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Abstract 

Patterns and practices of agricultural expansion threaten the persistence of global 

biodiversity. Wildlife species surviving large-scale land use changes can be exposed 

to a suite of contaminants that may deleteriously impact their health. There is a 

paucity of data concerning the ecotoxicological impacts associated with the global 

palm oil (Elaeis guineensis) industry. We sampled wild Malay civets (Viverra 

tangalunga) across a patchwork landscape degraded by oil palm agriculture in Sabah, 

Malaysian Borneo. Using a non-lethal methodology, we quantified the levels of 13 

essential and non-essential metals within the hair of this adaptable small carnivore. 

We robustly assessed the biological and environmental drivers of intrapopulation 

variation in measured levels. Metal concentrations were associated with civet age, 

weight, proximity to a tributary, and access to oxbow lakes. In a targeted case study, 

the hair metal profiles of 16 GPS-collared male civets with differing space use 

patterns were contrasted. Civets that entered oil palm plantations expressed elevated 

aluminium, cadmium, and lead, and lower mercury hair concentrations compared to 

civets that remained exclusively within the forest. Finally, we paired hair metal 

concentrations with 34 blood-based health markers to evaluate the possible sub-lethal 

physiological effects associated with varied hair metal levels. Our multi-facetted 

approach establishes these adaptable carnivores as indicator species within an 

extensively altered ecosystem, and provides critical and timely evidence for future 

studies. 

 

Keywords: pollution; oil palm plantation; biochemistry; hematology; hair; Malay 

civet 
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1. Introduction  

Habitat fragmentation poses a direct threat to global biodiversity (Crooks et al., 2017). 

In addition to the suite of ecological stressors associated with the loss and degradation 

of natural habitats (Newbold et al., 2015), species face elevated exposure to pollutants 

such as pesticides, heavy metals, endocrine-disrupters, and plastics (Smith et al., 

2007; Zhou et al., 2010). Anthropogenic contaminants from agriculture (Badry et al., 

2021), roads (Marcheselli et al., 2010), hunting (Arrondo et al., 2020), urbanization 

(Bauerová et al., 2017), and mining (Pereira et al., 2006) negatively impact wildlife 

worldwide. Beyond acute poisonings (Finkelstein et al., 2012), sub-lethal 

physiological effects of pollution exposure can undermine the long-term population 

viability of persisting species (Desforges et al., 2018; Köhler and Triebskorn, 2013). 

Thus, the identification, inventory, and dynamic assessment of pollutants within 

human-modified systems are critical to developing and, if necessary, deploying 

mitigation-oriented conservation actions (Peterson et al., 2017).  

 

Inorganic pollutants, specifically heavy metals and metalloids, pose well-documented 

threats to both human and wildlife health (Dietz et al., 2013; Mohmand et al., 2015). 

At the cellular level, exposure can damage genetic material and processes (Harley et 

al., 2016), disrupt central biochemical pathways (Basu et al., 2009), elevate oxidative 

stress (Espín et al., 2014), and interfere with gamete functionality (Ieradi et al., 1996). 

Precipitated systems-level impacts include patterns of immune disruption (Bocharova 

et al., 2013), organ damage (Pereira et al., 2006), and maladaptive behavioural 

modifications (Janssens et al., 2003). Ultimately, metal pollution can affect processes 

such as individual growth and development (Sánchez-Virosta et al., 2018), 
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reproductive success (Dauwe et al., 2004), and population growth rates (Rodríguez-

Estival and Mateo, 2019), which can all impact ecosystem-level functions.  

 

Given these considerations, it is crucial to quantify the presence and biological 

repercussions of metals in regions directly impacted by large-scale land use changes. 

The palm oil (Elaeis guineensis) industry is a primary driver of tropical forest loss 

and fragmentation in some of the most biodiverse regions of the world, and likely 

poses a significant pollution threat to wildlife surviving the extensive landscape 

alterations precipitated by plantation establishment (Fitzherbert et al., 2008; Meijaard 

et al., 2020; Zarcinas et al., 2004). Mechanistically, crop-based practices such as the 

application of agrochemicals and mineral fertilizers (Fairhurst and Härdter, 2003), 

open vegetative burning (Comte et al., 2012), and the construction of irrigation ditch 

networks can inflate local metal concentrations and bioavailability (Sakai et al., 

2017). Following processing, palm oil mill effluent (POME) contains high levels of 

inorganic pollutants (Donald, 2004), and despite regulations requiring the cleaning of 

these materials prior to release into natural watercourses, there are reports suggesting 

adherence to and enforcement of these benchmarks are lacking (McCarthy and Zen, 

2010). To date, there remains a clear paucity of data assessing the ecotoxicological 

threat oil palm agriculture poses to tropical wildlife (Meijaard et al., 2018). Given 

both the current and projected global scale of the industry (Phalan et al., 2013), 

quantitative research is needed to inform effective and mitigation-oriented land 

management strategies.  

 

To assess the in situ risks of environmental pollution, biomonitoring studies 

frequently select a focal organism as an indicator  (e.g. Lazarus et al., 2020; Stankovic 
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et al., 2014). In Southeast Asia, the Malay civet (Viverra tangalunga) represents a 

highly suitable indicator species for evaluating the contamination threats faced by 

wildlife within agriculturally degraded landscapes. The species is a broad dietary 

generalist and holds a high trophic position within the tropical system (Colón and 

Sugau, 2012), characteristics that can elevate the probability of exposure to and 

accumulation of metallic pollutants (Rodríguez-Jorquera et al., 2017). Further, Malay 

civets demonstrate spatiotemporal utilisation of both heavily degraded forests and oil 

palm plantations; indeed, GPS-collared animals concentrate foraging along these 

agricultural edges (Evans et al., 2021). Despite these flexible spatial behaviours, 

intrapopulation variations in blood-based health markers suggest close associations 

with plantations may come at a physiological cost to persisting individuals (Evans et 

al., 2020). There have been no studies evaluating the heavy metal burdens in tropical 

wildlife living alongside oil palm plantations. Given the spectrum of toxic effects 

associated with exposure to heavy metals, it is crucial conservationists assess these 

cryptic risks faced by seemingly adaptable species within threatened landscapes. 

