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A B S T R A C T   

Study region: Pra River Basin, Ghana, West Africa. 
Study focus: In this study, variations of the future streamflow in the Pra River Basin (PRB), are 
projected using the Soil and Water Analysis Tool (SWAT) model with bias-corrected climate data 
from regional climate models (RCMs) for the near 21 st century (2010–2039), the mid 21 st 
century (2040–2069), and the end of the 21 st century (2070–2099), under two Representative 
Concentration Pathways (RCP4.5 and RCP8.5). Weighting, scaling and ranking techniques were 
applied to the data from each of the seventeen climate stations to select the climate models that 
best reproduced the observation dataset. 
New hydrological insights for the region: The results from the calibration and validation (R2 and NSE 
> 0.75, and PBIAS within ±10 %), revealed good simulation of the PRB hydrology from the SWAT 
model. Annually, streamflow in the near and the mid-21st century is projected to increase within 
4 % and 12 % while a reduction was projected at the end of the 21 st century with the RCP4.5 
emission scenario. The simulation results from the RCP8.5 scenario showed increase streamflow 
throughout the 21 st century applying the best performing models. Monthly streamflow variations 
varied between -15 % and 23 % for RCP4.5, and -24 % to 24 % for RCP8.5. Generally, increasing 
streamflow was highest in the RCP4.5 emission scenario. In view of the model outcomes, the PRB 
is expected to experience upsurge in streamflow by the near and the mid of the 21 st century. This 
would require proper planning by applying cost-effective adaptative water management strate-
gies to provide for the probable influence of climate change on the future water resources of the 
basin.   
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1. Introduction 

Increasing temperature based on RCMs data portrays that hydrological cycle might be altered as a result of increase in the water 
holding capacity of the atmosphere. This will result in an upsurge of the quantity of renewable fresh-water resources (He et al., 2017; 
Hu and Gao, 2019; Piani et al., 2010). According to Piani et al. (2010) an increase in temperature for some regions may lead to 
reduction in precipitation, linked to intensification in the seasonal cycle as well as frequency of extreme events. This result suggests the 
existence of high uncertainties in the projected effects of increasing temperatures on the hydrology for some regions (Salack et al., 
2015). 

The reliability of RCMs over West Africa depends on their capability to reproduce observed climate data. Accurate modeling of 
many climate parameters however, remains a challenging task for one particular RCM (Kabuya et al., 2020: Szabó-Takács et al., 2019; 
Shrestha et al., 2017; Schilling et al., 2012), since each RCM simulates the individual climate parameter differently. Hydrological 
components response to climate change signal therefore, appears unclear for West Africa. Moreover, most future climate impact 
assessment studies have been conducted with climate data from each climatic gauge stations derived from only one climate model 
output. Since the input components for climate models like land surface, vegetation dynamics, atmosphere, sulphate and non-sulphate 
aerosols, sea and oceans, vary at each climate gauge station, using one output model may not be the best to reproduce the observed 
climate dataset at each climate gauge station for large basins. This study therefore employed multi-criteria evaluation (MCE) to assess 
all the CORDEX-Africa model data at each climate gauge station. Using the multi-criteria evaluation (MCE), the best three models (best 
(B), second best (S) and third best (T)) for each gauge station were used to form three groups of scenarios for hydrological impact 
assessment in the PRB. 

The PRB consists of rivers, streams, and forest areas which route large volumes of water. It controls carbon and nutrient biogeo-
chemistry, and discharge carbon dioxide and methane into the atmosphere. The basin supports various ecosystems and socio-economic 
activities. Apart from the normal anthropogenic global warming activities such as urban expansions, industrialization and expansion in 
agriculture at the expense of forest areas, the PRB is experiencing uncontrolled rapid illegal and small-scale mining activities which are 
other sources of anthropogenic global warming. In recent times, the basin has encountered seasonal inadequacy in water availability 
making it one of the fastest water declining river basins globally (Awotwi et al., 2018; Water Resources Commission, 2012; Kusimi 
et al., 2014; Bessah et al., 2019). Thus, there is a need to present accurate projections about the effect of future climate change on 
hydrological components within the PRB for planning and managing the natural water resources for sustainable development. 

Though previous researches have evaluated the effects of projected climate change on water resources in West Africa (Tall et al., 

Fig. 1. Location of the study area, and meteorological and hydro-gauging stations in the Pra River Basin.  
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2017; Abubakari et al., 2018; Jin et al., 2018; Mbaye et al., 2016), all relied on simulated hydrological components based on climate 
data simulated by a single RCM for the entire study areas. 

This study broadly aims at estimating the future climate change influence on streamflow of the PRB in Ghana, West Africa, by 
applying a wider dataset that will contribute to a meaningful knowledge for the planning and managing water resources in the region 
with sustainable developmental plans. To accomplish this aim: (1) all the CO-ordinated Regional climate Downscaling Experiment 
(CORDEX-Africa) RCMs were evaluated at each climate station using MCE to select the RCMs which best reproduce the observed data; 
(2) assess the climate change signal for the near 21 st century, mid-21st century, and the end of the 21 st century while comparing it to 
the base period 1971–2005; and (3) evaluate the effects of climate change on the streamflow in the PRB for the rest of the 21 st century 
using SWAT hydrologic model. In West Africa, the SWAT model has been effectively used in hydrological assessments (Jin et al., 2018; 
Awotwi et al., 2015b; Kankam-Yeboah et al., 2013; Mahé, 2009) and therefore has the capability to simulate reliable hydrological 
components. 

The outcomes obtained from this research are likely to give more understanding into the future water availability and to offer local 
water management agencies and policy makers with the quantifiable data for the suitable design, management and the sustainability of 
water resources by factoring in climate adaptation policies to minimize vulnerability and guarantee water security for present and 
future generations. 

Design of adaptation policies to solve the possible effects of climate change on water resource structures is a substantial challenge 
for stakeholders in the water resources industry (Rashid et al., 2019; Dube and Nhamo, 2019; Hirpa et al., 2018; Kumar et al., 2017; 
Noi and Nitivattananon, 2015; Hassanzadeh et al., 2016). According to the Fifth Assessments Report of the IPCC (2014), the West 
African sub-region shows little adaptive capability though it is extremely exposed to climate change. Projections for the 21 st century 
show austere effects of climate change on hydrology in the sub-region. These include an upsurge in the risk of water stress and flood, 
(Yomo et al., 2019; Serdeczny et al., 2017; Acharya and Prakash, 2019) and vital alterations in river discharge (Khandekar et al., 2019; 
Sassi et al., 2019; Aich et al., 2016). 

2. Materials and methods 

2.1. Study area 

The PRB (Fig. 1) is located in the south-central part of Ghana and drains about 23,256.4 km2. The main Pra River takes its source 
from the uplands of the Kwahu Plateau in the Eastern Region and flows for about 240 km before joining the Atlantic Ocean near Shama 
in the Western Region after travelling through four administrative regions; Eastern, Ashanti, Western and Central (Water Resources 
Commission, 2012), with annual discharge of 214m3/s (Akrasi and Ansa-Asare, 2008). It consists of four major tributaries (Birim, 
Offin, Anum and Oda rivers) and densest network of streams. Besides the river network, it contains the only notable natural freshwater 
lake in Ghana (Lake Bosomtwe). The PRB is one of the most widely and severely altered river basins in Ghana due to expansion in 
settlement, mining, agriculture and logging as a result of its high mineral deposits and economic tree species and its favorable farming 
environment (Awotwi et al., 2018). The vegetative cover of the basin had and still go through a rapid rate of deforestation attributable 
to these anthropogenic activities. The basin experiences a sub-equatorial climate with double rainy seasons; May-July as the major 
season, and September-November as the minor season (Awotwi et al., 2017). 

Spatially, precipitation pattern increases from the north to south of the PRB with a yearly mean precipitation of 1550 mm. The 
mean minimum and maximum air temperatures are 23 ◦C and 33 ◦C respectively. Air temperature decreases towards the southern part 
of the PRB (Awotwi et al., 2017). The southern section of the basin is relatively flat while the mid to northern sections consist of few 
peaks with broad river valleys. The PRB further consists of extensive agricultural lands, uncontrolled mining activities, urban and rural 
settlement, and industries which use large volumes of water. These factors make evaluating the effect of future climate change on the 

Fig. 2. Flowchart of methodology used for this study.  
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local hydrology in the study area exceedingly important to help outline effective, efficient and sustainable water resources manage-
ment programs to guarantee availability of water for present and future generations. 

2.2. SWAT model input components 

The SWAT model needs topographic, soil types and land use (static data) and hydro-meteorological data (dynamic data) (Fig. 2) to 
setup the model. 

2.2.1. Digital elevation model 
The SWAT model needs topographic information for delineation of watershed and depicting of drainage trends of the land surface. 

The DEM (1:1000,000) at 30 m resolution obtained from Shuttle Radar Topography Mission (SRTM) was corrected for sinks. 

2.2.2. Land use/land cover types 
The PRB land use map needed by the hydrological model for HRUs generation was obtained from the hybrid classification of 2016 

Enhanced Thematic Mapper (ETM+) Landsat image. LULC information is vital for water resources analysis and especially for modeling 
hydrological processes (Fig. 3a). 

2.2.3. Soil types 
The Soil types map (Fig. 3b) and its properties were obtained from the Council for Scientific and Industrial Research, Ghana, soil 

database and the United Nation’s Food and Agriculture (FAO) soil database. In all, six soil types were identified in the study area with 
acrisols covering over 75 % of the PRB. The rest of the soil types are luvisols, lixisols, fluvisols, leptosols and reclaimed soil. 

2.2.4. Observed climate data 
Daily time series precipitation and air temperatures (minimum and maximum) data for a period of 40 years; 1970–2010 were 

obtained from the Ghana Meteorological Agency (Gmet) at seventeen climatic stations situated within and close to the basin. But there 
were missing values in the data; on average, less than 7% for both precipitation and temperature. The correlation weighting inter-
polated technique was used to estimate the missing values of climate data from some meteorological stations. 

2.3. Homogeneity analysis of precipitation data 

As a result of changes in observational and measurement procedures, environment landscapes and edifices, and relocation of 
climate stations, climate datasets could show inhomogeneity. Therefore, homogenization analysis on climate data is a significant 

Fig. 3. SWAT model input data (a) land use map and (b) soil map.  
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procedure to identify the changeability in the data. This study used the standard normal homogeneity test (SNHT) proposed by 
Alexandersson (1986) to assess the homogeneity. 

