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ABSTRACT

The properties of black hole and neutron-star binaries are extracted from gravitational waves (GW) signals using Bayesian
inference. This involves evaluating a multidimensional posterior probability function with stochastic sampling. The marginal
probability distributions of the samples are sometimes interpolated with methods such as kernel density estimators. Since most
post-processing analysis within the field is based on these parameter estimation products, interpolation accuracy of the marginals
is essential. In this work, we propose a new method combining histograms and Gaussian processes (GPs) as an alternative
technique to fit arbitrary combinations of samples from the source parameters. This method comes with several advantages
such as flexible interpolation of non-Gaussian correlations, Bayesian estimate of uncertainty, and efficient resampling with

Hamiltonian Monte Carlo.
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1 INTRODUCTION

The first detection of gravitational waves (GW) in 2015 (Abbott et al.
2016a) sparked a new era of Astronomy. Several years on from that
event the number of detected GWs keeps increasing and within this
decade we expect to observe 0(10%) signals (Abbott et al. 2020b)
from compact binary coalescences (CBCs). This huge progress
brings with it the challenge of efficiently analysing a large number of
events. To address these computational challenges, machine-learning
techniques are being increasingly investigated within the field of GW
physics (Cuoco et al. 2020). Many studies have focused on speeding
parameter estimation of the source parameters of the signals with
various techniques, such as deep learning (George & Huerta 2018),
variational autoencoders (Gabbard et al. 2019), and autoregressive
neural flows (Green, Simpson & Gair 2020). Other work has focused
on combining detection and parameter estimation with deep neural
networks (Fan et al. 2019) as well as using neural networks to rapidly
generate surrogate waveforms (Chua, Galley & Vallisneri 2019; Khan
& Green 2020).

While the research efforts to speed up or completely revolutionize
parameter estimation are ongoing, the issue of how to effectively
deal with a large number of results from different events remains.
In particular, how to streamline the analysis of the results, while
maintaining accuracy. In this work, we demonstrate the efficiency
and usefulness of using Gaussian processes (GP) for post-processing
parameter estimation results of CBCs. Applications of GPs in the
field of GWs span a wide range of use-cases, such as marginalizing
waveform errors (Moore et al. 2016), regression of analytical wave-
forms (Setyawati, Piirrer & Ohme 2020), predictions of population
synthesis simulations (Barrett et al. 2016), hierarchical population
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inference (Taylor & Gerosa 2018), and Equation of State (EOS)
calculations (Landry & Essick 2019). They have also been exploited
for the development of fast parameter estimation with RIFT sampler
(Lange, O’Shaughnessy & Rizzo 2018).

Here, we exploit GPs to estimate probability density functions
(PDFs) from parameter estimation of GW signals. Non-parametric
density estimation from a finite set of samples is an active research
field in machine learning and statistics (Murray, MacKay & Adams
2008; Papamakarios, Pavlakou & Murray 2017; Wang & Scott 2019).

For most GW analysis, histograms are usually the preferred
estimators to visualize the marginal posterior PDFs and to avoid
oversmoothing sharp features, but often are not convenient for post-
processing analyses such as population inference. These sorts of
analyses either reweight the posterior samples directly (Abbott et al.
2020a) or need to estimate a continuous representation of the GW
posterior density surface. Several density estimation methods such
as Dirichlet processes (Del Pozzo et al. 2018), Gaussian mixture
models (Talbot & Thrane 2020), and others have been employed
to address this problem specifically for GWs. As well as these, A
closely related method to GPs (Kanagawa et al. 2018), Gaussian
kernel density estimators (KDEs) are sometimes employed in GW
analyses (Lynch et al. 2017; Pitkin, Messenger & Fan 2018; Pang
et al. 2020)

These KDEs are often effective but they assume correlations
between parameters to be linear and smooth, making this method
sometimes limited in flexibility. There exist many variations of the
KDE algorithm to take into account specific interpolations problems,
but there is not a single implementation that is guaranteed to be
robust against all possibilities. A specific KDE implementation might
solve an issue in one case and be the cause of some inaccuracies in
another (Wand & Jones 1994).

