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Abstract 
 

The advancements in methods of built environment design have led to the rise of 

computational methods in urban modelling and environmental simulation to aid the early 

stages of the design process. Computational urban modelling and simulation methodologies 

can use a parametric approach to enable geometrical dynamic modelling and investigate 

urban environmental performance.  

This thesis aims to understand the effect of urban geometry on urban performance in an 

algorithmic approach to reach for an efficient optimisation approach based on this impact. To 

achieve this goal, a framework was developed to enable a time-efficient performance-based 

optimized design to guide the urban design process in the early stages. This framework 

establishes a new environmental data-driven approach for designing urban neighbourhoods.   

A preliminary sensitivity analysis measured the relative importance of geometrical variables, 

their impact on performance aspects and the computational time. It was conducted in two 

locations, Aswan, Egypt, London, UK, for cooling and heating demands. The results of this 

analysis quantified relative importance for the tested geometrical variables’ impact on energy 

demand. It was clear that computational and time cost is limiting the capability of conducting 

general performance optimisation on the urban scale. This led the research to the 

classification of geometry to optimise urban geometry based on its solar radiation 

performance.  

The parametric workflow presents a methodology to break down the neighbourhood model 

into its geometrical variables: location, orientation, building’s area, height, typology, and the 

surrounding geometry context. Then, a database of text annotations for generated buildings 

was attached to its solar radiation simulation results. These annotations are used as indicators 

to match the following geometry generations to save simulation time in similar geometrical 

scenarios.  

The framework was used to optimize solar radiation for a neighbourhood geometry in Aswan, 

Egypt. Machine learning principles were adopted to provide the framework with prediction 

capabilities of solar radiation performance with accepted prediction accuracy and reduced 

time consumption. A positive linear correlation was found between machine learning 
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principles and its equivalent simulation results for architectural and urban scales. The 

proposed prediction approach succeeded to achieve significant time savings compared to the 

traditional simulation process with acceptable accuracy. These reported findings shed new 

light on the capability of optimisation in the early design stages.  

The Genetic Algorithm’s optimisation principles show a significant capability to find optimal 

or near-optimal solutions for hypothetical and existing neighbourhood context tests while 

saving more than 80% of the computational time needed. These results present a template 

for using data-driven urban design to inform environmental decisions in the early design stage 

at the neighbourhood scale. 
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Urban sustainable design has become the focus of heightened attention due to continuous 

alerts from United Nations Population Fund (UNFPA) reports about world urban growth and 

the increasing percentage of urbanised environments compared to past years' statistics. 

These statistics were also accompanied by predictions of the continuity of this increase. It is 

envisaged that the scale of cities and urbanised communities will reach limits never seen 

before globally (Martine and Marshall 2007). This concern highlighted the importance of 

investigating urban growth to mitigate its environmental impact on the planet. The 

environmental burden comes from the effect of Greenhouse Gas emissions caused by the 

construction industry. Also, the built environment is responsible for consuming almost 40% 

of the energy demands. All this encouraged multiple studies to experiment and analyse 

different ways to reduce and hopefully eliminate these impacts on the environment.  

New urban design methodologies have evolved to develop different environmental and 

sustainable approaches. They have aimed at various sustainable goals, such as reducing urban 

and architectural energy consumption, mitigating the urban heat island effect, and reducing 

the urban carbon footprint. Urban geometry has gained some attention based on its key role 

in controlling the built environment performance. The urban geometry controls the sun 

penetration within the urban environment and therefore controls the energy consumed for 

lighting and thermal performance. In addition, the urban heat island phenomenon, which 

affects the urban microclimate, is also mainly caused by urban geometry and its density and 

its loads on the thermal performance of the built environment.  

Urban modelling and simulation are considered part of the investigative approaches that can 

provide a clear understanding of urban environmental performance and its links to urban 

geometry. Urban modelling has gained a recognisable advancement from the development 

of the parametric approach. Parametric design involves not only the software application, 

which is broadly known and used currently, but it is an algorithmic procedure to break down 

design elements to control them individually and reproduce a broader range of options for 

the design problem. This allowed urban models to address and handle urban geometrical 

complexity and analyse and come up with enhanced and performance-based urban models. 

Urban performance optimisation has been under investigation through different angles, some 

of which addressed the link between geometry and performance and how to apply 
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optimisation methods and even artificial intelligence principles to look for the optimal 

geometrical solution that performs in favour of the local climate conditions. There are 

continuous explorations of implementing these advancements in the early stages of urban 

design to inform and enhance the urban design decision-making process. 

 

The rapid continuous urban growth creates increasing environmental challenges. In some 

cases, urban designers and decision-makers find it hard to create environmentally informed 

designs to overcome environmental challenges and burdens due to lack of time. One of the 

environmental impacts of increasing urbanism is the urban heat island which can be scaled 

down to the urban microclimate and urban context. The change in the urban microclimate 

due to urbanisation is directly linked to the energy consumption to control the indoor 

environment either by cooling or heating indoor spaces (Landsberg 1981). Different ways of 

implementing urban microclimate mitigation in the urban context reduce adverse effects on 

temperature, energy consumption, and demands, promoting environmental quality and air 

quality and protecting human health. The urban heat island can be controlled and its impacts 

reduced by either treating building envelopes, increasing vegetation ratio, implementing 

sustainable landscape materials and designs and modifying urban fabric and geometry as an 

approach of futuristic policies and efforts (Nunez 1974; Che-Ani et al. 2009; Stewart and Oke 

2012). The rate of urban growth drives decision-makers and urban planners to investigate 

new urban strategies to help improve the quality of life in the expected new urban 

communities. This research tries to find better environmentally performing urban patterns 

and built environments that will avoid or reduce the effect of the urban context on 

architectural thermal performance. This research is trying to provide an algorithmic 

framework that classifies urban geometrical features and links them to environmental 

performance and use this link in optimising the following generated urban patterns to save 

time consumed in running simulations to inform the environmental decision-making process 

in the early stages of urban design.  
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The research investigates the effect of urban geometry on urban performance in an 

algorithmic approach that targets the generation of urban geometrical variables and classifies 

its individual buildings based on the shared geometrical features. It will utilise this effect to 

create a database of classified buildings with their simulation performance results to allow 

for artificial intelligence-assisted optimisation that will inform the decision-making process in 

the early stages of neighbourhood design. This will reduce the time needed to search for the 

optimal performing urban geometry, which will help enhance the design process and inform 

further aspects of environmental analysis.  

The main scope of this research involves the study of urban geometry, urban performance 

simulation and optimisation as it attempts to answer the following questions:   

• What is the relative importance of geometrical built environment variables on 

environmental performance? 

• How can parametric data flow help generate and analyse urban different geometries 

patterns and performance and utilise urban modelling complexity? 

• To what extent does the geometry classification prediction reduce the time consumed 

for parametric simulation methods, and how far would it affect the results' accuracy?  

• What kind of optimisation method would help search for a timely, efficient optimal 

solution for urban neighbourhood's geometry with acceptable accuracy?  

To achieve this goal and to answer the questions, the research has set the following 

objectives: 

• To provide a better understanding of the relative importance of geometrical variables 

to performance on an urban scale 

• Analysis of the impact resulting from altering urban geometry on its environmental 

performance and try to find a way to utilise this impact in optimising urban geometry  

• Establishing an urban geometry generation framework that will feed into a solar 

radiation prediction-based design process  
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• Utilising this framework in a parametric approach to handle urban modelling 

complexity and extract performance data and visualisations dynamically  

• Utilise urban geometry impact on performance to search for an optimisation method 

to facilitate data-driven design approach included in the early stages of design 

 

Urban design studies have dealt with urban geometry and its impact on urban performance 

from different angles according to the variables most related to the problem under 

investigation. Urban geometry research mainly focuses on addressing urban complexity to 

visualise and model this in complex urban environments to assess and simulate its 

performance from different aspects. Parametric modelling and generative design have 

recently gained some attention in urban geometry research. This is added to the challenging 

cost of time for performance-based decision-making processes in the early design stages. The 

optimisation of urban geometry performance is addressed by different approaches to be 

included in the early stage of design to help with the decision-making process.  However, 

urban geometry was rarely utilised in linking urban geometry to the performance by applying 

artificial intelligence optimisation methods. Given how this research is a multi-disciplinary 

project, breaking down the methods into multiple phases was needed to achieve the research 

objectives and answer the research questions.  

The first phase of the research is the theoretical study in chapter two, which reviews the 

literature regarding the following points: 

• Investigating urban computational modelling approaches and their complexity 

• Studying urban parametricism and generation tools and methods 

• Investigating urban performance simulation tools and methods 

• Studying urban geometrical variables and  their relative importance on urban 

performance  

• Analysing optimisation methods based on geometry impact on urban performance. 

This will be followed by the next analytical section starting In chapter four to chapter eight, 

which consists of the following stages: 
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1.4.1 Preliminary study 

This will be in chapter four, starting with a sensitivity analysis to better understand the relative 

importance of the geometrical variables on multiple performance aspects like energy 

demand, solar radiation, and lighting for indoor performance. This analysis will run for 

different climate conditions to validate the results of the study. This sensitivity analysis is still 

in the preliminary stage of the project; it aims to be conducted on a simple grid urban form 

and simple testing for optimisation methods.  

1.4.2 Parametric and generative urban modelling  

In chapter five,  the research will build a parametric framework utilising a shape grammar  

sequence that can generate different neighbourhood geometrical iterations representing a 

wide range of alternatives controlled by a commonly used visual programming platform.  

1.4.3 Geometrical classification and data retrieval  

The geometrical classification is done based on specific categories found in the literature 

review and preliminary studies. Chapter six will show that it is made in a parallel sequence to 

the generation sequence, making it flexible and responsive to the geometrical iterative 

process and allowing for better recognition for data retrieval. Collecting the classified data 

also is a different sequence to make it ready for different methods of recognition or prediction 

based on its three-dimensional features. The urban neighbourhoods were classified on a 

building level, and buildings were classified based on their urban context and architectural 

typologies.  

1.4.4 Empirical study  

This parallel workflow allowed the algorithm to sort, label and classify buildings in each 

generated urban configuration by a text label saved along with its performance analysis 

results collected from the simulation brute force process.  In the optimisation stage, the 

simulation results and geometrical building features will act as a lookup database. The 

algorithm will search for similar features between what is saved in it and the newly tested 

geometries. The second layer of artificial intelligence is added to this study. The classified 

annotations were used as an input for a simple neural network node as training data. As 

shown in chapter seven, this neural network predicts the performance based on the input 

data. This prediction result is combined with the lookup retrieving outcomes, to sum up 

neighbourhood performance results. Following chapter eight, a genetic algorithm is used to 
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determine the optimal performing neighbourhood geometry in the tested pool. This artificial 

intelligence application is aimed to reduce the time of simulation and optimisation of 

neighbourhoods' geometry without risking the needed accuracy.  

1.4.5 Testing  

Also, in chapter eight, a comparison test will be done between the actual full brute force 

simulation results for the urban configuration with no classification or approximation for 

individual buildings against results from the framework prediction and approximation for the 

same urban configuration. Simultaneously, testing the framework setting until it reaches an 

acceptable accuracy rate for both the saved neighbourhood's geometry and newly generated 

ones. This will be followed by a series of tests for the optimisation capabilities of the 

framework by testing it with different sizes of iteration pools to investigate how near could it 

be to the optimal solution.  

The following stage of testing is to apply this generation and prediction framework on an 

existing case study in the same climate zone tested in the previous stages to get a clearer 

understanding of how far this framework could be applied to existing urban geometry 

optimisation.  

The theoretical background of this study is based on reviewing the state-of-the-art urban 

modelling approaches and the available links between these approaches and available 

simulation tools. Moreover, it investigates the various optimisation methods for urban 

geometry in the early stages of design. The recommendations and conclusions of these earlier 

studies were considered to form the scope and foundation of the presented study. The 

preliminary study of this research has aimed to better understand the relative importance of 

geometrical features in an urban context and their impact on different aspects of 

performance. It aimed to investigate the time constraints of simulation  in an urban context 

and identify how much time each performance aspect can cost to be included in the early 

design stages. Another goal was to figure the level of dependency between different aspects 

of performance. The preliminary study was conducted in three different climate conditions to 

compare the findings and establish the rational reasoning of the thesis hypothesis, which will 

be discussed in the relative chapter. The generative classification framework was built up 

based on the preliminary study's findings to break down the urban models' complexity into 

its core characteristics, making it easier to control, identify, and link to their impact on urban 
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performance. This generative framework was built to accommodate different inputs and 

produced a unified classification process of urban geometry. The empirical study stage utilised 

this classification process in simulation and optimisation methods of urban performance. It 
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tested the potentiality of applying artificial intelligence principles in optimising the 

performance of these classified neighbourhood models. The final testing stage aimed to test 

the findings of this framework against a conventional urban simulation and optimisation 

process using the same modelling tools and the ability to implement this framework to 

different case study inputs. The final stage was to test the applicability of this framework on 

an existing urban neighbourhood, test its classification capabilities and test how the 

optimisation can enhance performance for these case studies. Figure 1-1 shows the structure 

of the thesis and the different stages of the methods.   

 

The modelling scale of this study is the neighbourhood scale which allows the highlighting of 

geometrical features like the orientation of buildings, heights, density and also a brief 

investigation of building typologies like window-to-wall ratios and the addition of central 

courtyards. The targeted functionality of this study is aimed at midrise residential buildings. 

The framework deals with a large variety of urban geometries due to the capabilities allowed 

by the classification techniques, focusing on the individual buildings rather than classifying 

each neighbourhood as a whole. This allowed more flexibility in the recognition and 

prediction. Due to the computational cost of running such a number of iterations on this scale, 

the research focuses on urban geometry and its impact on performance. It does not include 

other urban performance drivers like vegetation and albedo, for example.  

The modelling platform used in this study is a visual programming language enabled tool 

called "Grasshopper". It acts as an add-on to a conventional modelling software called 

"Rhinoceros". The literature shows that Grasshopper is widely used to implement different 

parametric modelling and simulation approaches. It accommodates various plug-ins to 

conduct built environment simulation and optimisation on various scales and principles. 

However, it is a capable and widely used tool; Grasshopper and the simulation plug-ins 

implemented in it are not the fastest way to conduct simulations on an urban scale due to the 

initial cost of processing time on machines running Windows. This is also another limitation 

this research is dealing with, limiting down the study's options and parameters to have the 

framework built on a widely used and recognised platform that allows for more accessible 

future enhancement and knowledge transfer (Martin 2014). 
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The preliminary study is conducted for three climate characteristics for three cities with 

different urban geometry contexts and growth strategies. The cities are as follows: 

• Aswan, Egypt: It is one of the major cities in the southern part of Egypt. It is targeted 

as one of the future expanding cities of the country's strategic plan for new cities 

(Egyptian Ministry of State for Administrative Development 2016). Its climate is 

categorised as a hot arid zone according to the ASHRAE classification of climate 

(ANSI/ASHRAE/IESNA 2010). The study of this city focused on cooling demand. To 

balance it with window-to-wall ratios, an analysis of daylighting availability was added 

to the later stages of the study. 

• London, UK: It is one of the largest metropolitans globally and is expected to have its 

largest population by 2020 (Greater London Authority 2016). According to the ASHRAE 

classification, London weather is classified as mixed humid weather conditions 

(ANSI/ASHRAE/IESNA 2010). Due to the climate, the preliminary study highlighted 

heating demand for residential buildings while keeping the daylighting balance 

testing.  

• Birmingham, UK: It is one of the largest cities in the UK, and it has a different urban 

nature and growth plan than London (Birmingham City Council 2017). The study of the 

city also has heating focused analysis for the preliminary study simulation, as the city 

is classified as experiencing cold, humid weather conditions.  This analysis results can 

be found in( Appendix A (Preliminary Study))as it was found similar to London results 

for heating demand.  

The preliminary study results have led the scope of the research to create a proof of concept 

to a framework capable of breaking down urban geometry through a dynamic classification 

method that enables the prediction of selected performance aspects and geometrical 

optimisation based on these predictions. This emphasises the potentiality of searching for a 

performance-based decision-making process in the early stages of design. Achieving this will 

drive the future work to guide the early stage of urban design on different performance 

aspects like daylighting, energy demand and solar radiation. It will also make it possible to 

investigate the capability of applying these methods to different climatic conditions. The 
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empirical study was done only on the hot arid zone and solar radiation to prove the concept 

about the framework's capability and its optimisation ability. 



 Chapter 2                                                                                                                                   Literature Review 

12 

2 Literature Review  
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The urbanization of the world’s population is expected to continue to grow; this urban growth 

introduces environmental impacts on the air temperature and building energy consumption 

(Martine and Marshall 2007). Therefore, it is critical to developing urban environments that 

provide human comfort while reducing the environmental burden of urbanization. Urban 

context mitigation and enhancement are among the key goals of research investigating the 

reduction of environmental impacts caused by urban growth. Urban climatology, if compared 

to building climatology, can be recognized as climate  features outside the building (Radfar 

2012). The urban microclimate generally affects the use of air conditioning in the pursuit of 

thermal comfort (Landsberg 1981). Urban microclimate mitigation may be implemented in 

different ways to reduce adverse effects on temperature, energy demands, promoting 

environmental quality and air quality and protecting human health. Some approaches to 

mitigate urban microclimate effects can include treating building envelopes, increasing 

vegetation ratio, implementing and improving the sustainable landscape infrastructure and 

modifying the urban fabric and geometry (Nunez 1974; Che-Ani et al. 2009; Norton et al. 

2015).  

Urban performance computational modelling and simulation gained attention due to 

increasing awareness of urban growth outcomes and mitigating urban microclimate 

environmental impacts. This attention focused on the early stages of urban design to develop 

evidence-based approaches to provide better performing urban environments. During the 

research, critical issues are being addressed to create computationally modelled urban 

environments and environmentally optimized design decisions on an urban scale for the early 

design stages. The complexity and level of details of urban modelling are among the issues 

widely investigated by different studies (Martin and March 1972; Schwarz 2010; Stewart and 

Oke 2012; Biljecki et al. 2014; Picco and Marengo 2015). Other challenges were the 

performance simulation methods and techniques. Research is still investigating and 

developing different approaches to the urban performance simulation process and its inputs, 

outputs and visualizations (Greenberg and Erdine 2014; Naboni 2014; Trigaux et al. 2014; 

Nault et al. 2016). Moreover, another interesting aspect involves dealing with the resultant 

data from these processes and the way to feed it into the urban design and decision-making 
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process, either for optimisation goals or for evidence-based computationally generated urban 

designs (Pinto Duarte et al. 2005; Hillier 2007; Koenig 2011; Beirão 2012).  

This chapter reviews the landscape of contemporary urban modelling techniques and 

simulation approaches. The discussion reveals the challenges and potentialities of the current 

state of the art in the field of urban energy demand simulation. Also, it will show it is possible 

to achieve optimal performance for a holistic urban environment with the utilization of some 

of the existing integrated tools and frameworks and overcome some of the limitations of 

conventional methods. 

 

Not far from Christopher Alexander’s work (Alexander et al. 1977; Alexander 1979)  and his 

concept of translating architecture into pattern languages and defining the vocabularies used 

by users, architects or planners to form the built environment. In his Elementary Models of 

Built Forms (March 1971), March introduced the ‘’built forms’’ defined as mathematical or 

quasi-mathematical models of buildings. This definition produced a new direct way of 

geometric translation of buildings which formed a solid ground to facilitate computational 

geometric understanding. These built forms were used to represent buildings to provide 

different levels of complexity in theoretical studies. Through this approach, March provided 

a framework that can answer built environment-related enquiries mathematically. These 

questions relate to building heat loss, cost, urban compactness and primary urban forms. He 

illustrated more investigation of the mathematical relations between different geometries 

and their transformational processes in his book The Geometry of Environment (March and 

Steadman 1971). He introduced various ways to conceive the built environment through 

certain geometrical relations and interpretations (like modules, proportions, transformations, 

etc.). Adding this perception of the built environment to how the urban environment was 

introduced in Urban Space and Structures (Martin and March 1972) will present a clear 

understanding of the built environment as a series of geometrical mathematically 

represented variables. The same book considered that urban space could be conceived as a 

grid or a framework that comprises the urban form and its components (like streets, buildings, 

etc.). They discussed the built environment form and its relation to land use efficiency 

regarding the potentiality of recognizing the urban environment as a grid with different 
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iterations of solids and voids. Also, this idea presented what they called “speculations” of 

buildings and how these buildings’ efficiency can be assessed.  

As mentioned previously, the idea of mathematically translating geometry and turning it into 

what we now know as computer modelling was based on the principles of Alexander’s theory 

of patterns in the built environment (March 1971; March and Steadman 1971; Alexander et 

al. 1977; Alexander 1979). More recently, in the editorial to volume 13 of the Nexus Network 

Journal in 2011 (March 2011), March provides a milestone introduction to geometrical 

mathematics and shape grammars. In addition to his and Alexanders’ work, he covered the 

work of Stiny and Gips in establishing the foundation of more practical ways to build shape 

grammars in built environment modelling  (Stiny and Gips 1972; Gips 1975; Stiny 1982; Stiny 

2006). In this same editorial, March provides a simple example to differentiate between 

mathematical logics and shape grammars to show how subtraction and addition do not have 

the same results when applied in shapes, as shown in (Figure 2-1) illustrating the zero-

dimension point as the basis of shape grammar as the start of the set of rules. Furthermore, 

March’s editorial adapted different shape grammar definitions. It introduced a 

comprehensive definition of shape grammar as it consists of a set of terminal shapes that 

Figure 2-1 shows the difference between numerical and 
geometrical simple methods as discussed by 

(March,2011) 
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forms the vocabulary along with another set of markers which is a different set of shapes, a 

set of shape rules of the form and the initial shape that starts a tuple of 4 that represents the 

shape grammar (March, 2011). Based on these ideas and discussions, shape grammar has 

been applied in many aspects of built environment modelling. In Mitchell’s Logic of 

Architecture (Mitchell and J. 1990),   he  provides an approach to translate the architectural 

relations into that set of roles “shape grammar”. He introduced more generic shape 

grammars that can be applied in different cases. The book briefly discussed the debate of 

user/computer agency in the justification of using grammars to analyse and generate 

architecture. According to this discussion the design process is usually led by designer 

experience and decisions which are a set of orders, trial and error that can be translated into 

a shape grammar done by a computer. The translation and control of this process was yet to 

be carried out by an experienced designer back then.  