Per the null hypothesis, the yearly values Pi of the testing variables P are independent and evenly distributed therefore, the data is 
termed homogeneous. Alternative hypothesis test presume that the data involves discontinuity in the mean and termed 
inhomogeneous. 

The statistic S(p) which matches the average of the first p years to (n-p) years is evaluated by: 

Sp = pz1 + (n − p)z2, p = 1, 2, 3, 4,…………….n (1)  

Where 

z1 =
1
p
∑n

i=1

(
Pi − P

)

σ and z2 =
1

n − p
∑n

i=p+1

(
Pi − P

)

σ (2)  

P and σ = average and the standard deviation respectively. 
The year p is said to consist of break if the value of S is maximum. To reject null hypothesis, the test statistic, 

S0 = max
1≤p≤n

Sp (3)  

is greater than the critical value, which is based on the sample size. 
The method proposed by Wijngaard et al. (2003) was used to evaluate the homogeneity of the precipitation data at each climate 

station and using yearly average and yearly maximum as testing variables. The yearly mean and maximum precipitation of each 
climate station were examined for homogeneity utilizing a critical value of 6.95 proposed by Wijngaard et al. (2003). 

2.4. Model calibration and validation of flow discharge 

Some parameters used by hydrological models cannot be measured directly in the field. These parameters need to be adjusted to 
enhance the concurrence between observed and simulated values. For this work the calibration and validation were done using a 31 
year period daily observed discharge data (1 st January 1980 – 31st December 2010) at the Daboase gauge station, the outlet of the 
PRB, obtained from Ghana Hydrological Service. However, there were missing values in the observed data which were less than 4% of 
the observed data. Three years’ data (1st January 1980 – 31st December 1982) were used to warm-up the model, while that of 1st 
January 1983 – 31st December 1998 and 1st January 1999 – 31st December 2010 were used for calibration and validation respec-
tively. Employing a manual calibration method, the model parameters were adjusted until the modeled discharge was within the 
statistically suitable model performance scope. The gaps in the data were filled using the inverse distance weighting method with 
respect to the Dunkwa-On-Offin and Twifo Praso gauging stations. In this study, manual calibration which involves a trial and error 
method was adopted. It was carried out on parameters that were most sensitive during sensitivity analysis (Abubakari et al., 2018). The 
sensitivity analysis of the study was done with reference to the 

calibration periods. On the optimization process that replicates the sensitivity of the 21 SWAT input parameters, 1500 numbers of 
iterations were performed in gaining the most sensitive parameters. After model calibration, 12 years discharge data from the Daboase 

Table 1 
Overview of the IDs of Regional Climate Models considered and adopted.  

Institution RCM Driving Model Adopted ID 

Climate Limited-Area Modelling Community (CLMcom) CCLM4− 8-17 CNRM-CM5 CCL1 
Climate Limited-Area Modelling Community (CLMcom) CCLM4− 8-17 MOHC-HadGEM2-ES CCL2 
Climate Limited-Area Modelling Community (CLMcom) CCLM4− 8-17 MPI-M-MPI-ESM-LR CCL3 
Université du Québec à Montréal (UQAM) CRCM5 CCCma-CanESM2 CRC1 
Université du Québec à Montréal (UQAM) CRCM5 MPI-M-MPI-ESM-LR CRC2 
Danish Meteorological Institute (DMI) HIRHAM5 NCC-NorESM1-M HI R 
Royal Netherlands Meteorological Institute (KNMI) RACMO22T ICHEC-EC-EARTH RAC1 
Royal Netherlands Meteorological Institute (KNMI) RACMO22T MOHC-HadGEM2-ES RAC2 
Swedish Meteorological and Hydrological Institute (SMHI) RCA4 CCCma-CanESM2 RCA1 
Swedish Meteorological and Hydrological Institute (SMHI) RCA4 CNRM-CERFACS-CNRM-CM5 RCA2 
Swedish Meteorological and Hydrological Institute (SMHI) RCA4 CSIRO-QCCCE-CSIRO-Mk3− 6-0 RCA3 
Swedish Meteorological and Hydrological Institute (SMHI) RCA4 MOHC-HadGEM2-ES RCA4 
Swedish Meteorological and Hydrological Institute (SMHI) RCA4 MIROC-MIROC5 RCA5 
Swedish Meteorological and Hydrological Institute (SMHI) RCA4 MPI-M-MPI-ESM-LR RCA6 
Swedish Meteorological and Hydrological Institute (SMHI) RCA4 NCC-NorESM1-M RCA7 
Swedish Meteorological and Hydrological Institute (SMHI) RCA4 NOAA-GFDL-GFDL-ESM2M RCA8 
Climate Service Centre in Hamburg, Germany (CSC) REMO IPSL-IPSL-CM5A REM1 
Climate Service Centre in Hamburg, Germany (CSC) REMO MIROC-MIROC5 REM2 
Climate Service Centre in Hamburg, Germany (CSC) REMO MOHC-HadGEM2-ES REM3 
Climate Service Centre in Hamburg, Germany (CSC) REMO MPI-M-MPI-ESM-LR REM4 
Climate Service Centre in Hamburg, Germany (CSC) REMO NOAA-GFDL-GFDL-ESM2G REM5  
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station (1st January 1999–31st December 2010) was used for model validation. 
The reliability of the simulation was assessed statistically by four indices, Nash-Sutcliff efficiency (NSE), RMSE-observations 

standard deviation ratio (RSR), percent bias (PBIAS), and coefficient of determination (R2) proposed by Nash and Sutcliffe (1970), 
Chu and Shirmohammadi (2004), Gupta et al. (1999), and Santhi et al. (2011) respectively. The assessment of the performance of the 
hydrological model is based on the statistical indicators NSE, PBIAS and RSR proposed by Moriasi et al. (2007). 

2.5. Future climate change (CC) scenarios 

The IPCC Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 scenarios were utilized as the principal tools for future 
climate change assessment because RCP8.5 is considered the strongest climate signal with the greatest atmospheric greenhouse gas 
concentrations in the late 21 st century while RCP4.5 presumes that emissions of greenhouse gases will soon become constant and then 
drop after a few decades (van Vuuren et al., 2011). 

Future precipitation and temperature data were obtained from outputs of nine GCMs forcing six RCMs (Table 1) from the CORDEX- 
Africa initiative. The objective of CORDEX-Africa is to provide high-resolution climate data for Africa. Historical simulated data, 
1971–2005, was utilized as the reference epoch for this study. The impending climate is characterized for three timeline scenarios, 
2010–2039 representing near 21st century (NE), 2040–2069 signifying mid 21st century (MD), and 2070–2099 indicating the end of 
the 21st century (ED). 

2.6. Bias correction 

Despite the fact that the models have been enhanced over time they still contain bias and is a source of worry in climate research. 
Uncorrected output from climate models makes it unreliable for effective hydrological studies therefore, the usage of bias correction 
methods on the downloaded simulated climate data to improve the exactness of the modeled hydrological components. To overcome 
this, distribution mapping (DM) bias-correcting method of CMhyd model (Rathjens et al., 2016), was used to correct the bias. This 
component has been extensively use in bias correction for climate change assessment studies (Schmidli et al., 2006; Olsson et al., 2015; 
Mbaye et al., 2016; Tschoke et al., 2017). The rationale behind this method is to fit the parameters of transfer functions of climate 
modeled data to that of the measured data. Gamma and Gaussian distributions (transfer functions) are used on precipitation and 
temperature, respectively. With the precipitation, random precipitation intensity will first of all be definite and then employed to 
establish the cumulative probability of modeled precipitation. After that, centered on the cumulative probability, the corrected pre-
cipitation value is chosen. While for temperature, the cumulative probability of modeled temperature data may well be established. 
Subsequently, based on the probability, the corrected temperature value can be chosen. According to Teutschbein and Seibert (2012), 
this method of bias correction yields a very good result. 

2.7. Weighting and ranking of climate models 

Around the globe, there are over thirty research groups that have established their own climate models. Though the foundation 
framework of these models is similar, they all vary in their details. In any instance, the models must depict the physical collaborations 
between the atmosphere, the oceans, land surfaces, and sea ice with reference to a multitude of processes functioning on various space 
and time scales. Climate model developers have different opinions about which physical components to emphasize. Thus, at the same 
time, different climate models produce different results at a location. 

To produce reliable climate impact results, this study compared all the CORDEX-Africa models output data with the observed data 

Table 2 
Annual outcomes from SNHT-analysis of rainfall gauge stations.  

No. Station Name Station ID Mean Maximum 

1 Takoradi Airport 23003TDI 2.47 1.26 
2 Axim 23001AXM 2.98 3.37 
3 Dunkwa On Offin 17015DUN 2.43 2.63 
4 Saltpond 23022SAL 2.14 1.59 
5 Twifo Praso 23023TWI 2.70 4.90 
6 Atieku 18026ATI 3.67 7.13 (2009) 
7 Kibi 21020KIB 2.13 4.31 
8 Tafo Akim(Crig) 22024TAF 1.92 6.18 
9 Eefiduase 19017EFF 2.54 2.61 
10 Bekwai Ashanti 17025BEK 5.56 5.51 
11 Asamankese 23018ASA 4.37 2.94 
12 Akim Oda 21088ODA 4.05 2.55 
13 Kumasi Airport 17009KSI 5.88 4.94 
14 Konongo 19007KON 3.40 5.30 
15 Sefwi- Bekwai 18015BEK 2.74 2.08 
16 Mpasaso 16016MPE 3.26 2.74 
17 Assin Foso 20009FOS 3.25 2.59  
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Table 3 
Sensitivity analysis on the 14 input parameter.  

No. SWAT input Parameter Parameter description t-stats p-value Rank 

1 CN2.mgt SCS runoff curve number − 18.41 0.000 1 
2 Alpha_BF.gw Baseflow alpha factor (days 9.76 0.000 2 
3 SOL_AWC.sol Available water capacity of the soil layer 8.63 0.000 3 
4 ESCO.bsn Soil evaporation compensation factor 6.27 0.001 4 
5 GW_DELAY.gw Groundwater delay (days) 6.01 0.001 5 
6 GW_QMN.gw Threshold depth of water in the shallow aquifer required for return flow to occur (mm) 5.81 0.002 6 
7 GW_REVAP.gw Groundwater “revap” coefficient to occur (mm) 5.45 0.002 7 
8 RCHARG_DP.gw Deep aquifer percolation fraction 3.92 0.003 8 
9 CH-K2.rte Effective hydraulic conductivity in main channel alluvium − 3.06 0.003 9 
10 EPCO.bsn Plant uptake compensation factor 3.01 0.003 10 
11 REVAPMN.gw Threshold depth of water in the shallow aquifer for “revap” to occur (mm) 2.37 0.008 11 
12 CH_N2.rte Manning’s “n” value for the main channel − 2.11 0.013 12 
13 CANMX.hru Maximum canopy storage 1.94 0.018 13 
14 SURLAG.bsn Surface runoff lag time − 1.56 0.025 14  

Table 4 
Parameters adjusted for calibration of the SWAT model.  