We implement a single technique that can interpolate arbitrary
multidimensional slices in parameter space, which can handle both
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simple and difficult space morphology, such as sharp bounds and non-
Gaussian correlations. Our modelling tool is based on the histogram
density estimate, combining the histogram’s accurate treatment of
the samples’ features with the predictive capabilities of GPs. An
additional advantage of this technique is that it can provide a Bayesian
measure of uncertainty from the finite (and sometimes small) number
of samples for post-processing analysis. This measure of model
uncertainty could then be incorporated into any analysis where the
marginalized posterior density is used.

In Section 2, we describe our density estimation technique in
the context of GW parameter estimation and machine learning. We
propose a series of example applications in Section 3, which allows
us to discuss the advantageous features of our method. Finally, in
Section 4, we summarize our findings and suggest future extensions
of this work.

2 METHODS

In this section, we introduce the mathematical framework of the tech-
niques discussed. In Section 2.1, we discuss the Bayesian inference
problem for GWs and the density estimation techniques currently
employed in the field. In Section 2.2, we outline the fundamentals
of GPs and their interpretation for interpolating a posterior density
surface. We then describe the details of our GP implementation and
how to model probability densities from parameter estimation.

2.1 Bayesian inference and density estimators

We describe the GW data in the detector d as the sum of a
waveform model /4(#) and a combination of instrumental noise,
which we assume to be Gaussian. The probability of observing data
parametrized by @ = {0y, 0,, ..., Oy}, can be defined as the probability
that » = d — h is the realization of the instrumental noise. This
likelihood can be written as

1
p(d|f) o< exp (—§<d—h(0)ld—h(0))>, ey
where (a|b) denotes the inner product between two waveforms a and

b and is defined as (Cutler & Flanagan 1994)

*a(fHb*(f)
by =4Re [ = 0df, 2
(alb) e/o $,(F) f 2

where S,(f) is the one-sided power spectral density (PSD) and a
denotes the Fourier transform of the gravitational waveform a.

By choosing astrophysically motivated priors over the model
parameters, we can use the Bayesian framework to calculate the
posterior probability distribution for the source parameters (Thrane
& Talbot 2019)

p(d|0)p(@)
pd)

o p(d|6)p(0). )

The posterior probability is generally a 15-dimensional surface for
acircular binary black hole (BBH) merger but can be 17-dimensional
in the case of a binary neutron star (BNS) merger. The dimensionality
depends on the physical parameters describing the signals. Generally,
these are distinguished between extrinsic parameters, such as sky
localization, and intrinsic parameters, such as the masses of the
sources.

p@ld) =
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Posterior distributions for specific parameters can then be found
by marginalizing over all other parameters,

p(6;|d) = / p(@1d)do,...d6;_,db;,...d0y. )

The posterior is, however, generally intractable and therefore must
be evaluated via stochastic methods such as Markov chain Monte
Carlo (MCMC) and nested sampling, these are implemented (and
specifically tuned for the GW problem) in Bayesian inference
packages such as LALInference (Veitch et al. 2015) and bilby
(Ashton et al. 2019).

2.2 Density estimation with Gaussian processes
2.2.1 Definition and interpretation

GPs are interpolation methods with a probabilistic interpretation,
they are built on a Bayesian philosophy, which allows you to
update your beliefs based on new observations. The process can be
understood as an infinite-dimensional generalization of multivariate
normal distributions, such that any finite collection of points within
the domain of the process are related by a multivariate Gaussian
distribution. As data is observed, the GP is conditioned and the range
of possible functions that can explain the observations is constrained.
As such a GP is defined by a mean, which represents the expectation
value for the best-fitting function, and by a covariance matrix, called
a kernel, which measures the correlations between observations
(Williams & Rasmussen 2006). In the absence of observations, the
GP predictions will revert to a prior mean function, which is usually
chosen to be zero, and which properties are determined by the kernel
architecture. Mathematically this is written as

JF(x) ~ GP(m(x), k(x, x1)), (&)

where the mean and covariance are denoted as
m(x) = E[f(x)],
i(x, x') = E[(f(x) = m@)(f(x') = m(x")] .