Besides the facilitation of computational perception of the built environment, the research 

has investigated the interpretation of different urban patterns and features into 

computational models and the different ways it has been represented to designers and 

architects to allow computational applications and software platforms to handle urban 

design. With that understanding, the process of urban modelling can be categorized between 

analyzing the built environment and generating the built environment geometry in computer-

aided modelling. Analysis of the urban built environment can be understood better by what 

(Hillier 2007) introduced as “space syntax”. This terminology can be defined as analyzing the 

space to explain the human behaviour within it. It is a human-focused process that deals with 

the activities in the space from the spatial perspective.  This approach has many applications 

in urban modelling research (Nourian et al. 2010; Karimi 2012; Vasku 2013), some of which 

was aiming to only analyse the urban space in order to enhance its performance in some 

aspects, while others have used this analysis to be part of the urban model generation 

process.   

These aspects varied with modelling techniques and tools, such as Tsamis (2017), who used 

shape grammar to regenerate shape boundaries recreating the model’s way of division. 

Muslimin (2017) used shape grammar to analyse ornaments and allow knowledge transfer 

for culturally restricted designs and motifs. Jowers et al. (2017) addressed the complexity of 

multiplication using shape grammar on basic two-dimensional shapes. On the scale of 
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architecture, Dortdivanlioglu and Economou (2017) analysed two plans by the same architect 

to reach his common design strategy aspects from analyzing the two projects based on their 

shape grammars. Shekhawat and Duarte (2017) further added different floor plan boundaries 

using shape grammars. The study took into consideration functional aspects such as zones 

adjacency, relations and sizes.  

Biljecki et al. (2014) have argued even more about computational modelling by discussing 

these models' Level of Details (LOD). The study introduced six metrics for model LOD 

identification, which will help identify models’ LOD based on these criteria and each metric.  

This way of defining three-dimensional (3D) modelling LOD provides an established guide for 

urban modelling. It improves the decision for each object’s LOD following the model's primary 

purpose in the first place. This will help the research improve how to model each object and 

categorize its LOD based on these metrics. 

Furthermore, different approaches to analyzing and providing a better understanding of 

urban modelling characteristics and criteria have been different. (Stewart and Oke 2012) 

provided a new way of categorizing different urban microclimates in relation to their capacity 

and primary occupancy. They called it Local Climate Zones (LCZ). Their article published by the 

American Meteorological Society tries to link between urban heat island causes and 

characteristics and the urban building capacity and land cover. Stewart & Oke (2012) provide 

ten different LCZ based on building types and another seven based on land cover, opening 

the door to a large number LCZs by different combinations between both. This way of 

illustrating urban microclimates could help simplify the way meteorological data is 

interpreted in urban modelling and simulation. It will help create new ways of analyzing the 

urban microclimate and urban context with some criteria of its own, without loading too 

much ineffective meteorological data about the city or urban broader boundaries into the 

simulation.  

The emerging aspect when it comes to LOD and simulation is the time constraint of the tool. 

Time becomes more critical when the simulation is utilized in the decision-making process in 

the early stages of design. Another modelling perception enhancement method is Non-

Manifold Topology (NMT), recently reintroduced by Jabi (2015) to replace the widely used 

polyhedral modelling approach. The main aspect of this topology is its flexibility to allow 
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sharing faces, edges and vertices between two different model entities, the absence of which 

was considered a modelling fault in polyhedral modelling. This allowed more spaces to be 

easily perceived in the same model and even free walls to be assessed, and the integration 

between indoor and outdoor performance analysis in the same model. This method was 

studied and analysed by (Picco and Marengo 2015; Chatzivasileiadi et al. 2018). These studies 

highlighted the need for balancing LOD in simulation models in a way that keeps the results 

relevant and efficient and for the time consumed to be bearable within the limits of an early 

stage of design. This balance was mainly found near the simplified geometries, not the 

extreme limits of turning the model into bounding boxes, but before this simplification stage. 

There are many different approaches of realizing, categorizing and redefining the built 

environment and climate context based on the urban fabric, density and clustering (Schwarz 

2010) or based on weather variables (Virk et al. 2015). This ongoing development of the 

definition and understanding of urban modelling will enhance the general research approach 

to urban simulation and modelling.  

Table 2-1 Contributions to computational modelling complexity and level of details 

Table 2-1 shows the continuous development by different researchers to provide more 

computationally perceived geometry and facilitate how computers handle the built 

environment and allow designers and architects to utilize such applications. This helped other 

research to tackle urban complexity from the angle of its physical features and its spatial 

patterns: not just its mathematical representation. Furthermore, it enhances the accessibility 

of computational models and representations and the interoperability between different 

Researchers Contribution 

March, 1971 Mathematical geometry 

March and Steadman, 1971 Mathematical geometry patterns 

Martin and March, 1972 Urban geometrical patterns 

Biljecki et al., 2014 Urban computational modelling level of details 

Jabi, 2015 Non-Manifold Typologies  

Picco and Marengo, 2015 Energy model simplifications and their impact on heating and 

cooling results 

Chatzivasileiadi et al., 2018 Balancing LOD simplification for simulation goals 

Virk et al., 2015 Classifying urban models through weather variables 
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modelling situations, whether for environmental simulation or modelling for design 

representations, or the illustration of some design data visualizations. This highlighted the 

importance of accessible, capable modelling tools that make the design process flow more 

easily between these situations. 

These different interpretations and attempts to address urban complexity and the continuous 

efforts of quantifying it into logical patterns and flows allowed the rise of what became later 

called parametric urban design. Here urban models could be understood as a set of input 

parameters that generate the form of desired urban models. A change consequently follows 

the change of these parameters in the end product of urban models, all running under a set 

of rules or shape grammar flows, as mentioned earlier.  

The literature states that complexity challenges the inclusion of simulation in the early stages 

of design. This challenge has been widely investigated on various scales. The simplification of 

models also impacts the accuracy of the results, which might have a consequent risk on the 

efficiency of the modelling and simulation results. Considering this, the literature argues that 

there is a threshold where this effect on results is insignificant. The model level of detail 

should consider the time constraints to inform the design process at its early stage.  

 

As discussed earlier, parametricism was developed and proposed under the umbrella of 

quantifying the built environment into computational models generated by following a 

sequence of rules. Woodbury (2010) has discussed this by comparing the conventional and 

parametric design and building processes. According to his “Elements of Parametric Design,” 

Woodbury states that conventional models are easy to make and erase partially as the 

designer may directly sculpture the models. However, parametric models are easier to edit 

and adapt to changes requested in different design stages. They create a set of rules and 

relationships between the model’s elements; the editing is taking place in these rules and 

relationships themselves rather than editing the models directly. This was discussed by Jabi 

(2013) in his definition of the parametric design system and how it is based on its inputs. 

Wortmann and Tunçer (2017)provided a more profound argument on the different 

parametric design methods and the qualities and merits of each approach. It was dependable 

on basic textual programming, visual programming or coupling of both the two approaches. 
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This research went through a practical comparison of how different projects had been 

exposed to parametric design principles and methods. It concluded with the significance of 

parametric design, not just as a way of iterating different variables but also as providing a 

more flexible collaboration medium, especially in the conceptual stage of design projects.  

Parametric design has proved its benefits to creativity in design. Creating and modifying 

countless iterations with the change of parameters and algorithms gave the design a powerful 

capability. These algorithms have been developed to be genetically enhanced. The application 

of genetic algorithms strengthens this capability by widening the cognitive ability of the 

designers and enhancing the output solutions from these parametric algorithms (Lee et al. 

2014; Lee et al. 2015). 

Duarte et al.(2007) worked on developing a generative tool based on the analysis of the urban 

form and features of the old city of Marrakech, Morocco. The tool was used to analyse the 

street structure and buildings with courtyards to regenerate and interpret the old city growth 

and provide a clear understanding. 
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Pinto Duarte et al. (2005) and Duarte and Beirão (2011) took some steps further by 

implementing shape grammars in parametric model generation in both of their educational 

design studios. They tested the application of different shape grammars with different 

student groups after introducing urban contextual analysis and discussing the different scales 

of the built environment and the necessity of prioritizing shape grammar rules in relation to 

them. In these studies, student groups were made aware of a specific tool to be used in their 

design process for a neighbourhood scale project.  This research showed that introducing 

these tools enhanced the capability of dealing with urban complexity and empowered 

students with better design skills. Stouffs and Sariyildiz (2013) discussed the research concept 

for developing a tool for urban modelling. It consisted of different urban modelling related 

Figure 2-2 City Maker dismantling the inherited urban built environment (Biero 2012) 
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platforms. In the methodology of this tool, CIM City Information Modelling was merged with 

a Geographic Information System (GIS) to add flexibility and better handling to the complexity 

of urban modelling. Beirão(2012) introduced the final version in the development process of 

this tool, City Maker, which dismantled the built environment on a city level to provide the 

ability of urban generation. Figure 2-2shows the methodology introduced for this tool in 

understanding the categorization of the urban built environment. Applying this tool in a visual 

programming language interface such as Grasshopper (Mcneel 2014) links it to be an 

application of the urban parametricism ideas introduced by Schumacher (2012). In his book, 

The Autopoiesis of Architecture, Patrick Schumacher introduced parametric urbanism and 

some examples from his teaching studios and practice at Zaha Hadid Architects. In these 

examples, they used Maya (Autodesk Inc. 2012) to build the urban models of these projects. 

He drove these urban geometrical experiments using specific features for each project, such 

as fluidity or a network of paths generated based on Frie Otto’s minimal paths ideas. 

According to the book author, these examples deliver a new urban geometry with queries 

and concerns about its rationale. 

Moreover, he tried to define these concerns by addressing them and illustrating the working 

methods within the design team, emphasizing the suitability of dealing with urban modelling 

complexity through a parametric approach.  There was further discussion about these 

conventional urban design approaches in (Leach 2009), along with other ideas of interpreting 

the urban built environment by discussing urbanism as an organic biostructure (Roche 2009) 

or breeding fractal networks (Batty 2009) or relating urban economics to its spatial features 

(Chiaradia 2009). On the other hand, Çalışkan (2017) expressed  concern about parametric 

urbanism when provided with the result of one of the examples above after it went through 

 
Figure 2-3 The difference between designer’s initial proposal and final stages of the Kartal project as 

published in Caiskan, 2017 inherited from Kartal Municipality, Istanbul, Turkey 
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a modification process between the designer and the municipality to comply with building 

and construction laws, as shown in Figure 2-3 

The resulting project differed somewhat from the original proposal. It affected the original 

concepts discussed in Schumacher’s book about site heights and how they are derived by plot 

locations and interrelationship with the surrounding buildings. 

Mandić and Tepavčević (2015) briefly review different approaches to shaping shape grammar 

in urban design and how these approaches built their generation logic and roles. Also, this 

study introduced Computer Generated Architecture (CGA) shape grammar which is the 

analytical application in urban design and its development sequence used in City Engine, 

which is another tool introduced by Parish and Müller (2001); with the addition to the 

generation of Grammars Derived Form Design (GDFD). The research compared their work to 

the City Maker work approach, claiming City Engine to be more flexible but limited to 

exposure in context variations. 

Another way of data automation was introduced by Vidmar (2013). This framework was 

hosted on the SketchUp (Trimble 2016) modelling platform. It provides quick access to urban 

modelling data like Floor Area Ratio (FAR), land use distribution… etc., enabling a visual and 

fast way of data extraction in a simple modelling tool. However, it lacks the modelling 

automation needed to save time on the modelling process itself, and it inherits the 

automation limitations of the host platform.  

Schneider et al. (2011) investigated the idea of developing a system of automating a layout in 

different scales of the built environment. The research introduced a system of generating 

zones on a generic scale attentive to a set of functions. Moreover, the study discussed 

different computational approaches to this generation, like evolutionary algorithms, agent-

based systems, constraint-based systems and cellular automata. Koenig (2011) discussed a 

process of cellular automata generating urban scale geometries based on six typologies that 

experimented with a road network generation method. It showed the investigation of 

building-level generation and discussed the irregularity of the resulting mixed iterations and 

ways to avoid it. Koenig et al. (2013) developed a generic way to generate street networks on 

an urban scale. 
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Furthermore, König (2015) combined this investigation to introduce an open library for 

generating urban geometry, called CPlan. This library reintroduced Grasshopper in the visual 

programming language, adding more access (Koenig et al. (2017)). The tool is named Space 

Decoding. It is divided into analytical and generative urban geometry and provided a multi-

scale generation from street to building plot control. This paved the way for more computer 

agency to have a more reliable role in the urban design process. As proposed by (König et al. 

2017), the urban cognitive design consisted of a mixture of user interaction and machine 

learning trained in the evolutionary algorithm generation of urban geometry, as shown in 

Figure 2-4. Furthermore, it discussed the improvement of using a Self-Organizing Map (SOM) 

to classify and categorize iterations to reduce time and enhance efficiency in searching for 

the optimal solution.  
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Figure 2-4: Cognitive urban design method structure (König et al. 2017) 
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In summary, the literature shows that computational methods have managed to quantify 

built environments and allowed for more control in their modelling techniques. Parametric 

design has emerged as a development of the algorithmic approach of quantifying the built 

environment geometry. The parametric design helped address modelling complexity at an 

urban scale by allowing for more control and flexibility in modelling. This led to more 

innovative approaches in design and urban forms. Some of these innovative outcomes 

clashed with functions and compliance with municipality laws. On another aspect of the 

development of parametric urban design, parametric urban design tools paved the way for 

more implementation of computational and algorithmic methods. Artificial intelligence and 

its application were widely introduced and tested within the platforms that host parametric 

design principles. This allowed for more investigation in urban design and urban performance 

optimisation to the limit that some literature considers the cognitive urban design approach, 

as mentioned earlier.   

 

One of the earliest simulation concepts which could be considered as one of the direct 

impacts of Martin and March (1972) in the field of built environment modelling and 

simulation is the Lighting and Thermal Method (LT-Model) introduced by Baker and Steemers 

(2003) as a tool of energy consumption simulation. This approach tried to estimate the effect 

and assess urban morphology and context on indoor energy consumption depending on 

MATLAB image processing. In terms of energy simulation, several methods have been 

developed to enhance the geometrical perception of space in the simulation model. In 

thermal models the simulation usually ignores the complexity of the space as long as the 

space model is introduced to the simulation process as a series of attached surfaces linked to 

each other to form one enclosed spatial configuration. On the other hand, solar radiation and 

wind assessment give a great deal of attention to the three-dimensional nature of spaces. 

This made it easier to reduce model complexity in thermal simulation to cut down the 

simulation processing time and even grouping similar zones into a larger one as they share 

the same thermal style. Dogan and Reinhart (2013) proposed a new technique called 

“shoebox” to do this simplification process automatically instead of doing it manually. This 

technique was used to create the Urban Modelling Interface (UMI) (Reinhart et al. 2013). On 
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an urban scale, Rodríguez-Álvarez (2016) came up with a similar way to simplify urban 

modelling for the energy analysis of existing urban cities. This is by creating a geometric 

interpretation of the urban geometry to create what he named the “notional grid”. This grid 

represents the most common geometric features of the urban fabric. It enhances the urban 

model's perception to do the energy analysis needed for the selected urban geometries. 

Bassett et al. (2012) illustrated a method for calculating urban solar analysis. This method was 

mainly by ray tracing the sky vault reflection on each building’s faces in the studied urban 

configuration. This was conducted using a plug-in for SketchUp (Trimble 2016) called Virvil. It 

also worked as a bridge between SketchUp and its energy simulation engine developed by 

Cardiff University, named HTB2 (Jones et al. 2013).   

Although urban modelling and simulation have been the subject of investigation for a long 

time now, it is still developing and introducing new tools. The LT-Model is one of the earliest 

simulation tools developed by (Steemers 2003) to link indoor energy consumption to 

conditions in the outdoor urban context. Ratti et al. (2005) further illustrated this tool in a 

study conducted over three different sites to link urban geometry and indoor energy 

consumption by using the LT-Model applied along with an image processing approach using 

MATLAB (The MathWorks 2017). More development in urban modelling and simulation tools 

has been developed to introduce reachable and understandable user interfaces and more 

comprehensive analysis. ENVI-MET® is one of the most recognized simulation tools available, 

especially for the urban context, as they have enhanced their  ENVI-MET 4 BETA II version to 

include indoor energy calculations enhancement (Bruse et al. 2016). With its sensitivity to 

vegetation along with its Computational Fluid Dynamics (CFD) simulation, it gained much 

recognition. It was used for simulation at an urban scale to assess different variables of urban 

geometry. It could also be used as a comprehensive tool to assess urban geometry and its 

thermal performance (Bouchahm et al. 2012; Taleghani et al. 2014; Taleghani et al. 2015). 

Bourbia et al. (2010) used it specifically to assess the role of albedo on urban canyon 

geometry. It is important to mention that this application has a drawback regarding its 

modelling flexibility. It only allows a model to be drawn on a pixelated grid, making it hard to 

build curved or free-form models. 

Furthermore, it is not an open-source application that can only use the functionalities 

provided by the licensed version. This deprives users of developing their simulation process 
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or from coding a multi-objective simulation differently from those available by the 

application. The UMI is another comprehensive tool developed by the sustainable media lab 

at the Massachusetts Institute of Technology (MIT) (Reinhart et al. 2013). This tool is a plug-

in on a  Non-Uniform Rational Basis Spline (NURBS) modelling platform called Rhinoceros 

(McNeel 2014). This simulation tool depends on an energy modelling technique called “show 

box” (Dogan and Reinhart 2013). This technique simplifies the energy model by grouping 

similar spaces together and reduces the simulation running time. Another added value to this 

tool is its “walkability” feature (Rakha and Reinhart 2012; Rakha and Reinhart 2013). This 

simply allows the architects and urban planners to assess the walkability within a specific 

urban configuration, linking this to the case study's carbon footprint and adding the 

“walkability” as a variable for urban sustainable assessment and optimisation. UMI is used in 

urban energy assessment and optimisation once the “show box” method gets validated and 

finishes its ongoing development stage. It is important to mention that it gives results in 

square metres and cannot give the individual assessment to units in one building; the 

assessment works on the whole building as one entity that consists of a number of floors 

given as input to the simulation model. Also, the same team have developed a tool for an 

urban daylighting assessment called Urban Daylight (UD) as a plug-in for the visual 

programming language platform Grasshopper hosted by Rhino as a modelling interface. UD 

was incorporated later in a more extensive set of components called Archisim (Dogan et al. 

2014; Dogan et al. 2016), which included more energy analysis capabilities on an urban scale 

while it still needs more validating studies.  Another tool using the same platform is Diva for 

Rhino (Jakubiec and Reinhart 2011) and its more parametric extension to Diva for 

Grasshopper (Lagios et al. 2010). Diva is mainly for indoor lighting analysis based on Radiance 

(Ward 1994). Its earlier versions had an energy assessment capability based on Energy Plus 

engine (U.S. Department of Energy’s (DOE) 2016) but for only one zone. 

From a planning point of view, City Energy Analyst (CEA) is a new tool developed to assess 

energy on an urban scale (Fonseca et al. 2016). This tool is written using PYTHON coding 

language to be hosted in the GIS application ArcGIS (Esri 2016). This tool opens the door to 

infrastructure assessment regarding energy efficiency and carbon emissions at an urban scale. 

Also, it analyses implementing photovoltaics as part of an energy source to the urban 

configuration. It allows assessing future scenarios of urban growth and the cost of 
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implementing these scenarios due to its GIS nature. CEA was not yet been made available for 

users by the time this literature review was done. The first available version dates to February 

2016. its capabilities and limitations were not yet evident as it was still in the development 

stage.  

Dallal and Visser (2015) introduced another tool programmed with Python programming 

language to generate a climate-responsive urban morphology  for hot arid zones. Their study 

was based on giving almost three choices for each variable, and the algorithm merges the 

optimal solution to reach the optimal performance for the targeted urban community. The 

investigation included different urban geometrical parameters, such as the distribution of 

green areas, compactness of urban configuration, spacing between buildings and the 

distribution of heights in the configuration. The results of this study are only the percentage 

of enhancement the tool provided for a specific design considered as the benchmark for the 

study. Also, it was concluded that there was a need to add more parameters to the process 

to achieve a more comprehensive approach. 

Nault et al. (2013) presented a framework of urban solar potentiality analysis based on 

sensitivity analysis to create a more comprehensive simulation approach. This analysis linked 

the building performance and urban neighbourhood geometrical features. Peronato et al. 

(2015) further elaborated on the same framework, mainly based on Rhinoceros and 

Grasshopper for modelling the geometry and the MIT developed simulation tools (UMI, UD, 

Diva for Rhino and Diva for Grasshopper). They used MATLAB (The MathWorks 2017) for post-

simulation data processing. A research study by (Nault et al. 2015a) evaluated the broader 

application of this framework. It provided a review of the commonly used tools for simulation 

related to heating and cooling and solar potentiality. The results of this study emphasized the 

impact the compactness and fenestration ratio have on building performance and solar 

potentiality within an urban configuration. This provided help and aid for decision-making 

regarding the thermal performance of the urban configuration in the early stages of design.   