 

Biotic exposure to metallic pollutants is investigated traditionally using either direct 

organ biopsies or specific biomarkers, such as serum enzymes (Alleva et al., 2006). 

More recently, hair has been used as analytical tissue in an increasing number of 

studies, as sampling is non-lethal, markedly less invasive, and hence much easier to 

conduct (Table S1; Chaousis et al., 2018; Pozebon et al., 2017). The structure of hair 

creates a unique and non-specific matrix within which metals are excreted and 

accumulated; metal levels in hair positively correlate with more traditional organ 

concentrations across a range of species (e.g. wood mice Apodemus sylvaticus 

Beernaert et al., 2007; hedgehogs Erinaceus europaeus D’Havé et al., 2006; European 



 7 

rabbits Oryctolagus cuniculus Gil-Jiménez et al., 2020). In addition to the clear 

conservation value of non-lethal sampling, the tissue has several logistical 

advantages; it is minimally invasive to collect, does not necessitate specific health and 

safety training to handle, and does not require cold storage conditions, an aspect 

particularly relevant for field research in remote areas. Furthermore, due to the low 

metabolic activity of hair tissue, it serves as a stable analytical matrix and long-term 

record of metallic excretion (Foo et al., 1993; Mina et al., 2019), in contrast to the 

relatively brief temporal exposure ‘snapshot’ provided by blood or urine samples (Gil 

et al., 2011).  

 

Therefore, we aimed to characterise the first essential and non-essential metal levels 

in the hair of Malay civets captured across a highly degraded agricultural landscape in 

Malaysian Borneo. Through our non-lethal sampling protocol, we sought to establish 

civets as indicator species persisting within and alongside oil palm plantations. We 

robustly quantified the biological and environmental drivers of intrapopulation 

variation in hair metal concentrations. To explicitly evaluate the hypothesis of oil 

palm plantations representing sources of target elements, we deployed GPS collars to 

determine the associations between observed metal levels and agricultural space use 

by tracked civets. Finally, we explored potential sub-lethal physiological implications 

of elevated metal levels by investigating the relationships between hair concentrations 

and haematology and serum biochemistry profiles. Through this multi-facetted 

approach, we aimed to provide ecotoxicological insights into the vulnerability of 

wildlife persisting within landscapes degraded by palm oil production. 

 

2. Materials and methods 
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2.1 Study site 

Our study was based in the Lower Kinabatangan Floodplain in Sabah, Malaysian 

Borneo. The climate of the region is considered humid tropical; temperatures ranged 

from 22°–24°C and mean annual rainfall was 2,680 mm throughout the study period. 

With a total catchment area of 1.68 million ha, the Kinabatangan River is the largest 

river in Sabah (Harun et al., 2015). At least 29 palm oil mills are situated within the 

watershed, and have historically failed to meet water quality discharge standards 

(DOE, 2009). High levels of sedimentation, dissolved organic material, and 

eutrophication have been recorded within the system, and have largely been attributed 

to the extensive agricultural conversion of the lower floodplains (Harun et al., 2015; 

Jawan and Sumin, 2012). The Kinabatangan oil palm estates account for nearly 28% 

of the total oil palm cultivation in the state; the majority of the floodplain has been 

converted to this agriculture (Abram et al., 2014). The remaining patches of natural 

habitats consist of lowland tropical, semi-inundated, and swamp forests interspersed 

with small grasslands. This array of riparian patches forms a discontinuous 45,000 ha 

protected area network presided over by the Sabah Wildlife Department and the 

Sabah Forestry Department. The Lower Kinabatangan Floodplain is a key mosaic 

landscape to assess the impacts of large-scale oil palm agriculture on biodiversity 

persisting within degraded forest fragments.   

 

2.2 Trapping and sample collection  

Trapping periods for wild Malay civets spanned March 2013–December 2017. 

Detailed capture, anaesthesia, and sampling protocols can be found in Evans et al. 

(2016). Briefly, animals were live-trapped, anaesthetised, and sampled by an 

experienced team following protocols approved by the Sabah Wildlife Department, 
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the Sabah Biodiversity Centre (license ref.no: JKM/MBS.10000-2/2 JLD.6[8]), and 

within the guidelines of the American Society of Mammalogists (Sikes et al., 2016). 

A small patch of hair (approximately 2 x 2 cm) was shaved from the dorsal scapular 

junction of each anaesthetised animal using a commercial razor. The withers are the 

body region least likely to be contaminated by exogenous metal deposition (Hubbart 

et al., 2012), and this standardised collection method also facilitated the sterile 

insertion of a subdermal identifying RFID microchip. Clippers were thoroughly 

washed with ethanol between procedures. If a civet was not anaesthetised, hair 

samples were collected through the trap prior to the release of the animal. Hair was 

stored in clean polypropylene tubes containing metal-free desiccating silica beads 

(Sigma-Aldrich), and sealed at room temperature until analysis. Adult male civets 

were fitted with GPS collars to record hourly nocturnal movements (Evans et al., 

2016); the spatial behaviours of these animals, including use of oil palm plantations at 

the home range scale, were characterised in Evans et al. (2021). We recorded sex, 

weight, and estimated age for each individual, and collected blood samples for serum 

biochemistry and haematology assessment by venepuncture methods described in 

Evans et al. (2020). A certified laboratory (Gribbles Pathology Laboratory Sdn Bhd) 

determined 34 analytical parameters from these blood samples (Fig. S1).  