We can then model a surface y conditioned on our observations
as

Vel fox ~ N (m(x)), 07) . (©6)

where, in this application, the dimensionality of f will depend on how
many parameters p(0;|d) has been marginalized over.

The non-parametric nature of GPs makes this technique flexible,
but it can be computationally expensive as the whole training set
needs to be taken into account at each prediction. The standard
implementation has O(N?) computations and O(N?) storage, this
then becomes prohibitive for ~10k data observations or more. To
tackle this issue, it is common to use sparse inference methods,
which approximate the conditioning of the GP over a set of M <
<N ‘inducing’ points. The evaluation over the inducing points M
is then much cheaper than for an ‘exact’ GP resulting in O(N M?)
computations rather than O(N ) (Quifionero-Candela & Rasmussen
2005; Hensman, Fusi & Lawrence 2013). As well as sparse methods
one can exploit multi-GPU parallelization and methods like linear
conjugate gradients to distribute the kernel matrix evaluations which
then allows for exact inference to be performed on a short time-
scale (Wang et al. 2019). In this work, however, we find that
sparse approximations were accurate enough to effectively model the
marginalized posterior surfaces that we were interested in. Moreover,
once a GP has been ‘trained’ over the data, it is possible to draw
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infinitely many function realizations from it without recomputing
the expensive covariance matrix.

A recognized advantage of GPs is reliable uncertainty estimate
when making predictions over unseen data. In this application, we
are not interested in predicting the value of the posterior in unexplored
regions of the parameter space, but only in generating a faithful model
where we have posterior samples. In regions within the space of
parameters, the GP variance depends on our choice of training points,
which is useful to assess the accuracy of our density estimation. In
terms of uncertainty estimation, this can be explained as our model
having very low epistemic uncertainty everywhere, we then seek to
estimate the aleatoric uncertainty due to our model fit around the
random fluctuations in the histogram densities which are used to
train the GP.

2.2.2 Model construction

In this application, we want to use a GP to estimate the marginalized
posterior density for any subset of parameters. We train our GP
using the normalized histogram counts over a grid of points, i.e. the
centroids of the histogram bins, that cover the marginalized parameter
space. We then fit our GP to this discrete set of points to generate a
continuous representation of the surface.

An important choice when modeling a system using GPs is
the choice of kernel, this encodes your assumptions about the
relationship or covariance between data points. in this paper we used
a combination of the RBF and Matern (% or %) kernels. In the case of
periodic parameters (such as the sky location), the periodic version of
the chosen kernel (MacKay et al. 1998) may be necessary. To account
for exceptionally non-trivial correlations between parameters, a non-
stationary kernel, such as deep kernels (Wilson et al. 2016) can be
used. Further technical details regarding this choice and our data
pre-processing scheme (which also had a significant impact on our
model accuracy) are included in Appendix A.

We employ TensorFlow and GPFlow to implement our GP
training infrastructure, which includes two inference schemes: exact
inference for one to two dimensional problems (O ~ 1000 samples)
and sparse inference for higher dimensionality due to computational
costs. As well as a difference in the inference scheme, when extending
this method to higher dimensions, our choice of training data changes.
When creating the grid over four dimensions, due to the sparsity of
the parameter space, we find that the typical set has a volume of
O(1 per cent) relative to the total prior volume [this is a common
problem associated with the curse of dimensionality (Betancourt
2017)]. We, therefore, choose to discard the empty bins and encode
our knowledge of these points through the choice of prior over our
GP.