With regard to a comprehensive and integrative approach in simulation methods, 

Sadeghipour and Pak (2013) have introduced new comprehensive simulation tools based on 

the Rhino 3D modelling platform and its Visual Programing Language (VPL) interface, 

Grasshopper. This set of tools started with two plug-ins, Ladybug for climate analysis and 

visualization (for example, sun path and shadow visualization) and Honeybee for building 
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performance simulation (for example, thermal and lighting analysis). These tools are based 

on Day-Sim (Reinhart 2017), Radiance (Ward 1994) and Energy Plus (U.S. Department of 

Energy’s (DOE) 2016) simulation engines. These tools have the added value of being open-

source tools improving the capability of flexibility in the simulation models and adding a great 

deal of Energy Plus capabilities than allowed by other simulation tools, such as DIVA for Rhino. 

Ladybug and Honeybee enhanced integrative simulation and design methods by avoiding the 

use of multiple platforms for the same projects and combining multi-objective parametric 

performance tools into one method and process. 

Furthermore, Ladybug allows the designer to import back the geometry analysed and 

visualized in the Rhino/Grasshopper platform. In addition to its comprehensive integrative 

approach, it can benefit from working on a parametric VPL as Grasshopper to generate further 

iteration from the simulation outputs. Some studies have implemented Ladybug as a climate 

visualization tool conducting the simulation over another simulation engine (ANSYS for CFD) 

with the benefits of the parametric modelling of Grasshopper, as in (Taleb and Musleh 2015). 

Others used it within a series of simulation tools (Anton and Tănase 2016) or mainly depended 

on it to conduct the simulation analysis while applying a genetic algorithm (Naboni 2014; 

Calcerano and Martinelli 2016).  

Jones et al. (2007) introduced a tool for assessing the scale of urban performance called the 

Energy and Environmental Prediction model (EEP). This tool was developed in the Welsh 

School of Architecture (WSA), Cardiff University. Regarding its energy analysis, this tool was 

based on the UK Government Standard Assessment Procedure for residential buildings (SAP), 

which is an energy assessment methodology (BRE and DECC 2013). EEP included different 

sub-models for analysis, such as traffic, health and, of course, energy performance for 

domestic and non-domestic use. It was mainly built upon a GIS model. In addition to the 

regular geometrical variables investigated by EEP like the number of stories, storey heights 

and window-to-wall ratios, it added the age of buildings as a variable of study to assess the 

insulation capability and the heat gain/loss dependent on this variable. Later on, this group 

developed an early stage design energy performance assessment tool named HTB2 (Jones et 

al. 2013). This tool opened the door for a multi-objective comprehensive urban simulation in 

the early design stage, either on a single building scale or on an urban scale. Jones et al. (2009) 

illustrated that HTB2 could investigate urban geometry orientation, overshadowing between 
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buildings, thermal insulation, and internal heat gain from appliances and lighting. It is 

important to mention that this study has investigated these variables separately to assess 

their potentiality regarding energy optimisation for a proposed urban master plan.   The  WSA 

team also developed a plug-in for HTB2 and named it Virvil (Bassett et al. 2012). It is a bridging 

plug-in to link HTB2 as a simulation engine to SketchUp (Trimble 2016) as a simple modelling 

interface. Virvil simply works by ray tracing the sky vault reflection on each face of the 

building, either it is a façade or a roof. This reflection represents the solar radiation on the 

building. With the help of HTB2, the energy performance can be simulated from this reflection 

and the buildings’ variables as an input to the process. Then, Virvil translates the simulation 

outputs back again on the SketchUp model. Dealing separately with each face of the model 

gives this framework more resilience and compliance to each model’s needed specifications. 

Its hourly-based simulation capability and the control of ray angle separation for each face 

give the user much more control. With the expectation of adding more urban context features 

to the tool’s recognition, such as wind breeze and the enhancement of its sensitivity, this 

framework can be highly promising with regard to the need to reduce the time consumed to 

run the simulation. 

One of the leading developers of software services in the built environment and construction 

industry is Autodesk (Autodesk inc. 1985). It has multiple applications for simulation in the 

early stages of design. By 2015, Ecotect, one of the most commonly used tools for built 

environment performance analysis, stopped selling licenses. It became partially integrated 

within other applications developed by the same company as Revit. This integration was 

developed further to be what we now know as Autodesk Insight (Autodesk.inc [no date]), a 

plug-in that enables building performance analysis within the Revit platform. Another 

performance simulation is Green Building Studio (GBS) (Autodesk Inc. 2017b) which was 

released by Autodesk close to the discontinuation time of Ecotect to be its fourth runner for 

building performance simulation afterwards. It is promoted as a holistic tool for the 

simulation of multiple performance features not restricted to thermal performance but also 

including basic CFD to simulate wind energy; it reacts around the building’s geometry. 

Although it is not an open-source application, GBS is based on the DOE-2 (Simulation Research 

Group 2017) simulation engine, an open-source tool for energy performance calculation. Its 

access to Building Information Models (BIM) generated by Revit gives it many advantages 
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along with its web-based simulation version. Its validation studies were done and submitted 

to the United States Department of Energy (U.S. Department of Energy 2008), yet peer-

reviewed publications utilizing these capabilities are less promoted by the developers, unlike 

its rivals. 

Attia et al. (2012) tried to create selection criteria for performance simulation tools by 

surveying architects and engineers. The study showed some differences between the 

preferences of the two selected groups. The main features considered in this study were the 

tool’s integration within the design process, interoperability with building modelling, accuracy 

and level of details, usability and information management and integration of knowledge-

based design intelligence. These features can be varied between the available state-of-the-

art tools for urban modelling and performance simulation tools. The key feature that can be 

added to these criteria is the capability of conducting multi-objective optimisation in a 

complex urban scale model. The major challenge, continuously mentioned in most of the 

studies introducing the simulation performance tool, is its utilization in the early stage of 

urban design, as simulations tend to consume time that is not always affordable. There is still 

a need at the early design decision-making stage for a comprehensive tool that can conduct 

performance simulation at an urban scale within a reasonable time.  
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Table 2-2 Summary of the simulation software and its capabilities and limitations regarding urban simulation 

 Analysis 

capabilities 

Name of product Modelling 

platform 

Availability Source 

code 

availability 

Baker and Steemers, 

2003; Ratti et al.,  

2005 

Microclimate and 

indoor energy 

consumption  

LT-Model with 

MATLAB image 

processing 

stand alone   

Reinhart et al., 

2013 

Urban performance 

(energy, 

walkability, etc.) 

 UMI and 

“Shoebox” 

simplification 

technique 

Rhino Available for Free Not open 

source 

Rodríguez-

Álvarez, 2016 

Urban energy 

demand  

UEIB &UEIB-GIS 

with “Notional 

Grid” simplification 

technique  

   

Bassett et al., 

2012 

Urban solar & 

energy analysis  

 HTB2  stand alone Available for free  Not open 

source 

Jones et al., 

2013 

Urban solar & 

energy analysis 

Virvil SketchUp Available for free Not open 

source 

Jakubiec and 

Reinhart, 2011 

Urban daylight 

analysis  

Urban daylight  Grasshopper Embedded in 

another tool 

 

(Dogan et al. 

2014; Dogan et 

al. 2016) 

Urban energy 

performance  

Archi sim Grasshopper Available for free Not open 

source 

Lagios et al., 

2010 

Indoor lighting 

analysis  

DIVA Rhino & 

Grasshopper  

Available for free 

for educational 

use 

Not open 

source 

Lagios et al., 

2010 

Urban energy and 

infrastructure 

analysis  

City Energy Analyst 

on python coding 

Arc GIS   

Dallal and Visser, 

2015 

Urban energy PYTHON coding blender   

Nault et al., 

2013, Nault et 

al., 2015 & 

(Peronato et al. 

2015) 

Urban solar 

analysis 

Urban solve Grasshopper   

Sadeghipour and 

Pak, 2013 

Holistic 

performance 

simulation  

Ladybug tools Grasshopper Available for free Open-source 

ENVI-MET GmbH 

et al., 2016 

Holistic 

performance 

simulation  

Envi-Met stand alone Available for free Not open 

source 

Trigaux, Allacker 

and Troyer, 2014 

Urban energy 

performance and 

solar analysis  

EPB+  Stand alone   

(Autodesk Inc. 

2017b) 

Holistic 

performance 

simulation  

Green building 

studio  

Stand alone Available for free 

for educational 

use 

Not open 

source 



 Chapter 2                                                                                                                                   Literature Review 

34 

Lastly, it can be argued that recent developments of simulation tools have provided a gateway 

for the leading simulation engines to be introduced to some parametric modelling platforms. 

In addition, there is a consistent development of these tools to achieve a holistic simulation 

approach that can deal with the built environment as a whole on both the architectural and 

urban levels, as shown in Table 2-2. On the level of urban performance simulation, different 

tools are trying to simplify urban models to allow the simulation process to be conducted 

reasonably, allowing the decision-making process to stay efficient in the early design stages. 

Although some of the developed tools accommodate the parametric iterative approach, the 

time cost of conducting these simulations still requires more simplified or limited iterations 

to be done within the early stages of design. 

 

The early design stage has recently gained much attention, especially in urban performance 

simulation and optimisation. In addition to the research on natural meteorological effects on 

the urban context, researchers have investigated the role of urban geometry and its effect on 

the urban context. Urban geometry is formed by various variables, each of which affects the 

urban context on different scales. These variables need more investigation to understand 

better their relative importance on different aspects of urban performance. There is a 

recognized amount of ongoing research studying this relation between urban geometry 

variables and their effects on the urban context and its thermal status. This relation has been 

studied from different approaches and perspectives. Some researchers focused on identifying 

this relation and providing a better understanding of these different effects. Others tried to 

link it to other urban aspects, such as density, walkability, or indoor environment quality.  

Trigaux et al. (2014) introduced the Life Cycle Assessment (LCA) calculation framework. This 

framework aimed to evaluate the energy consumption of a medium-density simple urban 

configuration on a neighbourhood scale based upon the solar exposure of each unit in the 

configuration. Following this, Trigaux et al. (2015) linked the urban context to indoor energy 

consumption by developing an enhanced simulation tool based upon the Flemish Energy 

Performance of Buildings (EBP). They named it EPB+ and used the tool to analyse the solar 

irradiation received by each unit to state its heat gain and consequently the energy consumed 

to reach thermal comfort for each unit. The authors compared the results between EPB+ and 

Energy Plus (U.S. Department of Energy’s (DOE) 2016) to validate them.  This experiment was 
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done on one fixed urban courtyard configuration with other studies on different urban 

geometrical configurations to follow. Also, it is important to mention that it was done monthly 

and ignored the building shadowing on the ground and its effect on solar irradiation in the 

urban geometrical selected case study. 

 Building typology  

Taleghani et al. (2014) have carried out further investigation related to the configuration of 

the urban courtyard. They used ENVI-Met (Bruse et al. 2016)as the simulation tool to run 

different iterations of urban courtyard orientations and 2D dimensions. The research 

investigated the urban mean heat radiant. In addition to these iterations, the study added 

vegetation, water and albedo as additional variables of urban geometry, based upon a 2050 

weather forecast as inputs to the simulation. This study has provided a clear vision for 

studying the orientation of urban courtyards. In addition, it discussed which element to add 

to enhance the outdoor thermal status in a closed urban configuration. On the other hand, 

height was not included in this study, although it has an important influence on outdoor solar 

irradiation and thermal status. Moreover, Taleghani et al. (2015) added more simplified 

geometrical configuration alternatives in their study based on existing standard urban fabrics 

in the Netherlands with further investigation on the height iteration effect on these 

alternatives. 

A link between height and space floor area was provided by Panão et al. (2008). This study 

investigated the height through its relation to the number of floors and area covered by the 

buildings in the site, floor space index (FSI) as introduced in the paper, considering the spacing 

between buildings as canyons and pavilions. In addition to these variables, the study analysed 

the iteration of orientation for the urban configuration and the building length in relation to 

its FSI. This study was done using a genetic algorithm to enhance the alternatives to reach the 

optimum solution. Applying this approach in urban geometry analysis to energy consumption 

optimisation opened the door for further research to be done along these lines with more 

urban geometrical variables and alternatives, rather than simplified grid configuration as the 

study has done.  

Kampf and Robinson (2010) introduced a randomized methodology to get new shapes of 

buildings’ roofs that led to a new way to determine heights in urban geometries. This research 
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targeted the optimisation of solar energy applications in urban geometry. This explains a lot 

about their concentration on roofs and their direction in response to solar irradiation within 

defined site constraints. They used Radiance to ray trace predicted solar irradiation on roofs 

in the urban geometrical form.  

 Urban layout  

Yi and Kim (2015) also used a genetic algorithm tool, Grasshopper (Mcneel 2014), Galapagos 

(Rutten 2013), to analyse solar irradiation for the urban geometrical configuration of high-rise 

buildings. This study targeted optimizing the solar irradiation exposure for a configuration of 

six high-rise buildings. They did this by setting several geometrical variables, not restricted to 

height or floor areas, but by adding scaling, tilting, and building orientation. This study  

controlled the basic geometrical aspects of the buildings in this configuration through a pivot 

point. This means the change applied to this point will be applied to all the buildings. This idea 

helps in accelerating the analysis, especially with the application of the genetic algorithm 

approach as a major part of the optimisation process will  be computerized. On the other 

hand, it limits the alternatives that could be generated through the randomized iteration of 

geometrical variables.  

Although orientation has been investigated previously by Panão et al. (2008), Taleghani et al. 

(2014) and Taleghani et al. (2015), Vermeulen et al. (2015) analysed it along with heights, 

scaling and positioning. The study applied an algorithm to investigate the rotational 

capabilities of each building in the urban geometrical configuration with limitations for the 

maximum iteration. Also, the context was added as a grid of buildings surrounding the site. 

However, it should be noted that this study depended only on direct solar irradiation on 

surfaces and compensated for the absence of the inter-shadowing effect by Atherton et al. 

(1978) method. This method is only applicable on polygonal lines, which adds more 

geometrical limitations to this simulation process as it weakens the opportunity to examine 

curve shapes with the same methodology. This result, considering the clear sky conditions 

and the fact that it has not been based upon meteorological data, shows that many factors 

can be considered if this method was applied in a comprehensive urban geometrical urban 

energy simulation study.  
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The positioning of buildings within the urban geometrical configuration was examined with a 

genetic algorithm (Conceição António et al. 2014). This study aimed to evaluate solar 

irradiation, taking into consideration building shadowing interrelationships. They studied 

several positioning scenarios between two buildings in an urban grid, and the resulting inter-

shadowing in these scenarios generated different urban grid layouts with different 

positioning alternatives. Then they investigated grouping heights in the configuration to 

determine the optimum solution for the proposed site. This study suggests considering the 

indoor environment and comfort needs in further future simulations. 

Moreover, it is recommended by the research to consider more variables such as size, the 

shape of buildings and facades’ geometrical modifications. This provides a better 

comprehensive understanding of urban geometry and its variables which can be considered 

in urban simulation modelling that can be briefed as shown in Figure 2-5 

As shown in Table 2-3, each variable has been covered individually or in groups in one or more 

research approaches. Most of the variables have been assessed concerning their impact on 

thermal performance or solar irradiation. However, most research outcomes have 

recommended further investigation with more case studies and more comprehensive 

examination. 

•Position 

•Orientation

•Urban space

•Inter-shadowing

•Outdoor features (vegetation, water & albedo)

Layout

•Height, width & depth

•Scaling 

•Roof shape & direction

•Occupancy

•Thermal mass

•Glazing

Building Typology & Sphericity

Figure 2-5 Summary of urban geometrical variables as illustrated through the 
literature review of previous studies 
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Table 2-3 Geometrical variable investigated based on its performance impact 

References Geometrical Variable Performance Aspect 

Taleghani et al., 2014, 2015 Building typology (urban 

courtyards) & orientations 

Urban mean heat radiant 

Panão et al., 2008 Floor space index & orientation & 

urban spaces 

Energy consumption 

Kampf & Robinson, 2010 Building typology (roofs)  Solar irradiation  

Yi and Kim, 2015 Building typology (tilting), 

orientation, height & scale 

Solar irradiation 

Vermeulen et al., 2015 Positioning & scale & height & 

individual building orientation 

Solar irradiation  

Conceição António, Monteiro and 

Afonso, 2014 

Positioning, inter-shadowing and 

indoor thermal comfort 

Solar irradiation  

Trigaux et al.,  2014 Urban courtyards and heights Solar radiation and energy 

demand  

Nault et al., 2013, 2015 & Peronato 

et al., 2015 

Different hypothetical urban 

configurations  

Solar radiation and energy 

demand  

Dallal and Visser, 2015 Urban voids, heights, orientation, 

Massing 

Energy consumption and 

passive strategies 

 

As shown in the literature (see Table 2-3), geometrical variables have been tested and 

simulated at the architectural and urban scales. These simulation studies dealt with different 

performance aspects from urban mean heat radiant and buildings’ solar radiation to indoor 

energy demand. It can be noticed that the geometrical variables can be grouped into two 

categories, as shown in Figure 2-5. This categorization also followed the scale of simulation 

conducted for these studies. In addition, it is repeatedly recommended from different 

literature to conduct a comprehensive study that includes a larger pool of iterations and 

geometrical variables from the two different scales. Also, there is a need for a holistic analysis 
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of different performance aspects and their correlation to understand better the balance 

between these aspects and the effect it gets from varying geometry on an urban design scale. 

However, most of these recommendations are bounded by the limitations of the time cost on 

conducted research and the practical capabilities of the simulation engines utilized in these 

studies.  

 

Optimisation is looking for the best iteration in a group of iterations or options (De wilde 

2018). This definition is introducing optimisation as a decision-making process taken within 

the project's design and analysis phase. In his book, Building Performance Analysis, (De wilde 

2018) discusses the utilization of this decision-making process, either to choose a specific 

element like an optimal material or to find some optimal performing designs or settings of 

design parameters based on a preset benchmark or to combine both approaches in the search 

for the optimal solution for a design problem. This design nature had an open discussion in 

Cross's (2001) review of design discipline versus design science. He reviews the nature of 

design problems in the built environment and the debate about ways to “scientize” them. 

This research can partially relate to this dialogue as “quantifying” the design problem. This 

review also discusses design methods and definitions and how they can be addressed in 

different ways. This differentiated between the knowledge of design that needs to be 

transferred, copied and inherited and the design act itself, which must not be copied or 

inherited from previous practices. As mentioned earlier, the urban context is a complex topic. 

However, analyzing and optimizing urban performance is a quantifiable process in nature 

which can be reused and inherited between different design practices. Given the complex 

nature of urban models, urban numerical optimisation would be exposed to ideas like 

hierarchal optimisation techniques (Choudhary et al. 2005), which allow breaking down the 

design problem resolution into a multi-stage process of decision-making and optimizing 

individual simple parts of the dialogue about dealing with the design problem. However, 

Hazelrigg (1998) recommended that this might lead to misleading results in the optimisation 

process and that the optimisation process should look holistically for a comprehensive 

objective. Urban performance optimisation has multiple applications in different studies. 

Nguyen et al. (2014)provide a literature review of the simulation-based optimisation methods 

and tools that also discusses the different algorithms used for the simulation-based 
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performance optimisation and how frequently each algorithm or method is applied. These 

algorithms represent a way of looking into a consistently changing search space due to the 

generative nature of the simulation inputs. This generative computational added some 

flexibility because traditional optimisation is limited by the iteration pool, which gained more 

solutions by being computationally generated. This computational assisted process attempts 

to overcome the challenge of time cost in the early stages of design. Furthermore, it discussed 

the efficiency of artificial intelligence and different applications and solvers assisting the 

simulation-based optimisation process computationally.  

The investigation of applying artificial intelligence in the built environment computational 

methods has been ongoing for decades now. This application varied between the different 

tasks and roles artificial intelligence can conduct within the design and construction processes 

of the built environment. Referring to artificial intelligence systems as expert systems, Kim et 

al. (2012) identify these expert systems like computer programs that apply artificial 

intelligence (AI) principles to solve a predefined clear problem. They continue to explain this 

definition by breaking down the expert into the knowledge base, which is the set of definitions 

and facts that the system is dependent on for taking actions, listed as the control mechanism. 

The control mechanism is the action the system is set to take by conducting it 

computationally; the most straightforward example for this is the logic of “if [event], then 

[action]”. According to this review, the data resulting from these actions during the 

generation process is called the working memory. The study also summarised the roles that 

artificial intelligence can perform, focusing on urban planning and design. These roles were 

1) interpretation, which is providing understandable data to users by utilizing these systems 

as a mediator for the generic data output of the process; 2) diagnosis as an application of 

these systems to detect specific patterns, design and planning to evaluate iteration based on 

analysis; 3) monitoring and control which means the capability to control the behaviour of 

the tested variables based on a series of variant inputs; and, 4) instruction which is the 

utilization of these systems to transfer a set of knowledge to prospective users.  (Koenig et al. 

2020) have introduced another historical review of computational optimisation methods in 

the built environment. They highlighted the challenges facing evolutionary-based 

optimisation tools. Some of these challenges are the aesthetics of proposed optimal solutions 

and the computational and time costs threatening the feasibility of these methods. The 
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research also proposed assistance using image processing techniques to overcome some of 

these challenges. Additionally, they did not specify a clear pathway of handling such a 

database or the exact scope of using their data-driven optimisation framework.  

Genetic algorithms can be explained as the generation of a first population based on the initial 

input enhanced by changing parameters to meet the desired target. Then, the first population 

get assessed in compliance with the desired target. If this does not meet the target, the 

algorithm will populate the next enhanced generation to reach a closer result by changing the 

parameters entered in the base model. After that, the better alternative will be the base from 

which the next generation will start. It will continue to generate more alternatives until it 

reaches the target or the pre-installed number of generations, whichever is closer.  

With this impressive ability for the design in general, parametric urban design can be 

represented as a group of arranged buildings and urban geometrical variables shaped by 

scripted algorithms. This interpretation provides a different vision and capability for 

investigating urban design, geometry and performance (Schumacher 2009; Schumacher).  

