology of clinical conditions. 

 

5.2 Introduction 

 

The auditory steady state response (ASSR) is a type of neural oscillatory activity that can 

be used to probe the functioning of auditory pathways and their capacity to generate 

synchronous activity at specific frequencies (O’Donnell et al., 2013). The ASSR occurs 

when neuronal activity synchronises or entrains to the frequency and phase of an auditory 

stimulus. Akin to visual gamma oscillations, discussed in Chapter 3 of this thesis, the 

amplitude of the gamma ASSR has been shown to demonstrate inter-individual variability 

(Ross et al., 2000). That said, a strikingly consistent discovery in the literature, is that the 

amplitude of the ASSR in humans peaks in the 30-50 Hz gamma range, very close to 40 

Hz (Galambos, Makeig, & Talmachoff, 1981; Picton et al., 2003). Such findings have 

been taken to suggest that the underlying neural populations in the auditory cortex may 

preferentially oscillate at this frequency. Thus this ~40 Hz response has been touted as the 

resonance or working frequency of networks in the auditory cortex (O’Donnell et al., 

2013). Studies have also shown that participants can show a second, weaker peak response 

in the gamma range at approximately 80 Hz (Lins et al., 1995). Whilst the ASSR occurring 

at ~ 40 Hz has been localised to the primary auditory cortex in prior MEG investigations, 

at higher frequencies (~80 Hz), this activity has been found to be strongest in subcortical 

structures such as the brainstem (Herdman et al., 2002). 

 

Significantly, the location of this resonant response in the gamma frequency range points 

to the likelihood that its generation might rely on some of the same circuit and neuronal 

properties as non-driven gamma band oscillations, such as those thought to be involved in 

cognition (Spencer, Salisbury, Shenton, & McCarley, 2008). Consequently, ASSR 

paradigms can be viewed as an ideal means of probing the ability of neural networks to 

generate and support oscillatory activity (Uhlhaas, Roux, Rodriguez, Rotarska-Jagiela, & 

Singer, 2010). Indeed, the 40 Hz steady response has been employed by numerous studies 

as an index of the ability for cortical networks to support synchronised oscillatory activity 

in the gamma band  frequency range (Griskova et al., 2007). 

 

A deficit in the ability of the auditory cortex to support neural synchrony at a particular 

frequency will be reflected in the amplitude of the ASSR response  (O’Donnell et al., 2013). 
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Similarly, the phase variability of the ASSR also constitutes a useful measure of the ability 

of a cortical area to support neural synchrony. In the case of high frequency activity, such 

as that in the gamma range, it is of critical importance that neural synchrony entails a high 

degree of precision in order to allow for the effective summation of synaptic currents and 

the production of a measurable signal (Uhlhass & Singer, 2006). Whilst investigations of 

the amplitude of MEG responses certainly correlate with the degree of neural synchrony, a 

number of confounding factors make it difficult to draw firm conclusions regarding 

synchrony when considering amplitude measures in isolation (Uhlhass & Singer, 2006). In 

light of this, a variety of phase-based approaches have been developed that allow for the 

computation of the phase consistency of the timing of neural activity across trials (de Beeck 

& Nakatani, 2019). One such amplitude independent measure is the Inter Trial Phase 

Coherence (ITPC). Although an ITPC value close to 0 reflects a high variability of phase 

angles across trials, a value closer to 1 is indicative of all epochs having the same phase 

angle (Lachaux et al., 1999). Thus, a higher ITC value can be taken as an indicator of greater 

neural synchrony. 

 

Abnormalities in the amplitude and phase coherence of gamma frequency ASSRs have 

been documented in a number of clinical conditions, including bipolar disorder (Isomura 

et al., 2016), autism (Seymour et al., 2020), and Fragile X syndrome (Ethridge et al., 

2017), to name but a few. Interestingly, abnormalities in the 40 Hz ASSR have also been 

extensively implicated in schizophrenia in both chronic (Spencer et al., 2008b) and first 

episode (Spencer et al., 2008a) patients. For example, a meta-analysis by Thuné, 

Recasens, & Uhlhaas (2016) of the 40 Hz ASSR in schizophrenia found that of the 20 

studies investigated, 17 reported a reduction in  the amplitude of the ASSR in 

schizophrenic patients compared to controls. In light of the consistent findings of altered 

gamma ASSR’s in schizophrenia reported in the  literature, the ASSR has been suggested 

as a potentially useful biomarker of the condition (O’Donnell et al., 2013). 

 

Typically, the ASSR is investigated using amplitude modulated tones or click trains  at a 

particular frequency, usually 40 Hz (Artieda et al., 2004). However, akin to the literature 

regarding visual gamma oscillations, there is also evidence suggestive of the existence of 

inter-subject variability in the peak frequency of this response. Although testing 

participants’ responses to different frequencies can be a prohibitively lengthy process if a 

single frequency is studied at one time, Artieda et al. (2004) demonstrated how ASSRs to 

multiple frequencies can be measured using a tone modulated in amplitude that increases 
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linearly in frequency over time, known as a ‘chirp’. This study revealed the presence of 

inter-individual differences in participants’ peak gamma band responses, suggesting that 

this methodology might represent a powerful tool for investigating inter-individual 

differences in cortical responses to auditory stimulation. 

 

Studies in clinical populations have also employed chirp stimuli, as opposed to stimulating 

at a particular frequency, in order to investigate synchrony deficits in different 

populations. For example, an EEG study of autism spectrum disorder utilising an auditory 

chirp stimulus (1-100  Hz) documented evidence indicative of a decreased ability to 

support synchrony in the low gamma range in participants with autism spectrum disorders 

(ASD) compared to typically developing controls (De Stefano et al. 2019). The authors of 

this study point to their finding of a reduction in phase locking in the low gamma band in 

ASD as indicating the presence of abnormal inhibitory network function - given that these 

inhibitory networks are hypothesised to determine the ability to phase-lock to an 

oscillatory stimulus (De Stefano et al., 2019). 

 

A further clinical study, utilising the chirp stimulus of Alegre et al. (2017), investigated 

steady-state responses in two different groups of schizophrenia patients, namely those who 

were drug naïve and those receiving treatment with atypical antipsychotics. Interestingly, 

the drug naïve group were found to exhibit reduced amplitude and inter-trial phase 

coherence in the low gamma band (30-50 Hz), in addition to reduced amplitude of the 

response in the higher 90-100 Hz gamma range, in comparison to control subjects. This 

disruption of low gamma activity was not found in the treated patient group, though a 

reduction in the higher 90-100 Hz gamma range was still evident in this cohort. 

Significantly the results of this study point to the fact that impairments in auditory steady 

state responses in schizophrenia may not be limited to 40 Hz, and in fact encompass a 

broader range of frequencies. Furthermore, the results of this study provide some 

indication that treatment with atypical antipsychotics may normalise these responses to 

some extent, at least in the low gamma range. 

 

Finally, potentially significant individual differences in the peak frequency of oscillatory 

activity in response to chirp stimuli have also been reported. For example,  Arrondo et al. 

(2009) reported evidence of a lower peak frequency of the auditory steady state response 

in MS patients exhibiting cognitive impairment in comparison to those without cognitive 

impairment and healthy control subjects. Furthermore, the study found a negative 
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correlation between the frequency of the ASSR (in the 40 Hz range) and cognitive 

impairment. The results of this study can be taken to suggest that variability in the peak 

frequency of ASSR may be of functional significance. Indeed, the authors suggest that the 

demyelinating lesions characteristic of MS might be implicated in both the slowing of 

oscillatory activity and subsequent efficiency of cognitive processing. 

 

In sum, there is a considerable body of evidence pointing to the existence of potentially 

significant individual variability in ASSR responses, particularly in clinical populations. 

Yet, in contrast, there has been a relative dearth of research conducted into the potential 

structure-function relationships underlying such variability. In particular, to date, only a 

handful of studies have investigated the dependence of the ASSR on the underlying 

structure of the auditory cortex in human participants. For example, building on previous 

findings of altered structural and functional parameters in auditory regions in 

schizophrenia, Edgar et al. (2014) examined the relationship between the structure of the 

STG and the 40 Hz ASSR in both healthy controls and schizophrenia patients. In 

accordance with the findings of previous studies, they reported evidence of reduced power 

and inter-trial coherence in schizophrenia in the left STG. The study also reported a 

positive association between cortical thickness of the left STG and both the 40 Hz ASSR 

and ITC, however this relationship was not evident in the schizophrenia cohort. The 

authors speculated that one possible explanation for their findings is that the presence of 

grey matter abnormalities in schizophrenia may preclude the development of typical 

structure-function relationships in this population. 

 

A further study of structure-function relationships in the auditory cortex by Kim et  al., 

(2019) investigated the 40 Hz ASSR and its association with anatomical characteristics, 

such as brain volume, in a cohort of schizophrenic patients and healthy controls. In 

contrast to the aforementioned studies, this investigation found evidence of an increased 

gamma response in schizophrenic patients. Echoing the findings of Edgar et al. (2014) this 

study also found evidence of an association between the volume of the right superior 

temporal gyrus (STG) and evoked power in control subjects but not those with 

schizophrenia. The authors hypothesize that one potential explanation for the absence of 

this association in patients with schizophrenia may be due to anatomical differences 

previously noted in this population, such as a reduction of pyramidal cell volume, 

specifically in deep layer 3 of the auditory association cortex (Sweet et al., 2003). 

However, given that only STG volume was considered in this study, it is not possible to 
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draw concrete conclusions regarding the precise neuroanatomical origins of this 

difference. Future studies employing more advanced MRI techniques designed to afford 

greater specificity with regards to the underling cortical microstructure could provide 

greater  insight into the association between microstructural properties of the auditory 

cortex, the morphology of ASSRs and individual differences thereof. 

 

Adopting a developmental perspective might also provide some clues as to the potential 

significance of inter-individual differences in ASSRs and their relation to the underlying 

neuroanatomy. Significantly, akin to other types of gamma oscillations, the ASSR is 

known to undergo profound changes during childhood and  adolescence. Such changes 

have been suggested to reflect the maturation of neural circuits in the cortex (Uhlhaas et 

al.,2009; Uhlhaas & Singer, 2010). Of note, similar to gamma oscillations, the cortical 

myeloarchitecture also undergoes profound changes during childhood and adolescence 

(Glasser & Van Essen, 2011; Lebenberg et al., 2019; Grydeland et al., 2019). Furthermore, 

the timing of these changes coincides with the aforementioned development of oscillatory 

processes and transitions in cognitive development. 

 

Significantly, converging lines of evidence have pointed to individual variability in the 

cortical myeloarchitecture as being of potential importance in understanding variability in 

neural responses such as the gamma ASSR. For example, building upon the close 

association between the cyto and myeloarchitecture of the cortex, previous studies have 

shown evidence of a positive association between the amplitude of MEG responses 

derived from the auditory cortex and cortical myelination (R1). In Chapter 3 of this thesis, 

we also observed an association between visual gamma activity at approximately 40 Hz 

and myelination of the primary visual cortex. Furthermore, a growing body of evidence 

suggests that the cortical myeloarchitecture is likely adaptively influenced to support 

oscillations (Hunt et al., 2016). Finally, whilst the role of white matter myelination in 

aiding neural synchronisation has been widely discussed, it is possible that cortical 

myelination might also have a role to play in facilitating neural synchrony at a more local 

level (Grydeland, Westlye, Walhovd & Fjell, 2015). 

 

Significantly, altered ASSR responses, abnormalities in their purported neural generators 

(pyramidal cells and inhibitory interneurons whose axons are known to be myelinated) and 

aberrant myelination have all been implicated in a wide range of clinical disorders. 

Consequently, an investigation of the relationship between cortical myelin and ASSRs has 
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the potential to provide novel mechanistic insights into these neural responses that might 

ultimately be of great clinical significance. 

 

Hence, the current study employed high resolution MRI to explore the relationship 

between the cortical microstructure, particularly its myelin content, and the peak 

amplitude and ITPC of gamma band ASSRs derived using a linearly increasing auditory 

chirp stimulus. It was hypothesised that a positive correlation might exist between the 

amplitude of gamma band ASSRs and myelination of the auditory cortex. Furthermore, 

the phase-based ITPC metric was used in order to test the specific hypothesis that cortical 

myelination might influence the synchrony of neural activity occurring in more local 

neural networks. Finally, given the use of a chirp stimulus we were also able to conduct an 

exploratory analysis of the relationship between the peak gamma frequency of the ASSR 

and cortical myelin. Similar to the previous chapters of this thesis, we also exploited the 

high resolution of our MRI datasets in order to explore the depth specificity of these 

potential relationships. 
 

 

5.3 Methods 

 

Participants 

 
38 healthy participants took part in this study. All participants were aged between 18-30 

years. They had normal hearing and no history of psychological or neurological disorders. 

Ethical approval was obtained from the Cardiff University  School of Psychology Ethics 

Committee and all participants provided written informed consent prior to their 

participation. 

 

MRI Data Collection 

 
The MRI data and processing outlined here is the same as that included in Chapter 3 of  this 

thesis. However, for the purpose of clarity the methodology employed will be outlined again 

below. 
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Quantitative T1 maps and T1-weighted images were acquired for each participant on a 7T 

MR system (Magnetom, Siemens healthcare) at submillimetre resolution using the 

MP2RAGE sequence (MP2RAGE acquisition parameters: TR =6s, TD1/TD2 = 

0.8/2.7s, α1/α2 = 7/5 degrees, TRGRE= 6.4 ms, iPAT = 3 and 6/8 partial). Fourier sampling 

was used in the phase encoding direction and 6/8 partial Fourier in the slice encoding 

direction. Resolution = 0.65mm isotropic. TA = 10 min 44s. A tailored adiabatic inversion 

pulse was also used for inversion (Hurley et al. 2010). This sequence outputs 4 different 

imaging volumes (1st inversion image INV1, second inversion image INV2, a T1-

weighted image (UNI image) and finally a quantitative T1 MAP). Given that the T1 maps 

derived from the MP2RAGE sequence can show some residual sensitivity to 

inhomogeneities in the B1 
+  field, the B1 

+ field was also measured separately using the 

SA2RAGE sequence (SA2RAGE acquisition parameters: TR = 2.4s,TD1/TD2 = 0.042/1.8 

s, α1/α2 = 4/11 degrees, TRGRE= 2.1 ms, iPAT= 2 and 6/8 partial Fourier sampling was 

used in the phase encoding direction and 6/8 partial Fourier in the slice encoding direction. 

Resolution = 2x2x2.5mm.TA = 2 min 16s). 

 

Calculation of R1maps and B1 
+ correction procedure 

 
The SA2RAGE derived maps of the B1 

+  field were used to correct the T1 maps produced 

by the MP2RAGE sequence for residual transmit field biases, in order to produce bias free 

high resolution T1 maps. Each participant’s SA2RAGE derived B1 
+  map was first 

registered and interpolated to the same resolution as the MP2RAGE volumes using FSL's 

FLIRT registration algorithm. Subsequently, these registered and interpolated B1 
+  maps 

were used to correct the high resolution MP2RAGE Uniform images and T1 maps for 

residual RF transmit field biases using the methodology outlined in Marques & Gruetter 

(2013). 