 

2.3 Sample preparation 

All hair samples were washed to remove exogenous lipids and surface metallic 

contamination. Hair was rinsed with 5 mL reagent-grade acetone (99.9 % HPLC 

grade Chromasolv, Merck, Germany), followed by two 5 mL rinses of Milli-Q 

ultrapure water (Type 1 [18.2 MΩ], Merck, Germany), and a final 5 mL rinse of 

acetone, following methods outlined by the International Atomic Energy Agency 
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(Ryabukin, 1978). Washed hair was left to dry at room temperature for at least 24 h 

before further handling.  

 

Metal content of hair was analysed by inductively coupled plasma mass spectrometry 

(ICP-MS) following complete acid digestion of samples (Puchyr et al., 1998). 

Washed and dried hair samples (100 ± 1 mg) were accurately weighed into acid-

washed Teflon digestion vessels (Milestone Srl, Italy). Vessels were transferred to a 

fume hood and 10 mL concentrated HNO3 (67–70% w/w TraceMetal Grade, Fisher 

Scientific, USA) were added. Glassware was thoroughly washed with ultrapure water 

(PURELAB Flex 3, ELGA LabWater, UK), soaked in ≥ 5 % HNO3, and rinsed with 

ultrapure water prior to use. For each digestion batch (n = 15 vessels), an acid-only 

blank was included to identify methodological contamination. Vessels were placed in 

a microwave digestion system (ETHOS UP, Milestone Srl, Italy) and underwent a 

two-phase digestion program (1800 W ramp to 70 °C over 5 min; hold at 70 °C for 15 

min; ramp to 115 °C over 5 min; hold at 115 °C for 15 min; cool for 60 min). Cooled 

samples were quantitatively transferred to acid-washed volumetric flasks and made up 

to 50 mL with ultrapure water. Samples were stored in pre-washed 60 mL HDPE 

plastic bottles (VWR, UK) until ICP-MS analysis. Following each digestion batch, 

vessels underwent an acid washing cycle whereby 5 mL ultrapure water and 5 mL 

HNO3 were added and run through a microwave cleaning cycle (200 °C for 20 min). 

All reagents were analytical grade and trace metal certified, including washing 

reagents. 

 

2.4 Instrumentation and operating parameters 
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The metal content of digested hair samples was analysed by an inductively coupled 

plasma mass spectrometer in He analysis mode (ICP-MS Agilent 7900, Agilent 

Technologies, USA; Tables S2–S3). In addition to standard washes and blanks, a 0.5 

ppm Au-containing solution (Multi-element Calibration Standard #4, PerkinElmer, 

USA) was run to clear persisting Hg in the system prior to sample introduction. Batch 

blanks (every 15 samples) were run to identify any potential metal carryover from the 

digestion vessels. Metal content was processed using MassHunter software (Agilent 

Technologies), where each reading was comprised of five ICP-MS measurements per 

target element. Digested civet samples were run twice, thus individual values are 

reported as an arithmetic mean as mg kg-1 dry weight of civet hair.  

 

2.5 Calibration and quantitative analysis 

A multi-element internal standard (5188-6525, Agilent Technologies) diluted to 100 

ppb was used to control for instrumental drift; rhodium, terbium, and lutetium were 

selected as optimal internal standards for target analytes (Table S4). Hair metal 

concentrations were externally quantified against multi-element standards (Multi-

Element Calibration Standard #3, PerkinElmer; Multi-Element Calibration Standard 

#2A-HG, Agilent Technologies) using a five-point calibration (0 – 1 g/mL for most 

target metals; 0 – 0.2 g/mL for Hg). Calibrations were performed every 45 

measurements and accepted if R ≥ 0.992; batch limits of detection were determined 

from series blanks (Table S4). Civet samples that exceeded the calibration range (Fe 

and Al) were diluted with acidified (2% HNO3) ultrapure water and re-analysed. 

Recovery of metals from hair samples was evaluated using domestic dog hair. 

Domestic dog hair samples were digested and spiked with 0.1 g/mL of each target 
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element and analysed as above. Recovery rates fell between the accepted ranges of 

90–110% (Table S4; Creed et al., 1994).  

 

2.6 Statistical analyses 

Analyses were performed using R 3.5.0 (R Core Team, 2018). Metal concentrations 

falling below the limit of detection were set at half the batch limit of detection (Gil et 

al., 2011). Extreme outliers were identified as values exceeding the population mean 

by three standard deviations (Drobyshev et al., 2017). However, outliers were not 

automatically removed from the dataset, as the discarding of laboratory-derived 

values based solely on parametric mathematical identification fails to acknowledge 

the possibility of natural metal variations in the wild system (Pollett and van der Meij, 

2017). All reported metal concentrations and blood profiles were from the first 

capture of each individual civet. 

 

2.6.1 Drivers of intrapopulation variation  

We assessed the effects of both biological and environmental features on recorded 

hair metal concentrations using general linear modelling (GLM). We included civet 

sex, weight, and age category as fixed biological effects. To evaluate the potential 

role of landscape characteristics in hair metal concentrations, each sampling site was 

assigned a suite of descriptive values in ArcGIS (version 10.1, ESRI, USA). 