SWAT input Parameter Boundary Final Value 

CN2.mgt 35 - 98 35.2 – 58.88 
Alpha_BF.gw 0 - 1 0.017 
SOL_AWC.sol 0 - 1 0.12 – 0.14 
ESCO.bsn 0 - 1 0.75 
GW_DELAY.gw 0 - 50 28 
GW_QMN.gw 0 - 5000 4900 
GW_REVAP.gw 0.02 – 0.2 0.025 
RCHARG_DP.gw 0 - 1 0.1 
CH-K2.rte 0 - 150 54.2 
EPCO.bsn 0 - 1 0.94 
REVAPMN.gw 0 - 500 110 
CH_N2.rte 0 - 1 0.018 
CANMX.hru 0 - 10 0.4 
SURLAG.bsn 0 - 10 3.8  

Fig. 4. Monthly streamflow for (a) calibration and (b) validation periods of the SWAT model.  
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at each climate station. This was achieved by first generating a Taylor diagram for all the CORDEX-Africa models data for each climate 
station (wet and dry season Taylor diagrams for minimum and maximum temperature and precipitation). The Taylor diagram offers a 
statistical summary of how well the modeled patterns reproduce the observed patterns in terms of mean square error (RMSE), cor-
relation coefficient (CC) and normalized standardized deviation (NSD). It provides a diagram as a series of points on a polar plot. 
Consequently, all these three statistical factors should be considered at the same time with equal weight in selecting the best model. 

Equal weights of 1–10 corresponding to worst to best reproduction of the observed climate dataset, were placed on RMSE, CC and 
NSD of each climate model at each climatic gauge station using Eqs. (6) and (7). For precipitation, the data was scaled down with 0.7 
for wet season and 0.3 for dry season while temperature (maximum and minimum) were scaled by 0.5 for both wet and dry season 
(Fig. 2) after which the sum of the weights were taken. To institute the ranking of the climate models, it is appropriate to arrange them 
based on the reducing value of their closeness coefficient of summation weights. Though it was tedious, time consuming and expensive 
procedure, it produces highly accurate data for the impact assessment. Then, bias-correction was applied to the best three models for 
each station before they were used to force the hydrological model (SWAT). 

Table 5 
Calibration and validation performance of the SWAT model.  

Stage 
Statistics indicators 

NSE RSR PBIAS R2 

Calibration 0.79 0.47 − 4.3 0.79 
Validation 0.76 0.52 − 1.0 0.76  

Table 6 
Statistical assessment of simulated mean monthly RCM precipitation under DM method.  

Climate 
model 

Data 
Type 

Mean 
(mm) 

Std Dev. 
(mm) 

90th Percentile 
(mm) 

Coefficient of 
Variation 

Precipitation 
Intensity 

Wet day 
probability 

Bias RMSE 
(mm) 

R 

OBS  127.58 9.28 13.33 2.87 11.74 0.38 – – – 

CCL1 
Raw 121.05 8.01 7.58 3.24 4.28 0.61 − 0.24 84.37 0.62 
BC 127.33 10.29 12.67 2.88 12.93 0.32 − 0.01 0.83 0.99 

CCL2 Raw 98.91 7.12 7.67 3.37 4.55 0.69 − 0.22 96.87 0.71 
BC 127.67 15.13 16.61 4.07 12.90 0.33 0.00 0.44 1.00 

CCL3 Raw 126.50 7.49 7.86 3.57 4.71 0.68 − 0.08 69.63 0.73 
BC 127.41 14.68 8.88 3.88 11.29 0.35 0.01 0.64 0.99 

CRC1 
Raw 162.16 7.59 13.18 0.768 6.31 0.79 0.27 80.30 0.46 
BC 128.00 13.52 20.11 3.41 13.11 0.33 0.00 0.57 1.00 

CRC2 
Raw 164.33 10.26 17.88 1.66 8.30 0.79 0.67 119.21 0.60 
BC 127.54 12.15 11.03 3.16 13.03 0.33 0.00 0.99 1.00 

RAC1 Raw 131.42 3.94 8.25 1.03 4.25 0.95 0.03 141.92 0.63 
BC 127.92 11.28 19.41 3.14 13.01 0.33 0.00 0.92 0.99 

RAC2 Raw 146.33 4.23 15.48 1.03 4.31 0.96 0.05 98.27 0.59 
BC 127.00 11.34 10.23 2.95 12.93 0.33 0.00 0.68 0.98 

RCA1 
Raw 114.25 4.48 9.37 2.72 5.26 0.62 − 0.1 43.01 0.83 
BC 127.58 10.33 14.38 2.89 12.68 0.33 − 0.01 0.72 1.00 

RCA2 
Raw 123.08 4.60 9.75 2.47 5.88 0.61 − 0.04 44.89 0.83 
BC 127.54 10.11 13.01 2.68 12.07 0.37 0.02 0.05 1.00 

RCA3 Raw 122.68 3.21 4.941 2.67 3.09 0.50 − 0.56 100.39 0.46 
BC 127.44 11.62 11.71 3.17 13.44 0.32 − 0.01 0.29 1.00 

RCA4 
Raw 122.33 5.45 12.03 1.46 6.35 0.62 − 0.35 92.24 0.58 
BC 127.50 10.20 11.05 3.09 12.93 0.32 0.01 0.79 1.00 

RCA5 
Raw 127.02 5.96 12.26 1.297 6.81 0.78 0.34 62.91 0.81 
BC 128.07 10.43 19.27 3.21 11.30 0.32 0.01 0.65 0.98 

RCA6 
Raw 156.33 5.23 11.47 1.79 6.69 0.67 0.23 66.92 0.78 
BC 125.25 12.15 12.58 3.30 10.60 0.39 0.03 0.41 0.96 

RCA7 Raw 189.58 7.78 17.28 1.38 8.61 0.70 0.31 69.82 0.43 
BC 127.58 10.64 14.01 3.04 12.85 0.33 0.00 0.74 1.00 

RCA8 
Raw 171.50 6.71 10.89 2.53 6.89 0.64 0.34 101.83 0.74 
BC 128.40 13.81 17.24 3.26 12.78 0.32 0.01 0.82 1.00 

REM1 
Raw 167.5 9.73 13.87 5.00 5.07 0.70 0.16 107.61 0.56 
BC 127.75 11.90 12.33 3.61 12.53 0.32 0.00 0.72 0.98 

REM2 
Raw 184.75 12.25 15.88 2.96 6.44 0.81 0.45 93.32 0.84 
BC 127.33 11.28 11.50 3.08 11.58 0.32 0.00 0.50 0.98 

REM3 Raw 151.08 12.85 13.35 2.64 6.067 0.79 0.27 89.06 0.61 
BC 128.08 11.63 16.53 3.22 12.73 0.32 0.00 0.75 0.99 

REM4 
Raw 153.50 9.58 13.42 3.63 5.32 0.76 0.20 80.23 0.71 
BC 127.58 12.13 13.42 3.72 12.75 0.32 0.00 0.36 1.00 

REM5 
Raw 151.42 12.00 12.70 4.29 5.39 0.67 0.19 113.38 0.59 
BC 127.33 11.88 12.46 3.68 12.81 0.31 − 0.02 0.98 0.99 

Where Std. Dev = Standard deviation, R = correlation coefficient. RMSE = Root mean square error, BC = Bias corrected. 
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Table 7 
Mean scale and shape parameters of DM.   

Observed Simulated 

RCM Scale Shape Scale Shape 

CCL1 15.06 0.78 4.31 5.19 
CCL2 15.36 0.76 5.46 1.72 
CCL3 15.38 0.76 4.42 2.79 
CRC1 14.73 0.80 5.28 3.67 
CRC2 14.70 0.81 6.11 4.03 
RAC1 15.55 0.74 0.96 11.14 
RAC2 15.38 0.77 1.82 6.45 
RCA1 15.37 0.75 2.43 5.41 
RCA2 15.38 0.76 2.58 5.14 
RCA3 15.41 0.80 2.21 4.09 
RCA4 14.88 0.79 1.95 8.26 
RCA5 16.02 0.74 4.17 7.79 
RCA6 16.21 0.71 2.83 5.66 
RCA7 14.70 0.81 2.41 6.70 
RCA8 14.70 0.81 3.41 4.67 
REM1 14.73 0.81 8.13 1.19 
REM2 14.42 0.84 8.45 1.58 
REM3 15.03 0.77 15.78 1.42 
REM4 14.46 0.79 8.34 1.27 
REM5 15.40 10.14 0.74 1.77  

Table 8 
Statistical assessment of simulated mean monthly RCM maximum temperature under DM method.  