 

Following this correction procedure each participant’s corrected T1 map was converted to 

an R1 map (R1=1/T1) for ease of interpretation given the hypothesised positive correlation 

between R1 and myelin. 
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MRI Pre-processing and Analysis 

 
In order to improve segmentation outcomes a number of pre-processing steps, including a 

selection of those recommend by Haast et al. (2018), were performed on the different 

volumes produced by the MP2RAGE sequence (e.g. INV2, UNI). In brief, each 

participant’s second inversion volume (INV2) was first bias corrected using the N4 

algorithm. This volume was subsequently skull stripped using FSL’s BET routine in order 

to produce a brain mask. Finally, the CBS tools software package was also used to remove 

additional non-brain tissue (arteries and dura) from  the corrected T1-weighted  image 

(UNI image). A common issue encountered during the processing of these images is the 

misclassification of CSF as grey matter in some brain regions. Thus, a CSF mask was also 

created using the first inversion image (INV1) and applied to the corrected T1-weighted  

image. 

 

Each participant’s pre-processed B1 
+ corrected T1-weighted  image was then processed at 

native 0.65 mm resolution using the Freesurfer 7 ‘recon all’ pipeline in order to construct a 

representation of the cortical surface. The resultant surfaces were visually inspected for 

quality control purposes and manual corrections were performed where necessary. 

Following quality assessment of participants’ MRI scans and Freesurfer surfaces 3 scans 

were found to be unusable and were excluded from the ensuing analysis. Thus only 35 

datasets were available for comparison with our MEG datasets. 

 
Following Freesurfer processing, participants’ individual quantitative R1 maps were then 

mapped onto the cortical surfaces. Initially, each subject’s quantitative R1 map was 

sampled on their cortical surface using the Freesurfer mri_vol2surf function by averaging 

between 20-80% of the cortical depth to reduce the risk of partial voluming. 

 
Cortical depth analysis - A cortical depth analysis was also performed by projecting the 

R1 maps onto the cortical surface using an equi-volume layering approach (Waehnert, et 

al., 2014). This involved the creation of 11 different surfaces. R1 values were then 

systematically sampled along these surfaces. Again, to reduce the risk of partial voluming 

only 7 of these surfaces were included in the subsequent analyses (the 2 surfaces closest to 

the pial and white matter surfaces were excluded from the subsequent analysis). Thus, we 

chose to only use equi-volume surfaces at the following fractional cortical depths 
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(projecting from the pial surface): 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8. Accordingly, estimates of 

myelin content at 7 cortical depths were derived. In the remainder of this chapter the 

following naming convention will be used to refer to the different cortical depths 

investigated depths: 1, 2, 3, 4, 5 ,6, 7. Here depth 1 is closest to the pial surface whereas 

depth 7 is the closest to the GM/WM border. 

 

Myelination of primary auditory cortex 

In order to examine myelination of the primary auditory cortex, we chose to define our 

region of interest using the right transverse temporal label from the Desikan- Killiany 

Atlas (Desikan et al., 2006) included in Freesurfer. This choice was guided by the fact that 

the transverse temporal gyrus, also known as Heschl’s gyrus, is known to contain the 

primary auditory cortex (Brodmann areas 41 and 42) (Johns, 2014). For each participant 

we first extracted the mean R1 value (sampling at 20-80 % of the cortical depth, from the 

white matter surface) in the transverse temporal label to give an estimate of the myelin in 

the primary auditory cortex. Depth specific myelin estimates for the transverse temporal 

cortex were then derived by repeating this process for each of the 7 equi-volume surfaces. 

In this way we were able to obtain mean R1 values for the transverse temporal region of 

interest at each of the 7 cortical  depths investigated in this study. 

 
MEG Data and Processing 

 
Auditory Click Chirp Experiment Design 

 
The auditory stimulation paradigm utilised in this investigation was developed and tested 

by Brealy (2015) and was based on the stimulus paradigm outlined in Artieda et al. 

(2004). The stimuli consisted of a series of 1 millisecond long clicking sounds, known as 

chirps, that either increased linearly in frequency from 1-120  Hz (325 trials) or decreased 

in frequency from 120-1 Hz (25 trials). Each chirp sound lasted for 1.62 seconds and was 

followed by a baseline period of 0.5 seconds. These auditory stimuli were delivered 

binaurally through insert earphones and were presented at approximately 92 dbSPL (this 

sound level was calibrated in the MEG lab using a KEMAR mannequin microphone). 
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Participants were directed to passively listen to these auditory stimuli during the 

experiment. However, in order to maintain attention, participants were asked to count the 

number of descending chirps they heard. In total the paradigm consisted of  325 trials, 

however only the ascending chirps were utilised in the subsequent analysis. The 

experimental duration was approximately 12 minutes. 
 

MEG Data Acquisition 

Whole head MEG recordings were acquired using a 275-channel CTF axial gradiometer 

system housed in a magnetically shielded room. Participants were seated in an upright 

position during the recording sessions. Prior to the MEG recording, participants were 

fitted with three electromagnetic head coils located at a fixed distance from the nasion and 

the two pre-auricular points. The location of these markers was verified afterwards using 

high resolution digital photographs. 

 

Due to a technical fault with the equipment used to deliver the auditory stimuli, data 

collection was unsuccessful for 3 subjects. Thus only 32 subjects were included in the 

MEG analysis (2 participants were also removed following QA of their MRI datasets and 

an MRI dataset was not available for one participant). 

 

MEG pre-processing 

 
Data were epoched from -0.2 s before stimulus onset to 1.9 seconds after the onset of the 

stimulus. The individual trials were then visually inspected for the presence of gross 

artefacts such as muscle movements and head motion. Trials found to be affected by such 

artefacts were excluded from the subsequent analysis. 

 

Further pre-processing was performed using the Brainstorm Software (Tadel et al., 2011). 

As outlined in Chapter 2 of this thesis, we chose to use a minimum norm implementation 

within Brainstorm for this analysis, rather than a beamformer, as minimum norm methods 

do not suffer from the same limitations regarding the presence of correlated sources. 

Participants’ raw data was first imported into the Brainstorm database and again epoched 

from -0.2 s before stimulus onset to 1.9 seconds after the onset of the stimulus. For each 

subject’s data a number of processing steps were then applied. More specifically, the noise 

covariance matrix was calculated based on the baseline period and the trials were also 

averaged in order to produce an average response for each subject. 
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Each participant’s T1-weighted  image (MPRAGE UNI), with background noise removed 

(using a regularisation function), was downsampled to 1mm isotropic resolution and 

subsequently processed using the Freesurfer recon-all pipeline. The decision was made to 

downsample the data for this part of the analysis because the pre-processing steps utilised 

in our high-resolution MRI processing pipeline created challenges when using the 

resultant Freesurfer output in Brainstorm. For example, we performed skull stripping prior 

to Freesurfer processing for our high-resolution data  as this produced more favourable 

results. However, this presents a substantial problem when trying to co-register the MEG 

and MRI data in Brainstorm based on the fiducial locations - given that the skull has been 

removed and so key anatomical landmarks that would usually be utilised to guide the 

placement of these locations are no longer available. 

 

Following Freesurfer processing of the downsampled MRI data, the resulting Freesurfer 

anatomy folders, which included the cortical surfaces, were subsequently loaded into 

Brainstorm. However, the data from one subject was excluded due to poor reconstruction 

of the cortical surface, leaving a final sample size of 31 participants. 

 

Co-registration of the MEG and MRI data was then performed by marking the points on 

the MR image corresponding to the position of the three fiducial coils (nasion, right ear, 

left ear). Brainstorm also requires the inclusion of three additional reference points in 

order to ensure that all subjects are aligned the same way. These three points are the 

anterior commissure, posterior commissure and the interhemispheric point. These 

locations were again marked on each subject’s individual MRI. 

 

The co-registered MRIs were then segmented into the following tissue types: brain, skull 

and scalp. Head models were the then constructed for each participant using the 

overlapping spheres method (Huang et al.,1999). This head model was chosen as it is the 

default option for MEG data in the Brainstorm software.
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Figure 5.1: Cortical surface representation derived using Freesurfer and displayed in     Brainstorm. 

 

Source localisation was then performed using minimum-norm source reconstruction.  

More specifically, we employed the weighted minimum-norm estimation of the amplitude 

of distributed sources, as implemented in the Brainstorm software, using default settings. 

This method produces a depth-weighted linear L2-minimum norm estimate of current 

density. The amplitude of these current density maps is given in units of picoampere-meter 

(pA-m) which is the naming convention used by the Brainstorm software. 

 

 
Figure 5.2: Cortical surface representation displayed in Brainstorm with the minimum norm 

reconstruction overlaid. 

Regions of interest corresponding to the auditory cortex were then created using the   

Freesurfer defined right transverse temporal label. The terminology used for these regions 

of interest in the Brainstorm software is ‘scouts’. The time series for this scout region was 
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then extracted by finding, for each time point, the absolute maximum value across all the 

vertices in the transverse temporal label. Each participant’s ‘scout’ time series was then 

imported into Matlab for further analysis using Fieldtrip. 

 

Although our stimuli were delivered bilaterally, we chose to focus on the ASSR in the 

right hemisphere given that previous investigations have shown that the majority of 

participants show the strongest ASSR response in the right auditory cortex (Ross et al., 

2005; Oda et al., 2012; Brealy 2015). 

 

The scout time series were first converted into Fieldtrip virtual sensor format for further 

processing. We then conduced a time frequency analysis on these virtual sensor data. 

More specifically, a wavelet analysis was conducted using a DPSS taper and 8 Hz 

smoothing. We also baseline corrected this time frequency data by calculating the 

percentage change between the baseline and stimulation periods. 

 

For each participant, the maximum response in the 0.35 to 0.75s time window was then 

calculated. This time frame corresponds to the presentation of frequencies in the gamma 

band (30-50 Hz). This range of frequencies was chosen as the majority of participants 

showed a peak response within this range. In this way we were able to derive the peak 

amplitude and frequency of participants’ ASSRs within this frequency range. 

Inspection of participants’ time frequency plots revealed that the majority of participants 

did not show a further peak response in the higher gamma range (i.e. 70- 100 Hz). Hence, 

we chose not to explore the responses in the higher gamma band. 
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Figure 5.3: Time-frequency representations of the amplitude of the ASSR responses (calculated as 

the percentage change from baseline) derived using the auditory chirp stimulus from two 

representative subjects. 
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ITC Analysis 

 
A further ITC analysis was also conducted. The procedure for this analysis broadly 

followed that of the previous amplitude base analysis. However, the key difference is  that, 

in this instance, the trials were not averaged in order to allow for the investigation of inter-

trial coherence. The same head model was used in this analysis and source localisation 

was performed using the minimum norm procedure outlined above. Following source 

localisation, for each participant, the scout time series were once again extracted for the 

transverse temporal label and imported into Matlab. 

 

The imported data were converted into a Fieldtrip style format and a frequency 

decomposition of the data performed in Fieldtrip using a wavelet analysis in order to 

derive the Fourier spectrum. A new Fieldtrip style data structure was then made using the 

information from this frequency decomposition. The inter-trial phase coherence (ITPC) 

was then calculated as defined in the EEGLAB toolbox (Delorme & Making, 2004). 

Following the calculation of the ITPC values, for each participant, we once again extracted 

the maximum response in the 0.35 to 0.75s time window corresponding to the low gamma 

band (30-50 Hz). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Time-frequency representations of the ITPC of the ASSR (calculated as the percentage 

change from baseline) derived using the auditory chirp stimulus from two representative subjects. 
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Multimodal Analysis 

 
Once each participant’s peak amplitude and ITPC values had been determined, a 

multimodal analysis was conducted in order to investigate the relationship between  these 

measures and cortical myelination (R1). 

 

R1 and Gamma ASSR Amplitude 

Inspection of participants’ time-frequency plots was conducted for quality control 

purposes. From this examination it was evident that a clear response to the chirp stimulus, 

in the low gamma range, was not evident for all subjects. Thus, we chose to exclude the 

data from 7 subjects, who did not show a gamma response to the stimulus, from the 

subsequent statistical analysis. 
 

A correlation analysis was first conducted between participants’ R1 values sampled at 20-

80% of the cortical depth and the peak gamma amplitude estimates. Given the non-normal 

distribution of the data (Shapiro-Wilk Test sig. = < 0.05) Spearman’s correlation 

coefficient was used in this instance. 

 

On the basis of the aforementioned close relationship between the cyto and 

myeloarchitecture of the cortex, it was hypothesised that a positive relationship might 

therefore exist between cortical myelin, indexed by R1 and the amplitude of the gamma 

ASSR. 

 

An exploratory analysis was also conducted to investigate the relationship between depth-

specific R1 estimates and the amplitude of the gamma ASSR. This was achieved by 

calculating the Spearman correlation coefficient between participants’ peak ASSR 

responses and R1 values sampled at each of the 7 cortical depths investigated in this study. 

 

R1 and Gamma ASSR Peak frequency 

 
A further exploratory analysis was also conducted to investigate the relationship between 

R1 estimates and the peak frequency of the gamma ASSR. This was achieved by 

calculating the Spearman correlation coefficient between participant’s peak ASSR 
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responses and R1 values averaged over 20-80% of the cortical depth, in addition to those 

sampled at each of the 7 cortical depths investigated in this study. 

 

R1 and ITPC 

Again, inspection of participants’ ITPC data, plotted in the format of a regular time- 

frequency representation, revealed that a clear gamma band response to the chirp stimulus 

was not evident in all subjects. Thus, for quality control purposes we chose to exclude the 

data from 5 subjects (for whom a response in the gamma range was not discernible) from 

the subsequent correlation analysis. A Further correlation analysis was then conducted 

between participants’ R1 values sampled at 20-80% of the cortical depth and their peak 

ITPC values for the low gamma band (30-50 Hz). Again, the data was found to be non-

normally distributed  (Shapiro-Wilk Test sig. = < 0.05) and thus Spearman’s correlation 

coefficient was used in this instance. 

 

Akin to the amplitude analysis, a further exploratory analysis was also conducted to 

investigate the relationship between depth-specific R1 estimates and participants’ peak 

ITPC responses in the low gamma range. In order to do so the Spearman correlation 

coefficient between participants’ peak ASSR responses and R1 values sampled at each of 

the 7 cortical depths investigated in this study was calculated. 

 
5.4 Results 

 

R1 and Gamma ASSR Amplitude 

 
 

The results of the correlation analysis revealed evidence of a positive correlation between 

the amplitude of the ASSR and R1 values sampled at 20-80% of the cortical depth 

(r=0.330, p=0.057). However, this relationship did not meet the threshold for statistical 

significance. As detailed in Table 5.1, non-significant positive correlations were also 

observed between depths 1-4, representing the superficial and mid cortical depths and the 

amplitude of the ASSR. 
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Table 5.1: Table showing the correlations (R-values) and corresponding p-values for the 

relationship between amplitude of the ASSR in the 30-50 Hz range and R1 values in 

primary auditory cortex at each cortical depth. 