Shapefiles delineating oil palm plantations, oxbow lakes, and semi-permanent 

tributaries (those containing water even when river levels were low) were created 

from the digitization of Google Earth Pro satellite imagery. We measured the 

proximity of each sampling site to the nearest accessible plantation and tributary as a 

Euclidean distance. A feature was defined as accessible if located on the same 
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riverbank as the capture site and within 4 km, a threshold corresponding to the 

average maximum distance travelled in a night by male civets fitted with GPS collars 

(Evans, 2019). Proximity to oxbow lake was recoded as a binomial factor denoting if 

an animal did or did not have access to a lake. Continuous terms were checked for 

collinearity prior to analysis; none were identified. Due to the skewed distribution of 

hair metal concentrations, values were either log or square root transformed prior to 

modelling (Table 1). Models were fitted with Gaussian error distributions and identity 

link functions; each model fit was checked by evaluation of the standardised residuals 

of the global model, diagnostic plots, and minimisation of the Akaike’s Information 

Criteria (AIC; Burnham and Anderson, 2002). We performed multimodal inference 

using model averaging; all possible covariate structures were compared using the 

dredge function in the MuMIn package (Bartón, 2018). We standardised independent 

parameters prior to model averaging (Grueber et al., 2011). Top models were 

identified as those within a ΔAICc < 2, and final parameter estimates were calculated 

using the natural average method (Burnham and Anderson, 2002).  

 

2.6.2 Case study: metal profiles of male civets fitted with GPS collars   

Using the GPS collar datasets, we compared the hair metal concentrations of male 

civets that exclusively used remnant forests and those that used both forests and oil 

palm plantations. As appropriate based on data normality, values were compared with 

either t-tests or Mann-Whitney U tests. Hair concentrations were tested for normality 

with the Shapiro-Wilks test, and Fisher exact tests determined the equality of 

variances between datasets.  

 

2.6.3 Potential physiological effects of varied hair metal levels    
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To best evaluate the interplay between hair metal concentrations and detectable Malay 

civet health effects, we used a two-phase approach to robustly contrast metal values 

against blood-based health metrics. First, we used Spearman linear correlations to 

assess the 1:1 relationship between each metal and blood parameter with the packages 

Hmisc (Harrell Jr. et al., 2018) and ggpubr (Kassambara, 2017). Hair metal values 

were either squared, log, or square root transformed to better meet the assumptions of 

normality for correlation analyses while minimising the effects of outliers.  

 

For those significant univariate correlations, we further assessed the relationship using 

generalised linear models (GLMs) to account best for the potentially confounding 

effects of civet sex and age on blood metrics (Evans et al., 2020). In addition, this 

approach allowed for selection of the appropriate model family for measured blood 

parameters. Continuous health metrics were fitted with Gamma model families, and 

selection of each link function was based on optimisation of model fit plots and 

minimisation of the AIC. Proportional metrics were assessed with binomial models 

and a logit link function. We first fitted count-based data with Poisson models; 

however, all models were over-dispersed (theta > 20; Thomas et al., 2017), and were 

instead fitted with a negative binomial structure using the MASS package (Venables 

and Ripley, 2002). We validated model fit by assessing residual and outlier plots. No 

further model refinement or selection procedures (e.g. stepwise deletion) were 

conducted, as we aimed to control for confounding biological effects on blood 

parameters whilst identifying associations between hair metal concentrations and 

physiological traits. For those models which identified statistically significant 

relationships between a blood metric and a metal, we visualized these effects using 

the predict function in R.  
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Although this univariate approach could increase the detection rate of false negatives 

(McMeans et al., 2007); given the exploratory nature of this investigation, paired with 

the lack of explicit source tracking, multivariate analyses would be difficult to 

robustly interpret in biological terms, and were thus not conducted. 

 

3. Results 

We collected hair from 71 individual Malay civets within the Lower Kinabatangan 

floodplain and surrounding oil palm plantations (Fig. 1; Table S5). The majority of 

samples contained metal concentrations above instrumentation detection limits; four 

samples were below the limit of detection for Cr measurements; two for Ni; and 10 

for As. Two samples possessed metal concentrations classified as extreme outliers for 

over half the target analytes; as such, these individuals were omitted from the dataset. 

In terms of relative concentration within hair samples, the highest metal 

concentrations were Fe, Zn, and Al, in decreasing order, and the lowest measured 

concentrations were Co, As, and Cd. 
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Fig. 1. Capture and sampling sites of Malay civets within the Lower Kinabatangan 

Floodplain in Sabah, Malaysian Borneo, 2013-2017.   

 

3.1 Drivers of intrapopulation variation  

Concentrations of seven target hair metals were significantly associated with 

biological or spatial terms (Table 1; Table S6); the remaining six metals were not 

statistically related to assessed covariates. Hair As and Hg concentrations were 

elevated in mature compared to immature civets, while hair As and Ni decreased with 

civet weight. In terms of landscape effects, hair As and Hg concentrations statistically 

decreased with proximity to a tributary. In contrast, Ba, Cd, and Fe measurements 

increased with proximity to a tributary. Lastly, hair Cr similarly increased with 

proximity to a tributary and with the presence of an accessible oxbow lake near the 

capture site (Table 1). Neither distance to plantation edge nor civet sex were 
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statistically significant terms in any of the top averaged models describing variation in 

hair metals.     

 

Table 1 Standardised parameter estimates for statistically significant averaged models 

describing variation in metal concentrations of Malay civet hair. Trans denotes 

mathematical transformation of hair metal concentration values. Bold terms 

emphasise significant variables. Intercept= standardised reference interval for 

factorised predictor variables (e.g. no accessible oxbow lake; immature; female). 

SexM= male; AgeM= mature; Plant= proximity to nearest accessible oil palm 

plantation; Trib= proximity to nearest accessible semi-permanent tributary; Lake1= 

access to oxbow lake.  