Climate model  Mean (oC) Std. Dev. (oC) 90th Percentile (oC) Bias RMSE (oC) R 

OBS  31.15 1.29 32.85 – – – 

CCL1 
Raw 31.06 2.40 34.74 0.02 2.55 0.90 
BC 31.14 1.30 32.70 − 0.01 0.09 1.00 

CCL2 Raw 30.08 3.79 35.28 − 0.03 4.01 0.86 
BC 31.15 1.43 33.80 0.00 0.06 1.00 

CCL3 Raw 30.04 2.02 32.63 − 0.04 3.03 0.92 
BC 31.15 1.30 32.83 0.00 0.07 1.00 

CRC1 
Raw 32.17 1.75 34.14 0.03 1.74 0.85 
BC 31.19 1.27 33.06 0.00 0.07 1.00 

CRC2 
Raw 31.95 2.08 34.18 0.01 1.45 0.86 
BC 31.19 1.30 33.01 0.00 0.09 1.00 

RAC1 Raw 28.48 1.37 30.16 − 0.09 3.00 0.73 
BC 31.20 1.30 33.17 0.00 0.15 0.99 

RAC2 Raw 29.17 2.05 31.99 0.06 3.19 0.89 
BC 31.15 1.28 32.90 0.00 0.10 1.00 

RCA1 
Raw 33.78 1.30 35.38 0.08 3.16 0.88 
BC 31.18 1.29 33.28 0.00 0.16 0.99 

RCA2 
Raw 33.24 1.48 34.98 0.07 2.63 0.89 
BC 31.22 1.29 33.17 0.00 0.13 1.00 

RCA3 Raw 31.91 1.70 33.97 0.02 2.13 0.48 
BC 31.20 1.30 33.50 0.00 0.14 1.00 

RCA4 
Raw 32.24 2.57 35.03 0.06 3.65 0.68 
BC 31.16 1.28 32.89 0.00 0.05 1.00 

RCA5 
Raw 32.13 1.56 33.97 0.03 1.92 0.83 
BC 31.15 1.30 33.11 0.00 0.09 1.00 

RCA6 
Raw 31.70 1.44 34.42 0.02 2.38 0.77 
BC 31.20 1.28 32.75 0.00 0.08 1.00 

RCA7 Raw 33.40 1.45 33.91 0.07 2.83 0.83 
BC 31.21 1.30 33.15 0.00 0.10 1.00 

RCA8 
Raw 32.38 1.68 33.61 0.04 2.41 0.92 
BC 31.15 1.29 32.88 0.00 0.11 1.00 

REM1 
Raw 33.20 2.77 36.63 0.07 3.99 0.96 
BC 31.14 1.28 32.72 0.00 0.07 1.00 

REM2 
Raw 33.21 2.44 35.47 0.07 3.76 0.85 
BC 31.16 1.33 32.91 0.00 0.08 1.00 

REM3 Raw 32.03 4.15 37.35 0.03 3.79 0.93 
BC 31.15 1.34 32.90 0.00 0.05 1.00 

REM4 
Raw 32.57 2.64 35.75 0.05 2.69 0.94 
BC 31.16 1.32 33.02 0.00 006 1.00 

REM5 
Raw 32.11 2.825 35.43 0.03 3.98 0.96 
BC 31.16 1.30 32.92 0.00 0.10 1.00 

Where Std. Dev = Standard deviation, R = correlation coefficient. RMSE = Root mean square error, BC = Bias corrected. 
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WTRMSE/NSD = 10 − ⌊(10∗(RMSETD/NSDTD) ÷ (RMSETO/NSDTO))⌋ (6)  

WTCC = 10∗CCTD (7)  

Where WTRMSE/NSD is the weighted RMSE and NSD, 
RMSETD, NSDTD and CCTD are the RMSE, NSD and CC values from the Taylor diagram respectively, 
RMSETO and NSDTO are the total length of RMSE and NSD respectively with reference to OBS on the Taylor diagram and 
WTCC is the weighted CC 

2.8. Uncertainty assessment 

It would be ideal to have data free from uncertainties, but this is not possible. To some extent, each single data has some form of 
uncertainties. Therefore, there are uncertainties related to this study. According to Walker et al., 2003, uncertainty is any departure 
from complete deterministic knowledge of the relevant system, therefore, the uncertainty associated with this study was evaluated 
based on: 

Differencees between observed and best/ second best/ third best, model
observed

× 100 (8)  

Table 9 
Statistical assessment of simulated mean monthly RCM minimum temperature under DM method.  

Climate model Data type Mean (oC) Std. Dev. (oC) 90th Percentile (oC) Bias RMSE (oC) R 

OBS  21.51 1.62 23.41 – –  

CCL1 
Raw 21.44 1.35 23.10 − 0.04 1.53 0.90 
BC 21.51 1.61 23.50 0.00 0.06 1.00 

CCL2 Raw 20.08 1.39 23.01 − 0.07 1.75 0.86 
BC 21.51 1.60 23.50 0.00 0.08 1.00 

CCL3 Raw 21.03 1.15 23.16 − 0.05 1.61 0.92 
BC 21.51 1.61 23.47 0.00 0.02 1.00 

CRC1 
Raw 22.46 1.33 23.96 0.05 1.32 0.85 
BC 21.52 1.63 23.58 0.00 0.08 1.00 

CRC2 
Raw 22.05 1.41 23.69 0.02 1.26 0.86 
BC 21.50 1.62 23.29 0.00 0.06 1.00 

RAC1 Raw 20.45 1.16 21.73 − 0.05 1.26 0.73 
BC 21.51 1.64 23.43 0.00 0.03 0.99 

RAC2 Raw 21.09 1.44 23.22 − 0.01 0.89 0.89 
BC 21.53 1.62 23.59 0.00 0.05 1.00 

RCA1 
Raw 23.29 1.30 24.58 0.08 2.21 0.88 
BC 21.51 1.63 23.45 0.00 0.05 0.99 

RCA2 
Raw 21.89 1.56 23.53 0.03 1.98 0.89 
BC 21.51 1.64 23.52 0.00 0.04 1.00 

RCA3 Raw 23.19 0.85 24.29 0.08 1.76 0.48 
BC 21.51 1.63 23.52 0.00 0.08 1.00 

RCA4 
Raw 24.27 1.74 23.61 0.07 1.95 0.68 
BC 21.52 1.62 23.61 0.00 0.05 1.00 

RCA5 
Raw 22.67 1.24 23.96 0.05 1.28 0.83 
BC 21.52 1.66 23.53 0.00 0.02 1.00 

RCA6 
Raw 22.00 1.46 23.73 0.02 1.21 0.77 
BC 21.50 1.65 23.48 0.00 0.06 1.00 

RCA7 Raw 22.73 1.33 24.28 0.06 1.54 0.83 
BC 21.51 1.63 23.41 0.00 0.05 1.00 

RCA8 
Raw 22.11 1.70 23.61 0.02 1.97 0.92 
BC 21.51 1.62 23.53 0.00 0.05 1.00 

REM1 
Raw 22.75 1.58 24.73 0.06 2.61 0.96 
BC 21.53 1.65 23.57 0.00 0.08 1.00 

REM2 
Raw 23.30 1.24 24.73 0.08 2.13 0.85 
BC 21.54 1.65 23.46 0.00 0.09 1.00 

REM3 Raw 22.76 2.12 25.06 0.06 1.75 0.93 
BC 21.52 1.61 23.39 0.00 0.03 1.00 

REM4 
Raw 23.23 1.45 24.06 0.08 3.98 0.94 
BC 21.53 1.67 23.52 0.00 0.07 1.00 

REM5 
Raw 21.58 1.55 23.71 0.00 2.60 0.96 
BC 23.51 1.65 23.31 0.00 0.09 1.00 

Where Std. Dev = Standard deviation, R = correlation coefficient. RMSE = Root mean square error, BC = Bias corrected. 
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3. Results and discussion 

3.1. Precipitation homogeneity 

From Table 2, the entire seventeen stations reveled homogeneity in their precipitation under the testing variable of annual mean, as 
the null hypothesis under the SNHT is not rejected at 0.05 level of significance. Whiles only one climate station precipitation data out of 
the seventeen stations portrayed homogeneity under the yearly maximum testing variable. Although inhomogeneous station was 
detected, the outcomes are suitable since there is no much variation. Hence, the stations can be used for further assessment. 

Fig. 5. Taylor diagram for the Kumasi (left) and Takoradi (right) climate stations depicting the normalized standard deviation, the correlation, and 
the RMSE within the (a) Maximum temperature (b) Minimum temperature (c) Rainfall, models and the baseline data. 
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3.2. Calibration and validation of SWAT 

The fourteen most sensitive parameters out of 21 obtained from the sensitivity analysis are shown in Table 3. The SCS runoff curve 
number (CN2) was found to be the most sensitive parameters for the PRB. The final adjusted final values during calibration are shown 
in Table 4. These parameters are substantially linked to surface runoff. The comparisons of measured and simulated hydrographs for 
the calibration and validation epochs are shown in Fig. 4. The overestimation and underestimation of the simulated discharge might be 
due to the mistakes in measuring the input data as well as errors associated with the SWAT model. The underestimation of the low 
flows may be as a result of more than one aquifer contributing to baseflow which is not dealt with in the SWAT model. 

The graphs revealed a good agreement between measured and simulated streamflow values with R2 being > 0.75 for both cali-
bration and validation periods, uncovering a decent agreement between the observed and the modeled discharge, and least error 

Table 10 
Weighted and ranked climate model of precipitation for each climate station.   

Wet season Dry season  

Station ID Adopted ID Wcorr Wrmse Wsstd STWW Wcorr Wrmse Wsstd STWD TWWD RANK  

CCL1 1.24 4.96 8.56 10.33 3.89 5.44 9.26 5.58 15.91 1 
17025BEK REM3 3.30 4.34 9.18 11.78 2.28 1.83 6.50 3.18 14.96 2  

RCA2 3.15 5.78 7.04 11.18 1.63 1.67 6.61 2.97 14.15 3  
RCA4 5.05 5.88 6.31 12.07 1.24 5.33 7.63 4.26 16.33 1 

23018ASA HIR 2.34 4.59 9.85 11.75 0.67 4.00 9.93 4.38 16.13 2  
CCL2 2.75 5.71 6.99 10.81 1.62 5.63 6.09 4.00 14.81 3  
RCA1 1.97 5.41 7.56 10.46 1.24 5.33 7.63 4.26 14.72 1 

18026ATI RCA4 2.83 5.46 8.37 11.67 0.75 0.96 6.22 2.38 14.05 2  
RCA5 1.17 3.92 9.78 10.41 1.20 2.74 8.11 3.61 14.02 3  
CRC2 2.20 5.56 7.56 10.72 0.27 4.52 8.73 4.05 14.77 1 

23001AXM RCA7 1.30 5.62 6.05 9.08 1.06 4.62 9.07 4.42 13.50 2  
CRC1 0.98 5.62 6.05 8.85 1.14 5.19 7.96 4.29 13.14 3  
RAC1 0.92 5.22 7.73 9.71 3.71 5.85 6.56 4.84 14.54 1 

17015DUN RCA3 1.24 4.83 8.82 10.42 0.26 5.48 6.52 3.68 14.10 2  
RCA1 0.41 5.30 7.27 9.08 1.70 5.49 7.28 4.34 13.42 3  
RAC1 1.73 5.27 8.10 10.57 3.49 5.85 6.69 4.81 15.38 1 