 

Significant positive correlations between depth specific R1 values and the amplitude of 

participants’ ASSR responses were however observed in the case of depth 6 (r=0.363, 

p=0.41), depth 7 (r=0.423, p=0.20) (see Figure 5.5) and depth 8 (r=0.393, p=0.29), when 

considering an alpha level of p=0.05. Note that these relationships do not survive multiple 

comparisons correction (0.05/8 =0.006). 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Scatter plot of the relationship between gamma ASSR amplitude and R1 values 

sampled at depth 7. Note the log amplitude is plotted here for display purposes. 

Cortical Depth R-val P-val 

20-80 0.330 0.057 

1 0.201 0.173 

2 0.157 0.231 

3 0.169 0.215 

4 0.289 0.086 

5 0.363 0.041 

6 0.423 0.020 

7 0.393 0.029 

R1 Values (depth 7) 
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R1 and Gamma ASSR Peak Frequency 

Non-significant positive correlations were found between the peak frequency of the 

gamma ASSR and R1 values at all cortical depths. Though weak in the majority of cases, 

as outlined in Table 5.2, stronger correlations were observed between peak frequency and 

R1 values sampled at superficial cortical depths compared to those sampled deeper in the 

cortex (e.g. see Figure 5.6). 
 

 

 

 

Table 5.2: Table showing the correlations (R-values) and corresponding p-values for the 

relationship between peak frequency of the ASSR in the 30-50 Hz range and  R1 values in 

primary auditory cortex at each cortical depth. 

 

 

 

 

 

 

 

 

 

 

 

Cortical Depth R-val P-val 

20-80 0.014 0.948 

1 0.185 0.386 

2 0.229 0.282 

3 0.116 0.591 

4 0.021 0.921 

5 0.012 0.956 

6 0.029 0.894 

7 0.060 0.782 
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Figure 5.6: Scatter plot of the relationship between gamma ASSR peak frequency and R1 values 

sampled at depth 3. 

 

R1 and ITPC 

A weak, non-significant, negative correlation was observed between participants’ peak 

ITPC values and R1 values sampled at 20-80% of the cortical depth (r=-0.125, p=0.272). 

Non-significant negative correlations were also observed between the depth specific R1 

estimates and the ITPC values (see Table 5.3). The strongest correlation was found 

between R1 values sampled at depth 4 (approximate to mid cortical depth) and 

participants’ ITPC values (r=-0.210, p=0.152)(see Figure 5.7), though as aforementioned 

this relationship was relatively weak and consequently did not meet the threshold for 

statistical significance. 
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Table 5.3: Table showing the correlations (R-values) and corresponding p-values for the 

relationship between participants peak ITPC values in the 30-50 Hz range and R1 values 

in primary auditory cortex at each cortical depth. 
 

 

Figure 5.7: Scatter plot of the relationship between gamma ASSR ITPC and R1 values sampled at 

depth 4. 

 

 

Cortical Depth R-val P-val 

20-80 -0.125 0.272 

1 -0.064 0.378 

2 -0.120 0.280 

3 -0.210 0.152 

4 -0.166 0.209 

5 -0.134 0.258 

6 -0.153 0.228 

7 -0.177 0.193 

R1 Values (depth 4) 
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5.4 Discussion 

 

This study investigated the relationship between gamma frequency ASSRs and 

myelination of the primary auditory cortex using an auditory click-chirp stimulus. A key 

strength of the auditory paradigm employed in the present study is its ability to probe the 

cortical response to a broad range of frequencies. However, in line with previous 

investigations, we found that the majority of participants produced a maximal ASSR in the 

30-50 Hz (low gamma) range. 

 

Interestingly, our multimodal analysis identified a trend towards a positive correlation 

between the peak amplitude of participants’ ASSRs in the low gamma range (30-50 Hz) 

and myelination of the primary auditory cortex. Furthermore, there also appeared to be an 

element of depth-specificity to this relationship, given that the strongest correlations were 

found with R1 values sampled deeper in the cortex. However, further exploration of the 

trends observed in the present dataset, in a larger sample of subjects, would likely be of 

benefit in order to accurately probe their validity and repeatability. 

 
That said, the relationships observed in the current dataset are nevertheless intriguing. Of 

particular interest, is that they can be seen to provide some evidence in support of our 

hypothesis of a positive correlation between cortical myelin and amplitude of gamma band 

ASSRs. Furthermore, the results of the present study are also in-line with that of a 

previous multi-modal MEG and MRI investigation by Helbling et al. (2015), that provided 

a source of inspiration for the current work. The authors of this earlier study also 

employed an auditory paradigm and found evidence of a positive correlation between 

MEG dipole strength and R1 in relevant auditory cortical regions. 

 
However, somewhat unexpected, was the finding that the strongest relationships were 

observed between the amplitude of gamma ASSRs, and myelin sampled at lower cortical 

depths. Gamma band activity is typically thought to arise from the coordinated interaction 

of inhibitory interneurons and excitatory pyramidal cells in the superficial layers of the 

cortex (layers 2 and 3). Thus, it was expected that stronger relationships might therefore 

be found between our myelin values sampled superficially in the cortex and participants’ 

peak gamma ASSRs. However, it is interesting to note that low and high frequency 

gamma oscillations have been argued to differ with regards to their layer specificity. 
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Indeed, a study by Oke et al. (2010), that explored gamma oscillatory dynamics, albeit in 

the visual cortex of rats, found that although high frequency gamma oscillations (>70 Hz) 

were generated in the superficial layers of the cortex (layer 3), lower frequency gamma 

oscillations actually occurred in the deeper layers of the cortex (layer 5) in this rat model. 

While speculative, this distinction between the layer specific origins of different types of 

gamma activity might be seen to provide one potential explanation for the pattern of 

results observed in the present study. 

 

Interestingly, thalamocortical pathways have also been hypothesised to be involved in the 

generation of 40 Hz ASSR activity Ribary et al. (1991). Thalamocortical fibres,  

originating from the thalamus, are known to terminate in layers 4 and 6 of the primary 

auditory cortex Lee et al. (2013). These thalamic projections innervating the auditory 

cortex are also known to be myelinated. Significantly, there is evidence from animal 

models to suggest that demyelination of these fibres has a significant impact on the 

function of neural activity in the thalamocortical system, most notably in thalamo-

recipient layer 4 (Ghaffarian et al., 2016). Furthermore, cortical synaptic transmission in 

layer 3 of the auditory cortex was also found to be affected by the process of 

demyelination. Of particular relevance to the present study is that demyelination of these 

pathways also reduced the amplitude of excitatory postsynaptic potentials recorded from 

the auditory cortex (Ghaffarian et al., 2016). 

 

Thus, it might also be tempting to speculate that the relationship between cortical myelin 

sampled at lower cortical depths and the amplitude of the ASSR observed in the present 

study might have been driven, at least in part, by individual differences in the myelination 

of thalamocortical projections. However, as noted previously, further work is needed in 

order to establish the validity of the trends observed in the present study before a stronger 

interpretation of the findings presented here can be considered. 

 

In this investigation an exploratory analysis was also conducted to examine the 

relationship between the peak frequency of participants’ ASSRs in the low gamma band 

and cortical myelination. No significant relationships were observed between these 

variables. The predominant direction of this relationship was also negative. This is a 

somewhat surprising finding given the positive relationship observed with amplitude. 

However, this discrepancy is likely explained by the fact that in a small number of cases 

some participants displaying an ITPC response in the low gamma range did not show a 
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clear response in the amplitude analysis and vice versa. Thus, there was a slight 

discrepancy in the subjects included in these respective analyses. The point speaks to the 

well-documented challenges associated with correlational methods, particularly in the case 

of relatively small sample sizes such as that employed here. Hence these results should be 

interpreted with caution. 

 

That said, of potential interest is that, in direct contrast to the results of our amplitude 

analysis, the relationship between peak gamma frequency and R1 appeared to be strongest 

at more superficial cortical depths. Significantly, previous studies utilising 

neurophysiological modelling of gamma oscillations in the visual cortex have shown that 

the primary determinants of the gamma response properties, such as peak frequency, relate 

to the connections between pyramidal cells and inhibitory interneurons in the superficial 

layers of the cortex (Shaw et al., 2017). 

 

The final analysis presented in this chapter investigated the relationship between the ITPC 

of participants’ peak ASSRs in the low gamma band and cortical myelination. Notably, no 

significant relationships were found between participants’ ITPC values and R1 values 

sampled at any of the cortical depths investigated in this study. A key  feature of the ITPC 

measure is that it is amplitude independent and is thus arguably less susceptible to noise 

compared to amplitude-based approaches (McFadden et al., 2014). It has also been shown 

to be a more reliable measure of the ASSR between sessions than spectral measures such 

as evoked power (McFadden et al., 2014; Tan, Gross, & Uhlhaas, 2015). Consequently, it 

could be argued that the ITPC measure is a more robust measure of ASSRs than our 

amplitude-based measure, which was calculated as the percentage change in spectral 

power from baseline. 

 

However, it should be noted that a number of caveats exist with regards to the application 

and interpretation of the ITPC metric. For example, utilising simulations, van Diepen & 

Mazaheri (2018) showed that ITPC values are in fact susceptible to the influence of a 

number of undesirable factors including oscillatory power and both the amplitude and 

latency of evoked responses. Their study revealed that oscillations with larger amplitudes 

have higher SNR. This in turn allows for more accurate phase estimations, less variability, 

and consequently higher estimates of ITPC values. As argued by Van Diepen & Mazaheri 

(2018), caution should therefore be taken when interpreting differences in ITPC values in 

the presence of differences in oscillatory power (Muthukumaraswamy & Singh, 2011). 
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Given that there was evidence of considerable inter-individual variability in the amplitude 

of participants’ oscillatory responses in the present study, it is possible that this may have 

influenced the ITPC values observed to some extent. 

 

There are a number of other limitations associated with this study that might also have 

acted to diminish our ability to accurately detect a significant relationship between the 

amplitude and ITPC of gamma band ASSRs and cortical myelination. For example, we 

chose to delineate the primary auditory cortex using the transverse  temporal label from the 

Freesurfer Desikan-Killiany atlas (Desikan et al., 2006). Accordingly, it is important to 

note that the precise delineation of the auditory cortex  in individual subjects remains both 

challenging and controversial (De Martino et al.,  2015).  

 

A key source of this difficulty is the fact that the position of the primary auditory cortex 

relative to key anatomical landmarks, such as the cortical gyri and sulci, has been shown 

to vary across subjects (De Martino et al., 2015). Furthermore, the anatomy of Heschl’s 

gyrus, also known as the transverse temporal gyrus, which includes the primary auditory 

cortex, varies considerably across both individuals and hemispheres (Marie et al., 2015). 

These differences are evident in terms of both the size and morphological aspects of this 

structure, such as its gyrification patterns (Marie et al., 2015). In sum, unlike in other 

regions of the brain, such as the visual cortex, the borders of the primary auditory cortex 

cannot be defined solely using anatomical methods (Dick et al., 2012). Similarly, efforts to 

produce a functional delineation of the primary auditory cortex, for example by using 

fMRI to obtain tonotopic maps, has also thus far proven fraught with challenges (De 

Martino et al., 2015). Hence, ex-vivo post-mortem analysis of the cyto and 

myeloarchitecue of the brain remains the most anatomically precise method of 

determining the location of primary auditory cortex in a specific individual (De Martino et 

al., 2015). 

 

That said, high resolution MRI of cortical myelin content, in combination with functional 

methods, is beginning to show great promise with regards to accurately establishing the 

precise boundaries of cortical areas in-vivo (Sereno et al., 2013; Dick et al., 2012). Thus, it 

may be of benefit, for future studies, to explore the possibility using information from the 

cortical myeloarchitecture, obtained using high resolution MRI in combination with an 

fMRI-based functional localiser sequence, in order to define the precise location of the 

primary auditory cortex on an individual subject basis. The feasibility of such an approach 
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has already been demonstrated. For example, De Martino et al. (2015) utilised high-

resolution myelin sensitive MRI contrast maps to derive depth-dependent anatomical 

profile contrasts. Using this methodology, they were able to identify a highly myelinated 

region in Heschl’s gyrus. Significantly, functional data derived using fMRI showed that 

this highly myelinated region possessed functions typically associated with the primary 

auditory cortex, such as narrow frequency tuning. Thus, in sum, this combination of high-

resolution MRI and functional imaging provided compelling evidence that such an 

approach can be used to identifying the region homologous to the primary auditory cortex 

in vivo. 

 
Of note, a second, weaker peak ASSR response in the high gamma range (70-100 Hz), has 

also been documented in previous investigations (Artieda et al., 2004, Hamm et al., 2011; 

Alegre et al., 2017). However, a clear response in this frequency range was not observed 

in the present study. One potential explanation for this is that due to experimental time 

constraints, it was necessary to use a smaller number of trials than previous investigations, 

thus decreasing the available SNR of our data. For example, a prior investigation by 

(Artieda et al., 2004), on which the chirp stimulus utilised in the present study was based, 

recorded a minimum of 500 trials per participant, whereas only 300 trials were available 

for analysis in the present study. Thus, it is possible that increasing the number of 

experimental trials might have allowed for the observation of the higher gamma frequency 

ASSR in the present study. Nevertheless, there is evidence to suggest that the high 

frequency gamma ASSR originates from subcortical sources to which MEG and indeed 

the minimum norm imaging are less sensitive, given their inherent bias towards 

superficial sources. Indeed, whilst EEG, MEG and animal studies have all pointed to the 

auditory cortex as the most likely source of ASSRs occurring below 50 Hz (O'Donnell et 

al., 2013), those occurring at higher frequencies have been proposed to originate from 

brainstem areas (Herdman et al., 2002) in addition to other subcortical sources (Farahani, 

& van Wieringen, 2020). Hence it is possible that our decision to use a minimum-norm 

approach for source localisation purposes might also have impacted our ability to measure 

higher frequency gamma ASSR activity. 

 

In conclusion, the present study demonstrated a positive relationship between myelination 

(R1) of the primary auditory cortex and the amplitude of the gamma ASSR. Furthermore, 

there appeared to be an element of depth specificity to this relationship, once again 

highlighting the importance of considering how the microstructure of the cortex varies 
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across its depth. Although further replication and investigation of these trends is required, 

the results of the present study can nevertheless be seen to provide potentially interesting 

insights into the relationship between a key feature of the cortical microstructure, namely 

its myelin content, and the amplitude of the gamma ASSR. Given the implication of 

aberrant ASSRs in a variety of clinical disorders, the approach employed in the present 

study might therefore provide a useful framework for exploring the pathophysiology of 

clinical conditions such as schizophrenia in which both myelin abnormalities and aberrant 

oscillatory dynamics have been observed. 
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Chapter 6 

Depth Dependent Relationships between 

Cortical Myelin and Frequency-Specific 

Oscillatory Resting-State Networks 

 
6.1 Abstract 

 

Inter-areal communication and the establishment of neural networks is of pivotal 

importance for brain functioning, yet many questions remain regarding how the structural 

architecture of the brain supports the formation of these complex channels of 

communication. Converging lines of evidence now point to myelin as playing a pivotal 

role in shaping and supporting neural activity and cortical communication. Recent years 

have witnessed a renewal of interest in examining the cortical myeloarchitecture in-vivo 

and studies have documented a close association between structural networks indexed by 

cortical myelin and their MEG derived functional counterparts, suggesting an intricate 

relationship between the two. However, the cortical myeloarchitecture is also known to 

vary across the cortical depth. Furthermore, frequency-specific MEG oscillatory networks 

are thought to arise from different layers of the cortex. Hence, here we utilised high 

resolution MRI at 7T, in combination with MEG, to explore the relationship between 

depth specific estimates of intra-cortical myelin and MEG derived functional connectivity 

estimates. For the first time we were able to show evidence of a cortical depth-dependent 

relationship between cortical myelin and frequency- specific resting-state MEG networks. 