Since the model is constructed with converged posterior samples,
there is no probability support where the histogram bins are empty.
To encode this, we set the mean of the GP to be equal to zero,
such that far away from the training data the model will have a high
variance but a mean of zero.

To estimate the density for a given region of parameter space, we
then simply evaluate the GP at those parameters, i.e.

p(6 = %.ld) ~ y.|f, x
~ N(f(x), o). ©)

The choice to set the GP prior to zero means that we would be
allowing for negative probaility densities, to avoid this we apply the
ReLU function (Nair & Hinton 2010) as a layer on top of the density
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evaluation. This sets all negative values to zero meaning that some
points in parameter space will be distributed as a truncated-Gaussian.

Due to bounded priors (e.g at mass ratio m,/m; := g = 1), the
posterior surface often presents sharp discontinuities and therefore
the surface is only piece-wise continuous. GPs are in principle flexible
enough to model any surface including piece-wise continuous ones,
however, we found in practice that it is more favourable to decompose
our density function into two components, one smooth, continuous
function, and one step function. We do this by multiplying the
density and our GP estimate by a step function, which is zero at
any discontinuities and 1 otherwise.

= 1 ifxmin < i* < Xmax
T(Xy) = .

0 otherwise

Multiplying by this step function is then analogous to imposing
a prior over our posterior surface, i.e. it allows us to rewrite the
equation (7) as

PO = ZId(E) ~ (vl £, )T
pE=%ld)  ~N(fE) oD

We are free to encode our knowledge in this way and perform the
decomposition as we do not change the original posterior surface that
we would like to model in any way. This enhances the robustness
of the model against all discontinuities, including artificial cuts in
parameter space that might be required for post-processing analysis.

The variance of the GP depends on the kernel, but also on the noise
variance parameter of the likelihood. Usually, the noise variance is
given by a single number, i.e. homoskedastic noise, which reflects
the random fluctuations of the posterior samples. In low-dimensional
examples, where we employ an exact inference scheme, we can
assign multiple values to the noise variance, i.e. heteroskedastic
noise (McHutchon & Rasmussen 2011). In such instances, we are
then able to propagate the error from the histogram on the density
estimate, which is simply given by the Poisson noise in each bin
Obin ~ v/ Neounts- Incorporating heteroskedastic errors within a sparse
inference scheme is an area of current research in the field of machine
learning (Liu, Ong & Cai 2020).

It is common practice to build an interpolation of a posterior
surface in order to draw more samples from it. As our model
is implemented in TensorFlow, we can quickly draw more
samples from the marginalized posteriors using the many samplers
available in the package library, such as Hamiltonian Monte Carlo
(HMC) (Betancourt 2017).

®)

3 RESULTS

In this section, we present our model and a series of example
applications for GWs. In Section 3.1, we illustrate the method on
a simple one-dimensional analytical example. In Section 3.2, we
show examples of common post-processing applications for our
density estimation tool. Finally, we discuss our treatment of GP
model uncertainty and how we propagate it to produce uncertainty
on the marginalized posterior distributions.

3.1 Analytical 1D example

Our proposed GP modelling technique is by construction flexible
and robust against all distribution morphologies. To illustrate this, we

construct a non-trivial one-dimensional example: an inverse gamma
xfot—l
T(a)

function f(x, o) =
x=0.75.

exp(— %), with &« = 2 and a sharp bound at

1202 4290100 62 U0 }sanb Aq 6162 .£9/0602/2/80G/2I01He/Selul/wod dno-dlwapese//:sdiy woly papeojumoq



—_rlxa)
— GP u(x)

GP 20(X)
—-— Gaussian KDE
--- Reflection KDE
--- Transform KDE

2.5

2.0

0.5

0.0

0.2 0.4 0.6 0.8
Non-smooth parameter

Figure 1. Interpolation of a bounded one-dimensional inverse gamma
density function (in solid black) with our GP-based method (in solid orange).
The histogram points used to generate the model and its uncertainty are
shown as black points with error bars. Alternative KDE methods are shown
for comparison as coloured dashed lines.