19017EFF RCA3 1.62 3.65 9.18 10.12 1.85 5.62 6.89 4.31 14.42 2  
RCA4 1.00 4.77 8.77 10.18 2.31 3.04 7.95 3.99 14.17 3  
REM1 1.80 5.22 8.31 10.74 2.48 4.15 9.41 4.81 15.55 1 

21020KIB REM4 2.01 5.22 8.44 10.98 2.26 3.47 8.67 4.32 15.29 2  
RCA6 0.77 5.22 7.70 9.59 2.13 5.26 8.36 4.72 14.31 3  
RCA1 0.19 4.44 8.98 9.53 3.17 5.70 7.84 5.01 14.54 1 

19007KON RCA4 2.09 4.22 9.70 11.21 1.66 0.59 5.40 2.30 13.50 2  
RCA3 2.21 2.96 7.85 9.11 1.72 5.63 6.59 4.18 13.30 3  
CCL2 0.83 4.37 9.41 10.22 0.26 5.40 6.97 3.79 14.01 1 

17009KSI RCA3 1.31 3.39 8.95 9.55 1.61 6.30 6.67 4.37 13.93 2  
RCA1 0.74 5.17 7.86 9.64 0.58 5.41 7.04 3.91 13.54 3  
CRC1 0.71 4.03 9.93 10.27 3.08 3.00 7.50 4.07 14.34 1 

14044MPR RAC2 1.33 5.62 6.22 9.22 2.40 5.33 8.38 4.83 14.05 2  
CCL3 2.20 3.05 8.05 9.31 2.04 5.50 7.48 4.51 13.81 3  
CCL1 1.46 5.27 7.93 10.26 0.90 5.35 7.38 4.09 14.35 1 

21088ODA RCA4 0.85 5.56 6.44 8.99 2.24 5.18 8.70 4.84 13.83 2  
CCL2 0.04 4.67 8.01 8.91 1.50 5.56 8.93 4.80 13.70 3  
CRC1 3.49 4.67 9.56 12.40 1.25 − 0.14 4.75 1.76 14.16 1 

23023TWI RAC2 1.97 5.56 7.38 10.43 0.40 3.18 9.07 3.80 14.23 2  
RCA1 0.70 4.96 8.22 9.72 1.35 4.96 7.72 4.21 13.93 3  
RCA1 0.91 5.10 8.08 9.86 1.81 5.40 7.78 4.50 14.36 1 

18015BEK CRC1 4.38 4.74 9.09 12.74 1.30 − 0.58 4.29 1.50 14.25 2  
REM1 1.37 4.18 9.93 10.83 0.92 1.26 6.53 2.61 13.44 3  
RCA1 3.46 5.82 6.49 11.04 0.13 5.44 8.30 4.16 15.20 1 

23022SAL RCA3 3.62 5.81 6.96 11.48 1.10 5.44 8.30 4.45 15.93 2  
REM4 0.43 4.36 9.23 9.82 1.01 2.59 3.02 1.99 11.80 3  
CRA1 2.42 4.00 9.16 10.90 1.20 4.68 5.22 3.33 14.23 1 

22024TAF RAC2 1.58 5.61 6.56 9.62 0.13 4.17 9.33 4.09 13.71 2  
RCA1 0.59 3.63 9.63 9.69 0.27 4.33 9.22 4.15 13.84 3  
RAC1 1.53 5.62 6.60 9.62 4.30 5.67 9.09 5.72 15.33 1 

23003TDI RCA7 1.68 5.62 5.86 9.21 1.51 0.49 5.33 2.20 11.41 2  
RCA3 2.10 5.33 8.22 10.96 0.53 0.00 0.04 0.17 11.13 3  
RCA3 3.09 3.40 7.49 9.79 0.57 5.52 6.36 3.73 13.52 1 

20009FOS RAC2 0.49 5.44 6.82 8.92 1.05 4.74 8.93 4.42 13.33 2  
REM4 1.386 2.156 7.333 7.612 0.261 2.558 9.268 3.626 11.238 3 

Where Wcorr is weighted correlation, Wrmse is weighted root mean square error, Wsstd is normalized standardized deviation, STWW is scaled total 
weights and TWWD = STWW (wet) + STWW (dry). 
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variance between the two data sets (Moriasi et al., 2007). Moreover, NSE values of > 0.75 and PBIAS values inside the scope of ±10 %, 
demonstrates very good performance of the model. The dependability of the model was additionally affirmed by RSR values of less 
than 0.53 (Table 5). 

In spite of the fact that the SWAT is suited for other assessment, it overestimated the measured discharge by 4.3 % and 1% during 
the calibration and validation respectively, with the low-magnitude values showing a good performance of the model. The over-
estimation is portrayed by the negative PBIAS value. The discharge hydrographs (Fig. 4) also revealed inconsistencies in the peak 
timings. Similar calibration concerns were faced by Abubakari et al. (2018); Aich et al. (2016), and Cornelissen et al. (2013), when they 
used the SWAT model in the same climatic region. This may be attributed to; limitations in the quality of observed flow data, lack of 
management practices in agricultural land-use and management information and exclusion of dams, reservoirs, irrigation systems and 
ponds during the model setup due to absence of storage capacity data. Additionally, overestimation of the streamflow may be due to 

Table 11 
Weighted and ranked climate model of maximum temperature for each climate station.   

Wet season Dry season  

Station ID Adopted ID Wcorr Wrmse Wsstd STWW Wcorr Wrmse Wsstd STWD TWWD RANK  

REM1 4.02 3.63 7.78 7.72 6.32 6.52 8.96 10.90 18.62 1 
17025BEK RCA8 3.50 5.63 8.37 8.75 5.33 6.24 8.00 9.78 18.54 2  

RAC2 5.46 6.08 6.74 9.14 5.44 6.15 7.10 9.34 18.48 3  
RCA1 5.11 3.63 7.04 7.89 5.24 4.67 8.99 9.45 17.34 1 

23018ASA RCA6 4.82 4.00 7.72 8.27 3.56 5.07 9.26 8.94 17.21 2  
HIR 3.71 4.41 9.04 8.58 2.57 1.85 8.96 6.69 15.27 3  
CCL2 1.37 2.07 7.22 5.34 0.96 3.14 8.48 6.29 11.63 1 

18026ATI RCA6 0.60 1.57 7.00 4.58 0.49 2.44 7.89 5.41 10.00 2  
RCA8 1.26 − 0.89 3.92 2.15 3.63 5.71 6.11 7.72 9.87 3  
RCA6 3.44 5.85 6.82 8.05 4.87 5.28 9.68 9.92 17.97 1 

23001AXM CCL3 2.10 5.63 6.30 7.01 4.61 5.58 9.61 9.90 16.92 2  
HIR 4.26 5.69 5.89 7.92 4.30 6.00 7.41 8.86 16.77 3  
REM5 0.90 4.74 8.85 7.24 0.22 3.85 9.89 6.98 14.22 1 

17015DUN REM3 1.41 5.56 6.86 6.91 0.92 5.16 8.00 7.04 13.95 2  
REM2 0.62 2.69 7.37 5.34 0.40 4.30 9.33 7.01 12.36 3  
RCA6 5.32 4.30 7.63 8.62 2.59 3.89 8.96 7.72 16.34 1 

19017EFF CCL2 2.16 4.30 8.96 7.71 1.55 3.78 9.33 7.33 15.04 2  
RCA7 3.53 4.30 8.96 8.39 0.28 3.20 9.48 6.48 14.87 3  
RCA1 6.82 5.78 6.89 9.74 5.32 5.93 6.40 8.82 18.57 1 

21020KIB REM5 5.68 1.85 8.74 8.14 5.74 6.22 7.11 9.53 18.28 2  
CRC1 5.78 5.85 7.26 9.45 3.04 5.96 6.56 7.78 17.22 3  
CCL1 2.51 3.89 8.78 7.59 1.92 4.81 9.19 7.96 15.55 1 

19007KON RCA4 3.61 5.85 6.82 8.14 0.45 5.50 6.39 6.17 14.30 2  
REM4 3.06 3.18 7.68 6.96 1.23 5.26 7.89 7.19 14.15 3  
RCA1 6.06 4.44 7.67 9.09 4.13 5.67 8.89 9.34 18.43 1 

17009KSI CRC1 5.09 3.28 6.67 7.52 1.01 9.60 8.59 9.60 17.12 2  
RCA6 5.14 2.67 5.89 6.85 3.15 5.20 9.22 8.78 15.63 3  
RCA7 4.56 5.29 9.86 9.85 3.09 5.33 8.99 8.71 18.56 1 

14044MPR CRS1 4.40 4.37 8.52 8.64 4.15 5.48 9.30 9.46 18.11 2  
RCA6 5.48 4.93 8.56 9.48 3.66 5.20 6.30 7.58 17.06 3  
RCA8 5.39 5.70 9.93 10.51 5.24 6.17 8.30 9.86 20.37 1 

21088ODA RCA8 6.13 6.33 9.33 10.90 3.40 5.69 8.15 8.62 19.52 2  
RCA1 4.62 5.93 8.59 9.57 4.60 6.07 7.26 8.96 18.53 3  
RCA7 5.84 6.37 8.61 10.41 6.37 6.56 8.07 10.50 20.91 1 

23023TWI REM5 2.61 4.56 9.93 8.55 3.56 5.63 8.26 8.72 17.27 2  
REM1 3.10 3.85 8.59 7.77 3.89 5.44 9.29 9.31 17.09 3  
RAC2 2.56 5.70 7.17 7.72 3.69 5.48 8.83 9.00 16.72 1 

18015BEK RCA7 1.93 5.20 8.44 7.79 1.63 5.07 9.41 8.05 15.84 3  
RCA8 2.49 4.30 9.22 8.00 3.13 4.08 8.93 8.07 16.07 2  
CCL2 0.39 9.44 8.28 9.05 0.54 5.39 7.20 6.57 15.62 1 

23022SAL HIR 1.89 9.48 1.62 6.49 3.00 5.70 7.63 8.17 14.66 2  
RCA3 2.32 9.11 − 0.33 5.55 2.94 4.70 9.93 8.78 14.33 3  
CCL3 3.80 5.33 9.44 9.29 4.21 5.63 9.04 9.44 18.73 1 

22024TAF RAC2 3.03 4.74 9.93 8.85 4.10 5.85 8.30 9.13 17.98 2  
HIR 4.75 6.07 7.89 9.36 3.27 5.73 7.76 8.38 17.74 3  
REM2 3.55 5.25 9.41 9.10 3.25 5.63 7.73 8.31 17.41 1 

23003TDI REM1 2.23 5.04 8.96 8.11 2.65 5.67 7.44 7.88 16.00 2  
RCA7 3.52 2.67 6.84 6.51 4.05 5.93 7.85 8.91 15.43 3  
RCA6 1.40 4.67 9.16 7.62 1.26 4.52 9.41 7.60 15.21 1 

20009FOS RCA1 0.20 4.37 9.11 6.84 1.86 5.11 8.39 7.68 14.52 2  
RCA4 2.37 5.63 7.63 7.81 0.68 5.43 6.96 6.53 14.35 3 

Where Wcorr is weighted correlation, Wrmse is weighted root mean square error, Wsstd is normalized standardized deviation, STWW is scaled total 
weights and TWWD = STWW (wet) + STWW (dry). 