These results demonstrate the value of considering how the microstructure of the cortex 

varies with cortical depth and shed new light on brain structure-function relationships. 

 

6.2 Introduction 

 

Inter-areal communication and network formation is of critical importance for brain 

functioning. Owing to its rich temporal resolution, MEG represents a valuable tool for 

investigating the nature of such networks, with numerous MEG studies pointing towards 
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the pivotal role of neural oscillations in the establishment of brain networks (Brookes, 

Tewarie & Hunt et al., 2016). The study of oscillatory dynamics, and  the networks of 

communication to which they give rise, thus represents an important avenue of research, 

with the potential to significantly enhance our understanding of the brain and cognition, in 

health and disease (Hinkley at al., 2011; Cornew, Roberts, Blaskey & Edgar, 2012; Engels 

et al., 2017). 

 

To date a number of studies have utilised diffusion MRI methods in order to shed new 

light on the question of how the structural white matter pathways of the brain might relate 

to their functional counterparts, such as those derived using fMRI and MEG (Honey et al., 

2009; Messaritaki et al., 2020). Less understood is how the microstructure of the cortical 

grey matter might relate to functional networks in the brain (Hunt et al., 2016). However, 

a key aspect of the cortical microstructure, namely its myelin content, has received 

increasing attention in recent years, owing to its ability to be investigated using MRI, 

opening up a wealth of new opportunities in this regard. 

 

Although most common in the brain’s white matter, the cortical grey matter is also 

myelinated. Furthermore, individual cortical areas demonstrate unique myelin profiles 

(Nieuwenhuys, 2013), raising the intriguing question of what the functional significance 

of this might be. In recent years, in line with the aforementioned advances in MRI, cortical 

myelin has become the subject of increasing attention, with a number of studies having 

shown the feasibility of using  MRI techniques to investigate cortical myelination in vivo. 

Such studies are already beginning to provide key insights into the brain’s 

myeloarchitecure. For example, in line with classical histological studies, MRI 

investigations of cortical myelin have consistently demonstrated a pattern of increased 

myelination of primary sensory areas in comparison to frontal and higher association areas 

(Waehnert et al., 2016). 
 

To date there has been particular interest in using T1 (or R1) as a marker of cortical 

myelination (Tardif et al., 2016). In healthy subjects, T1  is thought to principally reflect 

variations in myelin content (Lutti, Dick, Sereno, & Weiskopf, 2014), with histological 

investigations concluding that myelin is likely the dominant source of contrast in T1 maps 

(Stüber et al., 2014). Robust differences in T1, linked to variations in myelin density, have 

also been demonstrated (Waehnert et al., 2016). 
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Within the cortex, myelin density is also known to vary across the cortical laminae. For 

example, myelination is higher in deeper cortical layers compared to those occurring more 

superficially. Recent studies employing high field MRI have now also demonstrated 

evidence of depth-specific cortical myelination patterns in vivo (Sprooten et al., 2019). 

Intriguingly, cortical regions are also known to myelinate at different rates during 

development (Glasser & Van Essen, 2011; Lebenberg et al., 2019; Grydeland et al., 2019) 

and these differing developmental trajectories have also been shown to extend to the level 

of cortical layers. Whitaker et al. (2016) report that the location of the strongest changes in 

cortical myelination during adolescence corresponded to the boundary between layers V 

and V1. Similarly, Paquola et al. (2019) report evidence of layer specific microstructural 

changes during adolescence, with their finding pointing to the preferential accumulation of 

myelin in mid-to-deeper cortical layers. This finding was particularly evident in 

heteromodal and unimodal association cortices pointing to a process of fine tuning of 

hierarchical gradients of cortical networks during adolescence (Paquola et al., 2019). 

Significantly, a close relationship also exists between the cytoarchitecture and 

myeloarchitecture of the brain. For example, Helbling et al (2015) demonstrated that 

estimates of cortical myelin could be used both refine MEG derived source localisation 

estimates and predict the magnitude of MEG derived electrophysiological signals. 

Growing evidence also points to inter-individual differences in cortical myelination as 

being of functional relevance (Gryndeland et al., 2013, Kim & Knösche, 2016). 

Furthermore, far from being merely a passive feature of the brain’s microstructure, it has 

been proposed that myelin plays an important role in shaping neural activity and 

synchrony (Pajevic, 2014). In support of this there is compelling evidence, largely from 

animal models, of the role of neural activity in shaping myelination (Gibson et al., 2014, 

Mitew et al. (2018). Building on such evidence a multi-modal MEG/MRI study by Hunt et 

al. (2016) reported a relationship between the microstructure of the brain and its function 

at the network level. More specifically, functional networks in the beta and gamma bands 

significantly predicted the spatial  pattern of structural covariance in this study, given that 

brain areas that were found to be highly functionally connected also exhibited cross-

subject covariation in their  myeloarchitecture. This raises the intriguing possibility that 

given the role of myelin in speeding neuronal conduction, cortical myelination might 

therefore be shaped to support functional networks. 

A considerable body of research in monkeys has also suggested that an intricate 

relationship likely exists between the microstructure of the brain and connectivity 
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(Huntenberg et al., 2017). For example, long range connections have been preferentially 

found between brain regions that demonstrate similar microstructural properties. As such 

it has been suggested that microstructural features of the cortex, such as its myelin content, 

may also be related to functional connectivity patterns. In line with this suggestion, a 

multi-modal 7T MRI –fMRI study by Huntenberg et al. (2017) found that regions that 

exhibit similar myelin content showed higher functional connectivity than regions that 

differ in their myelin content. This further suggests that the cortical myeloarchitecture 

might indeed be adapted to support communication between brain regions. 

Given that the cortical myeloarchitecture is known to vary not only between brain regions 

but also across the cortical depth, exploring depth specific relationships between the 

cortical microstructure and functional connectivity may also be of great benefit. Such 

depth-specific estimates may have greater sensitivity to inter- individual differences in 

patterns of cortical myelination as well as inter-regional differences. 

The ability to derive depth-dependent estimates of cortical myelin can be seen to be of 

particular importance when considering the relationship between the cortical 

myeloarchitecture and oscillatory networks, given that different oscillatory frequencies are 

thought to arise from specific layers of the cortex. Evidence derived largely from animal 

models has suggested that synchronisation in the gamma band is strongest in the 

superficial layers of the cortex, from which feedforward projections typically originate 

(Buffalo et al., 2011). Such evidence indicates that gamma oscillations may sub-serve 

feedforward processing in the brain (Michalareas et al., 2016). Conversely, lower 

frequency oscillations in the alpha and beta ranges have been suggested to originate from 

deeper layers of the cortex (Buffalo et al., 2011). and are typically implicated in feedback 

mechanisms (Michalareas et al., 2016). However, evidence of the layer specific origins of 

these signals in humans remains lacking. 

 

Thus, building on previous findings of a relationship between the cortical 

myeloarchitecture, functional connectivity patterns and electrophysiology, here, for the 

first time, we propose to use high resolution quantitative myelin imaging at 7T in 

combination with MEG to explore the depth-specific relationship between cortical myelin 

and resting state oscillatory networks. In order to do so we first explored the link between 

microstructural similarity and connectivity. Akin to Hunt et al., (2016) we derived a 

structural myelin network using the principles of structural covariance. This is based on 

the frequent finding that inter-individual differences in structural properties of brain 
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regions are coordinated within communities of brain regions that fluctuate together in size 

across the population (Alexander-Bloch, Giedd, & Bullmore, 2013). In a related, 

complementary approach, we also created R1 difference matrices, similar to Huntenberg 

et al (2017). These matrices represent the difference in R1 (myelin) between brain regions, 

allowing us to test whether regions with more similar myelin content display higher 

functional connectivity. Finally, we also examined the association between MEG 

connectivity strength and depth dependent cortical myelination. 

 

Thus, here we investigate how both the amount and similarity in myelin content  between 

brain regions relates to cortical connectivity patterns. 

 

6.3 Methods 

 
Participants 

 
38 healthy participants took part in this study. All participants were aged between 18-30 

and had no history of psychological or neurological disorders. Ethical approval was 

obtained from the Cardiff University School of Psychology Ethics Committee and all 

participants provided informed consent prior to their participation. 

 

MRI Data Collection 

 
Quantitative T1 maps and T1-weighted images were acquired for each participant on a 7T 

MR system (Magnetom, Siemens healthcare) at submillimetre resolution using the 

MP2RAGE sequence (MP2RAGE acquisition parameters: TR =6s, TD1/TD2 = 0.8/2.7s, 

α1/α2 = 7/5 degrees, TRGRE= 6.4 ms, iPAT = 3 and 6/8 partial Fourier sampling was used 

in the phase encoding direction and 6/8 partial Fourier in the slice encoding direction. 

Resolution = 0.65mm isotropic. TA = 10 min 44s. A tailored adiabatic inversion pulse was 

also used for inversion (Hurley et al. 2010). This sequence outputs 4 different imaging 

volumes (first inversion image INV1, second inversion image INV2, a T1-weighted image 

(UNI image) and finally a quantitative T1 map). T1 maps derived from the MP2RAGE 

sequence can show some residual sensitivity to inhomogenities in the B1 
+  field (Marques 

& Gruetter, 2013), especially when acquired at 7T. Thus, in this study the B1 
+  field was 
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also measured  separately using the SA2RAGE sequence (SA2RAGE acquisition 

parameters : TR = 2.4s,TD1/TD2 = 0.042/1.8 s, α1/α2 = 4/11 degrees, TRGRE= 2.1 ms, 

iPAT= 2 and  6/8 partial Fourier sampling was used in the phase encoding direction and 6/8 

partial Fourier in slice encoding direction. Resolution = 2x2x2.5mm.TA = 2 min16s). 

 

 

Calculation of R1maps and B1 
+  correction procedure 

 
The SA2RAGE derived maps of the B1 

+  field were used to correct the T1 maps for 

residual transmit field biases, in order to produce bias free high resolution T1 maps. Each 

participant’s SA2RAGE derived B1 
+  map was first registered and interpolated to the 

same resolution as the MP2RAGE volumes using FSL's FLIRT registration algorithm. 

Subsequently these registered and interpolated B1 
+  maps were utilised to correct the high 

resolution MP2RAGE Uniform images and T1 maps for residual RF transmit field biases 

using the methodology outlined in Marques & Grutter (2013). 

 

Following this correction procedure each participant’s T1 map was converted to an R1 

map (1/T1) for ease of interpretation, given the positive relationship between myelin and 

R1. Thus, in the rest of this chapter the term R1 map will be used to refer to the myelin 

maps collected in this study. 

 

MRI Pre-processing and Analysis 

 
MRI datasets from two participants were found to be contaminated by motion artefacts 

and were thus excluded from the subsequent analysis. A further MRI scan was also 

unavailable for one participant. Thus, the final sample size consisted of 35  participants. In 

order to improve segmentation outcomes a number of pre-processing steps recommend by 

Haast et al (2018) and adapted for the data utilised in this study were performed on the 

different imaging volumes produced by the MP2RAGE sequence (e.g. INV2,UNI). In 

brief, each participant’s second inversion volume (INV2) was first bias corrected using the 

N4 algorithm. This volume was subsequently skull stripped using FSL’s BET routine in 

order to produce a brain mask. The CBS tools software package was also used to remove 

additional non- brain tissue (arteries and dura) from the corrected T1-weighted  image 
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(UNI image). A mask of the CSF was also produced using the INV1 image. The brain 

extracted, B1 
+ corrected image with dura, arteries and CSF removed was then used as the 

input for the subsequent Freesurfer analysis. 

 

Each participant’s pre-processed, B1 
+  corrected, T1-weighted  image was then processed 

at native 0.65 mm resolution using the Freesurfer 7 ‘recon all’ pipeline in order to 

construct a representation of the cortical surface. The resulting Freesurfer surfaces  were 

then visually inspected for quality control purposes and manual corrections performed 

where necessary. Following Freesurfer processing, we generated 11 intracortical equi-

volume surfaces corresponding to 11 different cortical depths. However, given the risk of 

partial-volume effects, that could introduce bias due to high R1 values from the white 

matter bleeding into deeper regions of the cortex for example, we chose to exclude four of 

these surfaces from the subsequent  analysis given their proximity to the grey/pial and 

grey/white borders respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Example R1 maps sampled at different depths overlaid on the cortical surface. 

 
Volume to surface mapping– Each individual participant’s quantitative R1 map  was then 

mapped onto the equi-volume surfaces using Freesurfer’s ‘mri_vol2surf’  function (this 
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function assigns values from a volume to each vertex of a surface). This resulted in the 

creation of R1 maps sampled at 7 cortical depths corresponding to the 7 equi-volume 

surfaces used in this analysis. These are subsequently referred to as depths 1-7 in the 

remainder of this chapter. Depth 1 corresponds to the most superficial cortical depth and 

depth 7 corresponds to the deepest cortical depth from which the R1 values were sampled. 

 

R1 of Desikan-Killian ROIs 

 
Mean R1 values were then calculated for each of the Desikan-Killian atlas (Desikan et al., 

2006) ROIs using the Freesurfer output aparc+aseg (cortical and subcortical parcellation) 

volume to define the atlas labels. This procedure was repeated for each of the 7 cortical 

depths under investigation. In this way a single R1 value was derived for each node in the 

Desikan-Killian atlas at each depth for each subject. 

 

 
Quality Check of Freesurfer ROIs 

 
Inspection of the R1 data revealed a pattern of higher R1 in right hemisphere ROIs 

compared to the left hemisphere ROIs. In order to mitigate any potential bias  introduced 

by this asymmetry when comparing to the comparatively symmetric MEG connectivity 

data we normalised the R1 values for the MRI values in each hemisphere. This was 

achieved by z-scoring the left and right hemisphere R1 data  independently for each of the 

cortical depths. These normalised R1 values were used in the subsequent analyses in this 

chapter. 

 

Despite the improvements rendered by the B1 
+  correction procedure inferior temporal 

regions can still show artificially high R1 values due to the low signal in these regions, 

thus we chose to remove the following regions from the analysis: Inferior Temporal, 

Temporal Pole. The fusiform label was also found to be affected  in a similar way and was 

thus also removed from the subsequent analysis. 