Genetic algorithms were applied and linked to environmental analysis earlier than these 

interpretations, as in (Caldas and Norford 2002), who applied them on Autodesk AutoCAD 

(Autodesk Inc. 2017a), linking it with the DOE thermal and lighting analysis program 

developed by the United States Department of Energy (Simulation Research Group 2017) to 

study the sizing and placing of windows in office buildings. (Panão et al. 2008) introduced the 

application of a genetic algorithm to the process of performance analysis on an urban scale. 

The study linked urban geometrical variables in an urban grid configuration to energy 

optimisation. It used this link to search for the optimal solution regarding the number of 

floors, heights and orientation of the urban configuration using the help of a genetic 

algorithm. Furthermore, (Mackey et al. 2015) emphasized the impact of climatic conditions 

on the geometry represented in outdoor shade. They applied a genetic algorithm to search 

for the best bus stop shade in three different sites with different climatic conditions. (Rakha 

and Nassar 2011) avoided this geometrical limitation while applying a genetic algorithm for a 

model of indoor ceiling optimisation with natural lighting. Also, due to the unfeasibility of 

investigating all the possibilities and alternatives, they limited the number of iterations and 

populations generated from these initial iterations presenting a methodology to search near 

an optimum solution but not defining it strictly. While (Yi and Kim 2015) used the genetic 
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algorithm capabilities to investigate a bigger model consisting of the urban configuration of 

six high-rise buildings. This study manipulated different geometrical variables to search for 

the optimal performance solution for the urban configuration. (Suyoto et al. 2015)  used this 

parametric genetic approach to conduct a more comprehensive study for office towers. This 

study extended the use of parametric genetic algorithm analysis to analyse and optimize more 

than just the environmental aspects, such as heat gain and glazing skin material and design 

and a building’s overshadowing. They included the structural analysis of different massing 

iteration along with the pedestrian walking path through the urban configuration. (Calcerano 

and Martinelli 2016) applied a simple genetic algorithm to find the optimal tree positioning 

around a building in order to search for the optimal energy consumption used for cooling. 

(Song et al. 2016) introduced Implicit Redundant Responsive Genetic Algorithm (IRRGA). This 

study implemented a genetic algorithm approach to present a form-finding approach for 

apartment buildings with a multi-objective fitness criteria. IRRGA was mainly controlled by 

symmetry, structure, connectivity and cost as a fitness criterion for the optimally selected 

forms with no interest in the indoor plan design for the generated forms. 

(Gerber and Lin 2014; Lin 2014; Lin and Gerber 2014)  introduced a comprehensive genetic 

architectural framework called Evolutionary Energy Performance Feedback for Design 

(EEPFD). This framework is a multidisciplinary design optimisation framework for the early 

stages of design. It is coded by MATLAB (The MathWorks 2017) and based on the building 

information modelling tool Autodesk Revit (Autodesk Inc. 2017c) as its modelling interface. It 

depends on Autodesk GBS (Autodesk Inc. 2017b) to conduct further analysis. This framework 

extends the link between form-finding and energy consumption simulation to include more 

than just the geometrical variables and decide the number of floors allocated for each 

occupancy in a complex multi-functional building and where to position these occupancies 

relatively. As powerful as it seems to be, EEPFD needs to be validated through various design 

scenarios. It is also not clear if it has the capability of conducting an urban scale genetic 

analysis. Moreover, it inherits the modelling limitations Revit has because of its 

family/massing data structure.  

Grasshopper provides an alternative regarding modelling limitations because it is not based 

on the family data structure. Furthermore, there are various genetic algorithm solvers 

available as plug-ins for Grasshopper. Galapagos (Rutten 2013; Jin and Jeong 2014; Yi and Kim 
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2015) is the default genetic algorithm solver in Grasshopper. Octopus (University of Applied 

Arts Vienna Bollinger+Grohmann Engineers. 2014a) is a more flexible solver regarding the 

fitness control and evaluation and history saving within Grasshopper but is not yet an open-

source plug-in. It has a heavy load on computational resources due to its visual nature. 

Biomorpher (Harding 2017) is one of the latest released solvers for Grasshopper that adds 

more user interaction to the genetic algorithm process by allowing users to choose the 

parents of each generation from a group of clusters distributed by the solver based upon 

relativity to the fitness. Moreover, this is an open-source tool that allows other designers to 

add/modify its main code. There are also other solvers which use Grasshopper as a platform 

to apply genetic algorithm approaches. Another approach to enhancing the application of 

genetic algorithm principles in the parametric environment was to allow more control over 

the variation breeding and mating in different generations. This enhancement was achieved 

by introducing an interface called “Wallacei” (Makki and Showkatbakhsh 2018; Makki et al. 

2019; Showkatbakhsh and Makki 2020) to conduct such a process and analyse the 

optimisation process outputs. It started as an add-on to the commonly used genetic algorithm 

solver interface, Octopus, and in its recent releases, the team has implemented their genetic 

algorithm code. This allowed more visualization of the genetic algorithm process in different 

stages, leading to more user agency over the optimisation process to overcome a challenge 

known about genetic algorithm solvers, of being uncontrolled “Black box” tools (Wortmann 

and Nannicini 2016; Wortmann 2017).  Surrogate models are about approximations done in 

the design space, so instead of the random searching for optimal solutions, the design spaces 

are just approximated, and the approximated first solution is the one that gets simulated. 

Then the design space becomes the “approximate” design space. This approximated space is 

defined mathematically based on some chosen design iterations within the design space 

(Wortmann et al. 2015). This method can be claimed to be a middle ground between fully 

simulating the looked-up iterations in the design space and approximating the space to some 

local area with a smaller number of simulations and consequent saving of time. This method 

is also implemented in a plug-in in the Grasshopper parametric platform under “Opossum” 

(Wortmann 2017; Wortmann and Tunçer 2017). An analysis of multiple Multi-Objective 

Optimisation methods was introduced in (Wortmann and Natanian 2020). This research 

highlighted the importance of using machine learning-related methods to optimise energy 

performance on the urban scale. It showed the potentiality of utilizing data analytical 
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techniques to optimise urban geometry compared to depending solely on algorithmic 

evolutionary methods.  

Other computational solvers try to deal with the optimisation process in the parametric 

environment, such as swarming, which is a naturally inspired algorithm that resembles the 

bird flocking biological system. It is based on multiple searching agents which exchange data 

between each other while avoiding colliding and closing up towards the location of the 

optimal solution. The solver interface for swarming principles in the Grasshopper 

environment has been named “Silvereye” (Cichocka et al. 2017). 

Moreover, there has been continuous development to include machine learning methods and 

principles under the notion of built environment optimisation. Generally, the significant 

difference in machine learning is where the problem or parts of the problem are predefined 

and pre-introduced to the solver. This means the algorithm mainly predicts results for the 

problem based on preset “training data” (Krarti 2003; Zhao and Magoulès 2012; Dounis et al. 

2014). Machine learning methods have different mathematical models, each of which follows 

a particular way of predicting the results of the proposed problem. One of the models, 

Artificial Neural Networks (ANN), aims to imitate how the human neural system works (Cui 

and Cai 2013). This method is gaining attention to predict and optimize different urban 

performance aspects such as radiation and life cycle assessment of carbon footprint (Płoszaj-

Mazurek et al. 2020; Rahbar et al. 2020). These studies highlighted the potential of using this 

method of handling such a large set of data attributes of environmental performance aspects 

on the urban design scale due to its ability to reach acceptable accuracies efficiently. An 

overview and comparison of the different mathematical models are presented in Ali et al.'s 

(2018) study utilizing different models to predict the Energy Performance Certificate (EPC) for 

a large number of residential buildings. 

Quantifying the design process is an approach that has been developed over a long time, and 

it has multiple frames of reference. One avenue of research is to seek better performing 

design through the optimisation process. Optimisation also has been investigated through 

different paths. Artificial intelligence assisted optimisation has been utilized through different 

studies to find optimal performing solutions. The literature shows that the mathematical 

models for artificial intelligence optimisation can be categorized into groups. One group is 

where the problem is unknown and unresolved, and in this case, the optimisation solver is 
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searching the pool of iteration with no guidance. The other group is to give the solver a set of 

pre-tested results to guide it through the process of searching for an optimal solution. The 

third group is where those two methods are merged. This is directly linked to the built 

environment performance when it comes to face the time challenge of benefiting from the 

performance simulation results to guide the early stages of design. The literature also shows 

that some multiple applications and interfaces may be adapted in the parametric 

environment allowing more generative designs to be simulated and optimized.    

 

Quantifying the built environment can be linked to the theoretical framework of categorizing 

it into patterns and grids. This process emerged from theoretical to mathematical phases until 

it could be applied visually in computational modelling. Although attempts have been made 

to make urban computational modelling accessible and more capable from earlier stages in 

developing urban modelling and the trials to quantify it, some challenges face urban 

modelling and its integration into urban design. One of these challenges is urban complexity 

and the level of details for the models and determining it based on the model’s aimed 

function. Taking urban performance simulation as one of these aims, the literature repeatedly 

shows that time also forms another challenge to the capability of modelling the urban 

environment and simulating its performance. Most of the research that deals with urban 

modelling for simulation purposes aims to simplify these models to make it easier to inform 

the design decision-making in its early stages. This simplification varied, either by classifying 

the different models based on similarity; by limiting the geometrical features of the model 

itself; by assigning different levels of details and attributes for different functions to models; 

or by finding a new mathematical representation for models that are faster to simulate and 

model by reducing the number of faces or number of functions the model needs to get to its 

final stage.  

In recent years, urban modelling exceeded the stage of static modelling to achieve iterative 

and generative modelling. This has been provided by the application of parametricism in 

urban modelling.  This led to the control of urban models on a better-detailed level. The model 

is generated through dynamic and responsive parameters that generate a pool of iterations 

by using these parameters. In this way, urban models can be recognized as parameters rather 

than dealing with their complexity as a whole entity. Another benefit from generative urban 
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modelling is to be able to draw out the impact of individual parameters on performance 

within a contextual setting. This gave a better insight into urban performance and its drives. 

The literature also discusses the conflict between parametric urban modelling and design, in 

some cases, where the local laws and functions have not been implemented in the decision-

making process. This has emphasized the importance of adding functionality to the 

geometrical forming process.   

The investigation of urban geometrical parameters and their relative impact on urban 

performance has been demonstrated in various studies. The literature has illustrated 

different trials to mitigate urban performance by varying geometrical parameters. This 

chapter showed and discussed the categorization of urban geometrical variables into two 

groups based on this scale. It has shown research studies in the literature dealing with 

different aspects of urban performance and optimizing it. The limited number of limited 

iterations is one of the repeated challenges of the reviewed studies. Another challenge is the 

lack of urban holistic simulation ability due to the lack of capable tools and the simulation 

time cost. 

Furthermore, the quantification of the design process also helped enhance the application of 

optimisation principles based on specific performance goals. The chapter presented the 

optimisation principles in the design decision-making process. It explained some of its 

different artificial intelligence mathematical models and reviewed some studies that tried to 

apply them. In this chapter, the study has also displayed some tools that act as an end-user 

interface in the parametric environment to provide easier access for the urban and 

architectural designer to get the aimed guidance from these tools in their decision-making 

process. The literature illustrated that a mathematical optimisation model could be 

categorized into three groups based on previous knowledge of the design problem at hand.   

 This chapter has shown the current gap in finding a way to fulfil the research aim of utilising 

urban geometry in optimizing urban performance. The literature has revealed the need to 

classify urban models and classify them into groups highlighting the capabilities provided by 

generative design to handle this task. Moreover, the literature can argue that classifying 

urban geometry and linking it to performance can provide a pathway to overcoming the time 

cost challenge when implementing available methods of artificial intelligence assisted 

optimisation methods. This will allow for the inclusion of the simulated results, where there 
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is a need to get better data-driven designs in the early design stages. The following chapter 

will discuss the thesis method in detail and build a framework that will implement the 

previously identified goals and fill the framed gaps.  
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3 Methodology   
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As shown in chapter two, the nature of linking geometry to performance at an urban scale 

remains unclear. It can be generally concluded that there is a need for a faster and more 

comprehensive way to conduct performance simulation on an urban scale. The research aims 

to fill this gap. The first stage of the research methodology was to conduct a preliminary study 

on iterative urban simulation to understand the problem's nature better and form clear aims 

for the research to help fill this gap. The results of this preliminary study have shown the 

limitations and opportunities of creating a framework that guides the urban design process 

in its early stage based on environmental performance. Limitations like computational cost 

and time directed the research to aim for a proof of concept of this framework that focuses 

on the solar radiation performance of the urban configuration. This aspect is less time-

consuming than other environmental performance simulation aspects on the urban 

modelling scale.  

The critical lesson learned from the preliminary studies was the significance of geometrical 

features relative importance on performance which led the research to investigate a method 

to classify urban geometry and utilise this classification towards more efficient 

environmentally driven urban early stage designs. This method of classification aimed at 

sorting each building based on its geometrical features. This goal was achieved by creating a 

generative modelling code that works on classifying urban models by attaching a text tag as 

an attribute for each building in the generated urban configuration. The automation of this 

classification was also part of the framework's development scope to provide flexible and 

dynamic modelling capabilities within the current limitations. This was done by developing 

the iteration controlling code during different phases of the research.  

This classification created a set of data consisting of the building's classification tags. There 

was a need to develop a method to retrieve, save, and compare this dataset and investigate 

this geometrical classification's available opportunities and outcomes. This approach opened 

the door to utilise this dataset in applying machine learning principles to predict the solar 

radiation of the newly generated urban configuration based on the similarities of its 

geometrical features when attributed to its solar radiation performance. Using machine 

learning, ANN helped overcome the time limitation of running solar radiation simulation on 
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an urban scale and develop the framework towards an optimisation capability to guide the 

urban design process in its early stage. 

Creating an optimisation framework for neighbourhood design was finally met by adding the 

genetic algorithm add-on, which provided the needed optimal solution for neighbourhood 

geometry based on its solar radiation and Floor Area Ratio. This phase was tested for different 

iterations' pool sizes and tested for an existing neighbourhood boundary with the same 

weather file.  

The chapter is discussing the methodological reasoning of these different stages of the 

framework. The tools of each stage and its different metrics are discussed within this chapter 

sections with a summary of the final proof of concept version of the framework.  

 

The preliminary investigation aimed to present a sensitivity analysis of multiple variables of 

urban geometry to test their relative importance in different aspects of performance on an 

urban scale. The targeted geometrical features were height, built area ratio, orientation and 

window-to-wall ratio (WWR). These variables were selected based on the literature review 

results to cover both sides of the categorisation mentioned in the literature and allow testing 

of the indoor performance and the outdoor performance results caused by changing the 

geometry inputs. This was also due to a comprehensive vision of the relative importance of 

these variables and the broader scope of the framework in future work. 

 Simulation metrics and parameters 

The performance aspects tested were solar radiation, energy demand for heating and cooling 

and indoor daylighting availability. The aspects were selected to cover both indoor and 

outdoor aspects; the daylighting availability was added to balance the energy demand results 

and show the correlation between the two aspects resulting from changing the geometrical 

variables. The metrics used to measure these performance aspects were based on the 

literature as solar radiation is measured by kilowatt-hours per square metre (kWh/sqm) which 

combines the amount of energy/heat received from the sun on the outer surface of the 

building. The same metric also measures the energy demand for cooling and heating by 

combining it with the indoor floor space (ANSI/ASHRAE/IESNA 2010). Daylighting autonomy 
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is measured by the percentage of the indoor floor space reached for a preset illuminance for 

a certain period (Illuminating Engineering Society (IES) 2017). 

The preliminary study had two phases, and through each phase, the simulation process was 

enhanced to be adapted to newly found limitations or to validate results.  

The first phase had the largest number of iterations but only analysed solar radiation and 

energy demand for cooling as it was conducted in a hot arid zone. The final phase of the 

preliminary studies was divided into two stages. The first stage added daylighting availability 

as a balancing feature of the simulation to ensure that optimal solutions for energy demand 

do not exclude the daylighting availability in the indoor environment. This addition was 

prompted by the fact that lower values of WWR showed better energy demand performance. 

Thus, an assessment of daylighting availability was needed to balance the performance 

results. Also, some of the literature have advised duplicating the simulations for multiple 

performance aspects to get more balanced results (Sabry et al., 2014). The preliminary study's 

last stage was to verify results against different climate conditions for heating energy 

demand. This step provided a better understanding of the preliminary study findings and 

results.   

 Tools 

Recent studies have provided important information on the implementation of parametric 

principles in urban modelling and simulation. The generative models used in these studies 

showed the capabilities of iterating models within the same simulation settings. It is 

established that generative models can overcome conventional simulation methods in a 

tested number of models. The second advantage of using generative models to conduct urban 

simulation is to utilise the generative capabilities to set up the pool of tested iterations and 

automatically gather the data. However, there are certain drawbacks associated with using 

generative models. They do not always run as smoothly as they should due to the 

implemented tools being relatively new when this study was conducted.  

The research has used the Grasshopper (Davidson, 2017) tool for visual programming for 

generative modelling. It enables dealing with urban geometry on a generative basis. It is also 

an add-on for a conventional modelling platform called Rhinoceros (McNeel 2014). This 

compound of tools formed the base that hosted all the modelling done in this research. The 
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preliminary study in Grasshopper used a local algorithm for the generative models. The 

following phases used a component called Colibri, which is part of a set of components 

underpinned in the TT TOOLBOX plug-in (CORE studio 2017a). This tool continued for the 

following phases of the thesis until it was replaced by a more custom code programmed using 

PYTHON programing language (Python Software Foundation, 2001).   

The research used a suit interface hosted in Grasshopper called Ladybug Tools (Sadeghipour 

and Pak 2013) for simulation. It acts as a parametric interface for widely used simulation 

engines, allowing Grasshopper users to conduct their simulation in the platform without 

transferring the model and collecting the simulation results from another software 

application. Ladybug allowed access for engines like Energy Plus (US Department of Energy, 

2016) to simulate energy performance in the Grasshopper environment. Another link is 

provided for Daysim (Reinhart 2017) and Radiance (Ward 1994) which are simulation engines 

for daylighting performance. It is important to note that Ladybug tools are not the only suit 

that provides such an interoperability option. Nevertheless, it is one of the rare suits with an 

open-source licence and connects multiple engines, other than those mentioned earlier, in 

the same core code.  

To collect and save the simulation results, the research used another plug-in to transfer data 

from Grasshopper to Microsoft Excel (Microsoft Corporation 2010), a data analysis and 

visualisation software. The plug-in is called Bumblebee (Mans 2016).  

The preliminary study flow, conditions, limitations and results will be discussed thoroughly in 

the following chapter. Concerning the methodology, the preliminary study has clarified some 

challenges and opportunities that led to the formation of the current research aim. It provided 

several lines of evidence to allow for a practical application for sequencing the simulation 

performance instead of running a holistic simulation process at once. Several published 

studies have encouraged such an approach to conducting multi-objective simulation and 

optimisation, especially for cases as complex as urban neighbourhood models (Krippendorff, 

2005; Lawson, 2006; Maver, 1970; Tschetwertak et al., 2017). Another trend of the results 

from the preliminary study was the clear difference in the relative importance of geometrical 

variables and their impact on performance especially. This showed the benefits of breaking 

down urban complexity into classifying its models into its core geometrical variables and 

classifying its performance based on that classification technique. A number of authors have 
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considered the effects of classification on simplifying the simulation process and reducing its 

time cost (Bassett et al., 2012; Robinson, 2006; Robinson et al., 2007; Vartholomaios, 2017).  

These two principles shaped the current aim to meet the need for a fast and comprehensive 

urban simulation and optimisation framework by taking advantage of the relative importance 

of the urban geometrical variables to apply classification of neighbourhood models the 

geometrical nature of buildings included. Then, the framework will adopt these classified 

databases of buildings and their performance into a generative optimisation process that 

saves more time than the conventional brute force simulation and optimisation methods.  

The first stage of building this classifying framework was to build its generative logic that can 

adapt to different inputs in a parametric way that does not lead to anomalies or system 

crashes.   

 

As mentioned earlier, Grasshopper/Rhino suits formed the platform that hosted all the 

parametric modelling processes in this study. The initiation of the street networks and 

buildable areas in this framework was conducted using a tool for urban network generation 

called Decoding Spaces (Koenig et al., 2017).  

 Generative modelling classes 

After generating the base of buildable areas and street networks based on an input polygon 

boundary shape, the framework started a series of generative classes developed locally in 

Grasshopper to introduce variations in the urban morphology and sort each building on its 

contextual features. These modelling code classes control different geometrical features on 

urban and architectural levels of the neighbourhood model. Some code classes are intended 

to sort and classify buildings based on other features, and the third group to both sort and 

classify the buildings based on the modelling changes that occur in them.  

For example, the coding class for creating urban voids is a class for modelling that does not 

directly impact the classification tag for buildings. At the same time, another class sorts each 

building based on its exposure to these generated urban voids. On the other hand, the class 

that generates building courts is doing both as it sorts the buildings in the model based on 

their status of having courts or not.  
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The product of this series is a 3D model that is a ready simulation while it has an implemented 

data classification for each of the included buildings. This classification tags the buildings to 

their simulated performance results.  

 Generative modelling control  

The control of the generative process is achieved by varying the different input parameters. 

Colibri handled the initial stage of this controlling system, the plug-in to handle multiple cross-

matching between a set of parameters (CORE studio 2017b), to create the expected pool of 

iterations. This was changed later to a PYTHON code (Python Software Foundation. 2001) 

embedded in a Grasshopper platform by another plug-in that allows calling for Python 

libraries and functions to be used live in the Grasshopper platform without compiling it 

outside (giulio 2017). This capability comes as a default in the recent release of Rhino 6 and 

its Grasshopper add-on. Utilising Python took into consideration the time cost made by 

Colibri. Thus, the combinatorial calculations were done only once in this version. The variation 

of the iteration took place by changing only one slider, which saved some time in calculating 

the whole process for each iteration generation.  