In Fig. 1, we show our GP model mean prediction and uncertainty,
compared to a Gaussian KDE from scipy.stats (Virtanen
et al. 2020) and two KDE transformations implemented in PESum-
mary (Hoy & Raymond 2020), a commonly used post-processing
package in GW astronomy. The reflection and transform KDEs, are
examples of augmentations on the standard (Gaussian) KDE, and are
generally used to model difficult features introduced at the boundaries
of posterior distributions. Both of these improvements to the standard
KDE apply a transformation at the boundary which implicitly
assumes some distributional features (see Hoy & Raymond 2020
for more details). A Gaussian Process, on the other hand, makes no
assumptions about the distributional shape and can in principle fit
any distribution.

We show an example in Fig. 1 where our GP is able to well
model the posterior and the reflection KDE provides a better fit
than the other KDE methods. The transform KDE is more sensitive
to noisy features in the samples and can present artefacts, while
the Gaussian KDE oversmooths the sharp cut at 0.75. Following
this illustrative example, there are others where the reflection KDE
is less appropriate. This example was chosen to highlight a case
where the choice of KDE is important to fit the distribution well.
While synthetic and not representative, it does illustrate features that
can and do happen in GW astronomy when analysing posteriors. In
examples such as this our GP model provides an alternative method
to KDEs, requires less hand-tuning, and also provides a Bayesian
estimate of the error on the density estimate, as propagated from the
histogram errors.

3.2 GW applications

We now look at a few important post-processing problems in GW
astrophysics. The training time required to generate the models
presented in this section is of the order of ~2 min, with variations
due to the dimensionality of the surface and to the inference scheme
employed. To assess the quality of the model in more than one
dimension, we decide to resample the surrogate surface and compare
the new samples to the original set, part of which has been used for
training. All samples used in the following sections are taken from
the Bilby GWTC-1 catalogue (Romero-Shaw et al. 2020a).
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Figure 2. Corner plot of the intrinsic parameters of GW 150914, drawn from
our GP surrogate (in orange) compared to the original PE samples (in black).

Table 1. Source properties of the intrinsic parameters of GW 150914, original
samples, and samples from the GP interpolation.

GP samples PE samples

Chirp mass M /Mg 30.95709 30.96705

Mass ratio ¢ 0.871'8:(1)3 0~87t8:?3
Effective precession
Spin component x 033t8:?8 O~32t8%

Effective inspiral
Spin component x ef —0.04f8:8; —0.04f8:8$

3.2.1 Catalogue of GW properties

GW detection parameters can be distinguished between those in-
trinsic to the sources, such as the component masses, and those
extrinsic to them, such as the sky location. Interpolating the marginal
posteriors of combinations of these parameters is often necessary for
post-processing. The following example illustrates a simple case
where one can use a GP to interpolate the intrinsic parameters for
a given detection. In practice, this could then be repeated for entire
GW catalogues so that these interpolated posterior surfaces are then
combined for population inferences on the sources of GWs.

For this example, we interpolate the marginal posterior distribution
of the intrinsic parameters of the first BBH detection GW 150914 (Ab-
bott et al. 2016b), parametrized as follows: chirp mass M, mass ratio
q = mp/m; (where m; > my), effective inspiral spin component x ef,
and effective precession spin x,,, defined by the spin components
that lie in the orbital plane (Schmidt, Ohme & Hannam 2015). In
Fig. 2, we compare the marginal distributions sampled from our GP
model to the original PE samples. We can visually assess that the
correlations between parameters are accurately reconstructed as the
50 and 90 per cent contour lines overlap for each pair of parameters.
In Table 1, we report the mean and 90 per cent confidence intervals of
the samples drawn from our model and which we find in agreement to
the values from the original samples within the expected uncertainty.

MNRAS 508, 2090-2097 (2021)
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Figure 3. Corner plot of the mass and tidal parameters of GW 170817, drawn
from our GP model (in orange), compared to original PE samples in black.