 

As a final quality control procedure, we also calculated the coefficient of Variance (COV) 

for the mean R1 values for each ROI at each depth. Inspection of this data led to the 
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additional removal of the following labels: rostral anterior cingulate and the frontal pole as 

their COV was more than 3 standard deviations above the mean. 
 

 

 
 

 

 

 

 

Figure 6.2: Figure showing the COV of R1 values calculated for each of the ROIs in the   Desikan-

Killian atlas. 

 
Structural Covariance Matrices 

 
To investigate the structural covariance of myelin, Pearson’s correlation across subjects 

was used to measure the relationship between R1 values in each pair of nodes in the 

Desikan-Killian atlas. This procedure was repeated for each of the cortical depths resulting 

in the creation of 7 structural covariance matrices. Each entry in these matrices represents 

the correlation across subjects between a particular node pair. 

 

R1 Difference Matrices – Similar to Huntenberg et al. (2017) an R1 difference matrix 

was also generated for each participant by calculating the absolute difference in R1 for 

each pair of nodes in the Desikan-Killian atlas. High values in this matrix therefore 

indicate node pairs that show large differences in their R1 values while values closer to 

zero indicate node pairs with more similar R1 values. This approach represents another 

way of probing myelin structural ‘connectivity’, complementary to the structural 

covariance approach outlined above. Notably, the motivating assumption of this analysis 

is that regions that have more similar myelin content are likely to be structurally related. 
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MEG Resting State Paradigm 

 

7 minutes of eyes open resting state MEG recording were acquired from participants. 

During this task participants were instructed to simply relax and let their minds wander. 

MEG Data Acquisition 

 

Whole head MEG recordings were acquired using a 275 channel CTF axial gradiometer 

system housed in a magnetically shielded room. Participants were seated in an upright 

position during the recording sessions. Prior to the MEG recording, participants were 

fitted with three electromagnetic head coils located at a fixed distance from the nasion and 

the two pre-auricular points, the location of which was recorded continuously for MRI co-

registration purposes. The location of these markers was verified afterwards using high 

resolution digital photographs. 

Pre-processing 

 
Datasets were first downsampled to 600 Hz prior to filtering with high-pass (1 Hz) and 

low-pass (150 Hz) filters and subsequently split into 2 second epochs. Artefact rejection 

was performed manually. Specifically, the data was visually inspected to identify eye, 

muscle and head movement artefacts, which were subsequently removed and thus 

excluded from the ensuing analysis. 

Co-registration – co-registration was performed using the T1-weighted  UNI image from 

the MP2RAGE sequence (see MRI methods). Each subject’s UNI image was co- 

registered to the MEG data by marking the points on the MRI image corresponding to the 

position of the fiducial coils. 

Template Atlas Source Model Construction 

 
In order to define the source model a template atlas was built based on the Freesurfer 

Desikan-Killian cortical atlas (Desikan et al., 2006). Initially each participant’s surface 

defined aparc+aseg parcellation was converted to a volume using AFNI’s surface mapper 

program, SUMA, resulting in a Desikan-Killian cortical atlas volume defined for each 

participant in individual space. Subsequently, each participant’s data was registered to 

MNI space by first registering their T1-weighted volume to a 1mm MNI template brain 
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available in FSL. The resultant transformation matrices were then  applied to the atlas 

volumes in order to derive, for each participant, a Desikan- Killian cortical atlas volume in 

MNI space. These atlas volumes were then loaded into Matlab and a probabilistic atlas 

defined by finding the most common atlas label for each MNI coordinate. This 

probabilistic atlas was used as the source model for the subsequent MEG source 

reconstruction analysis. 
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Desikan-Killian Atlas Labels 
 

 

 

Table 6.1 : Table showing the order of ROI labels in the Desikan-Killian cortical atlas. 

 

 

 

 

 

lh.bankssts.label 
lh.caudalanteriorcingulate.label 
lh.caudalmiddlefrontal.label 
lh.cuneus.label 
lh.entorhinal.label 
lh.fusiform.label 
lh.inferiorparietal.label 
lh.inferiortemporal.label 
lh.isthmuscingulate.label 
lh.lateraloccipital.label 
lh.lateralorbitofrontal.label 
lh.lingual.label 
lh.medialorbitofrontal.label 
lh.middletemporal.label 
lh.parahippocampal.label 
lh.paracentral.label 
lh.parsopercularis.label 
lh.parsorbitalis.label 
lh.parstriangularis.label 
lh.pericalcarine.label 
lh.postcentral.label 
lh.posteriorcingulate.label 
lh.precentral.label 
lh.precuneus.label 

lh.rostralanteriorcingulate.label 
lh.rostralmiddlefrontal.label 
lh.superiorfrontal.label 
lh.superiorparietal.label 
lh.superiortemporal.label 
lh.supramarginal.label 
lh.frontalpole.label 
lh.temporalpole.label 
lh.transversetemporal.label 
lh.insula.label 

 

1  35 

2  36 
3  37 

4  38 
5  39 

6  40 
7  41 

8  42 
9  43 

10  44 
11  45 
12  46 
13  47 
14  48 
15  49 

16  50 

17  51 
18  52 
19  53 
20  54 
21  55 
22  56 
23  57 
24  58 

25  59 

26  60 
27  61 

   
   
   
   
   
   

   

 

rh.bankssts.label 
rh.caudalanteriorcingulate.label 
rh.caudalmiddlefrontal.label 
rh.cuneus.label 
rh.entorhinal.label 
rh.fusiform.label 
rh.inferiorparietal.label 
rh.inferiortemporal.label 
rh.isthmuscingulate.label 
rh.lateraloccipital.label 
rh.lateralorbitofrontal.label 
rh.lingual.label 
rh.medialorbitofrontal.label 
rh.middletemporal.label 
rh.parahippocampal.label 
rh.paracentral.label 
rh.parsopercularis.label 
rh.parsorbitalis.label 
rh.parstriangularis.label 
rh.pericalcarine.label 
rh.postcentral.label 
rh.posteriorcingulate.label 
rh.precentral.label 
rh.precuneus.label 

rh.rostralanteriorcingulate.label 
rh.rostralmiddlefrontal.label 
rh.superiorfrontal.label 
rh.superiorparietal.label 
rh.superiortemporal.label 
rh.supramarginal.label 
rh.frontalpole.label 
rh.temporalpole.label 
rh.transversetemporal.label 
rh.insula.label 
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Source reconstruction 

 

Source reconstruction was performed using the FieldTrip Toolbox (Oostenveld, Fries, 

Maris, & Schoffelen, 2010). The data were filtered into six frequency bands of interest 

(Delta 1-4, Theta 4-8, Alpha 8-13, Beta 13-30, Low Gamma 40-60 and High Gamma 60-

80  Hz). (The decision to exclude frequencies 31-39 from the gamma band was made here 

in order to reduce the risk of overlap with the beta frequency range). Source localisation 

was then performed utilising a Linear Constrained Minimum Variance (LCMV) 

beamformer on a 6x6x6 mm grid, using a local-spheres conductor model. The local-

spheres model was used in this instance as it constitutes the default option in the CUBRIC 

resting-state MEG pipeline. Seed regions were defined using 68 regions from the  Desikan-

Killian cortical atlas (Desikan et al., 2006). In each of the 68 atlas regions, the beamformer 

voxel with the highest temporal standard deviation of its band-pass filtered Hilbert 

envelope was chosen to represent that region and included in the subsequent analysis. In 

order to correct for zero-lag source leakage in these time courses symmetric 

orthogonalization was applied (Colclough, Brookes, Smith & Woolrich, 2015). Hilbert 

amplitude envelopes were then calculated from these virtual sensor time series for each of 

the nodes, for each frequency band. Amplitude-amplitude connectivity matrices were then 

constructed by correlating the amplitude envelopes of each node with every other node, 

resulting in the generation of a 68x68  matrix for each subject, for each frequency band. 

The individual entries in these matrices represent the amplitude correlation coefficients 

between nodes in the Desikan-Killian atlas. These correlation coefficients were then 

converted to variance-normalised Z-scores using a Fisher Z transform in order to correct 

for potential effects induced by variability in data quality among participants (Koelewijn 

et al.,  2019). 

Connectivity Strength 

 

For each node in the Desikan-Killian atlas a connectivity strength metric was also 

calculated by summing across connectivity values. This procedure was repeated for each 

of the six frequency bands under investigation (delta, theta, alpha, beta, low gamma, high 

gamma). 
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Multimodal Analysis 

 
R1 Structural Covariance Matrices and MEG networks 

 

To assess the spatial-similarity between the frequency specific resting state networks and 

the myelin structural covariance networks, the  Pearson’s correlation coefficient between 

the myelin networks and the frequency specific resting state MEG networks, which were 

averaged across participants, was calculated. This procedure was repeated for the R1 

matrices sampled at each of the cortical depths. To determine the robustness of the 

resulting correlation values, 95% confidence intervals were also calculated by 

implementing a bootstrapping with replacement procedure. The bootstrapping method is a 

resampling procedure first introduced by Efron (1979),  in which the data from a known 

sample is used to generate a sampling distribution by randomly sampling (with 

replacement) from the original sample. The effect of interest, (in this case the correlation 

coeffiecient) can be calculated at every resampling iteration  allowing for the generation of 

a sampling distribution which can be used to calculate confidence intervals. In the present 

study, for each of 10000 iterations the Matlab bootstrap function was used to determine 

the subject sample to include in the construction of the structural covariance matrix. As 

before, the resulting structural covariance matrix       was then correlated with the mean 

frequency specific resting state MEG networks. In  this way, correlation coefficients were 

derived for each of the 10000 iterations and from this data 95% confidence intervals were 

calculated in order to determine the robustness of the correlations. Again, this procedure 

was repeated for each frequency  band and cortical depth combination. 

 

 
R1 difference matrices and MEG networks 

 

We next assessed the relationship between the frequency-specific resting-state  networks 

and the R1 difference matrices. For this analysis, the data were again averaged across 

participants. The mean R1 difference matrix was correlated with the frequency specific 

resting state MEG networks using the Pearson’s correlation coefficient. Akin to the 

structural  covariance analysis outlined above, in order to determine the robustness of these 

correlations, 95% confidence intervals were also calculated by implementing a 

bootstrapping with replacement procedure. More specifically, for each of 10000 iterations 
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the Matlab bootstrap function was used to determine the subject sample to include in the 

analysis. Average R1 difference and MEG connectivity matrices were  then created using 

the data from these subjects. As before, the mean R1 difference matrix was then correlated 

with the mean frequency specific resting state MEG network. In this way, correlation 

coefficients were derived for each of the 10000 iterations and from this data 95% 

confidence intervals were calculated. Again, this  procedure was repeated for each 

frequency band and cortical depth combination. 

 

 
Myelin and connectivity strength 

 

Finally, we also sought to determine whether a relationship might exist between the 

connectivity strength of the nodes in the functional connectivity network and the myelin 

content (R1). In the first instance, the R1 values for each node in the Desikan-Killian atlas 

were averaged across subjects to derive a mean R1 value for each node, at each depth. 

Pearson’s correlation coefficient was then calculated between the mean connectivity 

strength for each frequency band and the normalised  depth-specific R1 values. 

 Additional Cohort – In order to validate our findings, we also calculated the MEG 

connectivity strength for an additional cohort of 183 participants for whom R1 maps were 

not available and again correlated these values with the mean R1 matrices from  the present 

study. Full details of this cohort and the analysis pipeline used to derive their MEG 

connectivity matrices can be found in Koelewijn et al. (2019). 

 

 
6.4 Results 

 

Structural covariance 

 

The structural covariance analysis revealed evidence of a positive relationship between the 

structural myelin networks and MEG connectivity in all frequency bands. Interestingly, 

the pattern of correlations also appeared to demonstrate a depth specific pattern (Figure 

6.3). In the delta, theta, alpha and beta bands stronger correlations were found between the 

myelin covariance matrices at deeper cortical depths and MEG functional connectivity 
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networks. In both the low and high gamma bands the strongest correlations were also 

found between the MEG functional networks and the myelin structural networks sampled 

at deeper cortical depths, however these relationships were weaker than those observed for 

the other frequency bands investigated in this study. Given the large number of data points 

the p-values in this analysis were very small (<0.0001 in the majority of cases) and thus the 

results of the bootstrap test were examined to establish the robustness of the observed 

correlations. 

Significantly, the results of the bootstrapping procedure pointed to the robustness of  these 

relationships. For all frequency bands and cortical depths, the 95% confidence intervals did 

not contain 0. 
 
 

 
Table 6.2: Correlations between the Myelin structural covariance matrix and MEG connectivity at 

each of the 7 cortical depths investigated in this study. Depth 1 is located the  most superficially in 

the cortex, whereas depth 7 is the closest to the grey matter/white matter border. 
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Figure 6.3: Figure showing the correlations between delta resting state networks and networks of 

myelin structural covariance sampled at different cortical depths. Depth 1 is  located the most 

superficially in the cortex, whereas depth 7 is the closest to the grey matter/white matter border. 

 

Figure 6.4: Figure showing the correlations between theta resting state networks and networks of 

myelin structural covariance sampled at different cortical depths. Depth 1 is  located the most 

superficially in the cortex, whereas depth 7 is the closest to the grey matter/white matter border. 
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Figure 6.5: Figure showing the correlations between alpha resting state networks and networks of 

myelin structural covariance sampled at different cortical depths. Depth 1 is located the most 

superficially in the cortex, whereas depth 7 is the closest to the grey matter/white matter border. 

 

 

Figure 6.6: Figure showing the correlations between beta resting state networks and networks of 

myelin structural covariance sampled at different cortical depths. Depth 1 is located the most 

superficially in the cortex, whereas depth 7 is the closest to the grey matter/white matter border. 
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Figure 6.7: Figure showing the correlations between low gamma  resting state networks and 

networks of myelin structural covariance sampled at different cortical depths. Depth 1 is  located 

the most superficially in the cortex, whereas depth 7 is the closest to the grey matter/white matter 

border. 

Figure 6.8: Figure showing the correlations between high gamma resting state networks and 

networks of myelin structural covariance sampled at different cortical depths. Depth 1 is located 

the most superficially in the cortex, whereas depth 7 is the closest to the grey matter/white matter 

border. 
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In Figure 6.9 visual representations of  examples of the depth-specific structural 

covariance matrices can be observed. In these matrices the cortical regions in the Desikan-

Killian atlas are plotted along both the X and Y axes. Each element in the matrices denotes 

the cross-subject correlation in R1 values between two brain regions.    

Figure 6.10 shows the frequency-specific MEG connectivity matrices. In these matrices 

the cortical regions in the Desikan-Killian atlas are plotted along both the X and Y axes. 

Each element in the matrices represents the amplitude coupling between two brain 

regions. 