A. Awotwi et al.                                                                                                                                                                                                        



Journal of Hydrology: Regional Studies 34 (2021) 100805

14

baseflow overestimation which could result from excess aquifer contribution to groundwater recession flow in the PRB, a condition 
which is not dealt with in SWAT 

3.3. Precipitation bias correction 

The DM method moderately underestimated or overestimated the average monthly simulated RCM precipitation (Table 6) with the 
different scale and shape parameters (Table 7). The raw simulated data diverged from the measured precipitation in all RCM data. In 
addition, all the RCMs with exception of REMO, CRCM5, RACMO22 T, RCA6, RCA7and RCA8 underestimated the raw simulation 
mean and the 90th percentile precipitation. The DM method enhanced the raw simulation data and decreased the error in various 
component with various ranges. 

Table 12 
Weighted and ranked climate model of minimum temperature for each climate station.   

Wet season Dry season  

Station ID Adopted ID Wcorr Wrmse Wsstd STWW Wcorr Wrmse Wsstd STWD TWWD Rank  

RCA1 5.57 7.85 2.60 8.01 8.78 3.76 1.41 6.97 14.98 1 
17025BEK REM5 5.97 9.21 5.21 10.19 5.56 0.59 3.25 4.70 14.89 2  

CRC2 6.53 7.74 6.38 10.32 4.71 1.11 2.97 4.40 14.72 3  
REM1 6.69 6.67 8.97 11.16 6.03 6.60 8.44 10.53 21.69 1 

23018ASA RCA1 5.47 6.22 9.95 10.82 6.42 5.74 8.74 10.45 21.27 2  
REM5 4.63 6.05 8.08 9.38 6.15 6.67 8.22 10.52 19.90 3  
REM1 2.06 4.15 9.63 7.92 7.67 7.16 8.95 11.89 19.80 1 

18026ATI RCA1 4.31 5.93 8.22 9.23 5.11 5.72 9.70 10.27 19.50 2  
CRC1 4.14 5.94 7.70 8.89 3.94 5.89 6.78 8.30 17.19 3  
REM5 2.02 5.63 6.53 7.09 6.84 6.52 9.86 11.61 18.70 1 

23001AXM RAC1 4.60 5.73 6.00 8.16 4.91 6.27 6.96 9.07 17.24 2  
RCA3 3.25 5.70 6.30 7.62 4.99 6.15 8.06 9.60 17.22 3  
REM1 0.65 5.49 6.71 6.42 2.89 5.70 7.38 7.98 14.41 1 

17015DUN RCA3 1.43 5.25 7.89 7.29 1.65 5.63 5.88 6.58 13.87 2  
REM3 1.84 5.29 8.11 7.62 0.70 5.51 6.15 6.18 13.80 3  
RAC2 3.39 4.50 9.33 8.61 3.62 4.81 9.85 9.14 17.76 1 

19017EFF RCA6 4.02 3.47 7.56 7.53 2.12 5.35 9.00 8.23 15.76 2  
RCA4 3.28 5.35 9.00 8.81 0.22 3.78 9.26 6.63 15.44 3  
RCA7 3.05 4.75 9.98 8.89 1.69 4.26 9.99 7.97 16.86 1 

21020KIB RCA6 1.46 4.44 9.63 7.77 1.46 4.44 9.58 7.75 15.51 2  
REM4 1.53 5.05 8.58 7.58 1.53 5.03 8.60 7.58 15.16 3  
RCA5 2.05 5.47 7.78 7.65 2.74 4.89 9.56 8.59 16.24 1 

19007KON CRC2 0.99 5.42 7.29 6.85 2.84 5.50 8.17 8.25 15.10 2  
CCL3 0.90 5.33 7.45 6.84 2.28 5.07 8.89 8.12 14.96 3  
RAC1 5.39 6.22 8.37 9.99 4.36 5.30 9.95 9.81 19.80 1 

17009KSI CRC2 5.62 5.78 9.93 10.66 3.42 4.74 9.67 8.91 19.57 2  
CRC1 4.32 5.26 10.00 9.79 3.69 4.83 9.71 9.12 18.90 3  
CRC1 4.55 5.48 9.78 9.90 3.09 5.69 7.85 8.31 18.21 1 

14044MPR REM4 3.66 4.81 9.70 9.08 2.13 5.21 8.56 7.95 17.03 2  
RAC2 3.32 5.61 8.16 8.55 3.47 5.84 7.26 8.29 16.83 3  
RCA3 5.72 5.95 9.85 10.76 5.13 6.07 8.82 10.01 20.77 1 

21088ODA RAC1 6.79 6.74 8.33 10.93 5.21 6.18 7.72 9.55 20.49 2  
CRC1 5.89 5.63 9.29 10.40 4.84 6.08 8.24 9.58 19.98 3  
RCA1 4.37 5.93 8.22 9.26 5.12 5.83 9.56 10.25 19.51 1 

23023TWI CRC1 4.18 5.94 7.76 8.94 4.55 5.96 6.74 8.62 17.56 2  
RCA7 2.39 5.49 7.84 7.86 4.32 5.78 9.04 9.57 17.42 3  
RCA3 5.74 6.22 9.19 10.58 4.73 5.44 9.48 9.83 20.40 1 

18015BEK CRC1 5.82 5.89 9.93 10.82 3.65 5.33 9.26 9.12 19.94 2  
RAC1 4.96 6.11 8.33 9.70 4.07 5.41 9.48 9.48 19.18 3  
RCA3 4.18 5.78 8.62 9.29 3.72 5.52 8.94 9.09 18.38 1 

23022SAL RAC1 4.46 6.00 7.89 9.18 2.10 4.47 9.93 8.25 17.43 2  
CRC1 2.74 5.05 9.26 8.52 2.46 4.83 9.48 8.39 16.91 3  
REM5 4.34 5.48 9.50 9.66 6.24 6.15 9.99 11.19 20.85 1 

22024TAF RCA3 6.21 6.52 8.59 10.66 5.18 6.18 8.33 9.85 20.51 2  
RAC1 7.03 6.67 7.59 10.65 5.65 6.22 7.19 9.53 20.18 3  
CRC1 4.18 5.83 9.16 9.58 3.31 5.59 8.37 8.64 18.22 1 

23003TDI RAC1 3.97 5.93 7.63 8.76 4.48 5.96 8.15 9.29 18.05 2  
RCA2 4.66 5.93 8.59 9.59 2.59 4.44 9.71 8.37 17.97 3  
RCA5 5.50 6.22 7.24 9.48 4.56 6.06 8.74 9.68 19.16 1 

20009FOS RCA3 4.01 5.70 7.10 8.41 4.16 6.10 8.00 9.13 17.54 2  
CRC1 5.37 6.15 7.19 9.35 2.51 5.56 8.30 8.19 17.54 3 

Where Wcorr is weighted correlation, Wrmse is weighted root mean square error, Wsstd is normalized standardized deviation, STWW is scaled total 
weights and TWWD = STWW (wet) + STWW (dry). 
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The statistical indicators revealed uncertainty in various simulated raw RCM data. A lesser correlation coefficient (R) and a greater 
RMSE were revealed in entirely raw simulation. Furthermore, the DM method showed a parallel and good R in monthly mean pre-
cipitation. While reasonably similar and almost zero bias and RMSE were identified for the bias-corrected data. The outcome showed 
that the DM method has a good capability in adjusting the raw simulation to reproduced the observed in various aspects. 

3.4. Temperature bias correction 

The simulated raw temperature data overestimated the mean and 90th percentile of maximum and minimum temperature in all the 
RCMs apart from CCLM4− 8-17 and RACM022 T (Tables 8 and 9). The R and bias of the simulated raw data were moderately good in all 
the RCMs simulations. Nevertheless, a moderately higher RMSE was identified in all the simulated raw maximum and minimum 
temperature. This result is similar to the studies by Geleta and Gobosho (2018) in Finchaa watershed, Ethiopia and Zhang et al. (2018) 
in northern part of Lake Erie Basin in Canada 

3.5. Selection of RCMs using weighting and ranking 

Fig. 5 shows samples of Taylor diagrams for only Kumasi and Takoradi, three out of the seventeen climate stations (to reduce the 
number of Taylor diagrams) for maximum and minimum temperature, and precipitation data. The observed data for 1970–2005 were 
compared with corresponding historical data obtained from individually RCMs to evaluate the CC, NRMSE, and NSD. Tables 10–12 
show the weighting of the CC, NRMSE, and NSD, scaling the total weight and ranking of the first three best regional climate models for 
each gauge station. The results revealed that the model that reproduced the observed data best varied from one station to station. 
Therefore, using one RCM for climate impact assessment especially over a large area may affect the results. This may be due to the fact 
that each station has different land surface, vegetation dynamics, sulphate aerosol, non-sulphate aerosol, carbon concentration and 
atmospheric chemistry, and the models resolve these features differently. Weighting and ranking method is needed when dealing with 
a large area where the climate gauge stations are wide apart. The first three best RCMs for each station were used as input data for the 
SWAT modeling simulation in this research. 