3.2.2 Accurate interpolation for conditional integrals

Many astrophysical inquiries in GW astronomy require evaluating
conditional integrals across parameter space, which, in turn, require
sampling additional posterior points constrained to a hyperplane.
This is, for instance, the case when estimating the EOS from BNS
collisions, an important post-processing analysis that allows us
to probe extreme conditions of matter (Abbott et al. 2018). This
is possible because the compactness of the objects is imprinted
in the gravitational waveform and can be measured by the tidal
deformability parameters. The EOS integral involves evaluating the
marginal posterior distribution over the masses (M, n) and tidal
parameters (A, 8A), subject to constraints between those parameters
as parametrized by the EOS.

There are instances where the marginal posterior for these param-
eters contain non-linear correlations, as is the case for the first BNS
event GW170817 (Abbott et al. 2017a). We test our interpolation
model over this four-dimensional surface. In Fig. 3, we compare the
marginal distributions sampled from our GP model to the original
PE samples. We see that our GP is able to faithfully represent the
marginalized posterior surface, in particular, we see that there is good
agreement between the 90 per cent credible intervals. When looking
at the 2D contours see that the 50 and 90 per cent levels agree very
well and that the GP model is able to capture degenerate features
and bi-modalities. Finally, our interpolation of the surface can be
resampled efficiently and for this example, we obtained 750k samples
in ~5 min, (depending on hardware) using an HMC sampler. Hence,
this method can be advantageous over traditional methods, where
the interpolation is generally performed with a Gaussian KDE by
transforming the symmetric mass ratio parameter to be log(0.25 — 1)
(Pang et al. 2020) and there is no measure of uncertainty over the fit.

3.2.3 Propagating GP uncertainty

GPs provide a fully Bayesian estimation of the uncertainty over
model predictions, as the full covariance matrix between posterior
samples is computed. In each of the GW applications shown so far we
have utilized the mean prediction of the GP function. This uncertainty
measurement can be very important in many cases, however, here
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we illustrate with a single example how one can extract the uncer-
tainty from the modelling. Accurate localization of a gravitational
signal can be of fundamental importance for multimessenger astron-
omy (Grover et al. 2014; Abbott et al. 2017b) and for measurements
of cosmological parameters with dark sirens (Soares-Santos et al.
2019). As the localization accuracy decreases, the marginal posteriors
for the sky location parameters can look degenerate and non-
Gaussian. We build an interpolation of the sky location parameters,
right ascension (RA) and declination (Dec.), of GW150914." This
event was observed by only two detectors, so despite its high SNR,
its sky location presents a typical ring-like shape.

The sky localization parameter space contains several interesting
features, such as the highly curved correlation which are in principle
difficult to model. For this particular example, the simple kernels used
throughout the paper were sufficient and used here for simplicity.
Note that, in general, we formally encode periodic parameters such
as ra using a periodic version of the chosen kernel (MacKay et al.
1998) (see A2).

The uncertainty measure produced by the GP is a Gaussian dis-
tribution about any given point on the surface, when considering the
entire surface the combination of these Gaussians can be interpreted
as arange of plausible density surfaces for any given confidence level
(e.g. 20). The uncertainty on the 1D marginal distributions can then
be obtained from an upper and lower bound for each point in the
surface (given by the GP error o, equation 6) and then marginalizing
these across one of the dimensions to obtain an uncertainty estimate
about the mean 1D predicted posterior density. For brevity, let RA =
o, Dec. = 4.

plald) = / d(at, 51d) 5,
5

pla|d) £ o(a) = /(p(d) +o(a,8))ds. ©))
8

In 2D and especially when considering sky localization, we are
also interested in the contours that enclose a given volume of proba-
bility density to plan optimal observation strategies in the search for
electromagnetic counterparts. We propagate the uncertainty estimate
produced by the GP (in the space of all realizations from the GP) to
the physical parameter space on credible interval contour levels. We
define a function, fy, which truncates the posterior density function
as follows:

pla,dld) if p(e, §ld) = ¢
fq(a) = . .
0 otherwise

Such that the integral of f; contains a given proportion of the total
probability mass determined by the desired confidence level i.e.