 From a visual standpoint it could be suggested that depth 7 bears the closest similarity to 

the alpha, beta and theta connectivity bands. For example, akin to these MEG matrices, the 

depth 7 structural covariance networks also seem to show a pattern of higher values 

towards the bottom right-hand corner. 
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Figure 6.9: Correlations matrices for 3 of the depths investigated in this study. Depth 1 represents 

the most superficial cortical depth investigated, depth 4 represents the middle cortical depth and 

depth 7 represents the deepest cortical depth. In these matrices the cortical regions in the 

Desikan-Killian atlas are plotted along both the X and Y axes. Each element in the matrices 

denotes the cross-subject correlation in  the z-scored R1 values between two brain regions. The 

colour bar shows the Pearson’s correlation coefficient (r-value). Note that although the Desikan 

atlas incudes 68 nodes, only 58 are shown here as some nodes were removed from the R1 analysis 

for quality control purposes. 

 

Depth 1 SCN Depth 4 SCN 
R-val R-val 

R-val 
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Figure 6.10: Correlations matrices for the six MEG frequency bands investigated in this study. In 

these matrices the cortical regions in the Desikan-Killian atlas are plotted along both the X and Y 

axes. The individual entries in these matrices represent the amplitude correlation coefficients 

between nodes in the Desikan-Killian atlas, which have been  converted to variance-normalised Z-

scores using a Fisher Z transform. The colour bars  thus show the Z-score values. Note that for 

comparison purposes akin to the myelin matrices, although the Desikan atlas incudes 68 nodes, 

only 58 are shown here as some nodes were removed from the R1 analysis for quality control 

purposes. 

Z-score 
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R1 difference matrices and MEG networks 

 

In all frequency bands the relationship between the R1 difference matrices and MEG 

connectivity matrices was found to be negative (see Table 6.3). Thus, regions with more 

similar myelin content demonstrated higher functional connectivity. In the delta band, the 

strongest correlation was found between the MEG Networks and the R1 difference 

matrices sampled at lower cortical depths. 

In the theta band the relationship was strongest between the R1 difference matrices at 

depths 2 and 7 and the MEG connectivity network. In the beta band the relationship was 

strongest between the R1 difference matrices sampled at both superficial and deep cortical 

depths with a notable weakening of this relationship at mid-cortical depths. A similar 

pattern was also observed in the alpha band. 

In the low gamma band, the strongest correlation was found with the R1 difference  

matrices at mid cortical depths. Similarly, in the high gamma band the strongest 

correlation was also found with the R1 difference matrices sampled at superficial-mid 

cortical depths. 

Again, given the large number of data points the p-values observed in this analysis were 

very small (<0.0001 in the majority of cases). However, the bootstrapping procedure 

revealed that the relationships between the R1 difference matrices derived  from each of 

the cortical depths investigated and the delta, theta, beta, and gamma bands were robust as 

the 95% confidence intervals did not contain zero. 

However, in the case of the alpha band, only weak relationships were observed. 

Furthermore, these relationships were not significant when correcting for multiple 

comparisons ( p=0.05/7=0.007), except for in the case of depths 1 and 2. 
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Table 6.3: Correlations between the R1 difference matrices and MEG connectivity at each of the 7 

cortical depths. Depth 1 is located the most superficially in the cortex, whereas depth 7 is the 

closest to the grey matter/white matter border. 
  

 

Figure 6.11: Figure showing the correlations between delta resting state networks and R1 

difference matrices sampled at cortical depths 1-7. Depth 1 is located the most 

superficially in the cortex, whereas depth 7 is the closest to the grey matter/white matter 

border. 
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Figure 6.12: Figure showing the correlations between theta resting state networks and R1 

difference matrices sampled at cortical depths 1-7. Depth 1 is located the most superficially in the 

cortex, whereas depth 7 is the closest to the grey matter/white matter border. 

 

Figure 6.13: Figure showing the correlations between alpha resting state networks and R1 

difference matrices sampled at cortical depths 1-7. Depth 1 is located the most superficially in the 

cortex, whereas depth 7 is the closest to the grey matter/white matter border. 
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Figure 6.14: Figure showing the correlations between beta resting state networks and R1 

difference matrices sampled at cortical depths 1-7. Depth 1 is located the most superficially in the 

cortex, whereas depth 7 is the closest to the grey matter/white matter border. 

 

 

Figure 6.15: Figure showing the correlations between low gamma resting state networks and R1 

difference matrices sampled at cortical depths 1-7. Depth 1 is located the most superficially in the 

cortex, whereas depth 7 is the closest to the grey matter/white matter border. 
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Figure 6.16: Figure showing the correlations between high gamma resting state networks and R1  

difference matrices sampled at cortical depths 1-7. Depth 1 is located the most superficially in the 

cortex, whereas depth 7 is the closest to the grey matter/white matter border. 
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Figure 6.17: R1 difference matrices for 3 of the depths investigated in this study. These matrices 

were  generated by calculating the absolute difference in the z-scored  R1 values for each pair of 

nodes in the Desikan-Killian atlas. The colour bars thus show the difference in the z-scored R1 

values. High values in this matrix therefore indicate node pairs that show large differences in their 

R1 values while values closer to zero indicate node pairs with more similar R1 values. Although 

the Desikan atlas  incudes 68 nodes, only 58 are shown here as some nodes were removed from the 

R1  for quality control purposes. 

Depth 7 Difference Matrix 

Depth 1 Difference Matrix Depth 4 Difference Matrix 

R1 difference  

( Z-score values) 

R1 difference  

( Z-score values) 

R1 difference  

( Z-score values) 
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Strength Analysis 

 

Spatial Similarity 

 
As depicted in Figures 6.18 and 6.19 it is evident that the spatial pattern of R1 sampled 

deep in the cortex demonstrates greater similarity with the spatial pattern of MEG 

connectivity strength in the theta, alpha and beta bands than does that of R1 sampled  

more superficially. 

Conversely, in both the low and high gamma bands the opposite relationship is observed 

with the spatial pattern of superficial R1 demonstrating greater similarity  with the spatial 

pattern of MEG connectivity strength in the gamma bands. 
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Figure 6.18: Circle plots demonstrating the Depth-specific R1 distributions for depths 1-7. Depth 

1 is the most superficial, whereas depth 7 is the closest to the grey matter/white matter border. 

Each bar in the circle plots depicts the amplitude of the Z-scored R1 values of each node in the 

Desikan-Killian atlas. The regions with the  highest R1 values are depicted in Red. The Desikan-

Killian atlas areas are split into left and right and grouped around the plot as  follows from top to 

bottom: cingulate cortex (top), frontal regions, insula, temporal lobe, sensorimotor regions, 

parietal, occipital cortex and precuneus (bottom). 

Depth 1 Depth 2 

Depth 3 Depth 4 

Depth 5 Depth 6 

Depth 7 
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Figure 6.19: Circle plots demonstrating the patterns of Node connectivity strength for all MEG 

frequency bands. Each bar in the circle plots depicts the amplitude of the strength of each node in 

the Desikan-Killian atlas. The regions with the  highest connectivity strength are depicted in Red. 

The Desikan-Killian atlas areas are split into left and right and grouped around the plot as  

follows from top to bottom: cingulate cortex (top), frontal regions, insula, temporal lobe,  

sensorimotor regions, parietal, occipital cortex and precuneus (bottom). 
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Myelin and MEG-derived functional Connectivity Strength 

 

When correcting for multiple comparisons (threshold of 0.05 corrected for multiple 

comparisons across depths p-value =0.05/42 = 0.0071) significant positive correlations 

were found between connectivity strength and R1 in the theta, alpha and  beta frequency 

bands at the deeper cortical depths, where these relationships were the strongest (see Table 

6.4 and Figures 6.21-6.23). However, in the delta band, non-significant positive 

correlations were found between connectivity strength and R1 at all cortical depths 

investigated (see Table 6.4 and Figure 6.20). 

In the low-gamma band a significant positive correlation was found between connectivity 

strength and R1 sampled superficially in the cortex (depth 1), see Figure 6.24. Finally, 

when considering the high-gamma band the strongest relationship was again found  with 

the more superficial cortical depths, with a significant correlation documented between R1 

values at depth 1 and MEG connectivity strength (see Table 6.4 and Figure 6.25). 
 

 
Table 6.4: Correlations between R1 (myelin) and MEG connectivity strength at the 7 different 

cortical depths. Depth 1 is located the most superficially in the cortex, whereas depth 7 is the 

closest to the grey matter/white matter border. 
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Figure 6.20: Figure showing the correlations between  Delta connectivity strength and R1 values 

sampled at different cortical depths. Depth 1 is located the most superficially in the cortex, 

whereas depth 7 is the closest to the grey matter/white matter border. 

 

 

Figure 6.21: Figure showing the correlations between Theta connectivity and R1 values sampled 

at different cortical depths. Depth 1 is located the most superficially in the cortex, whereas depth 7 

is the closest to the grey matter/white matter border. 
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Figure 6.22: Figure showing the correlations between Alpha connectivity strength and R1 values 

sampled at different cortical depths. Depth 1 is located the most superficially in the cortex, 

whereas depth 7 is the closest to the grey matter/white matter border. 
 

Figure 6.23: Figure showing the correlations between Beta connectivity strength and R1 values 

sampled at different cortical depths. Depth 1 is located the most superficially in the cortex, 

whereas depth 7 is the closest to the grey matter/white matter border. 
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Figure 6.24: Figure showing the correlations between Low Gamma connectivity strength and R1 

values sampled at different cortical depths. Depth 1 is located the most superficially in the cortex, 

whereas depth 7 is the closest to the grey matter/white matter border. 

 

Figure 6.25: Figure showing the correlations between High Gamma connectivity strength and R1 

values sampled at different cortical depths. Depth 1 is located the most superficially in the cortex, 

whereas depth 7 is the closest to the grey matter/white matter border. 

 

183 Sample 
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Interestingly, a similar pattern to that outlined above is also observed when the myelin 

values were correlated with the connectivity matrices derived from the larger  cohort study 

of 183 participants (see Table 6.5 and Figures 6.26-6.31).  

 

 

Table 6.5: Table depicting the correlations between R1 (myelin) and MEG connectivity strength at 

each of the 7 cortical depths for the cohort of 183 subjects. 

 

 

Figure 6.26: Figure showing the correlations between Delta connectivity strength and R1 values 

sampled at the 7 cortical depths for the cohort of 183 subjects. 
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Figure 6.27: Figure showing the correlations between Theta connectivity strength and R1 values 

sampled at the 7 cortical depths for the cohort of 183 subjects. 

Figure 6.28: Figure showing the correlations between Alpha connectivity strength and R1 values 

sampled at the 7 cortical depths for the cohort of 183 subjects. 
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Figure 6.29: Figure showing the correlations between Beta connectivity strength and R1 values 

sampled at the 7 cortical depths for the cohort of 183 subjects.  

 

Figure 6.30: Figure showing the correlations between Low Gamma connectivity strength and R1 

values sampled at the 7 cortical depths for the cohort of 183 subjects. 
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Figure 6.31: Figure showing the correlations between High Gamma connectivity strength and R1 

values sampled at the 7 cortical depths for the cohort of 183 subjects 
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6.5 Discussion 

 

Despite decades of research, the question of how the unique structure of the brain relates 

to its function, at both the local and network level, remains largely unanswered. However, 

recent advances in neuroimaging are bringing us ever closer to unravelling the precise 

nature of this intricate relationship. By exploiting the high resolution of  7T MRI in 

combination with MEG, here, for the first time, we report evidence of a cortical depth-

dependent relationship between frequency specific oscillatory networks and the cortical 

myeloarchitecture. 

 

The results of our structural covariance analysis revealed evidence of a positive 

relationship between R1 and MEG connectivity in all frequency bands, pointing to the 

existence of a relationship between functional connectivity indexed by oscillatory  

networks and structural connectivity indexed by myelin within the grey matter. 

 

Interestingly, the present study also found that the relationships between the myelin 

structural covariance networks and the frequency specific MEG networks demonstrated a 

depth-specific pattern. Notably, in all frequency bands, stronger correlations were found 

between the myelin covariance matrices at deeper cortical depths and the functional MEG 

networks. Thus, these data suggest that the variation in myelination observed across the 

cortical depth might be of functional significance. 

 

With regards to the relationship between cortical myelination and MEG connectivity 

strength an interesting, and largely concordant, pattern of results was also observed.  In the 

theta, alpha and beta bands we observed a significant positive correlation between MEG 

connectivity strength and R1 sampled at lower cortical depths. Thus, regions with greater 

myelination in deeper layers of the cortex were found to demonstrate higher functional 

connectivity in these frequency bands. This finding adds to a growing body of evidence 

suggesting that an intricate relationship exists between the brain’s microstructure, indexed 

by myelin, and functional oscillatory networks. Our results also revealed that in both the 

high and low gamma bands a significant positive correlation was found between MEG 

connectivity strength and cortical myelination when considering the more superficial 

cortical depths investigated in this study. Notably, this pattern of findings was also broadly 

replicated when the R1 data collected as part of this investigation was correlated with 

MEG strength data derived from a further sample of 183 individuals from a larger cohort 
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study. Whilst further replication in a sample of participants in which both MEG 

connectivity and R1 data are available would be beneficial, this can nevertheless be seen 

to lend considerable weight to the robustness of the findings of this investigation. 

 

In light of these findings, the results of the present study pose a number of important 

questions with regards to not only how but also why some cortical regions might come to 

be more heavily myelinated than others and in what way this might relate to their function 

and connectivity patterns. Notably, the results of the present study also concur with that of 

Hunt et al. (2016) in pointing to a close relationship between the cortical 

myeloarchitecture and electrophysiological networks. As such it can be seen to add to the 

growing body of evidence suggesting that the cortical myeloarchitecture is likely shaped 

to support neural activity and synchrony. 

To date, myelin has been extensively implicated in sub-serving brain communication 

through its ability to help speed nerve conduction (Fields, 2014). However, the majority of 

studies to date have focused on the importance of white matter myelination and its role in 

neuronal synchronisation, with little attention paid to its grey matter counterpart. Yet, 

intra-cortical myelin is also suggested to play a key role in optimizing the timing and 

synchrony of action potentials, a necessity for the optimal functioning of neuronal 

networks (Tardif et al. 2015). As argued by Hunt et al. (2016), given the vital role myelin 

plays in increasing the speed of neural communication in the brain, it is likely that cortical 

myelination may therefore be shaped to support oscillatory networks, allowing these to 

form with greater efficiency. 

 

However, whilst the role of myelin in speeding the conduction of action potentials, a  

factor that could indeed facilitate oscillatory communication and synchrony, remains 

undisputed, other theories regarding the role of myelination in the cortex have been 

suggested. For example, Braitenberg (1968) suggested that a principle motivation for the 

myelination of axons in the cortex may be to prevent the formation of aberrant synaptic 

connections given that new connections cannot be formed on already myelinated axons. 