Element Trans Variable Mean  Std. 

Error 

z value p value 

As Log Intercept -2.955 0.153 18.92 <0.001 

  AgeM 1.401 0.599 2.295 <0.05 

  Lake1 -0.236 0.349 0.654 0.51 

  Trib 0.670 0.315 2.090 <0.05 

  Weight -1.339 0.479 2.746 <0.01 

  Plant -0.067 0.193 0.342 0.73 

Ba Log Intercept 2.043 0.140 14.35 <0.001 

  Trib -0.879 0.288 3.055 <0.005 

  AgeM -0.097 0.247 0.394 0.69 

  Lake1 0.054 0.183 0.293 0.77 

Cd Log Intercept -4.362 0.082 52.17 <0.001 

  Trib -0.369 0.166 2.180 <0.05 

  Plant -0.030 0.097 0.315 0.75 

  Lake1 -0.029 0.100 0.287 0.77 

  Weight 0.026 0.089 0.285 0.78 

  SexM -0.013 0.069 0.186 0.85 

Cra Log Intercept 0.338 0.136 2.482 <0.02 

  Lake1 0.918 0.310 2.957 <0.005 

  Trib -1.050 0.276 -3.804 <0.001 

Fe Log Intercept 5.917 0.087 66.603 <0.001 

  Lake1 0.422 0.237 1.754 0.08 

  SexM 0.232 0.210 1.098 0.27 

  Trib -0.412 0.178 2.272 <0.05 

  AgeM -0.234 0.330 0.703 0.48 

  Plant -0.079 0.158 0.493 0.62 

  Weight 0.086 0.206 0.415 0.68 
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Hg N/A Intercept 2.328 0.119 19.119 <0.001 

  AgeM 1.457 0.342 4.191 <0.001 

  Trib 0.878 0.242 3.560 <0.001 

  Lake1 0.095 0.209 0.449 0.65 

  SexM -0.077 0.177 0.432 0.67 

  Plant 0.032 0.121 0.263 0.79 

  Weight 0.038 0.166 0.229 0.82 

Ni Log Intercept 0.008 0.101 0.073 0.94 

  Weight -0.666 0.276 2.379 <0.02 

  Lake1 -0.109 0.204 0.533 0.59 

  AgeM 0.141 0.305 0.458 0.65 

  SexM -0.020 0.088 0.223 0.82 

  Plant -0.016 0.081 0.194 0.84 

  Trib 0.009 0.067 0.134 0.89 
adenotes a non-averaged final model (i.e. there were 0 additional models whereby 

AICc<2; covariate t values reported instead of z values). 

 

3.2 Case study: metal profiles of male civets fitted with GPS collars  

Hair As, Ba, Co, Cr, Cu, Fe, Mn, Ni and Zn concentrations of 16 male civets fitted 

with GPS collars did not statistically differ between animals that utilised oil palm 

plantations and those that did not (Table S7). Males accessing oil palm agriculture 

expressed, however, significantly elevated hair concentrations of Cd, Pb, and Al 

compared to males exclusively using forests (W = 5, p < 0.01; W = 11, p < 0.05; W = 

12, p < 0.05, respectively; Fig. 2). In contrast, hair from forest-only civets contained a 

mean Hg concentration 1.72 mg kg-1 greater than those that used both habitat types (t 

= 3.782, df = 14, p < 0.005). 
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Fig. 2. Statistically significant differences between A) Cd; B) Al; C) Pb; and D) Hg 

(mg kg-1) concentrations in the hair of GPS-collared male civets, analysed with t-tests 

or Mann-Whitney U (MWU) tests. Animals are grouped based on patterns of space 

use documented throughout tracking periods; box-whisker plots display the metal 

profiles for civets using solely forest (‘Forest Only’ n = 8) compared to those that 

entered oil palm plantations (‘Mix’, n = 8). Dots represent statistical outliers (> 3 S.D. 

from each group median). Log transformations of metals were only conducted for 

data visualisation purposes; due to the non-normal distribution of these datasets, 

MWU tests determined the significance levels between these two groups using 

untransformed data. 

 

3.3 Potential physiological effects of varied hair metal levels 
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We successfully established both hair metal and blood parameter profiles from 48 

Malay civets; based on the preliminary 442-univariate correlations (Fig. S1), further 

evaluation of 22 relationships was warranted. After controlling for civet age and sex, 

13 statistically significant relationships between blood parameters and hair metal 

concentrations were found (Table 2). Four haematology and five biochemistry metrics 

were associated with variations in hair metal concentrations (Al, Ba, Cd, Cr, Fe, Hg, 

Ni, and Pb; select visualizations in Fig. 3; Fig. S2). Blood parameters did not 

predictably relate to variations in hair As, Co, Cu, Mn, or Zn concentrations.  

 

Table 2 Generalised linear models containing statistically significant effects of hair 

metal concentrations on Malay civet haematology and serum biochemistry metrics. 

Estimates for the factor terms sex and age are relative to intercept reference categories 

of female and immature animals. Significant effects are denoted in bold. Haem= 

haemoglobin; MCHC= mean corpuscular haemoglobin concentration; MCV= mean 

corpuscular volume; Plat= platelets; Alb= albumin; AST= aspartate aminotransferase; 

Cl= chloride; Co_Ca= corrected calcium; LDL= low-density lipoprotein. 

Health Metric Parameter Mean 

Std. 