fy(a, 8|d)dd da = cl. (10)
a8

For a given a confidence level ¢/ (usually the 50 and 90 per cent
levels), solving equation (10) for g gives g, the value of the posterior
density of the relevant contour. We obtain the contour, and the error
on the contour, by plotting the (RA, Dec.) values for which:

pla. 8|d) = g,
p(e,8ld) £ o(a, 8) = gu- (11)

In the central panel of Fig. 4, we show the samples used to construct
the model as well as the 50 and 90 per cent, contours of the GP

!'See the Data Availability statement 4 for details of the samples we used
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Figure 4. Central panel: Contours of the 2D sky-location of GW 150914, the
GP model mean prediction and uncertainty (in orange) is compared to the
points used to construct the fit (black crosses). Top and left-hand panels show
the GP model projections in 1D, compared to the original PE samples. All
plots show the 20" uncertainty around the density estimate as a shaded band.

interpolation in 2D with their respective 2o uncertainty (the shaded
regions). The top and left-hand panels of Fig. 4 show the mean
prediction and its 20 uncertainty marginalized over each parameter
by a simple integration of the density over its projection.

The inclusion of the uncertainty highlights several features. On
the central inset in Fig. 4, we see that the lower bound on the
50 per cent contour is composed of three islands which correspond
to peaks, while for both the mean and the upper bound these islands
are connected to obtain a smooth surface at this contour level. For
the outer 90 per cent contour, we see that the differences mainly
manifest in the tails, where as expected the upper bound follows the
well-known ring around the sky slightly further. This matches our
intuition that there is possibly more density around the ring than
around the edges of the contour in the middle of the plot.

4 CONCLUSIONS

We have presented an alternative method for density estimation
of marginal PDFs for GW parameters. Our method combines the
desirable features of histograms to the extrapolation capabilities
of KDEs, within a Bayesian framework. The choice of histogram
binning determines the resolution of the PDF, while the kernel of
the GP allows the interpolation to be flexible over non-Gaussian
correlations and yet smooth. The noise variance parameter of the GP
ensures that sources of stochastic noise from the histogram density
estimation are taken into account. In cases, where we employ an
exact inference scheme, this noise variance can be evaluated for each
histogram bin and it is equivalent to heteroskedastic errors over the
density estimation. This allows to fully propagate the uncertainty
from the PE samples. We plan to extend this method and fully
incorporate uncertainties, as we showed in this work for the sky
localization example, over higher dimensional posterior surfaces in
future work.

This method may be preferable to other methods such as KDEs,
a closely related method which is sometimes adopted in the field,
depending upon the use-case requirements. It comes with three main
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advantages: it is suitable for most interpolation problems commonly
encountered for GW marginal posteriors; it provides a Bayesian
measure of uncertainty over the model predictions; it allows to
quickly resample the interpolation using HMC and other samplers
available in TensorFlow. We presented a series of examples where
we know the accuracy of the interpolation is important, such as
EOS calculations and sky localization. As the number of events will
increase in the next observing run (O4), we need reliable tools to
post-process the large volume of results.