Furthermore, myelination has been shown to suppress synaptic plasticity by inhibiting 

neurite growth (Lozano, Schmidt & Roach, 1995; Thallmair et al., 1998). Thus, it has been 

suggested that heavily myelinated regions may be less plastic than their lightly myelinated 

counterparts. A key piece of evidence in support of this assertion, pointed to by Glasser et 

al. (2014), comes from observations of congenitally blind patients whose primary visual 
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cortices also show an important myeloarchetonic feature, the highly myelinated stria of 

Gennari. This suggests its development is independent of visual experience, it does not 

require such experience to be maintained, and is thus not strongly influenced by plasticity 

(Trampel et al., 2011). Hence, there may be additional benefits to myelination in the 

cortex that may be of relevance to understanding the contribution of cortical myelination 

to the function of cortical areas and in particular their microcircuitry and connectivity 

patterns. Additional research is required to further explore these intriguing possibilities. 

 

Regardless, the results presented here can be taken to suggest that higher myelination  is 

likely an adaptation designed to facilitate oscillatory connectivity between brain regions. 

However, it is also true that in addition to myelinated tangential intra-cortical axons, it is 

possible that more densely connected regions may also have a greater proportion of radial 

fibres originating from the white matter. Naturally, this would also increase the 

concentration of myelin in such regions. Hence, this might also have contributed to the 

observed relationship between connectivity strength and myelination to some extent. 

Further work encompassing histology-based investigations of the relative proportions of 

myelinated radial and axial fibres in the cortex may have the potential to shed further light 

on the contributions of particular axonal populations to the R1 values measured in the 

cortex. Similarly, with continued advances in diffusion imaging methods targeting the 

visualisation of the cortex (Balasubramanian et al., 2020) it might also be feasible to one 

day utilise high-resolution diffusion acquisitions to explore and disentangle the 

contributions and origins of the various fibre populations in the cortex. 

 

A further possibility explored by the present study is that microstructural similarity might 

also be a driver of connectivity, and thus, regardless of the absolute concentration of 

myelin, connections may preferentially occur between regions with  a similar myelin 

distribution. In support of this, we found evidence suggestive of a relationship between 

microstructural similarity and connectivity. In the delta, theta beta and gamma bands, 

significant negative correlations were found between the connectivity matrices and R1 

difference matrices sampled at each of the cortical depths. Similarly, significant negative 

relationships were found between alpha networks and the R1 difference matrices at the 

majority of cortical depths. Thus, regions with more similar intracortical R1 (myelin) 

showed higher functional connectivity than did regions that differ in their intracortical R1 

values. Furthermore, these relationships also demonstrated a depth-specific pattern. For 
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example, there was a stronger correlation between oscillatory networks in both the low 

and high gamma bands and the R1 difference matrices sampled from mid- superficial 

regions of the cortex compared to those sampled deep in the cortex. 

 

These findings echo that of a previous study by Huntenberg et al. (2017) that used fMRI in 

combination with T1 imaging and found that regions with similar myelin content showed 

higher functional connectivity. Our findings can be seen to further support the idea that 

microstructural similarity may enhance communication between brain regions or may at 

least be predictive of this. Intriguingly, a growing number of studies are now also 

beginning to look at the development of the cortical myeloarchitecture. This provides a 

unique opportunity to explore the possibility that common patterns of myelination may be 

related to shared developmental trajectories and experiences during development, which 

might in turn facilitate both the formation of and communication within cortical networks. 

 

For more than a century the existence of waves of myelination in the brain have been 

hypothesised, with the early writings of Flechsig (1901) proposing that rather than 

developing simultaneously across brain regions, cortical myelin instead develops in a 

succession of stages. For example, heavily myelinated areas such as the primary sensory 

and motor areas typically myelinate earlier than the more lightly myelinated association 

areas (Glasser and Van Essen, 2011). Utilising an impressive sample of 484 participants, 

aged 8-85 years, a further study by Grydeland et al. (2019) also documented evidence of 

waves of intracortical myelinogenesis. In this study early maturing regions were again 

largely identified as the heavily myelinated primary motor and sensory cortices, whereas 

later maturing regions were chiefly association, limbic and insular cortices. Furthermore, 

these changes have also been demonstrated at the level of the cortical laminae with 

specific changes in myelination having been reported during adolescence (Paquola et al., 

2019). 

 

Intriguingly, it is notable that sensory regions, known to show high myelin concentrations 

and similar developmental trajectories, typically dominate networks in the alpha and beta 

bands. This raises the possibility that the development of cortical myelination may have a 

profound effect on the development of oscillatory networks in the brain and vice versa, 

again pointing to the close relationship between the cortical myeloarchitectural and neural 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795824/#R33
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activity. Further studies employing longitudinal assessments of the development of 

oscillatory networks and the cortical myeloarchitectural will be of great benefit to further 

exploring this possibility. 

 

The results of all three analyses presented in the current investigation further extend 

previous work to show that the relationship between the cortical myeloarchitecture and 

oscillatory networks follows a depth-specific pattern. The findings of the present study 

therefore point to the importance of considering how the microstructure of the cortex 

varies with cortical depth. This work can thus be seen to have important implications, 

particularly in the context of attempts to link the cortical microstructure to its functional 

dynamics. Significantly, our finding of a depth specific relationship between cortical 

myelin and oscillations supports the results of animal studies suggesting that lower 

frequency oscillations including alpha and beta, originate from deeper layers of the cortex 

(Bonaiuto et al., 2018; Michalareas et al., 2016; Scheeringa, & Fries, 2017; Buffalo et al., 

2012). On the basis of this evidence these different frequencies have been ascribed 

specific functional roles within the brain. Specifically, lower frequency oscillations, 

originating from the infragranular layers of the cortex, have been implicated in top-down 

feedback communication within the brain. Whereas higher frequency signals arising from 

the supragranular layers have been implicated in bottom-up feedforward communication 

(Michalareas et al., 2016) . 

In humans, evidence for this theory has been obtained largely indirectly, however recent 

MEG studies have attempted to investigate this laminar specific hypothesis non-invasively 

utilising modelling approaches in combination with improvements in SNR gained through 

the use of subject specific head masks (Bonaiuto et al.,2018). However, it should be noted 

that much of the evidence to date, in both human and animal models alike, has focused on 

primary sensory and sensory motor regions of the brain (Bonaiuto et al., 2018). The results 

presented here support the findings of previous studies suggestive of a laminar pattern of 

frequency specific communication in the brain whilst further suggesting that this pattern 

likely extends to networks across the brain. 

 

Significantly, abnormalities in myelin, oscillatory dynamics, connectivity, and laminar-

specific microstructural parameters have all been extensively implicated in a wide array of 

clinical conditions. The present study can therefore be seen to provide an interesting 

framework to investigate clinical populations. For example, the demyelination of cortical 
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grey matter observed in patients with MS is thought to impact cognitive functioning by 

disturbing the co-ordinated interaction between neurons both within and across brain 

areas. Schoonhoven et al. (2018) showed that slowing of neuronal activity, particularly in 

the alpha band, as measured by resting-state MEG, correlated with cognitive impairment 

in patients with MS. However, in such studies the cortical myeloarchitecture was not 

investigated. 

 

Thus, applying the approach of the present study to investigate the relationship between 

the cortical myeloarchitecture and oscillatory networks in conditions such as MS could 

have the potential to provide valuable new insights into the pathophysiology of such 

conditions. 

 

That said, there are a number of limitations regarding the present study that must be take 

into consideration. In particular, it should be noted that the myelin estimates in this study 

were based on the measurement of T1 which is an indirect measure of myelin. 

Accordingly, these results should be interpreted with caution. Validation against 

histological data has shown that cortical T1 contrast is reflective of its myelin content, 

however it should be noted that iron has also been shown to contribute to T1 contrast in 

the cortex (Stuber et al., 2014). Thus, it is possible that our T1 estimates may also reflect 

the degree of intracortical iron to some extent. However, given that myelin and iron are 

typically strongly co-localised in the cortex, it has been argued that independent of the 

exact contribution of iron and myelin, T1 can be justified as largely reflecting the 

distribution of intracortical myelin (Huntenburg et al., 2017). Moreover, in contrast to 

several other approaches quantitative T1 has been shown to demonstrate the highest 

intrasubject and intersubject reliability with regards to mapping intracortical myelin (Haast 

et al. 2016). 

 

It is also of note that in this study the right hemisphere ROIs showed higher R1 than their 

left hemisphere counterparts. However, rather than reflecting a true hemispheric 

asymmetry in cortical myelination this is likely to have been driven by variation in cortical 

thickness. In line with previous investigations (e.g. Luders et al., 2006), participants in this 

study displayed a pattern of greater cortical thickness in the left hemisphere compared to 

the right hemisphere. Furthermore, we also noted a negative correlation between cortical 

thickness and R1 in this dataset. Thus, it may be speculated that the greater R1 values in 

the right hemispheres ROIs in this study may in fact have been driven by hemispheric 
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differences in cortical thickness. The thinner cortex in the right hemisphere may have led 

to increased partial voluming with the white matter surface and thus the placement of the 

surfaces deeper in the cortex in the right hemisphere. This would explain why higher R1 

values were observed in the right hemisphere ROI’s. 

 

In this study we also chose to use the Desikan-Killian atlas to parcellate our datasets. The 

Desikan-Killian atlas consists of 68 cortical regions and can thus be seen to provide a 

relatively small number of regions, especially given the high resolution of our MR 

datasets. However given the much lower spatial resolution of our MEG datasets it would 

likely prove challenging to adopt a finer parcellation scheme and thus it is important to 

strike a balance between the capabilities of each technique in the context of multi-modal 

imaging approaches such as this.  

 

Finally, performing an un-biased statistical analysis on the results outlined in this chapter 

presents a significant challenge. Indeed, given the large number of data points the p-values 

presented for the structural covariance and R1 difference analysis are essentially 

meaningless and thus confer little information with regards to the significance of the 

correlation values. Other statistical approaches such as the use of randomisation tests to 

estimate a null distribution are also fraught with challenges in this context given that 

attempts to randomise the MEG or Myelin correlation matrices destroys their structure 

rendering any such analysis inherently biased. Thus, investigating possible alternative 

approaches for determining statistical significance  in the context if the analyses presented 

here will necessarily be a key focus for future investigations.  

 

In conclusion, the present study demonstrates, for the first time, non-invasive evidence of 

a depth specific relationship between oscillatory networks and the cortical 

myeloarchitecure in humans. These results can be seen to demonstrate the value of 

considering how the microstructure of the cortex varies with cortical depth given that this 

might have important implications for attempts to investigate the relationship between 

brain structure and function. Ultimately, this research might also pave the way for a 

greater understanding of the pathophysiology of clinical conditions in which myelin 

abnormalities and aberrant connectivity are implicated. 
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Chapter 7 

General Discussion 

The principle aim of this thesis was to explore the relationship between cortical 

myelination and neural oscillatory dynamics. To this end we leveraged high resolution 7T 

MRI in combination with a variety of MEG paradigms, in order to investigate the 

relationship between R1 (1/T1), an MRI-derived proxy for cortical myelination, and 

oscillatory dynamics. This relationship was explored at both the local level, in the primary 

visual and auditory cortices, and using a whole brain network-based approach. In this 

chapter the main findings of this thesis and their interpretation and limitations are 

discussed. Finally, we look forward to possible future avenues of research. 

 

 
7.1 Summary of findings 

 

In Chapter 3 of this thesis we investigated the relationship between the amplitude of 

visual gamma oscillations and myelination (R1) of the primary visual cortex. We did not 

find evidence of a significant positive correlation between gamma amplitude and R1 as 

hypothesised. However, the results of our analysis of the relationship between the full 

frequency spectra and our myelin estimates were certainly intriguing. More specifically, 

we found evidence of a relationship between superficial myelin content and gamma 

oscillations occurring at a frequency of approximately 40 Hz. Furthermore, in the baseline 

period, the strongest correlations were found between lower frequency beta activity (~15-

20  Hz) and R1 values sampled deep in the cortex. 

In Chapter 4 we explored the relationship between visual gamma oscillatory dynamics 

and cortical myelination further through the use of a neurophysiologically informed 

modelling approach (DCM). The aim of this chapter was to harness the greater specificity 

of this computational modelling approach to probe the potential existence of a relationship 

between cortical myelin and specific aspects of the cortical microcircuitry involved in the 

generation of visual gamma oscillations. We did not find evidence of a significant 

relationship between any of the DCM model parameters and our myelin estimates at any 

of the cortical depths investigated in this 
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study. However, there were some interesting trends observed in the data. For example, the 

relationship between the peak gamma amplitude derived from the DCM model and R1 

was found to be positive and was also strongest at more superficial cortical depths. 

Furthermore, a trend towards a negative correlation between the beta peak frequency and 

superficial cortical myelin estimates was also observed. 

In Chapter 5 of this thesis, we moved beyond the visual cortex and explored the 

relationship between gamma auditory steady state responses (ASSRs) and myelination of 

the primary auditory cortex. Again, we were not able to detect statistically significant 

relationships between our myelin estimates and the amplitude of gamma band ASSRs. 

However, a trend indicative of a positive correlation between the amplitude of the ASSR 

and cortical myelination, particularly at lower cortical depths, was observed. 

The aforementioned chapters explored the relationship between oscillatory dynamics  and 

cortical myelination in local regions of interest, namely the primary visual and auditory 

cortices. However, in the final experimental chapter of this thesis, Chapter 6, we explored 

the relationship between cortical myelination and oscillatory dynamics at the network 

level. In this chapter we investigated, for the first time, the relationship between depth 

specific estimates of intra-cortical myelin and functional oscillatory networks. Notably, we 

were able to demonstrate the novel finding of a cortical depth-dependent relationship 

between cortical myelin and frequency-specific resting-state MEG networks. 

 

 
7.2 Interpretation 

 

Taken together the results of this thesis can be seen to raise some interesting questions 

with regards to the relationship between MEG oscillatory dynamics and the cortical 

myeloarchitecure. In Chapters 3 and 4, we did not replicate Helbling et al’s (2015) finding 

of a significant positive correlation between MEG derived electrophysiological responses 

and cortical myelin content, at least in the case of peak amplitude estimates. However, this 

could be interpreted as an interesting finding in and of itself. Although some interesting 

trends were observed, these did not survive appropriate correction for multiple 

comparisons. As discussed in Chapter 3, there are methodological factors at play that 

might have influenced this null finding. Nevertheless, it is interesting to note that whilst 

our investigation focused on the visual cortex and oscillatory dynamics thereof, auditory 

evoked response fields and thus auditory cortical areas were the substrate of interest in the 
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investigation by Helbing et al. (2015). Thus, one potential interpretation of our findings is 

that they might speak to the presence of inherent differences in the mechanisms of 

generation of these two distinct types of neural activity and/or a different coupling of 

structure and function in these areas. 

The results of Chapter 3’s whole spectra analysis did point to a potential relationship 

between lower frequency gamma activity, occurring at approximately 40 Hz, and 

myelination of primary visual cortex. Interestingly, activity around 40 Hz has been 

proposed to represent a resonance frequency, at least in the case of the auditory cortex. 