Error t value p value 

H
ae

m
at

o
lo

g
y

 

Haem Intercept 48.624 22.868 2.126 <0.05 

 Log(Fe) 8.763 3.792 2.311 0.03 

 Sex 12.481 5.366 2.326 0.03 

 Age 4.035 6.452 0.625 0.54 

MCHC Intercept 259.290 6.150 42.190 <0.001 

 Log(Cr) -4.284 1.930 -2.220 0.03 

 Sex 4.836 4.990 0.970 0.34 

 Age 2.541 6.280 0.400 0.69 

MCV Intercept 50.308 1.679 29.960 <0.001 

 Log(Cr) 1.584 0.550 2.880 0.007 

 Sex 1.135 1.408 0.806 0.43 

 Age 1.146 1.750 0.655 0.52 

Plata Intercept 376.840 57.470 6.557 <0.001 

 Log(Pb) 64.470 25.400 2.539 0.01 

 Sex 53.670 31.630 1.697 0.09 

 Age -48.250 44.740 -1.078 0.28 
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S
er

u
m

 B
io

ch
em

is
tr

y
 

Alb Intercept 3.265 0.079 41.156 <0.001 

 Log(Cr) 0.058 0.026 2.233 0.03 

 Sex 0.053 0.067 0.781 0.44 

 Age 0.002 0.084 0.023 0.98 

AST Intercept 3.462 0.758 4.569 <0.001 

 Log(Al) 0.330 0.151 2.189 0.03 

 Sex 0.135 0.177 0.761 0.45 

 Age 0.055 0.226 0.245 0.81 

AST Intercept 4.428 0.240 18.455 <0.001 

 Log(Ba) 0.253 0.069 3.659 <0.001 

 Sex -0.067 0.153 -0.435 0.67 

 Age 0.106 0.190 0.560 0.58 

AST Intercept 177.506 29.464 6.025 <0.001 

 Log(Ni) -44.151 14.212 -3.107 0.003 

 Sex 9.908 23.595 0.420 0.68 

 Age -17.093 30.175 -0.566 0.57 

Cl Intercept 117.691 2.167 54.312 <0.001 

 Log(Cr) -1.571 0.673 -2.335 0.02 

 Sex -0.818 1.830 -0.447 0.66 

 Age 0.077 2.300 0.034 0.97 

Cl Intercept 116.143 2.155 53.893 <0.001 

 Log(Ni) 2.368 1.018 2.325 0.03 

 Sex -1.051 1.816 -0.579 0.57 

 Age 1.377 2.305 0.597 0.55 

Co_Ca Intercept 2.511 0.066 37.971 <0.001 

 Hg -0.076 0.027 -2.795 0.009 

 Sex 0.041 0.050 0.816 0.42 

 Age -0.014 0.080 -0.180 0.85 

Co_Ca Intercept 0.987 0.048 20.487 <0.001 

 Sqrt(Fe) -0.005 0.002 -2.382 0.03 

 Sex 0.037 0.021 1.783 0.09 

 Age -0.054 0.028 -1.918 0.07 

LDL Intercept 1.668 0.249 6.708 <0.001 

 Log(Cd) 0.171 0.052 3.270 0.002 

 Sex 0.107 0.061 1.747 0.09 

 Age 0.007 0.078 0.084 0.93 
aModel is a negative binomial family; z value presented instead of t value 

 



 22 

 

Fig. 3. Selected statistically significant relationships between transformed hair metal 

concentrations and blood parameters collected from wild Malay civets; shaded 

regions denote model confidence intervals (CI). Plots display the data and the 

predicted relationship accounting for the effects of civet sex and age; the fitted model 

and 95% CIs display the modelled trend for adult males. *Plot C) demonstrates the 

co-significant influence of civet sex on haemoglobin, whereby green denotes the trend 

in adult males and red in adult females. MCHC= mean corpuscular haemoglobin 

concentration; MCV= mean corpuscular volume; Haem= haemoglobin; LDL= low-

density lipoprotein; AST= aspartate aminotransferase. 

 

4. Discussion 

Although agriculture is a known pollution source, there have been few critical 

assessments of the impacts of contamination from the oil palm plantation industry on 

native faunal communities. Our study presents novel ecotoxicological insights into 

inorganic pollution within a mosaic system of remnant forests and large-scale oil 
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palm agriculture. We non-lethally quantified levels of essential and non-essential 

metals in a wild indicator species, and, for the first time, detail possible sub-lethal 

effects of metal pollution on this species. By robustly assessing the biological and 

spatial drivers of intrapopulation variation of hair metal concentrations, we 

established evidence of possible water-facilitated exposure to select metals. Our 

targeted assessment of metals in GPS-collared animals suggests utilisation of oil palm 

agriculture elevates civet exposure to Al, Cd, and Pb, and implicate plantations as a 

likely source of contamination. The integration of hair and blood sampling provides 

insights into the sub-lethal physiological costs of persistence paid by adaptable 

mesocarnivores within plantation landscapes, and a brief exploration of potential 

causes.   

 

The hair metal profiles of this generalist species are the first reported, and serve as 

basal reference values for civets within agriculturally fragmented lowland 

ecosystems. Overall, population-level hair metal concentrations were largely 

comparable to values reported in other carnivore species (Table S1), with the caveat 

that studies assessing metals such as Al, As, Ba, and Co are limited. Individual 

variations of essential metals within the sampled civet population likely reflect natural 

differences in dietary intake and species-specific toxicokinetic regulatory baselines 

(Kempson and Lombi, 2011; McMeans et al., 2007). Our detection of elevated non-

essential metals in some civets indicates modulated exposure is occurring within the 

population, with variation at the scale of the individual animal. The majority of 

measured hair As concentrations were below the threshold reportedly leading to 

adverse health effects in humans (1 mg kg-1; Hindmarsh, 2002); however, one 

individual exceeded this concentration, while hair from another approached this limit. 
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Similarly, the average Hg concentration in civet hair was below the concentration 

reported to alter neurochemistry in polar bears (Ursus maritimus, 5.4 mg kg-1; Basu et 

al., 2009) yet samples from three individuals exceeded this limit. Indeed, 85.6% (n= 

59) of civet samples exceeded the recommended hair concentration of 1mg kg-1 for 

healthy humans (US EPA; FAO/WHO, 2003). Given the broad range of elemental 

hair concentrations reported not only between but within species (Table S1), it is 

crucial to establish regional baselines and address causes for variation within 

populations. 