This work has highlighted the power of GPs to fit a GW posterior
surface, a natural extension of this work is to generate a surrogate for
the entire likelihood surface, similar to what was done by the authors
of Vivanco et al. (2019) using a random forest regressor. Such use of
GPs has been already investigated in the field of cosmology to model
the Planck18 posterior distribution (McClintock & Rozo 2019). This
work has laid the foundation for us to apply a similar methodology to
the GW problem in a future work which is currently in preparation.
This has applications such as Bayesian quadrature (O’Hagan 1991),
efficient jump proposals (Graft et al. 2012; Farr et al. 2020) and more
general use of the GP variance to guide the sampling process. The
surface learned by the GP can be evaluated directly for a given set
of parameters, therefore, avoiding the need to compute expensive
waveforms. An example where such likelihood surrogates could be
exploited is fast resampling with new astrophysical priors. This could
replace an often difficult reweighting procedure, especially when a
prior assumption limits the number of available samples in a region
of interest (Mandel & Fragos 2020).
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APPENDIX A: TECHNICAL DETAILS OF THE
GP MODEL

A1 Data pre-processing

Data pre-processing, often referred to as data set standardization, is
a common practice within the realm of machine learning and it can
have a very high impact on the accuracy of the model. Our posterior
samples have a wide range of values, some having bounds [ — 1, 1]
and some reaching O(10°%). We rescale our posterior samples such
that each parameter ranges between [0, 1] by using the following
transformation:

= (63 — min(6,))

¢ (max(@y) — min(Gy)’

(AD)

where 6 is the vector of transformed samples and the min and max
are evaluated for each parameter (i.e. each dimension of the posterior
samples vector). The approximate marginalized posterior is scaled
according to the z-score, such that it has zero mean and unit variance:

p(6;1d) — M p6;1d)
Op(6i1d)

p6i1d) = (A2)
where p(6;|d) is the transformed marginalized posterior, ip,a)
and o, 14) are the mean and standard deviation of the marginalized
posterior points, respectively. All pre-processing, in this work, is
performed using Scikit-Learn (Pedregosa et al. 2011).

A2 Kernel design

The kernel is defined as the prior covariance between any two
function values. Our prior knowledge about the morphology of the
posterior can be encoded via this covariance, as it determines the
space of functions that the GP sample paths live in. The radial basis
function (RBF) or squared exponential kernel is the most basic kernel
and it is given as

, ) 1(x — x')?
krBr(X, x) = 0~ exp < TE > , (A3)
where the Euclidian distance between (x, x) is scaled by the length-
scale parameter £ (measure of deviations between points) and the
overall variance is denoted by o2 (average distance of the function
away from its mean). Functions drawn from a GP with this kernel
are infinitely differentiable.

For our application, a more complex kernel architecture that can
capture the correlations between parameters is needed. We need
smoothness over small-scale features, such that we do not model
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random noise fluctuations of samples, and flexibility over the large-
scale characteristics of the posterior. For this purpose, we employ
a combination of RBF and Matern, which is a generalization of the
RBF kernel with an additional smoothness parameter v. The smaller
v, the less smooth the approximated function is

21=v S v o
o (x, X' =°2r(v) (@%) K, («/ﬁ(xlfx)) (A4)

We choose v = (%, %) depending on the specific morphology of the
posterior, as this kernel is responsible for encoding its overall shape
such as sharp boundary features. The resulting kernel equation is
given by

kGp(@a, 0d/) = KRBF X KM52-

The kernel multiplication corresponds to an element-wise multi-
plication of their corresponding covariance matrices. This means
that the resulting covariance matrix will only have a high value
if both covariances have a high value. We also apply automatic
relevance determination, which modifies the kernel such that for
each dimension an appropriate length-scale is chosen (Neal 2012).
For certain functions, we observe periodicity? which can result in
a wrapping at the period boundary. As mentioned in the paper, this

Zsuch as the sky location posteriors due to the standard RA, Dec. parameter-
ization
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can be encoded into our GP by using a periodic kernel (MacKay
et al. 1998). A periodic kernel maps the input dimensions x (e.g. RA
in this example) using the transformation u = [sin(x), cos(x)] and the
original (e.g. the RBF) kernel response is computed in terms of u,
this therefore allows one to encode relationships such as wrapping
and periodicity. For the standard RBF kernel and a given periodicity,
p, the periodic kernel is given by

. _ !
2sin? (Lx X ‘)
P

KPer(RBF)(X, x’) =0’ exp _672 . (A5)

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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