3.6. Projected climate change assessment 

3.6.1. Projected temperature 
Post-bias correction reveals an increment in projected temperature under RCP4.5 and RCP8.5 climate scenarios (Table 13). An 

increasing trend in the mean annual temperature change pattern was identified in B, S, and T across the three time periods under both 
scenarios. The mean yearly increase in temperature varies from + 2.9 to + 7.03 % under RCP4.5 and from + 3.5 to + 9.7 % under 
RCP8.5 climate scenarios. In general, the average yearly temperature increases up to 4.6 % under RCP4.5 and 6.5 ◦C under RCP8.5 
climate scenarios over the next 90 years. According to the monthly assessment, a consistent upsurge was identified in all the months for 
temperatures for the two climate scenarios under the three classified time periods where January appeared to be the warmest. 
Furthermore, the projected increase in RCP8.5 temperature data under Africa− CORDEX climate scenarios in PRB was higher than that 
of the RCP4.5. The projected changes in annual and monthly temperature time scales reveal possible warmer periods in the future with 
RCP8.5 appeared higher. These findings are consistent with other studies carried out by Jin et al. (2018) in the Volta River Basin, Wu 
et al. (2017) in Jiangsu Province, Morán-Tejeda et al. (2015) in Aragón catchment and Yira et al. (2017) in Dano catchment, where 

Table 13 
Percentage changes in monthly and annual mean temperature under different climate models groups.   

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Scenario RCP4.50 
BNE4.5 6.97 3.79 1.11 3.09 0.26 1.25 0.41 2.71 4.19 4.37 3.87 5.47 2.95 
BMD4.5 6.80 4.29 2.31 1.97 3.33 4.67 4.14 6.14 6.53 5.49 4.25 6.03 4.65 
BED4.5 8.14 4.81 2.78 2.47 3.12 4.12 3.48 5.61 6.49 6.08 5.06 7.16 4.96 
SNE4.5 4.57 6.39 3.11 6.40 4.72 9.72 9.35 10.63 9.06 8.50 5.78 6.72 7.03 
SMD4.5 6.69 4.63 3.31 3.47 4.44 4.86 4.79 6.05 6.04 8.78 4.28 5.62 4.99 
SED4.5 8.14 4.81 2.78 2.47 3.12 4.12 3.48 5.61 6.49 6.08 5.06 7.16 4.53 
TNE4.5 6.37 3.03 1.50 1.02 2.46 1.11 1.12 4.21 5.33 5.59 4.94 6.22 3.41 
TMD4.5 6.32 3.27 3.02 2.21 2.72 3.28 4.23 5.96 5.85 7.86 4.35 6.38 4.37 
TED4.5 8.93 4.65 3.65 2.05 1.73 0.63 1.90 4.91 6.19 6.49 6.63 8.99 4.82  

RCP8.5 
BNE8.5 4.01 4.28 3.94 1.22 1.27 3.43 3.38 3.70 4.11 3.99 4.03 4.18 3.45 
BMD8.5 8.82 6.33 5.47 5.20 5.56 7.41 5.93 7.06 6.43 6.16 5.33 7.58 6.37 
BED8.5 10.03 8.44 9.50 7.66 8.31 9.82 7.65 8.22 8.54 9.06 8.21 8.38 8.66 
SNE8.5 6.01 3.75 2.33 3.89 2.76 3.00 1.88 4.22 3.56 4.66 3.46 4.98 3.72 
SMD8.5 9.25 6.17 5.35 5.40 6.27 7.68 7.02 6.10 6.68 5.93 5.16 6.40 6.44 
SED8.5 9.00 9.41 9.26 8.69 10.45 10.48 9.72 9.15 9.26 9.05 8.07 9.94 9.33 
TNE8.5 7.20 4.60 2.89 1.82 1.49 0.70 3.29 4.02 3.91 6.28 6.02 5.86 4.00 
TMD8.5 8.42 7.60 5.27 9.02 5.11 8.20 5.28 6.70 6.62 6.03 5.44 7.79 6.75 
TED8.5 14.19 10.35 9.49 9.85 7.28 9.64 8.94 8.08 8.98 8.96 8.51 12.56 9.74  
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increases in temperature are expected in the NE, MD and ED. 
Further assessment indicated that the RCP8.5 scenario projected higher temperatures than RCP4.5 except in the case of NE of S 

(SNE). The analysis depicted that with the same climate change scenario, T projected the highest temperatures for both RCP8.5 and 
RCP4.5. 

3.6.2. Projected precipitation 
The outcome of the post-bias corrections of precipitation data revealed general increases in future average yearly precipitation in 

NE and MD and decreases in the ED over PRB (Fig. 6). The increasing change in average yearly precipitation varies from + 1.2 to + 3.3 
% for RCP8.5 and to a higher range of + 2.5 - + 6.5 % for RCP4.5 climate scenarios throughout the studied periods. For the reduction, 
RCP4.5 appeared to decrease more (-2- -4.7 %) compare to that of RCP8.5 (− 1.1 to − 0.84 %). The monthly precipitation assessment 
showed that increase in precipitation in RCP8.5 was lower than recorded in RCP4.5, and ranged between 0% and 17 %. The reduction 
in precipitation was higher in RCP8.5 than RCP4.5. 

In general, the anticipated seasonal precipitation changes within -14 % to 18 % for RCP4.5 and -15 % to 17 % for RCP8.5. In the 
PRB, the future seasonal change in precipitation did not displayed any systematic reducing or increasing trend, comparing to that of 
temperature which exhibited an increasing trend under both climate scenarios for the projected future periods. These results are 
similar to researches done by Abubakari et al. (2018) in the White Volta River Basin (WVRB) in West Africa, Al-Safi and Sarukkalige 

Fig. 6. Percentage changes in monthly and annual mean precipitation under different climate models groups in (a), (b), (c) RCP4.5 and (d), (e), (f) 
RCP8.5 emission scenarios. 
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(2017) in Richmond River Catchment in New South Wales and Tall et al. (2017) in Lake of Guiers in Senegal, where climate models 
projected different trends of annual and monthly precipitation under different emission scenarios. 

The monthly precipitation uncertainty of RCP8.5 was between 9.9 % and 11 %, 11 % and 13 %, and 12 % and 14 % in NE, MD and 
ED respectively. In general, the anticipated seasonal precipitation changes within -14 % to 18 % for RCP4.5 and -15 % to 17 % for 
RCP8.5. These results are similar to the reported results by Abubakari et al. (2018) in the WVRB in West Africa, Al-Safi and Sarukkalige 
(2017) in Richmond River Catchment in New South Wales and Tall et al. (2017) in Lake of Guiers in Senegal, where climate models are 
projecting different trends of annual and monthly precipitationl under different emission scenarios. 

The uncertainties might be as a result of model construction. There are many uncertainties linked to the construction of climate 
models and they can be grouped into initial conditions, boundary conditions, parameterizations and model structure. Construction 
uncertainty is introduced by the scientific selection of model design and development. 

3.7. Future streamflow changes from climate impact 

The potential changes in the future streamflow under RCP4.5 and RCP8.5 for the projection periods magnitude and sign are shown 
in Fig. 7. All the three groups of RCMs (best, second-best and third-best) projected substantial increases in streamflow for NE and MD 
up to over 11 % while a reduction of about 8% was projected in ED under RCP4.5. However, RCP8.5 climate scenario revealed upsurge 
in streamflow that were identified for all 21 st century scenarios under B, SNE and ED of T with the highest increase of > 5% projected 
for SNE while the highest reduction of over 2% was projected in MD of T (TMD). Increasing streamflow values were highest under the 
RCP4.5 emission scenario and least under RCP8.5. 

The changes in the future monthly streamflow volumes under the different groups of climate models are shown in Figs. 8 and 9. In 
the RCP4.5 model projection, May and June depicted the same streamflow change trend; an increase in NE and MD, and a decrease in 
ED, while July indicated an increasing trend in all three parts of the 21 st century. The streamflow change trend in January is the same 
for both model groups; a decreasing trend is identified in NE and MD, and an increasing in ED. Each modeling group projected var-
iations in the streamflow volumes. For instance, NE of B projected a 5.5 % increase in streamflow in February whereas SNE and NE of T 
projected reductions of 3.7 % and 8.3 % respectively for the same month. This is the same as in the month of August where B and T 
show increasing trends whilst S shows decreasing in all the century scenarios. Thus, the dry flow month of August may be wet under B 
and T modeling groups and drier under S. A shift in monthly maximum streamflow from June to July is projected by all the modeling 
groups for ED. Based on the results of the assessments, the projected future monthly streamflow variations as a result of the RCP4.5 will 
be within –15 % to 23 %. 

In the case of the RCP8.5, the bias corrected B climate model group projected decreases in flow for March while S and T groups 
projected increments for the same month. The trend for July is similar to that of the scenario under RCP4.5 with the exception of TMD 
which depicted a reduction in streamflow. At peak flow in June, all the three groups of climate models showed an increase in flow up to 
15 % at all the parts of the 21 st century except ED of B and MD of S which recorded reductions of 2.1 % and -9.5 % respectively. Based 
on the information from the RCP8.5, the projected future monthly streamflow changes may range between -24 % and 24 %. 

Fig. 7. Percentage change in annual streamflow in the (a) RCP8.5 and (b) RCP4.5 scenarios.  
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3.8. Seasonal analysis 

The overall projected streamflow changes for the wet and dry seasons show diverse patterns (Fig. 10). From the RCP8.5 results, the 
NEs projected streamflow changes within 2%–6% in wet season, and -6% to 10 % in the dry season. For the MDs, projected streamflow 
variations stretched from -4.00% to 7.00% in the wet season and from -4% to 6% in the dry season. Variations for ED ranged from -3% 
to 8% in the wet season and -6% to 4% in the dry season. The B modeling groups projected increasing flow volume in the wet season 
and decreasing flow volume in the dry season. The S modeling group depicted opposite streamflow volume change with the exception 
of SNE. This might be due to the different seasonal projection capabilities of the modeling groups stemming from the uncertainties in 
the projected future climate by the models. The magnitude and sign of the seasonal streamflow variations demonstrate noteworthy 
uncertainties among various modeling groups. In the RCP4.5 scenario, the patterns of the projected streamflow changes are the same in 
the wet season for all modeling groups; streamflow volume increased for NE and MD and decreased in ED. In general, the dry season 
streamflow in RCP4.5 depicted higher increasing trends compared to the trends in RCP8.5. The modeling groups B and S of RCP4.5 
projected higher wet season streamflow changes than those in RCP8.5. Generally, the projected seasonal streamflow variations were 
not very intense for both the RCP4.5 and RCP8.5 scenarios (within -5% to 9%). The results identified in this study have also been 
reported by studies undertaken by Wu et al. (2017) in the Jiangsu Province, Jin et al. (2018) in the Volta River Basin, and Fentaw et al. 
(2018) in Ethiopian part of the Tekeze Basin. 