Furthermore, in Chapter 5 of this thesis we were able to observe a trend indicating a 

potential relationship between low gamma ASSRs, occurring at around 40 Hz and cortical 

myelination. Thus, taken together, the results of Chapters 3 and 5 converge to suggest that 

40 Hz activity in particular might be related to the cortical myeloarchitecture. The findings 

of Chapters 3 and 5 regarding 40 Hz activity  can also be seen to be of particular pertinence 

given that 40 Hz activity is slowly emerging as being of special neurological importance 

(McDermott et al., 2018). In Chapter 5 of this thesis the fact that 40 Hz ASSRs have been 

extensively implicated in a wide array of psychiatric  disorders including schizophrenia 

(Thuné, Recasens, & Uhlhaas, 2016) and autism was discussed (Seymour et al., 2020). 

Activity at 40 Hz has also been the subject of increasing attention of late, owing to the 

emergence of a novel therapeutic technique. This involves light stimulation at 40 Hz 

which has been found to reduced amyloid levels in mouse models of Alzheimer’s disease. 

For example, using optogenetics and a non-invasive light flicker treatment Iaccarino et al. 

(2016) found that gamma frequency entrainment at 40 Hz, but not at other frequencies, led 

to a noticeable reduction in amyloid beta peptides in multiple mouse models and was also 

accompanied by increased microglia activity. Although much future work is needed to 

uncover the meaning of these results, and indeed how they might translate to humans, 

results such as these are certainly interesting. 

 

In sum, the results presented in this thesis, and their suggestion of a potential relationship 

between gamma frequency activity at ~ 40 Hz and cortical myelin content, could 

ultimately be of great clinical relevance. Thus, further replication of the trends reported 

here is definitely warranted. 

A key achievement of the present thesis was the novel finding, documented in Chapter 6, 

of a cortical depth-dependent relationship between oscillatory MEG networks and intra-

cortical myelin. Akin to Hunt et al., (2016) we speculate that one  interpretation of this 
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finding is that the cortical myeloarchitecture may be shaped in order to facilitate 

oscillatory communication between brain regions. Moreover, our results go one step 

further to suggest that this relationship also extends to the level of individual cortical 

layers. Similarly, Chapters 3-5 of this thesis also provide some indication of depth 

specificity to the observed effects. Thus, the results of this thesis can be seen to have 

important implications for other research in this field and point to the importance of 

considering the rich variability of the microstructural patterns observed across the cortical 

depth, rather than treating it as a uniform whole. 

 

 
7.3 Limitations and Methodological considerations 

 

Study specific methodological limitations are discussed within each experimental chapter 

of this thesis. However, in this section we provide a more general overview of some of the 

key methodological considerations that may be deemed particularly pertinent to the 

experiments conducted in this thesis. 

Samples and Statistics 

 
A significant limitation of the investigations employed in this thesis is their reliance on 

correlational methods. Consequently, it is not possible to draw conclusions about causal 

relationships between the variables investigated in the experiments presented here. 

Furthermore, as highlighted in Chapters 3, 4 and 5, our sample size was somewhat limited. 

Thus, it is likely that we may have been underpowered to detect statistically significant 

relationships. Compounding this issue is the fact that we employed a sample of healthy 

young adults, in which variations in cortical myelin content are highly likely to be subtle. 

Thus, it will be important for future studies to consider employing larger samples sizes. 

Finally, it will likely also be of benefit to explore the relationship between cortical myelin 

and oscillatory dynamics in a population in which myelin abnormalities are known to be 

present, in addition to a healthy control group. In such a population, larger inter-individual 

differences in cortical myelination are likely to be present, thus providing greater potential 

to explore how such differences might relate to functional oscillatory dynamics. 

Furthermore, in the context of such a group comparison, the ability to draw upon 

potentially more powerful statistical methods, rather than correlation-based analyses, 

would be a possibility. 
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Cortical parcellation schemes 

 

In this thesis we chose to use the Desikan atlas, included in the Freesurfer software 

distribution, in order to define our regions of interest. The Desikan atlas consists of a total 

of 68 regions (34 for each hemisphere). In light of the high-resolution of our datasets it 

might therefore be argued that utilising a finer parcellation scheme than this would have 

allowed for a more accurate and precise delineation of our regions of interest. This point 

can be seen as of particular pertinence when considered in light of the fact that studies of 

the cortical myeloarchitecture have distinguished approximately 200 different cortical 

areas (Nieuwenhuys, 2013). In addition to adopting a finer parcellation scheme, it might 

also have been of benefit to utilise an atlas explicitly derived from the myeloarchitecture 

in order to ensure that our myelin estimates follow true myeloarchitectural boundaries. 

Prior studies have previously shown the utility of such an approach. For example, utilising 

a multi-modal imaging approach that incorporated analysis of the cortical myelin content 

Glasser et al., (2016) produced a population based cortical parcellation consisting of 180 

areas per hemisphere. 

However, the mismatch in spatial resolution between our high-resolution MRI images and 

MEG data presents a significant challenge in this respect. Indeed, whilst MEG possesses 

excellent temporal resolution, on the order of milliseconds, its spatial resolution is more 

limited in comparison to what can now be achieved using 7T MRI and is thought to 

approach only a few millimetres. That said, recent methodological developments may hold 

the key to this predicament. In particular, optically pumped magnetometers (OPM’s) 

represent an exciting emerging technology in the MEG field. In contrast to traditional 

MEG systems OPMs can be placed in close proximity to the scalp and thus have the 

potential to boost both sensitivity to neural dynamics, and importantly, spatial resolution 

(Iivanainen, Zetter, & Parkkonen , 2020). 

 

 
Myelin and T1 – a troubled relationship? 

 
The measurement of T1 represents a popular MRI method for investigating cortical myelin 

content in-vivo. However, as with all such MRI-derived measures, it is ultimately an 

indirect measure of myelin. T1 is also known to be sensitive to other aspects of the cortical 
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microstructure including its iron content, which has been found to show strong 

colocalization with myelin in the cortex (Fukunaga, et al., 2010). 

It is also notable that large variations in T1 values have been reported in the literature 

(Stikov et al., 2015), even in instances where similar methods have been used. As argued 

by Rioux, Levesque, & Rutt (2016) this raises the troubling prospect that there might be 

some further sources of variability contributing to the measurement of T1 that are as yet 

unaccounted for. 

In this thesis we chose to use the MP2RAGE sequence in order to derive high- resolution 

T1 maps of the cortex. This decision was largely driven by the suitability of this technique 

for use at high field and its ability to produce high-resolution T1 maps in feasible 

acquisition times. Although T1 values derived using the MP2RAGE have been shown to 

demonstrate good reproducibility in a number of investigations, including our own, 

concerns have been raised regarding the ability of the MP2RAGE sequence to accurately 

measured T1 due to the effect of magnetisation transfer (MT) which causes biexponential 

relaxation. For example, Rioux, Levesque, & Rutt (2016)  found that assuming a 

monoexponential recovery (as is the case with most T1 measurements) can lead to 

parameter-dependent variability in T1 especially when imaging at 7T. 

While Rioux, Levesque, & Rutt (2016) propose corrections that can be applied to mitigate 

this problem, these are not applicable to the MP2RAGE in its current form given that it 

relies on only two points to characterise the T1 curve and thus cannot characterise the 

biexponential recovery that occurs due to the presence of multi-compartment tissue types 

(Marques, & Norris, 2018). Consequently, depending on the particular sequence 

parameters used, such as the inversion times, there might be a variable contribution of 

different tissue compartments to the estimated T1 values (Marques & Norris, 2018). 

Importantly, the study by Rioux, Levesque, & Rutt (2016) outlined above, focused on 

estimates of T1 in the white matter, which would be expected to have a larger MT effect 

given that higher MT effects are typically found in the white matter as compared to the 

grey matter (Tofts, Steens & van Buchem, 2003). However, previous reports have 

documented evidence of biexponential longitudinal relaxation in the cortical grey matter 

(e.g. Prantner et al., 2008). Thus, it may be of value to investigate the potential effects of 

biexponential recovery in the grey matter on T1 estimates derived using the MP2RAGE. 

Were such effects to be found, this is likely to have a particular impact on comparison of 

T1 values derived using different acquisition protocols. The points raised here can be seen 
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to speak to the fact that T1 maps derived using the MP2RAGE may exhibit greater 

precision than accuracy (Marques, & Norris, 2018). 

There continues to exist an ongoing debate within the neuroimaging field regarding which 

MRI measure might provide the most accurate assessment of the brain’s myelin content. 

Nevertheless, it is possible that other MRI methods, such as qMT, may show greater 

specificity to cortical myelin. Indeed, a recent meta-analysis of quantitative MRI-histology 

comparisons by Mancini et al. (2020) found that the myelin proton fraction (MPF) and 

myelin water fraction (MWF) tended to be more specific to myelin than the other 

measures investigated, with coefficient of determination values of 0.7657 and 0.6997 

respectively (Mancini et al., 2020). T1 was found to have the next highest coefficient of 

determination at 0.5321. It is somewhat unsurprising that the strongest values were found 

for the MPF and MWF in this investigation as theoretically speaking, they should be more 

specific to myelin. However, akin to the other methods investigated, even these metrics 

showed fairly large prediction intervals, calling into question the robustness of these 

measures and thus their validity as a true myelin biomarker. Consequently, the authors 

conclude that there is still much work to be done with regards to determining the 

specificity of MR measures (Mancini et al., 2020). 

A further meta-analysis of histological validation studies of MRI-derived myelin measures 

by Lazari, & Lipp (2020) paints a somewhat similar picture. In this study a number of 

markers including R1 were found to correlate with myelin. However, again the authors 

argue that it is difficult to answer the question as to how the investigated MR measures 

compare to one another with regards to their myelin sensitivity. This is due to the observed 

large degree of heterogeneity in methodologies employed by studies in the field, which 

could have influenced the reported effect sizes. Echoing this sentiment, a further recent 

review of available MRI methods came to the rather sobering conclusion that due to the 

lack of reproducibility studies and available data from animal and ex-vivo studies, 

reaching a definitive conclusion and recommendation regarding the optimal MRI method 

for quantifying myelin in the brain is not currently feasible, or indeed advisable (van der 

Weijden et al., 2020). 

In sum, although demonstrated to be highly reproducible, MP2RAGE and indeed T1 

measurements more broadly may be argued to possess a number of limitations with 

regards to their ability to accurately quantify myelin content in the brain. However, as 

outlined above, all in-vivo MRI derived measures of cortical myelin are by their very 

nature indirect and thus we must rely on histological validation in order to assess their 
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utility as a myelin biomarker. Consequently, further validation studies and comparisons of 

the available methods are required. To date myelin abnormalities have been well 

documented in an array of psychiatric and neurological disorders, such as multiple 

sclerosis (MS). Thus, the ability to accurately characterise myelin 

in-vivo is of great clinical significance, highlighting the vital importance of continued 

research in this area. 

Until such a time as a consensus has been reached in the field regarding the most 

appropriate choice of myelin biomarker, adopting multiple myelin sensitive image 

contrasts in MRI acquisitions might be considered a particularly attractive option. Indeed 

Lazari, & Lipp (2020) argue that, for now at least, this might represent the best way to 

verify myelin related hypotheses. Of note, employing multiple myelin markers has been 

shown to provide complementary information, useful in investigations of pathology (Lipp 

et al., 2019). Furthermore, as discussed in Chapter 6 of this thesis, utilising QSM in 

combination with T2* could help to disentangle the contribution of iron from myelin Duyn 

(2017) due to their different magnetic properties. Indeed, it has been demonstrated that 

modelling approaches utilising information from susceptibility values and R2* (combined 

with estimates of myelin content from magnetisation transfer contrast) can allow for the 

quantification of iron and myelin content (Schweser, Deistung, Lehr, Sommer, & 

Reichenbach, 2011). Thus, utilising multiple image contrasts may offer the potential to 

obtain myelin/diamagnetic cortical maps clean of iron/paramagnetic contributions (and 

vice versa) (Marques, Khabipova, & Gruetter, 2017). 

 

 
7.4 Future research directions 
 

The results of this thesis point to a number of exciting future avenues of research. In 

particular, given that both myelin abnormalities and aberrant oscillatory dynamics have 

been widely implicated in a variety of psychiatric disorders, such as schizophrenia, 

adopting the methods employed here to investigate the relationship between cortical 

myelin and oscillatory dynamic in such populations has the potential to provide further 

insights into the pathophysiology of such conditions. 

Similarly, as discussed in Chapter 6, the cortical myeloarchitecture undergoes profound 

changes during childhood and adolescence, with different developmental trajectories of 

cortical myelin evident at the level of both cortical regions and layers (Lebenberg et al., 
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2019; Grydeland et al., 2019; Whitaker et al., 2016; Paquola et al., 2019). In line with the 

results of previous studies, and indeed the findings presented here, suggesting a potentially 

intricate link between cortical myelin and oscillatory dynamics, it may be argued that the 

maturation of cortical myelination is likely of great functional significance. However, no 

studies have yet investigated how the timing of changes in cortical myelin during 

development might relate to oscillatory dynamics, the onset of developmental disorders 

and the acquisition of cognitive milestones. To date, a key barrier to the wider uptake of 

neurodevelopmental studies of oscillatory dynamics has been the lack of suitable 

measurement technologies, given the significant constraints of both EEG (e.g. spatial 

resolution) and MEG (e.g. head size, movement). However, as aforementioned, recent 

years have witnessed the emergence of new, wearable, MEG technologies based on 

optically pumped magnetometers (OPMs). Critically, these devices can be placed closer to 

the scalp surface, increasing sensitivity and are robust to head-movement. Thus, one 

potentially fruitful avenue of research would be to adopt a multi-modal approach similar 

to that utilised here, combining electrophysiological measures (e.g. MEG or  OPMs) of 

neural oscillations with high-resolution MRI imaging of the cortical microstructure, in 

order to investigate structural and functional aspects of brain maturation and the intricate 

relationships between them. Such an approach might ultimately pave the way for greater 

insights into neurodevelopmental disorders and eventually help guide the development of 

effective therapeutic approaches and identify key strategic timepoints for intervention. 

However, crucial to the interpretation of the potential findings of such research, will be 

further experimental explorations with the specific aim of disentangling the multiple 

proposed functional roles of myelin highlighted in the introduction of this thesis. 

 

 
7.5  Concluding Remarks 

 

In conclusion, the principle aim of this thesis was to investigate the relationship between 

the cortical myeloarchitecture and neural oscillatory dynamics, with the goal of gaining 

further insights into these key aspects of brain structure and function. To this end we 

conducted novel investigations of the relationship between depth- specific cortical myelin 

estimates and the morphology of neural oscillations in the primary auditory and visual 

cortices. Significantly in these investigations, we were able to document some trends in 

the data indicative of a relationship between oscillatory activity, particular in the low 
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gamma (~40 Hz) range and cortical myelination. Here, for the first time, we also found 

evidence of depth-dependent relationships between oscillatory networks and cortical 

myelin. Further investigation and replication of the findings presented here in a larger 

sample is needed. 

Furthermore, there are a number of methodological limitations that should be taken into 

consideration when interpreting these findings. Ultimately, the approaches presented in 

this thesis provide a potentially useful framework for investigating the pathophysiology of 

clinical conditions and atypical development and can thus be seen to pave the way for a 

number of exciting avenues of future research. 
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