This process worked when the control of the generation was limited to the iteration of the 

neighbourhood configuration scale. However, since the classification aim was to sort and 

analyse buildings and deal with the rest of the neighbourhood as its context, there was a 

challenge iterating both building and urban levels. As a modelling and Visual programming 

tool, Grasshopper cannot create two sliders corresponding to each other with different 

starting and ending values. This meant all configurations had to have the same number of 

buildings which would have limited the diversity of the tested, analysed and optimised 

neighbourhood. The study tried to utilise multiple open-source codes to gain control over 

Grasshopper's slider nature. However, the process had to be automated due to the large 

amount of variation handled in the case study, which required the inherited codes to keep 

refreshing on the right spot to change the configuration. The last version of the generation 

control class included remapping the urban configuration trigger values to fit into an almost 

equal number of buildings for each configuration. The only casualty of this system is that 

sometimes some buildings were simulated more than once. This did not contribute to the 

accuracy of the process as the neighbourhoods' solar radiation performance was simulated 

as a whole. This iteration technique used only to create the database of classification tags and 
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their performance to be recalled as a benchmark later in the prediction and optimisation 

stages.  

Another limitation for Grasshopper is that its slider's animation option, responsible for 

automating the process, had a limit for animation, which meant that automating the 

generation and classification process was bounded by the number of buildings for each 

simulation and database building stage. However, this helped, in a way, to limit the causality 

of overrunning individual buildings because it means a new value is estimated for every 

10,000 buildings. This solution resulted in groups of 25 to 40 configurations for each run, 

mainly relative to the number of buildings that limited the repeated cases. 

The Decoding Space limitation inherited another challenge as it did not maintain the same 

configuration for the same parameter inputs. This means that every time the trigger moves 

to analyse a different building, it might generate a different configuration. Therefore, the 

control for generating the configuration had to be frozen with no triggering caused by the 

change due to variations between different individual buildings for analysis and classification. 

This solution was done with the help of another plug-in for Grasshopper, called  Heteropetra 

(Bahrami 2018). It is used to pause the signal triggering the change of urban geometrical 

configuration until the other signal controlling the individual buildings by its index finishes 

running through it.  

This stage of the framework will be discussed in chapter four with detailed figures and 

examples on creating the generative model and its controls.  

 

This section will focus on the data handling of urban geometry, the first phase of geometry 

classification. The second phase is the database building,  the analogue lookup, and the 

different development stages it passed through to reach its final current state.  

 Geometrical classification   

classifying the geometry in this research was achieved by a classification label for each 

building included in the neighbourhood geometrical iterations. This label acts as a lookup tag 

for similar buildings with the same geometrical features. In this way, performance can be 

approximated based on the similarity of geometrical features, and urban performance can be 
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calculated based on this approximation. This method forms the basis for the latter stage of 

machine learning optimisation discussed in the next chapter. The application of classifying is 

proved to help with the time cost of handling large amounts of data. Many studies in the 

literature have depended on machine learning to overcome the time cost challenge in 

conventional simulation methods that require a long time to search for an optimal solution.  

The classification process takes place in multiple classes in a parallel sequence to the 

generation classes. The basic idea of this classification is to take advantage of the nature of 

Grasshopper being a visual programming language to deal with the neighbourhood model as 

a list of data. Each index in this list represents a building, and the index gets tagged and 

classified based on a function or an analysis of the building's geometry.  

The classification tag had two phases of development. The first phase product was a mix 

between numbers (integers) and text data types. This phase included the following features 

of the building geometry: 

• Urban block orientation  

• Urban block exposure to the main street 

• Building orientation within the block  

• Building urban void exposure 

• Number of edges of the building  

• Building area  

 

Figure 3-1 shows the parallel sequence of the generation model and its classes, upper flow of components, and the 
classification tag , and lower set of component sequence 
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• Building court condition 

• Number of surrounding buildings and height comparison. For example, three buildings 

higher, and none are equal, and one building is of lower height than the tagged 

building.  

These tags formed a database saved in an excel sheet format using the plug-in for 

communicating Grasshopper to the Microsoft excel data analysing program Bumblebee. The 

lookup used in this phase was conducted using text similarity components locally available in 

Grasshopper. This phase of the tag was tested in multiple stages. The testing aimed to 

investigate the accuracy of the approximation against actual results collected from 

simulation. Moreover, it aimed to assess the difference in time to get the prediction against 

the time consumed to conduct the simulation. These multiple tests are detailed and discussed 

in chapter four. The results of these tests led to the development of phase two of creating 

the classification tag and developing a different bespoke way for the lookup.  

The second phase of the classification tag had to be fully numerical to enhance the lookup 

results. In addition to that, there are some added features to the tag to enhance its 

resemblance test and therefore enhance the lookup's accuracy. Besides the features 

mentioned in the previous phase, the following features are included in the second and final 

phase of the tag: 

• Building height 

• Orientation of the surrounding buildings to the tagged building and its height 

comparison to it. For example, a building higher to the east and another one equal to 

the south-east and another higher one to the south ..etc.  

• Wider perimeter of surrounding buildings for comparison. This is to check for higher 

buildings in a further perimeter to the first tested one. This feature locates the highest 

building on this broader perimeter. It indicates its relation and orientation to the 

tagged building—for example, a higher building with 30 metres in the northeast.  

 Data retrieval   

A set of 400,000 tags were generated from this tag to start the final testing and investigate 

the lookup learning curve. The lookup for this tag was a bespoke method made to detect each 
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of these features algorithmically to make sure it does not depend on any of the ready-made 

components in Grasshopper. This database was brought back from excel sheets to 

Grasshopper utilising the components for reading excel sheet data in Bumblebee.  

Such a large scale of data needed to be cleaned from data anomalies caused by the limitations 

of the used tools generating odd or unpleasant cases of some recorded features. This was 

done by a series of masks testing the nature of each data entry and removing all non-

numerical entries from the different lists. For example, a building might get an unacceptable 

analysis in the test for the second perimeter surrounding the building due to its location or a 

geometrical generation anomaly inherited from Decoding Spaces. This building entry must be 

deleted from this list, and the other 11 recorded features' lists. A series of selection masks 

have conducted this cleaning to the lists that showed it contained non-numerical data.  

The lookup in this stage was also made using the same technique. Each feature list was 

isolated for each building in the configuration at hand, then the lookup match for all the 

similar options for each one in the database. Then, only the indices with approved values 

continue to be tested in the second phase. At the last stage of the lookup, it finds the recorded 

performance of the surviving similar buildings from the database.  

Subsequently, a building with unique tags needed to be predicted using a machine-learning 

application and the sum of the two groups will be fed a fitness for a multi-objective genetic 

algorithm to find the optimal solution for the tested pool of iterations, which is the third and 

last stage of the framework 

 

The optimisation and machine learning prediction are the final stages of this framework. In 

addition, this section will discuss the simulation used to build up the database used in the 

prediction. The whole framework optimises the neighbourhood geometry to its optimal solar 

radiation as a starting point for future work, including other performance aspects like energy 

demand and daylighting availability. A code developed by Ladybug Tools did the solar 

radiation simulation, and it is part of its components' library.  

The machine learning application chosen to be implemented is Artificial Neural Network. 

Initially, a neural network component in the Lunch Box plug-in (Proving Ground Inc, 2018) was 

used to predict the tags' performance. This plug-in aims to implement machine learning 
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applications for the users of Grasshopper. Due to some limitations, this tool could not provide 

an efficient result, either in time or accuracy. 

The following step was to use an open-source neural network code adapted to Grasshopper 

by the researcher with some adjustments to enhance its performance to the needed 

prediction. The adaptation process was undertaken with the help of my second supervisor. 

The code went through multiple stages of testing and enhancement to get it to its latest 

version. These tests varied in the scale of the database fed to the neural network and the 

neural network structure itself and its settings. Also, these tests included data that were never 

seen by the neural network to assess its capability for prediction towards new data entries.  

This led to a series of edits of the nature of the code to search for a neural network that can 

save its training, deal with multiple numbers of entries for predictions, and save time by cross-

validating the prediction results within the training time, which led to high performing neural 

network.  

The consecutive stage of this was to use this performance prediction as a fitness function for 

a genetic algorithm to find an optimal solution for the tested neighbourhood models' solar 

radiation and floor area ratios. The research used Biomorpher (Harding 2017) to conduct the 

optimisation part of the framework. Biomorpher is a cluster-oriented genetic algorithm with 

an interface that allows control over different finesses individually and gives a visual result for 

each generation, allowing more control on the progress of the process and the ending point. 

This allowed more control over the optimisation process to decide in each stage whether to 

continue or stop based on the time cost and expected accuracy decided by the user.  

The validation of the outcomes will be discussed in chapter seven to show the different stages 

of validation to test.  

 

As shown in each stage, there are different tests and enhancement phases. The results are 

also validated on different scales and stages. The first stage of validation will test the accuracy 

of its prediction and optimisation compared to pre-saved results. Moreover, to test the time 

saved by the framework compared to running the whole iterations based on simulation rather 

than NN prediction.  
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This validation phase uses different scales of databases and testing pools of iteration to 

understand the capability of the prediction with preloaded and newly introduced data.  

The following stage of validation has considered the classification tag's capability to 

understand different neighbourhood boundary options. In addition, it also considers the NN 

capability of maintaining its prediction accuracy rate with a different set of geometry 

parameters that changes the whole pool of iterations and creates a different set of 

neighbourhood models.  

The last phase of the validation tests the efficiency of this framework against an existing 

neighbourhood geometry. This phase will test the generation's ability to create multiple 

iterations for an existing case and the classification of its buildings. Furthermore, this has 

provided an insight into the optimisation capacity based on an existing case study and the 

amount of efficiency achieved by optimising the solar radiation performance for an existing 

neighbourhood using this framework. 

The validation results will be shown in chapter eight, followed by the thesis outcomes, 

discussions, and future work.  

 

As discussed earlier, the scope of the research has been reshaped based on the preliminary 

study's findings to have a proof of concept of the framework capacity for one performance 

aspect, which is solar radiation. The framework, focusing on solar radiation, has gone through 

different stages to handle the neighbourhood model. As shown in Figure 3-2, the initial phase 

of the framework involves modelling and generation, including setting the urban model 

parameters and preferences, site boundary and weather file or location. This is followed by 

the simulation phase with the database build-up. This is formed by a portion of the iteration 

pool acting as the training data for the next phase, the Artificial Neural Network prediction 

phase. In this phase, the ANN will be trained and prepared to predict different model entries. 

The endpoint of the framework is where the genetic algorithm takes over the flow, controls 

the input parameters' variation, and assesses the value received from the ANN predictions. 
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Finally, validation against the pre-saved data is conducted to show the difference; this 

framework proved to have compared to conventional ways of simulation-based optimisation.   
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As shown in this chapter, the research aims have been identified by the literature review and 

preliminary study of the urban geometrical relative impact on different aspects of 

performance. The research aims to utilise the geometrical impact on urban performance and 

solar radiation to build an efficient framework that can inform urban design in its early stages. 

This was done by applying geometrical classifying to an urban neighbourhood case study in 

hot arid zones. The method shows how the research fulfils this aim through the different 

stages of building this framework. In terms of geometrical challenges, the research has 

depended on parametric modelling tools to create the starting point of the framework to 

generate the multiple tested models. In addition, the parametric nature of the model allowed 

the researchers to accommodate the geometry classification to be more accepting of the 

different variations in the generative process. A classification technique was applied to 

simplify the urban geometry to its core elements providing a more straightforward way to 

overcome the complexity of urban modelling. In addition, it had a significant impact on 

performance prediction and optimisation, which has been based on coupling between the 

neural network and cluster-oriented genetic algorithm principles and solvers.  

To summarise this proof of concept version of the framework, it can be divided into five main 

stages. The first stage is related to the generation of the parametric model and setting up the 

inputs for the desired neighbourhood design. This stage uses the tool Decoding Spaces to 

generate the geometrical variables. The following stage was to create an iteration control 

code responsible for iterating the different available options on the urban configuration and 

individual building levels. A developed python code (Python Software Foundation. 2001) is in 

charge of this iteration process. At the same time, it was building up the database with the 

help of some heteropetra's (Bahrami 2018) components to control the iteration of individual 

buildings. Another stage for building the database is to run the solar radiation simulations and 

collecting their results. The main tool used for this stage is the ladybug tool (Sadeghipour and 

Pak 2013) to simulate the direct solar radiations of the tested geometries. The stage of 

applying ANN for predicting solar radiation results utilised a python code developed for this 

research scope. The final stage of optimising the outputs and weighing between the 

generated iterations used cluster oriented genetic algorithms tool. This tool was also available 
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on the grasshopper platform set of add-ons and was named Biomorpher (Harding 2017). The 

set of used tools and their related stages is shown in Figure 3-3. 

 

Figure 3-3 the final version of the framework stages and its used tools and coding languages.  

The methodology of this research provides a novel method to classify urban geometry and 

utilise its impact to predict urban solar radiation for a wide range of varied urban models 

faster, more accurately and efficiently than conventional simulation-based optimisation. This 

outcome will allow the data-driven performance-based urban geometrical design to be 

included in the early design stages.   
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4 Preliminary studies  
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This phase of the research sought to clearly understand the multiple variations of the study's 

key aspects. Different preliminary study stages provided a better understanding of the 

correlation between geometry and performance within an urban context. The early stage of 

the study looked at the performance aspects of energy demand and solar radiation, and 

daylighting availability was added as a balancing feature for the last phase. The preliminary 

study stages also differed in the number of tested iterations based on the challenges faced in 

the early stage. The preliminary study was a sensitivity analysis of the variation of geometrical 

features in a simple urban grid context to overview the simulation and testing results. Looking 

for optimal solutions was not the aim of this study. Instead, the main aim was to analyse the 

impact of geometrical variables on performance. Thus, the parametric approach of the tools 

was utilised to generate a brute force simulation with no selection from the planned variables.  

The literature review has shown that modelling and simulation are under ongoing 

investigation to address urban complexity and link it to enhance decision-making in the design 

process, especially in the early design stage. The time cost is one of the most challenging 

obstacles for gaining performance simulation data to inform the design accurately. This 

challenge is emphasised with the scale of the urban models and the data handled with them 

regarding multi-objective simulation and optimisation. These challenges need to be further 

investigated by breaking down urban geometry into its variables and testing each factor's 

relative importance on the urban performance mentioned aspects. Urban performance 

simulation aspects also need to be analysed regarding their impacts on design decisions and 

the time consumption to be included in the early design phase, which is usually faced with 

the challenge of insufficient time. Using simulation on an urban scale to advise for early-stage 

design decisions is critical to timing and accuracy and the amount of analysis needed to inform 

the design decision.  

Several studies investigate the relationship of the urban geometrical variable on energy 

demand (Hemsath & Bandhosseini, 2015; Hosney Lila & Lannon, 2017; Lin, 2014; Nault et al., 

2015; Ratti et al., 2005; Robinson, 2006; Rodríguez-Álvarez, 2016; Vartholomaios, 2017; Yi & 

Kim, 2015).  This sensitivity analysis on urban geometry was conducted with a holistic and 

integrative approach. Urban context has a significant influence on the building heat loss/gain 

that determines the energy demand needed to achieve indoor thermal comfort. The scope of 
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this study was to investigate the probabilities of conducting a holistic simulation in an urban 

context that includes different performance features for the same model, such as testing the 

same model for energy demand, solar radiation and lighting performance.  It also aimed to 

investigate the possibilities of sequencing these performance aspects to reduce the time 

consumed in its simulation and analysis and the effect this sequencing might have on the 

accuracy of the results. Different studies have put forward and tested the design problem and 

analysis into a multistage decision-making process as a solution to tackle the complexity of 

urban design and optimisation (Maver 1970; Krippendorff 2005; Lawson 2006; Tschetwertak 

et al. 2017).  

 The urban geometrical variables analysed were height, built area ratios, orientation and 

WWR. The trial included variables from different scales to analyse their effect on the building 

performance. The study included daylight availability sensitivity analysis by changing the 

lighting control systems. This study included three different climate conditions to refine and 

compare the energy demand for cooling and heating energy performance between different 

conditions. The study investigated the effect of changing lighting controls (standard ON/OFF 

controls vs dimmers) on cooling energy consumption. In addition, it provides an insight into 

the buildings' inter-shadowing effect by adding the context of the buildings' built area ratio in 

the tested grid. The tests investigated the relative importance of each geometrical variable 

and the correlation between the change of energy demands based on the change of lighting 

controls. 

As mentioned in previous sections, this preliminary study was conducted using the modelling 

tool of Rhinoceros and its visual program language interface, Grasshopper. The Ladybug Tools 

Package did the simulation for solar radiation and energy demand, and lighting availability. 

Honeybee, one part of that simulation package, acts as a geometry mediator between 

Grasshopper as a modelling tool and simulation engines that conduct the targeted simulation, 

which are Energy Plus, Radiance and Daysim, in this case. For solar radiation, the primary 

member of the package used was Ladybug. The algorithm used for this sensitivity analysis will 

also be discussed in this section. Adopting this mix of tools and packages allowed for 

automating the process through the basic principles of parametric modelling. This provided a 

better insight into applying these tools on a large scale of data and helped develop ways to 
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overcome the challenges of time consumption and enhanced the efficient use of available 

computational facilities. This will be further discussed in this section.    

The preliminary   study can be divided into two phases: 

• The initial phase was to analyse the set of parameters on energy demand and solar 

radiation within various contexts. This was conducted using the weather file of Aswan, 

Egypt, as representative of a hot arid zone climate. Although the results of this phase 

were influential in shaping the second phase, these test details and results are 

discussed in appendix A of this thesis to focus on the following systematic testing 

phase. 

• The final phase was to verify the first phase results adding the daylight availability as 

a balancing feature which provided a better understanding of the WWR impact, 

especially in a hot arid zone climate. Moreover, the aim of repeating the process in 

different climatic conditions in London, United Kingdom (UK) and Birmingham, UK. 

This added another aspect of verification for the results for the heating demand, this 

time due to the similarity in results for the two selected climates; Birmingham results 

were moved to appendix A.  

The three different climate zones and materials used in each phase are shown in Table 4-1 

Table 4-1 Different cities and their related data in each phase 

City Coordinates Class Climate 
Study 

Phase 
Materials Used 

Aswan, Egypt 24.0889° N, 32.8998° E 1B Dry 
1 Based on literature 

2 ASHRAE BASED 
London, UK 51.5074° N, 0.1278° W 4A Marine 
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The algorithm used to run these simulations was a simple trial to test the available tools and 

methods to iterate the different geometry variations in simulations. Figure 4-1 shows a simple 

illustration of its stages. The arrows in red represent the first phase of the preliminary study 

where energy was the main aim of the simulation, while the blue arrows represent the added 

daylighting availability balancing the method.  

 

Figure 4-1 Simulation scheme between the different lighting controls 

 

Figure 4-2 The grid and the selected middle building 
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The model creation is a mix between Grasshopper components and some components from 

Ladybug Tools. The model is based on a simple "three by three" grid while the simulation is 

conducted for the middle building while the geometrical variations occur on the nine included 

buildings in the same way.  

Figure 4-4 The middle building after creating zones 

   

a)                  b) 

 

   c)         d) 

Figure 4-3 shows different elements of the model a) interior walls, b) interior floors added, c) exterior 
walls and ground added and d) where the windows and the roof are added as transparent only to show 

the inside of the model.  
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This is shown in Figure 4-2. Although Ladybug Tools package has a component that deals with 

creating the thermal zones with controls of the perimeter to core ratios, in this algorithm, 

these zones were modelled locally in Grasshopper to save the time consumed for each run. 

The Ladybug component did consume more time than the regular way of modelling in its early 

versions, especially when it came to automated generation, as shown in Figure 4-4 

The following stage is to turn these closed zones into Honeybee zones, or, as it is named in 

the definition, HB zones. These zones are meshes that are readable to the simulation engines 

used in this simulation. Adding the WWR follows this stage as in this study, the distribution of 

glazing was equal on all four orientations. The Honeybee component is used for this function. 

Then the assignment of materials for different faces is also done by the Honeybee 

component. Then, the final stage of simulation is done either for energy in the first phase or 

for daylighting and energy in the second phase. The last stage of the algorithm is about getting 

data out to excel sheets to get the results visualised, as shown in Figure 4-6, Figure 4-7 and 

Figure 4-8. The different elements of the model are shown in Figure 4-3. 

This algorithm allowed dynamic control of the model generation and automatic run for 

multiple iterations without adjusting the simulation settings. Controlling the automation of 

this process was mainly developed in local Grasshopper components in the earlier stages of 

the analysis. Near the end of the preliminary study, it was controlled through a component 

downloaded from the package of a plug-in called TT ToolBox the component name was 

Colibri. Later there are some open-resource codes available online for the same function. This 

process will be discussed in more detail in chapter six. Appendix B is showing the grasshopper 

components and code used for this study.   

 

The initial phase studied Aswan, Egypt, to test the variation effect on daylighting and energy 

performance. This was followed by enhanced simulation with more generic materials from 

the ASHRAE standard for each climate condition to ensure that the study results were not 

affected by any elements other than the geometry. 
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 Aswan simulation with literature-based materials  

 Location  

This study phase used the Egyptian Typical Meteorological Year (ETMY) weather file for Aswan 

city in southern Egypt (24.0889° N, 32.8998° E).  Aswan targets future urban growth in Egypt 

(Egyptian Ministry of State for Administrative Development 2016). It also represents an 

important sustainable development node for Egypt in hosting the high dam of the Nile as one 

of the old national development projects. It has a hot, dry climate. There are governmental 

plans for its growth with a twin new city. According to Kottek et al. (2006), Aswan falls in the 

hot arid zone classification.  