 

4.1 Drivers of intrapopulation variation  

Of the 13 metals recorded, only hair concentrations of Hg, As, and Ni significantly 

related with the traits of the sampled individual. Higher Hg concentrations in mature 

compared to immature civets is consistent with trends documented across an array of 

species (e.g. Eurasian otters Lutra lutra Brand et al., 2020; pine snakes Pituophis 

melanoleucus Burger et al., 2017; brown bears Ursus arctos Lazarus et al., 2018). In 

contrast, our finding of elevated As in mature civets relative to immature animals is 

unexpected, as the inverse relationship has been documented in humans (Ballesteros 

et al., 2017) and ground squirrels (Otospermaophilus beecheyi; Hubbart, 2012). 

Ecologically, these age-mediated patterns could be explained by two processes: 1) 

specific exposure pathways to these metals vary with civet age (e.g. differences in 

dietary selection with animal age); or 2) cumulative lifetime exposure to these 

elements (e.g. Bauerová et al., 2020). Furthermore, civet weight, which was used in 

models as a continuous proxy term accounting for variable body conditions within 

civet age categories, showed a clearly negative relationship with hair As and Ni 

concentrations. Our finding is in agreement with laboratory experiments reporting 
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significant reductions in the body mass of test subjects following exposure to As and 

Ni (ASTDR, 2005; ASTDR, 2007). Interestingly, none of the assessed hair metal 

concentrations significantly varied between males and females, in contrast to other 

carnivore species (reviewed by Burger, 2007; Iberian wolves Canis lupus Hernández-

Moreno et al., 2013). This likely reflects a lack of sexually dimorphic behaviours such 

as forage selection, or a consistent use of metal sources by both sexes.  

 

In addition to these biological influences, concentrations of hair As, Ba, Cd, Cr, Fe, 

and Hg varied with civet capture location. Animals captured closer to tributaries 

contained significant and predictably higher hair Ba, Cd, Cr, and Fe concentrations, 

suggesting tributaries as sources of these metals. Hair Cr levels were further elevated 

by the presence of an oxbow lake close to civet capture locations. Civet exposure 

could be from direct use of tributaries as drinking water, or through the ingestion of 

food items associated with riparian habitats. The tributaries in the floodplain may be 

polluted with untreated POME, which can contain excessive concentrations of these 

metals (Ohimain et al., 2012). Research by Jamal et al. (2007) determined raw 

Malaysian POME contained Cr and Cd levels 120 and 170 times greater, respectively, 

than the maximum contaminant levels for drinking water set by the US EPA (EPA, 

2019). Alternatively, or perhaps concurrently, these metals may be applied to oil palm 

plantations and distally transported into tributaries via surface runoff; Cd, Cr, and Fe 

are common contaminants in mineral fertilisers (Atafar et al., 2010), while barium 

carbonate is the active agent in some rodenticides (Kravchenko et al., 2014). The 

interpretation of the positive relationships between hair As and Hg concentrations and 

distance between civet capture location and accessible tributary is not readily 

apparent, but suggests exposure to these metals via contaminated water is unlikely.  
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Intriguingly, none of the assessed metal concentrations varied significantly with civet 

proximity to the edge of an oil palm plantation. The location of a capture site relative 

to the nearest plantation may not directly equate to the probability of a sampled civet 

utilising the agriculture. Indeed, all civets were sampled within three km from a 

plantation edge; this is within the average distance male civets travel within a night 

(Evans, 2019). Key to refining this relationship was our targeted exploration of metal 

levels in individuals with fully characterised movement patterns.   

 

4.2 Case study: metal profiles of male civets fitted with GPS collars 

Hair of GPS-collared civets that utilised oil palm plantations contained higher levels 

of Cd, Al, and Pb than hair of civets that exclusively remained within the forest, 

suggesting use of plantations facilitates civet exposure to these metals. Cd, Al, and Pb 

have previously been identified as environmental pollutants from excessive fertiliser 

application in agricultural regions, including oil palm plantations (Atafar et al., 2010; 

Mattsson et al., 2000; Sakai et al., 2017). Additionally, these metals are frequently 

found in high concentrations in common agrochemicals, such as the herbicide 

glyphosate, which is applied in oil palm plantations (Defarge et al., 2018). Civets may 

thus be exposed through direct contact with fertiliser pellets, ingestion of 

contaminated soils or water from irrigation ditches, or consumption of polluted oil 

palm fruit, invertebrates, or small mammals.  

 

In contrast, hair Hg concentrations were greater in the forest animals than in those 

accessing both oil palm and forest. As suggested by Evans et al. (2020), civets living 

in close association with oil palm may have lower protein diets than those animals 
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remaining within the forests. Methyl-Hg is bioaccumulated and biomagnified across 

trophic levels, and thus a more carnivorous diet could result in a higher intake and 

accumulation of Hg. Such dietary differences determining Hg concentrations have 

been recorded in birds (American species Cristol et al., 2008; Bicknell’s thrush 

Catharus bicknelli Rimmer et al., 2010), grizzly bears (Noël et al., 2014), and Artic 

foxes (Vulpes lagopus Bocharova et al., 2013). Alternatively, little is known regarding 

regional mercury biocycling processes within Southeast Asian rainforests (Wang et 

al., 2016). Research in the Neotropical (Fostier et al., 2000) and boreal forests (St. 