3.9. Spatial variations of streamflow 

The annual spatial distribution of the future streamflow changes across the basin revealed differences in magnitude but similarity in 

Fig. 8. Percentage change in monthly streamflow volume for RCP8.5 scenarios in the (a) near 21 st century (b) mid of 21 st century and (c) end of 
21 st century. 
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sign for the RCP4.5 scenarios (Fig. 11). The modeling groups’ projections indicate reduction in streamflow in the northern sub-basins 
with the exception of TMD. All the modeling groups projected increases in the southern, western, eastern and middle sub-basins in the 
annual streamflow, apart from south-western parts of the S modeling group, and south-eastern part of TMD. In the RCP8.5 scenarios, 
the modeling chains projected opposite change in the northern and the upper-south sub-basins of the annual runoff when compared to 
the RCP4.5 (Fig. 12). The northern sub-basins revealed increase in the runoff while the upper-south indicated a decrease. Increasing 
runoff projections at western, eastern, middle and the southernmost sub-basins across the basin were similar to the RCP4.5 projections 
but different in magnitude. The moderate upsurge in mean annual streamflow for both climate scenarios, in all the future time epochs 
is attributed to projected increased in precipitation. Whereas the reduction in streamflow is as a result of high upsurge in projected 
temperature that prompts increment in evapotranspiration than upsurge in precipitation. This is in agreement with the study carried 
out in the WVRB where the predictions of runoff differed through modeling chains in size and trend in various parts of the basin, with 
the A1B emission scenario predicting increasing changes in southern and decreasing changes in northern while the B1 scenario 
projected the opposite (Abubakari et al., 2018). With the A1B describing a future scenario whereby there is very rapid economic 
growth, low population growth, and the rapid introduction of new and more efficient technologies. The variation in the energy system 
is not as a result of one specific energy source on the presumption that similar enhancement rates connect with all energy supply and 
end use technologies. Whilst B1 presumes the same population growth but with less material intensity, rapid variation in economic 
structures, and largely concentrates on clean and efficient technologies. It places more weight on economic, social and environmental 
sustainability solutions, devoid of extra climate initiatives. 

The projected variations in runoff by RCPs modeling groups in the 21 st century scenarios of the basin might have dire conse-
quences on farmers’ crop yields and the operations of the Ghana Water Company Limited (GWCL), which is already faced with water 
availability and quality problems. 

Fig. 9. Percentage change in monthly streamflow volume for RCP4.5 scenario in the (a) near 21 st century (b) mid of 21 st century and (c) end of 21 
st century. 
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3.10. Uncertainty and limitation 

These include climate models, emission scenarios, bias correction, and hydrological modelling. 
Generally, the uncertainties connected to the climate model are more than those linked to the hydrological model or the bias 

correction (Arnell, 2011; Gosling et al., 2011; Li and Jin, 2017). 
Upsurge in RCP8.5 temperature at monthly time scale through the best three models revealed uncertainty with ranges of 1.2%–3.4 

%, 1.3 % to 3.76 % and 1.9 % to 4.2 % for NE, MD and ED respectively. Further assessment showed that the RCP4.5 projected higher 
temperatures than RCP8.5 in all the scenarios. 

The uncertainties associated with the monthly precipitation at the various demarcations of the century were 8.04%–12 %, 9.1 % to 
11 % and 10.6 % to 25 % in NE, MD and ED respectively. Unlike temperature variations, precipitation variations indicate much 
uncertainty under different RCMs and climate change scenarios. 

The monthly streamflow changes from RCP8.5 (Fig. 7) indicate substantially higher uncertainties when compared RCP4.5 changes 
(Fig. 9). The RCP8.5 models showed monthly uncertainties varying from 7.8 % to 16 %, 9.07%–18 % and 8.5%–21 % whilst the RCP4.5 
uncertainties ranged from 6.6 % to 16 %, 8.6 % to 14 % and 8.04%–14 % for NE, MD and ED respectively. 

This research assumed that change in climate and anthropogenic distractions are unconnected. In reality, the alteration in climate 
and anthropogenic disturbances are connected and are not easily separable. So, in hydrological modeling, atmosphere-terrestrial 
interactions are typically very important (Li et al., 2010), which could influence the streamflow’s values and distributions. Thus, 
further assessment of the impacts of such interactions on streamflow by means of a coupled high-resolution climate-watershed model is 
needed. This will be the concentration of the forthcoming research. 

3.11. Climate change impact on water resources planning 

The forecasted changes in PRB streamflow between 2022 and 2099 may have a remarkable effect on 43 administrative districts and 
it is imperative that critical reactions to these variations be considered. The projected climate variability such as the late onset of 
precipitation, decrease in the span of the rainy period, changes in the magnitude of precipitation and higher temperatures may affect 
farming schemes and GWCL operations. The PRB notably has low flood control engineering infrastructure hence future upturns in 
streamflow may upsurge flood challenges, and the subsequent flooding may affect water quality. It is therefore essential to plan for 
flood control during the raining seasons whilst drought should be mitigated during the dry season due to its impact on agricultural 
production. The projected higher temperatures will have an adverse impact on the water environment, and may lead to a rise in blue- 
green algae populations and its attendant challenges (Shang et al., 2010; Xie et al., 2016). 

The GWCL stations and farmers in the basin have already adopted a wide variety of climate change adaptation techniques to 
continuously supply water and maintain and increase farm yields (Kankam-Yeboah et al., 2013). The existing agrarian policies or 
techniques must however shift towards ones which will empower farmers to better utilize the rains in the farming season. Farmers 

Fig. 10. Percentage change in seasonal streamflow in the (a) RCP4.5 and (b) RCP8.5 emission scenarios.  
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could be advised to plant fast maturing crops, replace crops with a high-water demand with crops adjusted to the new climate 
variability, alter their planting period to match the new precipitation patterns, and etc. The GWCL must consider infrastructural 
enhancements, public education to enhance awareness of climate risks and rigorous water supply management to alleviate water stress 
in the basin. 

From the model simulated outcomes, there are uncertainties over the sign of the change for both precipitation and streamflow in 
the study area. Overall, the RCP4.5 projected a decrease in runoff in the northern parts of the basin with the eastern, western, middle 
and southern parts expected to increase in streamflow. RCP8.5 projected an increase in streamflow in the northern, eastern, western, 
middle and southernmost parts of the basin, with a projected decrease in the upper-south. The proposed decrease in streamflow might 
have dire consequences for the operations of GWCL as well as the inhabitants of the basin whose main occupation is farming. The 
negative impacts of the declining water accessibility can be lessened by applying water utilization efficiency and environmental 
integrity as well as stepping up effective planning, management and sustenance of hydrology in these parts of the study area. Efficient 
utilization of water will certainly decrease demands from the three primary water use sectors: domestic supply, agriculture and in-
dustry. Keeping environmental integrity and establishing buffer zones for headwaters, wetlands, lakes and rivers would reduce the 
pollution and ruin of the basin’s natural resources due to human factors (Awotwi et al., 2018). 

The realization that mean streamflow in the PRB will increase at some part of the basin in all the modeling groups calls for suitable 
investments in water planning and management techniques, like construction of reservoirs that are efficient for harvesting the 

Fig. 11. Projected spatial distribution of mean annual streamflow (mm) with RCP4.5 emission scenarios.  
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expected increase in surface runoff. The GWCL has and will continue to increase its production due to urbanization and population 
growth. To achieve this aim, dams and reservoirs are being expanded or constructed. There are also small reservoirs being constructed 
for irrigation purposes (Water Resources Commission, 2012) with the view of storing more water in the wet season and releasing it 
during dry season. Regrettably, the reservoirs and dams are being designed without factoring in climate change. The designs should be 
enhanced by factoring in climate change impacts. 

Taking the altering climate into account, it is essential to produce integrated water resource management policies that approach 
water storage through a variety of storage alternatives. Climate change adaptation procedures must be amalgamated with feasibility 
studies and development of projects for the study area (Kankam-Yeboah et al., 2013). To be sustainable, any ongoing or yet to be 
started project within the basin must count the possible influence of climate change on water resources and make needed provisions in 
planning, design and financial arrangements. 

4. Conclusion 

This study assessed the impacts of climate change on the PRB’s streamflow using bias corrected CORDEX-Africa medium-emissions 
and high-emissions climate scenarios, RCP4.5 and RCP8.5, respectively. The SWAT model was deployed to simulate basin streamflow 

Fig. 12. Projected spatial distribution of mean annual streamflow (mm) with RCP8.5 emission scenarios.  

A. Awotwi et al.                                                                                                                                                                                                        



Journal of Hydrology: Regional Studies 34 (2021) 100805

23

patterns and the weighting, scaling and ranking technique was engaged to select suitable RCM combinations in order to minimize 
uncertainties in the climate modeling. 

The MCE of the climate model for each climate station revealed that models reproducing the best of the observation dataset at each 
climate station are different thus, using one model output will reduce the accuracy at some stations, justifying the decision to generate 
and use modeling group combinations for the evaluation of the influence of climate change in the PRB 

Based on the results of the modeling groups, there is consensus that the PRB is expected to experience a rise in surface runoff by the 
end of the 21st century. Consequently, it will be appropriate for stakeholders in agriculture in the basin and beyond to invest in cost- 
effective water management techniques like constructing reservoirs to harvest more water during the wet season, and gradually release 
it during the dry season. Agriculture policy and techniques must be geared towards those which will empower farmers to use pre-
cipitation profitably. The projected change in climate in the basin supposes that any developmental projects within the basin should 
factor in the possible impacts of climate change on the future water resources, and make room for planning, design and budgeting. 

Though the SWAT modeling process in this study seemed quite fruitful, there are limitations in the model, being; not all the hy-
drological components like deep aquifer recharge or soil moisture deep aquifer recharge could be specifically calibrated due to lack of 
data. Also, the full capacities of the hydrological model cannot be obtained in the light of the absence of locational hydrological and 
farming management information. 

Although outcomes of this research will offer an essential foundation for stakeholders planning for the future water resources in the 
PRB, there were three main uncertainties associated with the study; the static and dynamics SWAT input data, the SWAT model, and 
the climate model. This implies that additional research is needed to enhance the results with respect to the above uncertainties by 
using multiple models, and training personnel on the right way to collect, prepare and store data. 

Owing to prevailing heterogeneous conditions in river basins globally, this study can be used as a guideline for other related 
research aimed at understanding the change and trends in water resources to advice efficient planning and management for sustaining 
natural resources in relation to climate change. 
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