 Geometrical variables 

Learning from the initial testing phase, the number of variables for this test was reduced than 

the initial one. Table 4-2 shows the number of iterations for each variable. The reduction took 

place mainly with some orientation angles tested and the WWR. In this study, the iterations 

are less, but the spectrum tested is the same to avoid affecting the relative importance for 

each variable. For orientation, it had two iterations for either 0 degrees with a building facing 

north and 45 degrees rotation of the whole configuration. WWR had  three iterations in this 

case, including the two bounding values of 20% and 80%, along with a 50% option to have a 

marker in the middle of the change (see Figure 4-5) 

This algorithm did a cross-matching for these geometrical variables producing 210 different 

iterations. The study can be divided into six groups with 35 iterations each. These groups 

included two sets of orientations of 0 and 45 degrees and three sets of WWR .2, .5 and .8 with 

the total original variations of heights and building scales. 
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Table 4-2 Geometrical parameters for the second phase of the sensitivity analysis 

 Material input  

The inputs for material were adjusted based upon some studies made in the same 

geographical context (El-deep et al. 2012; Attia and Evrard 2013). The material properties 

were fixed for all the iterations and designed based upon the specification of the Chartered 

Geometrical Variables 

Height (metres) 3.5 7 10.5 14 17.5 21 24.5 

Scale (built area ratios) 50% 60% 70% 80% 90%   

Window-to-wall ratio 20% 50% 80%     

Orientation (degrees) 0 45      

 

a)                                                                                       b) 

 

 

c)                                                                                        d) 

Figure 4-5 Geometrical variables examples a) one-floor height, 20% WWR, 50% built area ratio and zero 
degrees rotation. b) Three-floor height, 50% WWR, 70% built area ratio and zero degrees rotation. c) Five-floor 

height, 50% WWR, 80% built area ratio and 45 degrees 
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Institution of Building Services Engineers (CIBSE) Guide for environmental design (Butcher 

2006). Table 4-3 shows the material parameters used in this test. 

Table 4-3 The material parameters used in the study 

 

 Daylighting availability analysis settings  

The main goal of adding daylight availability to the study was to balance the energy consumed 

for thermal comfort and lighting the zones. Some of the dense configurations caused little 

sun penetration, which was beneficial to the cooling energy consumption, but, on the other 

hand, there was a need to know the effect this might have on lighting consumption.   

For the daylight, the annual analysis of each zone was divided into a mesh of a 0.6-metre cell 

with one sensor point in the centre of it with a 0.7-metre height from the floor. The lighting 

control system used is auto-dimming with a switch-off occupancy sensor with 300 lux target 

illuminances for each zone.  

As shown in Figure 4-1, the addition of the daylighting availability test took place before 

simulating energy demand. This was done because the idea of balancing was to test the 

impact of changing the lighting controls between two systems. The first system is one with 

CUSTOMISED MATERIALS 

External Wall Internal Wall 

U-Value 3.10 U-Value 5.29 

Materials CEMENT PLASTER 

BRICK (EXPOSED) 

CEMENT PLASTER 

Materials CEMENT PLASTER 

BRICK INTERIOR (EXPOSED) 

CEMENT PLASTER 

Internal Floor External Roof 

U-Value 1.43 U-Value 0.36 

Materials CERAMIC-FLOOR-TILES 

CEMENT-MORTAR(MOIST) 

CONCRETE CAST(HEAVYWEIGHT)  

GYPSUM-PLASTER 

Materials CEMENT-MORTAR(MOIST) 

EXPANDED POLYSTYRENE (EPS) 

CONCRETE, CAST (HEAVYWEIGHT) 

Single Glazed Window   

U-Value 5.4   

Materials CLEAR GLASS 12MM   
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standard ON/OFF controls, while the other system is a dimming light control system based on 

achieving the desired 300 lux illuminance in the space. The dimming control system 

simulation is used to edit the lighting schedule before it feeds to the energy simulation. In this 

way, the energy demand will show the difference in its patterns due to this change of control 

systems. The test has been conducted twice to compare these results, utilising one control 

system in each run.  

 Results showcase 

The results for each case were provided separately for each zone. This is shown in the 

examples illustrated in Figure 4-6, Figure 4-7 and Figure 4-8. The group results are summed 

up for each case. The example shown for illustration is an intermediate case with 45 degrees' 

rotation, 20% WWR, four-floor height and 70% built area ratio. Heating consumption varied  

Figure 4-7 Heating consumption in kWh/m2 for each zone for the mentioned case 

Figure 4-6 Daylight autonomy results illustration for 45 degrees rotation, 20% WWR, 4-floor height and 70% 
built area ratio showing the results of different zones. The floors order begins with the ground floor to the 

right up to the 5th floor to the left  
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between 1.7–8.5 kWh/m2 for the whole run, so it lacked significance to be added to the 

current study results as the cooling results have much more significant variance.  

 

 Summary 

As shown in appendix A, these test results showed that the pattern in cooling consumption is 

repetitive through different variables. At the same time, the significance is mainly driven by 

the variation of built-up area ratios and heights. While the values are changing due to the 

change of WWR, the pattern of consumption is relatively close between the different six 

groups sorted by WWR and rotation. The relative importance of this geometry will be 

discussed in further detail in the following section and the ASHRAE material simulation results 

for Aswan.  

There is also a significant finding of differentiating lighting control systems on cooling 

consumption for the six different groups. As shown in appendix A, there is a continuous linear 

correlation for the two lighting control systems on the results of cooling consumption. These 

linear correlations are a further reason for rerunning the simulation with a set of materials 

Figure 4-8 Heating consumption in kWh/m2 for each zone for the mentioned case 
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based on the ASHRAE benchmark recommendation for this climate zone and other climate 

zones with different cooling and heating requirements. 

 Different climate zones analysis with ASHRAE-based material  

 Simulation settings  

Following the previous testing phases and results, The research aimed to analyse and 

compare these findings and correlation with a different systematic approach. This was done 

by conducting the same brute force sensitivity analysis with the same settings yet assigning 

ASHRAE materials and using different climate conditions. 

Table 4-4 Assigned material properties 

Aswan, Egypt London, UK 

Material 

name 

U-

value 

Material 

name 

U-

value 

ASHRAE 

90.1-2010 Extwall 

Mass 

Climate 

Zone 1 

3.69 ASHRAE 

90.1-2010 Extwall 

Mass 

Climate 

Zone 4 

0.64 

Interior 

Wall 

2.58 Interior 

Wall 

2.58 

Interior 

Floor 

1.44 Interior 

Floor 

1.44 

ASHRAE 

90.1-2010 Extroof 

Iead 

Climate 

Zone 1 

5.84 

 

ASHRAE 

90.1-2010 Extroof 

Iead 

Climate 

Zone 2-8 

0.28 

ASHRAE 

90.1-2010 

Extwindow 

Nonmetal 

Climate 

Zone 1 

5.84 ASHRAE 

90.1-2010 

Extwindow 

Nonmetal 

Climate 

Zone 4 

2.27 

The study inspected the potentialities of the sequential design process to be applied in 

environmental optimisation, especially with the challenge of urban complexity and time-

consuming environmental analysis. The study used the climatic data of the cities of Aswan in 

Egypt and London and Birmingham in the UK. However, due to similarity in findings, the 

results of Birmingham, UK is shown in appendix A. The three cities have different climate 

condition classifications, as shown in Table 4-4(ANSI/ASHRAE/IESNA 2010). Exterior materials 

were set to ASHRAE recommendations for each climatic condition (Table 4-4) 
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(ANSI/ASHRAE/IESNA 2010). Moreover, interior materials were normalised to the default 

interior wall constructions from the Ladybug tools set of materials. 

The study of Aswan, Egypt, was concerned with cooling energy demand patterns and the 

results. The results for heating energy demand in London will focus on the following section, 

along with cooling results from the Aswan analysis when needed. 

 Results 

4.3.2.2.1 Variables relative importance for Aswan (cooling) two sets of material 

4.3.2.2.1.1 Heights: 

In the conducted study in Aswan, there were seven height variations. The results imply that 

there was a noticeable difference in the cooling energy consumption within the building. The 

study shows that the relationship between height and cooling energy consumption negatively 

correlates in both phases. It could be said that this is due to the arid conditions of the specified 

zone. A comparison of the calculations of the extremities (highest and lowest blocks) showed 

  

 
Figure 4-9 (#1) To the left: height variations’ cooling average consumption comparison in kWh/m2, to the 

right: height variations’ bound correlated in kWh/m2, (#2) To the left: height variations’ cooling consumption 

average comparison in kWh/m2, to the right: height variations’ bound correlated in kWh/m2 



 Chapter 4                                                                                                                      Pilot Study 

78 

an 18 % difference in cooling consumption for the first phase of the study and nearly 4% for 

the second phase (see Figure 4-9).   

4.3.2.2.1.2 Built area ratio: 

As mentioned before, there were five built area ratio variations. The results imply that there 

was a further change in the cooling energy consumption within the building. The study shows 

that the relationship between the built area ratio and the cooling energy consumption is a 

clear negative correlation: the denser the configuration, the more prevention of sun 

penetration. Therefore, cooling consumption is reduced heavily. A comparison of the 

calculations of the bounds (most and least dense group configurations) showed that there is 

a 72% difference in cooling consumption for the first phase, and, with the change of material 

for the second phase, the difference reaches a 54% change between the bounds of the five 

groups (see Figure 4-10).  
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Figure 4-10 (#1) To the left: built area ratio variations’ cooling consumption average comparison in kWh/m2, to 
the right: built area ratio variations’ bound correlated in kWh/m2 for the first phase, (#2) To the left: built area 
ratio variations’ cooling consumption average comparison in kWh/m2, to the right: built area ratio variations’ 

bound correlated in kWh/m2 for the second phase 
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4.3.2.2.1.3 WWR 

For WWR variations, the relationship with cooling energy consumption for the first phase is a 

positive correlation that becomes less steady in the second phase. This can be caused by the 

climate zone chosen for the study. The difference in the cooling energy consumption is more 

significant than that shown for heights but still less than that shown for the built area ratios 

effect. Comparing these variable limitations indicates that there is almost a 66% difference in 

cooling consumption for the first phase. However, this number decreases to a 22% difference 

in consumption (Figure 4-11). 

 

 

 

  

 

Figure 4-11 (#1) To the left: WWR variations’ cooling consumption average comparison in kWh/m2, to the 

right: WWR variations’ bound correlated in kWh/m2, (#2) To the left: WWR variations’ cooling 

consumption average comparison in kWh/m2, to the right: WWR variations’ bound correlated in kWh/m2 
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4.3.2.2.1.4 Orientation: 

There is a slight positive correlation for this variable, according to the results. Comparing the 

two variations for both tests, it can be argued that there is an 8% cooling energy consumption 

difference that exists between the two different angles for the first phase. While, for the 

second phase, it decreases to a 6% difference in consumption between the two different 

angle groups (Figure 4-12). 

 

 

 

 

  

 

Figure 4-12 (#1) To the left: orientation variations’ cooling consumption average comparison in kWh/m2, 

to the right: orientation variations’ bound correlated in kWh/m2, (#2) To the left: orientation variations’ 

cooling consumption average comparison in kWh/m2, to the right: orientation variations’ bound correlated 

in kWh/m2 
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4.3.2.2.2 Variables' relative importance for London, UK (Heating)  

The relative importance of geometrical variables will be discussed in this section, with the 

same structure for heating demand in London, UK.  

4.3.2.2.2.1 Heights: 

The average value for heating consumption in the groups for one and two floors has 

decreased with more floors. While it kept on decreasing for the rest of the groups, There was 

a minimal decrease in values when it came to the average. As shown in Figure 4-13, the gap 

between the maximum and minimum value for heating consumption followed the same 

pattern where it became more considerable for the first two groups. Then the change 

appeared to be un-noticeable. The heating consumption correlation between the highest and 

lowest group was almost 16% for London simulation results 
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4.3.2.2.2.2 Built area ratio 

Built-up area ratios also had the most significant impact on heating consumption as the 

difference occurred in varying the largest and least ratios; they scored 47% for London. This 

is a significantly higher impact than the height variable impact. The average for heating 

consumption showed a descending pattern with the rise of built-up area ratios as shown in 

Figure 4-14, for London analysis results.  

 

 

 

 

 
Figure 4-14 Built-up area ratio variations’ heating consumption average comparison in kWh/m2, built-up area 

ratio variations’ bound correlated in kWh/m2 for London, UK 
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4.3.2.2.2.3 WWR: 

WWR has a correlated increase impact on heating consumption. This is expected as the larger 

the ratio; the more exposure zones will have and consequently more heating demand. This 

impact was also shown in the bound's correlations for the two weather files with a 56% (see 

Figure 4-15).  

 

 

 

 

 

Figure 4-15 WWR variations’ heating consumption average comparison in kWh/m2, WWR variations’ bound 
correlated in kWh/m2 for London, UK 
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4.3.2.2.2.4 Orientation: 

The change of orientation had a minimal impact on performance, as shown in Figure 4-16. 

This might be caused by the equal distribution of fenestrations on the four different facades 

of the tested buildings. This minimal impact is clearly shown in the groups' correlation graphs, 

which were less than .01% different between the two orientation degrees for each tested 

iteration.  

 

 

 

 

 

Figure 4-16 Orientation variations’ heating consumption average comparison in kWh/m2, orientation 
variations’ bound correlated in kWh/m2 for London, UK 
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4.3.2.2.3 Summary  

The initial comparison of the results between Aswan literature-based material and the 

ASHRAE set of materials has proved the evident similarity of the consumption patterns for 

cooling. Also, it has been proved that changing the lighting control system did not significantly 

impact energy demand for cooling through the two assigned sets of materials. This led to the 

next stage of the study, which focuses on different climatic conditions with higher expected 

heating energy consumption to investigate the validity of the findings in the first stage. The 

insignificant impact of lighting control changes on energy performance persisted in being 

apparent for the heating performance for London and Birmingham, as it appeared in the 

Aswan results (see appendix A) .  

When it comes to the relative importance of the geometrical variables on heating and cooling 

demand for the tested climates, the results had shown a clear difference between each 

variable's impact on the demand. The geometrical variables' relative importance summary is 

shown in Figure 4-17, as a radar scale that starts from 0% to 60% at its top value. According 

to the tested samples, the lowest impact was the change of orientation for heating focused 

zones in London with values of 1%. The variation of heights scored the lowest impact 

percentage for Aswan as it had an impact near to 5%, with a 6% change of cooling demand 

caused by the variation of orientation in the Aswan weather file. Heights' variation for London 

had a second to lowest impact with a 15% change of energy demand for the bounding groups 

of variants. Then the highest two impacts were also different for the cooling demand zones. 

Figure 4-17 Geometrical variables' relative importance for the two tested weather files 
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Built-up area ratios were first with a 54% possible change of cooling, followed by the WWR, 

which showed a difference of 22% of cooling demand. WWR had a significant impact on the 

heating demand zones in London with 56%, followed by the built-up area ratios causing an 

impact of 47% in London's heating demand.  

As shown in the results showcase, this analysis was conducted on the scale of zones in the 

tested buildings. The ASHRAE materials simulation results will be discussed on a zone level in 

the following section. This section will illustrate both cooling results for Aswan, Egypt, ASHRAE 

applied results and heating demand for London, UK, ASHRAE applied results. This provides a 

clearer understanding of the geometrical variations' impact on performance for the zone 

scale.  

 Detailed zone energy demand analysis  

In this section, the results of zones will be discussed based on zones instead of the whole 

building performance. This provides a clear illustration of the performance for heating and 

cooling demand based on orientation and how the height difference will affect the 

performance for each zone and in each orientation. This simply meant calculating the results 

based on the zone's area instead of the whole building's area. So, each zone had its 

consumption normalised to its area. For example, one-floor iterations had five-zone results, 

one for the core and four for the perimeter. The core result was excluded from this discussion 

as it mainly was zero or near zero because there was no fenestration assigned to it. These 

results were calculated by sorting the zone results into seven sheets of results based on the 

number of floors and the number of zones. Then, these sheets consisted of two groups, each 

for the orientation of the iterations. An average is calculated for each zone orientation. This 

provided the results of zones in an azimuth original four orientation and the rotated diagonal 

four orientations. For each of those eight orientations, the results are merged to have a 

readable illustration for each orientation and each floor (see Figure 4-18, Figure 4-21, Figure 

4-24, Figure 4-27, Figure 4-31, Figure 4-33 and Figure 4-36). The results in this section will only 

focus on cooling demand for Aswan and heating demand for London results. 
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 One-floor results analysis 

As shown in Figure 4-19Figure 4-20, there is a clear difference between the two demands for 

heating and cooling overall consumption for the different orientations. For the Aswan cooling 

demands, the consumption peaks for the west and southwest orientations. Also, there are 

some high cooling consumption demands over the south, east and southeast zones. The 

consumption declines significantly for zones with north and northeast, and northwest 
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Figure 4-19 One-floor prototype cooling consumption results average per orientation for Aswan, Egypt 

Figure 4-18 One-floor prototype with 50% WWR and 60% built area ratio and no rotation  
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orientations, which is expected due to the sun exposure and the hours of high temperature 

in the location, from noon till sunset. For London's heating demand, It is illustrated in Figure 

4-20 that north-oriented zones have peak heating demands for one-floor buildings iterations. 

The more south-oriented, the less demand the zones get for heating consumption. This is 

illustrated in the results of zones oriented towards north, northwest and northeast with the 

highest heating consumption demand values. However, zones with south, southeast, and 

southwest had the lowest radar graph values. This indicates its low consumption values for 

heating demand. Zones with direct east and west orientation are the middle grounds for the 

two high and low consumption orientation groups.  
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Figure 4-20 One-floor prototype heating consumption results average per orientation for London, UK 
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 Two-floor results analysis 

Iterations with two-floor height had another layer of consumption for the first-floor zones 

with the eight orientations. For the Aswan cooling demand, the first floor echoes the 

performance of the ground floor, and both do not show a difference of pattern in 

consumption from the one-floor prototypes. One important note is that the cooling demand 

Figure 4-21 Two-floor prototype with 50% WWR and 60% built area ratio and no rotation  
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Figure 4-22 Two-floor prototype cooling consumption results average per orientation for Aswan, Egypt 
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values for the ground floor are less than the first-floor cooling demand values by a clear 

margin. Also, the peak values in the west and southwest zone orientations are less in the 

ground floor than their equivalent in the one-floor prototype zone with the same orientation, 

while the lower values stayed close to values for both prototypes. This is caused by the effect 

of the first floor reducing the exposure for the ground floor while it is exposed directly to the 

sun and having higher values in cooling demand, but with the same order when it came to 

orientation, creating almost a parallel line to the ground floor cooling consumption values 

(see Figure 4-22).  For heating demands in London, there was no parallelism between the two-

floor consumption pattern based on orientation. However, high and low consumption 

patterns remained the same when it came to north-oriented zones being the peak of heating 

demand and south oriented zones being the lowest heat demanding zones. The exposure to 

the sun did play a role in reducing the heating demand in the lower consumption zones, as 

the south floor-oriented zone got a slightly lower average of performance when it was 

compared to ground floor heating. This does not continue for the southeast and southwest 

oriented zones as the first-floor zone average are higher than the ground zone for the same 

orientation, and the gap is more significant for the southwest than the southeast. The gap of 

increasing heating demand between the first and ground floors keeps rising until it reaches 

its peak, with the heating demand for both floors average for north-oriented zones. The 

graphs also illustrate the difference in values between the two heating demand zones. In 
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Figure 4-23 Two-floor prototype heating consumption results average per orientation for London, UK 
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these cases, exposure to a cold climate played a contrasting role to what had happened in the 

hot zone. The first floor needed more heating consumption than the ground floor, as shown 

in Figure 4-23.  

 

 
 
 
 

 

 



 Chapter 4                                                                                                                      Pilot Study 

92 

 Three-floor results analysis  

 

Figure 4-24 Three-floor prototype with 50% WWR and 60% built area ratio and no rotation 
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Figure 4-25 Three-floor prototype cooling consumption results average per orientation for Aswan, Egypt 
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Adding a third stack of zones to the model has almost the same impact as the effect caused 

by the first floor. As shown in Figure 4-25, this time, the ground floor cooling consumption 

reduced by a clear difference to the one-floor prototype. The same offset results for upper 

floors still occur in the average results for this prototype. There is a more significant difference 

between the ground and first-floor average cooling consumption than the difference for first- 

and second-floor averages for the eight different orientations. For London's results, the 

ground floor orientation averages seem to have closer results to each other. This might be 

caused by the context overshadowing neutralising the effect of orientation on the heating 

demand for each zone. Marginal differences in heating demands for zone per orientation 

begin to show for the first-floor averages that keep the previous pattern of a northern high 

demand zone and southern zones with less heating demand. However,  all the eight 

orientation averages are less than the ground floor results averages. The second-floor results 

contradict this as the northern zones (north, northwest and northeast) have a clear difference 

in heating demand average values than the same values for the ground floor. 