Louis et al., 2001) report high atmospheric deposition of mercury within these 

biomes. It is possible these results provide indications of similar processes occurring 

within even degraded Old World forests.  

 

4.3 Potential physiological effects of varied hair metal levels 

Our study provides rigorous evidence of 13 associations between hair metal 

concentrations and physiological parameters of wild civets sampled across a degraded 

landscape, and contribute to a growing body of literature cataloguing the implications 

of metal pollution on biodiversity (Bauerová et al., 2017; Demir and Yavuz, 2020; 

Ortiz-Santaliestra et al., 2013; Villa et al., 2017). While all 13 associations provide a 

critical basis for future research aiming to identify the causal relations, we will focus 

our discussion on six examples.  

 

In terms of haematology parameters, the positive relationship between civet 

haemoglobin and hair Fe was expected. Iron is essential to the formation of 

haemoglobin through its incorporation into heme (Harvey, 2008), which is elevated in 

male compared to female Malay civets (Evans et al., 2020). Positive correlations 
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between hair and serum Fe values have been previously established in other species, 

and direct haemoglobin measurements similarly correlated with both values (Shah et 

al., 2011). Thus, we interpret the detection of this relationship as reinforcement of the 

analytical rigor of our exploratory approach.  

 

The associations between elevated hair Cr and red blood cell indices (reduced MCHC 

and elevated MCV) suggest exposure may drive regenerative anaemia within the civet 

population. Mechanistically, this type of anaemia occurs when erythrocytes are either 

lost or destroyed at an elevated rate, which in turn triggers the compensatory release 

of immature red blood cells (reticulocytes) from the bone marrow (Johnstone et al., 

2011). There is molecular evidence that exposure to hexavalent Cr can trigger 

eryptosis (premature red blood cell death, Ray, 2016; Zhang et al., 2014), which may 

explain this comparatively regenerative pattern within civets with elevated hair Cr 

levels. Indeed, similar haematological profiles have been reported in fish and bird 

species exposed to Cr (Bauerová et al., 2017; Vutukuru, 2005).  

 

In terms of serum biochemistry, we observed a positive relationship between Cd and 

LDL cholesterol levels. Assessments of the lipid profiles of laboratory animals and 

human case studies demonstrate Cd exposure interferes with lipid metabolism 

pathways, with possibly dangerous cardiovascular consequences (Zhou et al., 2016). 

Alternatively, Cd exposure may be related to civet dietary habits. There is evidence 

that Malay civets modulate dietary selection relative to the proximity of oil palm 

plantations (Evans et al., 2020). Therefore, possible sources of Cd may be linked to 

ingestion of high LDL levels (e.g. influences of a species’ dietary breadth on Hg 

exposure, as described in Bocharova et al., 2013; McGrew et al., 2014).  
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The positive correlations between hair Al and Ba concentrations and AST activity 

suggest exposure to these metals may result in liver damage (Kerr, 2002). Elevation 

of serum AST activity has been reported following exposure to many heavy metals 

(e.g. Adham et al., 2011; Jayawardena et al., 2017); experimental Al exposure 

increased AST activity in laboratory rats (Geyikoglu et al., 2012). There is less 

available research on effects of Ba on liver functionality (Kravchenko et al., 2014; 

however, see elevated AST in rats following administration of two forms of barium 

salts by Mohammed and Ishmail, 2017). Given the relatively few comparative Al and 

Ba values within published hair research (Table S1), our results indicate further 

research into the status of these metals within the Kinabatangan system is warranted. 

 

4.4 Limitations and future research 

Our hair-based assessment methodologies intrinsically underestimate rates of acutely 

lethal metal exposures within the population, and future research will be necessary to 

scale up the individual-level implications of exposure to core population-level 

processes such as reproductive success. In addition, our multi-facetted research has 

identified future targets and physiological relationships that warrant closer 

investigation, specifically as data on toxicokinetics and toxicodynamics are difficult 

to obtain when studying wildlife species. Furthermore, environmental source tracking 

is recommended to provide a more complete and mechanistic narrative cataloguing 

the threats faced by adaptive wildlife (e.g. Nacci et al., 2005), particularly when the 

possible additive effects of concurrent stressors such as disease or additional 

pollutants like anticoagulant rodenticides are likely across this landscape. 
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5. Conclusion 

Our integrative approach sets an important precedent in the evaluation of cryptic 

threats faced by species persisting within the degraded habitats associated with oil 

palm agriculture. We demonstrate that our use of Malay civets as an indicator species 

provides evidence-based justification for more extensive studies quantifying inorganic 

pollution within landscapes fragmented by oil palm plantations even though exact 

metal sources cannot be directly determined from hair metal profiles. Our study 

complements reports of suspected fatal poisonings of the endangered Bornean 

elephant (Elephas maximus borneensis) across Sabah (e.g. Milwil, 2020; Vanar, 

2019), and provides both a tractable approach and substantive data that will be critical 

in informing efficient pollution mitigation and enforcement strategies for the region. 

To effectively investigate sources and distribution of metals, we strongly recommend 

local authorities establish real-time monitoring programs co-evaluating water quality 

and agricultural practices across the floodplain to address rigorously the 

ecotoxicological consequences of the oil palm industry. In the meantime, the adoption 

of precautionary alternative actions such as the application of organic fertilizers 

(Tohiruddin and Foster, 2013), integrated pest management schemes (Wood, 2002), 

and establishing more stringent POME regulations into policy would benefit not just 

wildlife, but also human communities living within and alongside this industry.   
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