Moreover, the southern zones (south, southwest and southeast) still fall below the values of 

the same orientation for the ground floor. The east and west orientations are slightly more 

than ground floor values. (see Figure 4-26) 
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Figure 4-26 Three-floor prototype heating consumption results average per orientation for London, UK 
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 Four-floor results analysis 

The pattern of cooling consumption differs between floors for this prototype in a different 

way than the previous prototypes. In this prototype, the average cooling demand values for 

Figure 4-27 Four-floor prototype with 50% WWR and 60% built area ratio and no rotation 
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Figure 4-28 Four-floor prototype cooling consumption results average per orientation for Aswan, Egypt 
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the ground floor have a significant decrease from the first and second floor, while the third 

floor also has a clear boost from its lower floors (see Figure 4-28). This boost is more 

noticeable with the peaking of west and southwest zone averages. At the same time, it 

decreases for the averaged results of the north zone and almost diminishes for the difference 

between the first and second floors. Nevertheless, the gap between the ground floor and the 

rest of the floors stays almost consistent. As shown in Figure 4-29, a similar relationship also 

emerges for the heating demands in London, in the sense that the ground and third floors 

seem to have different averaged results, being exposed either to ground or sky, than the first 

and second and third floors as non-exposed floors. The close averaged results for the eight 

orientation in the eight directions continues to occur for this prototype but with a more 

evident rise for the northern expected higher consumption values than the southern zone 

results. Although the northern zones averaged results for heating demand show similar values 

for the first and second floors, the southern zones have a difference in heating demand as the 

higher floor gets less heating demand in the southern oriented zones. However, this does not 

continue for the third floor, as its southern oriented zones have higher consumption values 

than the second and first floors but still less than the ground floor. The third floor in the 

northern zones reached 72.25 kWh/m2 for average heating demand in a north orientation for 

London's results and 66.33 kWh/m2 for Birmingham's results. This made the north third 
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Figure 4-29 Four-floor prototype heating consumption results average per orientation for London, UK 
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floors' average heating consumption the highest in all four floors and eight orientations in this 

prototype. 

 Five-floor results analysis  
 

Figure 4-31 Five-floor prototype with 50% WWR and 60% built area ratio and no rotation 
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Figure 4-30 Five-floor prototype cooling consumption results average per orientation for Aswan, Egypt 
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This five-floor prototype is more evidence that there are two performance groups according 

to floors based on exposure. The ground floor had minor cooling consumption by a clear 

margin with values close to equal on the eight different orientations. However, the peak of 

performance is still visual for the southwest and south zones' cooling averages. This peak in 

performance is continuous between different floors. However, the north cooling averages for 

the non-exposed floors in this prototype, first, second and third, are almost equal according 

to the graph in Figure 4-30, while the consumption differs for the southwest zones for the 

same three floors. There is a leap in cooling demand for the fourth floor eight oriented zones 

with a consistency of peaking in the southwest zone cooling average. The north has the most 

negligible value of cooling consumption compared to the same floor zones. 

 As expected, the heating demands for London are different from the Aswan cooling demand 

for this prototype. The only resemblance is the difference that appears in exposed and non-

exposed floor performance. On the contrary to Aswan's cooling results, heating consumption 

does not show an evident rise with the increase of floor order as shown in the Aswan cooling 

demand. The ground floor starts with an overall relatively high heating demand in all eight 

orientation averages with a marginal difference between north and south results. This 

difference becomes apparent with the non-exposed floors. For the three floors, northern and 
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Figure 4-32 Five-floor prototype heating consumption results average per orientation for London, UK 
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southern zone heating consumption decreased with the increase of height. However, this 

decrease in values was more considerable for southern zones and barely noticeable for 

northern zones heating average demand values. East and west zones had the median values 

for each floor as the same consumption pattern is shown in different prototypes. For the fifth-

floor heating demand, heating averages in all eight zones increase with the non-exposed 

floors. In comparison, the averages of the three southern oriented zones fall below the 

ground floor similar oriented zones and the northern orientation peaks over the ground floor 

averages for heating demand. All this is with a marginal difference in east and west heating 

demand values for both ground and fifth floors (see Figure 4-32).  
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 Six-floor results analysis 

 
Figure 4-33 Six-floor prototype with 50% WWR and 60% built area ratio and no rotation 
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Figure 4-34 Six-floor prototype cooling consumption results average per orientation for Aswan, Egypt 
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Looking into the cooling consumption for this prototype, it is shown that the pattern of 

demand stayed the same as the five-floor prototype. The ground floor values were slightly 

reduced than in the previous prototype, while having more than three floors in the non-

exposed stack of floors has shown that the proximity of results for the north-oriented zones 

for the first, second, third and fourth floors are still existing. Differently, the cooling demand 

average for the fourth floor in the southwest zone, being the highest non-exposed floor,  

records a further higher value of cooling consumption with a fair difference from the rest of 

the non-exposed floors. This is followed by the leap of cooling consumption for the fifth floor 

in the eight oriented zones following the same order of higher and lower zone consumption 

as previously discussed for other prototypes. (see Figure 4-34)  

As shown in Figure 4-35, The results for London showed similar patterns as the five-floor 

typology in heating demand consumption. As previously illustrated, graphs show that the 

ground floor still has a high demand for consumption on all eight orientations. This is followed 

by a steep decrease of heating consumption for the first-floor averages in all eight zones, then 

keeps on slightly declining for the results of the following non-exposed floors, clearer for the 

southern oriented zones' heating demand averages than the results of heating consumption 

for the north-oriented zones.  The fifth and final floor exhibits a higher heating demand 

average for the north-oriented zone while its south-oriented result is less than the south zone 
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Figure 4-35 Six-floor prototype heating consumption results average per orientation for London, UK 
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heating average of the first floor. It can be argued that this effect is due to the overshadowing 

and its effect on the lower floors. In contrast, the full exposure of the last floor led its 

performance to follow the sun's exposure, lowering the demand for heating in the south over 

the year while it peaked towards the north-oriented zones. 
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 Seven-floor results analysis 

The exposure effect is still apparent for both heating and cooling. For findings on cooling 

energy consumption, the ground floor still has the minor consumption with marginal peaking 

towards the direct south rather than the expected southern west zone average cooling 

Figure 4-36 Seven-floor prototype with 50% WWR and 60% built area ratio and no rotation 
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Figure 4-37 Seven-floor prototype cooling consumption results average per orientation for Aswan, Egypt 
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demand. The increase of demand from non-exposed floors in all eight directions happens for 

the averaged results of the floors from the first to the fifth, with the regular peaking of 

southwest and west zones cooling averages. Lastly, the sixth floor shows the performance 

gap due to its roof exposure, although it has relatively close values to the exposed fifth floor 

in the five-floor prototype. This can be reasoned due to the similarity of the context condition 

and its overshadowing effect for both averages (see Figure 4-37) 

On the other hand, heating demand shows a difference in consumption pattern and the 

results of relativity between floors. As shown in Figure 4-38, the ground floor difference and 

rise of performance persists to appear in this prototype. Following this, the non-exposed 

floors have a slight decline in heating demand averages for the first, second and third floors. 

The previously discussed southern oriented zones decrease in heating demand averaged 

values are indicated clearer for the fourth and fifth floors. This can also signify the 

overshadowing effect and its control over sun penetration to different floors in a building. 

The final sixth floor shows a similar pattern of performance and similar values for heating 

demand to the fifth floor of the five-floor prototype discussed earlier. Although the north 

directed zone of the top floor has the peak value, the south directed zone of the same floor 

has an average heating demand that falls below the value of its similar oriented zone in the 

40

45

50

55

60

65

70

75
north heating kWh/m2

NE Heating kWh/m2

east heating kWh/m2

SE Heating kWh/m2

south heating kWh/m2

SW Heating kWh/m2

west heating kWh/m2

NW Heating kWh/m2

London  heating consumption average for zones in different orientations 
(seven-floor prototype)

1 Avg.

2 Avg.

3 Avg.

4 Avg.

5 Avg.

6 Avg

7 Avg

Figure 4-38 Seven-floor prototype heating consumption results average per orientation for London, UK 
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first and second floors for both climate conditions. This can show the importance of exposure 

and overshadow and control the energy demand on the zone scale.  

 Summary   

This section has discussed the results of the weather files used for both heating and cooling 

demands accordingly. Grouping results based on the number of floors and orientation has 

shown a coherent illustration of performance patterns for zones at different floor levels and 

orientations. Although these results are averaged for each floor orientation, the impact of 

context variation is evident through the different results for different floor number 

prototypes. Another general remark on the overall prototype zone results is the 

repetitiveness of the consumption pattern between different floor prototypes for both 

cooling and heating. Even more, the value of the close results for peak zone consumption is 

an interesting finding. This can be related to the earlier finding of the height impact on the 

whole building performance. It can lead to further research on indoor environmental 

performance and its relation to urban context variations. 

Furthermore, it is noted that overshadowing played an essential role in the heating and 

cooling demand for different orientations and floor levels on the zone performance level 

exposure and urban context. This has enabled the research to clearly understand the 

relationship between the geometrical variables and indoor zone cooling and heating demand, 

leading to enhancing the simulation models and the way they are built and controlled. These 

similarities in patterns and values for the demand on this scale also verified the geometrical 

classification importance as an approach to deal with geometrical complexity and the general 

impact of geometry on performance at both urban and architectural levels.   

 

The preliminary study conducted a sensitivity analysis to understand better the effect of 

geometrical variables on different aspects of performance, solar radiation, energy, and, as 

shown in appendix A, daylighting availability. This was conducted utilising integrative 

parametric state-of-the-art simulation tools. In carrying out these multi-objective multi-zone 

simulation tests, time was one of the most significant constraints. The tools used needed 

more optimisation regarding the analysis in urban scale multi-objective simulation without 

compromising its current integrating capabilities.   
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The nature of the tools used in these preliminary studies also must be addressed. The first 

thing to note is the dynamic updating process for the tools used. This study started with 

Ladybug version 0.0.62 and Honeybee 0.0.59, and at the time of writing this work, the study 

is working on versions Ladybug version 0.0.67 and Honeybee 0.0.64. while currently, the last 

version is named Ladybug Tools 1.2.0, containing the whole set of packages.  They have been 

updated multiple times during the run of this study and the following ones. Although this 

continuous development has enhanced the tool's performance in many aspects, it was also 

challenging to keep updated during the testing and analysing process.  

The aim to run holistic simulation and optimisation on an urban scale at one click seems 

troublesome with this set of tools and their time-consuming features, not to mention the 

hardship of dealing with such a complex goal within this vast set of components. This made it 

clear that there is a gap for enhancement on the time-consuming challenge and the 

integration of data-driven design decisions within the early design stages. The study has 

shown in appendix.A. that there is a potential for sequential environmental optimisation in 

the early stages of urban design. It can be argued that this correlation can lead to establishing 

a multistage environmental optimisation framework that enables environmentally data-

driven design decisions in the early stages of urban design within an acceptable time cost.  

The preliminary study investigates breaking down urban geometry complexity by quantifying 

its impact on different environmental aspects for the tested climatic conditions. This relative 

importance of geometrical variables showed different impacts on both cooling and heating 

energy demand. The findings of this analysis show that there is a clear order of variables' 

impact on performance when it comes to urban geometrical iteration. As shown in Figure 

4-17, this relative importance between the tested weather files was based on its primary 

demand type, either cooling demand or heating demand. For cooling demand in Aswan, 

Egypt, height variation is the least influential geometrical variable followed by the 

orientation's relative importance to cooling demand by a close margin of difference. WWR 

are the second-highest impacting variable on cooling demand for Aswan with the ASHRAE set 

of materials. At the same time, built area ratios can impact the cooling demand the most out 

of the four tested variables.  

This order had changed when it came to heating demand in London, UK. The relative 

importance of orientation falls behind heating this time by being the least impacting feature 
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on heating demand for both weather files, followed by height variation impact with a more 

significant gap of change percentage. WWR has the most impact on heating demand for both 

weather files, leaving the built area ratios in second place in affecting the heating demand. 

This enabled quantifying the impact of variables on performance to break down the 

complexity of this relationship. This provided a fair understanding of the geometrical 

variables' connection to energy demand in urban scale modelling and simulation. This 

connection added a novel insight into the geometry as a series of high and low impacting 

variables, which can be used to classify the urban configuration models based on these 

variables to develop better frameworks that overcome the time cost and the complexity 

issues associated with urban modelling.   

More work needs to be done to reduce time consumption in such multi-objective urban 

modelling and simulation. There is still an actual difficulty in conducting an urban multi-

objective iterative simulation promptly. The correlation between solar gains and cooling 

consumption and the repetitive pattern of cooling results encouraged daylighting analysis to 

the study. This addition provides further understanding of the building performance within 

this context and more reliable results as it might change the optimal performance solution. 

Also, it will represent a straightforward quantification of the urban geometrical variables' 

effect on the building performance.   

The discussion of zone level results added a clearer understanding of this connection with 

more evidence on connecting the geometrical variables to energy performance. The findings 

of the zone scale analysis have emphasised the role of the urban context in controlling 

performance, even on performance in indoor zones. As the exposure of zones was one key 

issue of this discussion, one other major key conclusion was the repetitiveness in performance 

patterns between different floor prototypes, highlighting the relative importance of the 

geometrical variables to performance. This illustrated the possible capabilities of geometrical 

classification based on variables as an approach for dismantling the complexity of urban 

models and enabling a timely mannered simulation to influence design decisions in the early 

stages of urban design in an efficient way.    

Despite its exploratory nature regarding issues of time and complexity, the preliminary study 

offers some insight into the probability of having a comprehensive, holistic performance 

analysis on an urban scale. The preliminary study certainly adds to our understanding of the 



 Chapter 4                                                                                                                      Pilot Study 

107 

relationship between geometry and performance on an urban scale. The correlations 

between solar radiation and energy demand and daylighting availability help expand the 

understanding of conducting a holistic urban performance analysis within the current 

limitations of time cost and encourage the investigation of a sequential approach to search 

for efficient frameworks that are capable of conducting this holistic analysis within the time 

frame of the early stages of design.  

Moreover, this new understanding of the impact of different geometrical variables on energy 

demand is helping to implement classification principles on urban geometry and performance 

analysis to overcome the challenge posed by complexity.  

As discussed earlier in Chapter 3, the thesis scope provides a proof of concept for applying 

classification to investigate the relationship between geometry and performance at the urban 

design level. Due to the time mentioned earlier limitation, the study will concentrate on urban 

solar radiation to reduce the hazard caused by this limitation. The following chapter will 

illustrate the flow of a classification framework that generates urban models and iterations 

with different controls on different scales. This is the initial stage of a framework based on 

classifying geometry and using its relationship with performance, solar radiation specifically, 

to search for faster, accurate results by applying basic machine learning principles leading to 

the optimisation stage to have the data-driven urban design models.   
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5 Urban Model Generation 
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As shown in Figure 5-1, this is the first chapter discussing the initial stage of the framework. 

The literature has shown the different approaches to overcome the challenges of design 

decision-making in its early stages of urban design. One of these challenges was urban 
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complexity. Multiple studies were conducted to break down urban models into their 

geometrical variables to search for a clearer link between geometry and performance at an 

urban scale. The framework aims to respond to the challenge posed by urban complexity by 

classifying these geometries based on their features. This needed a generation process that 

accommodates the different variables while classifying and annotating them systematically. 

The parametric modelling platform, Grasshopper, provided the path for accomplishing this 

generation process based on the literature review.  

This chapter discusses the shape grammar algorithm for creating a model that is 

parametrically generated and controlled. This allows the model to adapt to different inputs 

and widens the limits of geometrical variation of each stage. As discussed earlier, this 

algorithm is built to generate different urban iterations for the same urban contextual status, 

and the annotation also classifies each building in each generated urban configuration model. 

This means that the classification tag records the geometrical features of each building, 

creating a database of classification tags that can recall building data when asked for a 

comparison with new sets of buildings. In this framework, the data attached to the buildings 

will be its performance saved from simulation. This will allow for the recall of the building 

performance when needed, based on its similarity to a database of saved building 

performances.  This classification process is a series of algorithmic classes working parallel to 

the model generation that ends up as a list of annotations or tags for the buildings' generated 

neighbourhood model. These different stages of parallel model generation, along with tag 

annotation to the model, is illustrated in Figure 5-1. This chapter will detail the model 

generation part of the framework, while the following chapter will demonstrate the 

classification tag creation and development along with the different testing phases for its 

capabilities.  

 

The first stage of creating the model is to generate the road network and the buildable areas 

within the given boundaries introduced by the user. The framework depends on a plug-in 

developed by a group of European universities. It is called Decoding Spaces (Koenig et al. 

2017). This tool allows the generation of urban networks within a specific boundary with a 

certain amount of input and control. The major drawback is the limitation it imposes on the 

design process by limiting some geometrical aspects, and the framework had to overcome 
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these limitations when necessary. Although the capabilities of this tool allow generating a 

whole urban geometry, including buildings, the framework used it for generating the 

buildable areas as a start point for the needed urban geometry generation in this framework. 

The framework had to create a parallel text tagging system for each building to identify 

buildings based on their features to prepare the classification phase.   

   Initial boundary input 

 The framework starts with two boundary options. The first option is a typical rectangular 

boundary created by the rectangle component in Grasshopper. The second option is to draw 

a custom boundary by the designer and transfer it from Rhino to the Grasshopper curve 

component. The choice is made by a gate component. This gate component’s role is to allow 

the user to choose between the two options by moving a slider to the aimed value, allowing 

this option to be created as a polyline as shown in Figure 5-2. This becomes the first user-

decided variation in the framework allowing limitless generations of boundaries. The 

following figures of the generated models show two different settings of boundaries to 

illustrate the applicability of this option. The database of tested geometries was built only for 

a rectangular boundary.   

 Generation of the street network and buildable areas 

Then this boundary serves as an input to the series of four components inherited from the 

Decoding Spaces plug-in. The first component, “street network synthesis,” generates the 

street network then transfers the curves to the next component, “street blocks”, which 

 

Figure 5-2 The initial input of model's boundary and the gate controling the two mentioned options. Decoding Spaces used 
components to generate street networks and buildable areas for the model’s initial start 
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creates the blocks for the urban configuration, then to “parcels” and divides them into the 

needed “buildable areas”. As this tool is still in progress, not all the inputs are effective 

regarding the expected outputs. For example, the minimum block size does not change the 

output of the urban configuration. The logic of creating the network is published by the 

research group that illustrates creating street patterns (Koenig et al.,  2013). For the following 

stages of the framework, it was necessary to create a different generation logic for the urban 

morphology. The tool is oriented towards general urban controls, not specific controls to the 

buildings. For example, it gives Floor Area Ratio (FAR) to control density instead of controlling 

the heights of buildings. These tools need some inputs defined by the user to create the 

neighbourhood street networks. The inputs actively used by the framework are listed as 

following: 

• Boundary, which is a simple polyline that states where the neighbourhood is going to 

be located.  

• Minimum and maximum lengths, which are the limits of the street length within the 

configuration. 

• Random angle, which is the allowed angles between streets in the created junctions 

of the neighbourhood. This input has a high effect on the urban fabric pattern for the 

neighbourhood. 

• Maximum arms: this input states the maximum allowed streets in a junction in the 

configuration, but it does not mean that all junctions have to follow this number. It 

acts as a maximum that does not have to be met if the algorithm could not generate 

such a number of streets from the same junction point.  

• Seed for random: this input controls the random generation of streets every time the 

component receives a signal, even if it has the same values. This was one of the tool 

limitations as it was not as responsive at the research time as it is now in the recent 

releases of Decoding Spaces. This caused some challenges when building a database 

of configurations and buildings with their performance attached because it was hard 

to compare the saved data and the newly generated models with the same input due 

to this random effect.   



 Chapter 7                                                                                    Artificial Neural Network Application 

113 

• Street blocks’ offset: this input mainly controls the width of the created street 

network. 

• Parcels’ plot width threshold: a threshold for the width of each parcel that the 

algorithm should not exceed.  

• Buildable areas’ setbacks: this input controls the setback from the parcel's front, side, 

and back.  

 Block orientation and exposure to main street sorting 

The next stage is to order the geometry by the blocks’ orientations. The orientation is defined 

by creating a vector from the boundary centre point to the centre point of each block. Then 

the angle difference from the vector in the direction X is measured. These angles fall into 

either of the eight azimuth orientations; these orientations can then be tagged to each block.  

 

A)          B) 

Exposed   Not Exposed 

Figure 5-4 Blocks’ main street exposure done by the framework sorting. A) the first option with typical rectangular 
boundary and B) a custom-shaped boundary 

 

A)          B) 

Figure 5-3 The vectors generated by the framework for each block  to identify its orientation. A) the first option 
with typical rectangular boundary and B)a custom-shaped boundary 
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There is a limitation to the accuracy of this process due to the way of automatically calculating 

the geometrical centre of the boundary and assuming that it always follows the original world 

orientation set by the software. So, the user must note that the boundary input must follow 

the same orientation as the existing north in the software, especially if this framework is tried 

with an existing urban context.  

Afterwards, blocks are sorted by their exposure to the main street. This creates two groups, 

one with exposure to the boundary’s main street and another with no exposure to the main 

street. This sorting is done by scaling down the boundary curve and testing if the blocks 

intersect with it, then it is exposed. Otherwise, it will an inner block with no exposure to outer 

main streets.  

The way Grasshopper deals with multiple entities is through lists of these entities. The 

framework reorders these lists to allow them to be tagged in the parallel tagging algorithm. 

It keeps this order until it changes for both processes with the following detected feature.  

This will be illustrated in more detail in the following chapter. As shown in Figure 5-3 and 

Figure 5-4, this is an analytical phase that simply assesses the generated geometry based on 

the Decoding Spaces algorithm. The user controls the standard inputs needed for the 

components to perform their functions.  

 Building orientation sorting  

The next phase is to do this orientation sorting, but this time for each buildable area. The 

process starts with creating a vector for each buildable area. The vectors were created based 

 

A)           B) 

Figure 5-5 The buildable areas generated by the framework in its initial stage. A) the first option with typical 
rectangular boundary and B) a custom-shaped boundary. 
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on the nearest distance from each buildable area’s centre to the generated street network. 

This allowed the algorithm to detect the exposed facade of each buildable area.  

Then a comparison study is made for the angle of each of these vectors from vector X in the 

centre point of each block. This gives each building a value of its angular comparison to the x 

vector acting as a zero-base angle. This value is used to categorize a buildable area based on 

its orientation within each of its blocks. Moreover, as in the previous feature, the order of the 

geometry lists is reorganized based on this new setting. Classification tag lists follow the same 

order with the resembling value of each buildable area orientation. This is a further analytical 

phase where the algorithm only acts in accordance with the geometry it receives with no 

further generation or modelling conducted. (see Figure 5-5, Figure 5-7 and Figure 5-6) 

 

A)          B) 

Figure 5-6 Vector X for each urban block and the buildable areas' vectors that help in sorting and tagging each 
building based on its location in the urban block. A) the first option with typical rectangular boundary and B) a 

custom-shaped boundary. 

 

A)          B) 

East     South-East South     South-West West    North-West North       North-East 

Figure 5-7 Buildable areas colour-coded based on orientation. A) the first option with typical rectangular boundary 
and B) a custom shape boundary. 
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 Urban voids generation  

The next stage is to allow the existence of urban voids or plazas within the generated 

configuration. The framework allows 12 cases of urban voids to be created based on the user’s 

decision. An urban void is determined as a scale of the outer boundary, and the user 

determines its percentage.  

Urban voids are created by testing the location of the buildable areas to the created urban 

voids. This happens by comparing the centre points of the buildable areas to the 

 

A1)       B1) 

 

A2)       B2) 

 

A3)       B3) 

Figure 5-8 Different cases for urban voids in the rectangular boundary option, from left to right, no voids, central 
urban void and southern west singular urban void. 
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boundary/boundaries of the created urban void areas. Then, selecting the buildable areas’ 

centre points that are located within the allocated urban void curve. Then, these selected 

areas are removed from the two lists of geometry and tags for the following stages. The 

twelve cases consist of eight cases based on the eight azimuth directions, one case for a 

centric urban void and another for no urban void to let the generation be as it is, and the last 

two cases for multiple urban voids. (see Figure 5-8) 

The first multiple urban void case is randomly located based on the Grasshopper random 

component. The user can control the number of them and the ratio of each one from the 

actual allocated urban voids percentage. 

For example, as shown in Figure 5-9, if the user needs to create a 30% urban void in the whole 

configuration and chooses to distribute this percentage equally in five multiple locations, then 

the ratio of each urban void will be 20% of the allocated 30%. Furthermore, if the choice is 

made to distribute it unequally, the user can allocate this percentage through some number 

slider controlling this distribution. If the user needs to generate a specified number of urban 

voids in specified locations, it can be done by drawing points in the needed locations to act as 

 

Figure 5-9 Different cases of multiple urban voids in rectangular boundary option, to the left, controlled multiple 
urban voids, to the right, automated multiple urban voids. 
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centre points for the custom-made urban voids. This feature is mostly model generation and, 

as discussed, it only affects the tags list by removing the tags attached to removed buildable 

areas within the urban void. 

 Urban void exposure sorting  

The next phase involves conducting the analytical part for the previous generation phase. This 

algorithm class aims to differentiate between the buildable areas exposed to the newly 

created urban voids and those without direct exposure or near to them. This is done because 

the solar penetration within the urban configuration affects the amount of solar radiation 

received by each building, consequently affecting its performance (Hosney & Lannon, 2017; 

Hosney et al., 2017). Therefore, it was necessary to highlight this feature when it comes to 

 

A)          B) 

Figure 5-11 Urban void eposure clustering second trial by using lines from urban void centre to the buildable 
areas’ centres and using lines with less than two point intersections to highlight exposed buildable areas 

 

A)          B) 

Figure 5-10 Urban void exposure clustering first trial by using urban void offset intersection to label the exposed 
buildable areas 
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classifying the building and relating it to its performance.   This section will discuss different 

methods of applying this classification as an example to show the process of trial and error 

while building this framework’s algorithm. 

 The first trial, Figure 5-10, was to try an offset of the created urban voids. Then, the 

framework tests the remaining buildable areas against their intersections with this offset. 

Then this new feature is added to the tagging ID for the buildable area. The main issue with 

this approach was the needed adjustment for the offset amount to make sure that all exposed 

buildable areas are included. The second trial, Figure 5-11, aimed to include all the needed 

buildable areas without adjustment for each iteration. The framework has created a line from 

the centre point of the urban void to each buildable area centre, and the lines with only a 

one-point intersection were chosen to create a mask for the buildable areas to highlight the 

exposed ones. 

Nevertheless, with the nonlinear relationship between the urban void and its exposed 

buildable areas, the lines to some exposed buildable areas intersected deeper into the voids 

before reaching their centre, which also affected the accuracy. The next idea was to evaluate 

the centre point on all the buildable areas curves and apply the same line intersection. 

However, the same issue occurred and added to the inaccuracy of adding areas with no 

intersections to the centre as their streets are oriented towards the centre point.   

The final stage, as shown in Figure 5-12, was to use Isovist. This Grasshopper component can 

test a set of points visible from the urban void centre point in space and with respect to the 

rest of the buildable areas acting as obstacles. Due to street openings within the 

 

A)          B) 

Figure 5-12 Urban void exposure clustering using Isovest component with a boundary for the urban void to 
highlight the urban void exposed buildable areas 
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configuration, the framework had to add a boundary for Isovist to stop at to prevent it from 

including non-exposed curves because the street orientation did not have any obstacles.  

 Sorting number of edges of buildable areas  

The next phase of the framework building is differentiating each buildable area based on its 

number of edges, which will be the number of facades this building has. This was done by 

creating two groups of buildable areas based on the number of segments for each buildable 

area. One group has four sides or fewer, and the other group has geometries with more than 

four sides. The reason for limiting this feature into only two groups was based on the 

limitations caused by the generation tool used initially to generate the buildable areas that 

made it rare to get a buildable area with seven sides, for example. Some of the sorted 

buildable areas with more than four edges have this number due to a marginal break in its 

area boundary polyline that causes a break and counts the line in two segments. This is a 

further detailing analytical process that impacts the order of the neighbourhood buildings list 

and its parallel classification tag list by adding this value indicator and its related tags while 

reordering it.  

 Generating building courts   

Another detail of the building typology added through this phase of building the model is a 

building court. The building court is decided based upon the area of each buildable area, and 

the user can control its threshold. For this model, the area threshold is set to 2,500 sq m which 

means any buildable area larger than this value will have a centric court in it with a scale of 

30% of its area, and this ratio is controllable. This allows the user to determine the scale of 

 

A)          B) 

Figure 5-13 Building courts generated for builable areas that are larger than the preset area threshold 



 Chapter 7                                                                                    Artificial Neural Network Application 

121 

centric courts in each building. The analytical part of this class is simple as it determines if the 

building has a court or not (see Figure 5-13). Then, the algorithm indicates this in the related 

tag for each building. The limitation of this feature is that there is no control for the user over 

the court location within the buildable area. Although this is considered a future 

enhancement of the algorithm, this limitation is beneficial to narrow down the available 

options and avoid the overload of time costs, while the goal is only to test the proof of concept 

in this stage.  

 Assignment and comparison of building heights  

This algorithm class introduces heights to this generated 2D configuration. Heights had three 

options to be decided by the user, but initially, the algorithm will need an input of desired 

heights for this configuration. The heights are defined by two entries. The first data needed 

to be determined is the number of heights per configuration and this is acquired from the 

number of indices in the final buildable areas list to be matched with number of heights 

introduced to the configuration. The second entry is the value of these heights; these values 

are defined by a domain set by the user to determine the lowest and highest value needed in 

the designed configuration and then how many values are introduced between these two 

bounding values. The maximum number of heights to be introduced to the configuration is 

10 values. Once the list of height values is ready to be assigned to the 2D buildable areas, the 

user will choose from three options of assigning these heights as shown in Figure 5-14. These 

three options are listed as follows: 

• Height by attractors: in this option heights are assigned by user preference. The user 

must determine one or multiple points to act as an attractor of height. This simply 

means that the nearer the buildable area to these attractor locations it will receive a 

higher value in height rather than a further buildable area plot. It is important to note 

that in the case of multiple attractors it is an average of distances between each 

buildable area and the attractor points. This means the more attractors there are it 

will diminish the effect of this distribution.  
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• Height by area: in this case, heights are assigned based on area. This means the 

 

A1       B1 

 

A2       B2 

 

A3       B3 

Figure 5-14 Different height option results on the two predefined urban boundaries: A1 and B1 heights by attractor 
points, A2 and B2 heights by area, A3 and B3 heights by random selection 
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smaller areas get lower heights and larger areas get the highest height value.  

• Height by random selection: this option is mainly based on randomizing the list of 

heights and assigning them to the buildable areas. This is based on a component that 

conducts this function automatically in the Grasshopper platform.  

As in previous cases, these different options are controlled by a slider feeding into a gate to 

decide which option is the one that will function for the following stages. This stage is the 

final generation class in the modelling algorithm. The direct analytical impact of it is the height 

of each building to be stated in the tag in its final stage. Yet, it is essential to define the context 

for each building, which is the following class in the classification tag creation parallel 

algorithm. 

  Surrounding height comparison 

The last phase of identifying the model is to tag each building based on its surrounding 

heights. It is important to add this identification due to its effect on the amount of solar 

exposure. As ahown in Figure 5-15, The first step is to group every building with its 

surrounding buildings creating a tree of lists; each list contains the surrounding buildings of 

each individual building. The same sorting is done for the list of tags by branching it into a 

series of lists for groups of buildings.  

To create these groups, the first step is to offset all the buildable areas, then test the 

intersected areas with these offsets and based on the status of the intersection, the groups 

are created. This means that when the offset intersects with an actual buildable area, it gets 

attached to a centric tagged one until all intersected surrounding areas are listed. Moreover, 

this process is repeated for all the buildable areas. The same filter of grouping the buildable 

areas’ list is repeated to group the heights’ list.  

Then a comparison is made to sort out the heights to three groups of higher, lower and equal 

heights. Then to add more specifications, a line is drawn from the centre of the surrounding 

buildings to the centre of the tagged building. By the orientation comparison done before, 

each surrounding buildings is identified based on its orientation to the tagged building.  The 

tag splits this information into two categories. The first one identifies the number of buildings 
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higher, lower and equal to the tagged building. The other one provides the orientation of each 

surrounding building accompanied by its height comparison result individually. 

 

A1)       B1) 

 

A2)       B2) 

 

A3)       B3) 

Figure 5-15 Surrounding height comparison different stages. A1 &B1, the buildable areas offsets. A2&B2, shows 
points of intersections between the offsets and the surrounding buildings. A3&B3,, drawing lines from each 

buildable area to its surrounding buildings centre points. 
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Another layer of this test was added in the final stage of enhancing the classification tag. In 

this layer, a further offset was done to identify if higher buildings at a further distance may 

cause inter-shadowing on the tagged building and affect its solar radiation status without 

being noted in the classification. The same process did this, only this time, the highest building 

in the surrounding buildings list was noted and added to the tag with its orientation and 

height comparison relationship with the tagged building.   

At this stage, the model covered most of the geometrical variables of the generated urban 

configuration, and each building was ready for analysis and classification by unique name 

tags.   

 

This chapter has illustrated different classes of the generation algorithm in the framework. 

These classes are responsible for generating the 3D model and its parallel phases of creating 

the classification tags. The main theme for creating these models is to be as dynamic and 

flexible as possible. This was shown in the different graphs along the chapter sections. These 

classes staged creating the model allowing more control over each variable contributing to 

the neighbourhood 3D model. Further, they provided a systematic way to classify buildings 

within this neighbourhood on their related urban and architectural features.  

The generation classes and phases vary between being analytical and generative-based 

phases. It is clear that analytical phases contributed to determining buildings’ geometrical 

features to allow for the classification process to be systematic. The generation-based phases 

mainly dealt with creating a shape grammar for the 3D model generated from inputs that are 

not restricted to a specific pool of options. This enabled the framework to handle endless 

model generations with minimal limitation to its geometrical capabilities. As discussed in this 

chapter, there is room for enabling these limitations for each class. However, due to time 

considerations and the scope of the thesis, these features are postponed for future 

development of the framework.  

As shown in Table 5-1 Different modelling stages and their contribution to scale and role type, 

the generation algorithm generates and classifies models over the two levels’ scale between 

urban scale and architectural typology scale. This was considered due to the findings of the 

preliminary study on geometrical relative importance and based on the literature review of 
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the geometrical impact on performance on an urban scale. The algorithm considered user 

control's capability to either minimize or maximize the generated pool of iterations. This has 

been enabled in all the generation related phases. This grants the framework the capability 

to adapt to user preferences and different design aims without losing the capability of 

classifying geometry to enhance its performance assessment time limitation.  

This chapter demonstrated a clear innovative way to break down urban neighbourhood 

models and overcome the limitations of urban modelling complexity through this algorithmic 

classification shape grammar approach. The following chapter will continue discussing the 

resulting classification tags and the different tests and development stages occurring 

throughout this research scope.    

Table 5-1 Different modelling stages and their contribution to scale and role type 

 Analytical  Generation  

Initial boundary input   urban , user input enabled  

Street network & buildable 
areas 

 urban , user input enabled 

Urban blocks orientation  urban  

Building orientation typology  

Urban void generation   urban , user input enabled 

Urban void exposure  urban   

Number of edges  typology   

Building courts typology typology, user input enabled 

Height distribution  typology, user input enabled 

Surrounding  heights 
comparison 

urban  
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6 Classification Framework and Testing Stages  
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Aiming to break down urban models into a set of buildings with geometrical variables, this 

framework creates a text annotation to these buildings, alongside the geometrical generation 

process. These annotations aim to classify the buildings based on their features and 

contextual status.  

This chapter discusses the development of the classification tag resulting from the generation 

process. This is the second stage of developing the framework. Classifying a building’s 

geometry by annotating its geometrical and contextual features has been developed and 

tested in multiple phases to enhance its capabilities. The benefit of classifying geometry is 

already embedded in the generation process due to the parametric modelling platform used 

in the process. The development and testing of the classification tag aimed for further 

advantage. The development process aimed to utilize the classification tag as a lookup 

database of buildings. This database consisted of two elements. First, the generated buildings’ 

classification tags in text format. The second element was the solar radiation simulation 

results of these buildings as a performance indicator of these urban configurations. The 

testing was mainly to establish the accuracy and time saved by utilizing this database lookup 

compared to obtaining the solar radiation results by conventional ways of simulation.  

The development of the text tag can be sorted into two phases. The first phase was the initial 

generation of the tags with less numerical data, having more consideration to the readability 

of the text tag. The following phase leaned into more numerical status of the tags to enhance 

their readability from the computational agency side aiming for better accuracy. The start of 

these tests was to determine the boundaries of the pool of iterations to build up the proof of 

concept case study for this innovative method.   

 

To test the classification process, some boundaries must be set for the sake of building this 

database. These settings are the variables based on which the database was set. Some of the 

variables were set to one value to limit the number of tested iterations, and other values had 

multiple options to generate various urban model iterations. As shown in Table 6-1, fixed 

preset variables are for both the analytical and generation processes. This means that these 
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variables can be changed and tested for either better results or just user preference for 

different studies.  

Table 6-1 Model geometrical variables and the number of cases for each variable 
Geometrical category Number of cases  

Urban Void Cases 13  

Building Courts 2 

Maximum Arms 3 

Random Angles 4 

Height Distribution 3 

Street Width 3 

Road Setback 3 

Side & Back Setback 3 

Total Iterations 23328 

In addition to the model variable cases mentioned earlier, the framework depended on the 

allowed features of the initial generating tool to expand the variables pool with different 

geometrical conditions. As shown in Table 6-2, these variables are more related to 

geometrical change of the urban configuration and building typology based on what was 

discussed earlier in chapter 2. This included the 13 cases of urban voids discussed in section 

5.2.5, the two cases of building courts illustrated in section 5.2.8 and three height 

distributions created by the framework shown in section 5.2.10. Furthermore, five other 

categories are depending on Decoding Spaces generation logic. Maximum Arms is a category 

for the maximum arms for the street intersections. The framework has three cases for this 

category of four, five and six arms for the intersection. This helps bring up a wide variation in 

the configuration of the street network iteration. Another feature allowed by the tool is the 

provision of random angles, and it controls the angle variation for the newly created streets 

after the intersections. The framework assigned 0, 30, 60 and 90 values for this category to 

reduce the number of iterations in total and gain the optimal use possible from this category.   

The street width is also generated by the tool. As this framework concentrates on urban 

neighbourhoods, the values of 4, 8 and 12 metres offset for street width were assigned for 

this category. The rest of the categories are on the scale of building typologies and control 
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the setback as either road setback or side and back setback for each buildable area. Both of 

those two categories were assigned 0, 2 and 4-metre variables for each category.  

Table 6-2 Fixed database variables 

 This resulted in 23328 urban configuration iterations. These iterations formed the database 

pool of iteration for the following tests of the classification tags and the following chapter 

where a neural network was tested to assist the lookup process with machine learning 

performance predictions. This large number of iterations has allowed different stages of 

testing for both the lookup code and the neural network prediction code. Also, it allows a 

wide range of variability for the tested buildings’ tags and configurations.  

 

This section discusses the creation of the database of building tags and the solar radiation of 

these buildings. Solar radiation simulation was conducted on two levels. The first is the 

building tag and performance level. The other is to simulate the performance of the urban 

configuration to help with time and accuracy comparison. As shown in Figure 3-2, the urban 

Variable name Variable settings 

Boundary area  Set to be 700 by 700 metres to fall within walking 

distance of neighbourhoods (Carret al., 2010, 2011) 

Urban void percentage  30% of the total area of the boundary 

Number of random urban voids Two random urban voids were set to be 20% and 

80% of the allocated urban voids area 

Building court threshold Buildings with more than 2,500 square metres were 

set to have a central court 

Height maximum & minimum Heights varied between 7.5 to 75 metres 

Height number of values There were 10 allocated values of heights with 7.5 

metres step  

Urban void exposure Isovist radius It is equal to the radius of a circle with the same area 

of the urban void multiplied by 1.7 

Surrounding buildings 1st test radius It equals the total street width added to the street 

set back added to one metre 

Surrounding buildings 2nd test radius It equals the first test radius multiplied by 2.5  
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scale simulation will be used to compare the sum of lookup and prediction results to the 

simulation results and understand the time aspect. Although the database lookup and 

machine learning prediction will be conducted on a building level, the timing of urban scale 

simulation will cause a challenge when some performance aspects are simulated.  

 Framework control development for urban scale iterations 

Controlling the generation process is a key aspect to understand the workflow, not only for 

the generation and database establishment but also to learn about the framework iteration 

process when it comes to iterating different alternatives automatically for the optimisation 

stage. 

The first version of the iteration controls the process for the research started as early as the 

preliminary study (chapter four). The need to save time consumed to run simulations one by 

one, especially with many iterations, led to the creation of a custom Grasshopper code to 

iterate through the different variables.  

The preliminary study had four variables to iterate options. Grasshopper does not allow the 

animation of sliders all at once. It only allows for animating every slider individually. To 

overcome this limitation, the control system had to be controlled by one slider. Each variable 

had a set of options as a list. Then, a series of lists of numbers had to be created to represent 

each of these variable options index in the variable lists. Then all these indices are stacked 

using a component called Cross Reference. This component stacks and repeats the indices in 

their original order until they all meet the maximum number of combinatorial options 

available between those different variables. For example, if there are two lists, one with three 

indices and one with four indices, Cross Reference repeats the values of both lists to create 

two new lists with twelve indices each, with the same values of the two original lists but 

stacked. This creates all the expected numerical options from the input lists. Entwine is 

another Grasshopper component that is used to combine the stacked list into one tree. Then, 

this tree is fed to a “list Item” component that calls the same index from all the input lists 

simultaneously and from one slider. 

Moreover, this is how to overcome the limitation of Grasshopper being unable to animate no 

more than one slider. The last stage of this version of the control system is to break down the 
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tree into four lists, but this time each list contains only one index called the “Last Item”. The 

component “Explode Tree” is doing this tree breakdown.  

The second stage of controlling the iteration process mainly depends on a plug-in for 

Grasshopper called TT Tool Box (CORE studio 2017a). TT Toolbox developed an iteration 

package Colibri that has simplified all the steps mentioned above in one component. It also 

allowed the control and selection of which iterations in the pool can be run automatically for 

each simulation run, making this package convenient for small-scale testing before running 

the total number of expected iterations, either for the preliminary study or for the database 

creation stage. 

The use of Colibri iteration components continued for the initial stage of building and testing 

the database. The major limitation of this was that it caused some computational conflict with 

the larger number of iterations and other plug-ins used in the framework. One of these 

difficulties was a conflict between the automation process of Colibri continuously triggering 

Decoding Spaces generation component, which sometimes missed the configuration’s street 

network, noting that the random seed input for the component was not fully robust in its 

Figure 6-1 First version of controlling the iterations for the pilot studies 
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early stages. Moreover, as Colibri is computing the whole combinatorial options and keeps 

triggering the workflow, each time these triggers took their lead from different sliders, which 

caused some time consumption, especially with the larger scale of establishing the urban 

scale performance database. Another limitation of Colibri, when used for such a large-scale 

iteration process, is that it was not an open-source code and did not allow the process to be 

adjusted and controlled, especially when considering the hardship of pausing the iteration 

process once it became triggered( see Figure 6-1) 

Colibri could not provide a way to iterate for both urban scale and individual building scale 

regarding this framework database creation. This was due to the change of the number of 

buildings at each configuration which means the number of available iterations is changing 

based on each configuration generated. This was a struggle as Colibri must iterate between 

sliders only, and it cannot receive any other sort of numeric value and iterate based on it. A 

specific code was created to control the iteration process on both urban and individual 

building scales to overcome this challenge. This was the last version of the iteration control 

code, and it utilized Python coding and another plug-in for controlling Grasshopper limitations 

called Metahopper (Heumann 2018). This control code is the one that was used to build the 

database for both individual buildings and urban neighbourhood configurations.  



 Chapter 7                                                                                    Artificial Neural Network Application 

134 

 Urban scale Iteration control definition 

The control code for urban neighbourhood iterations mainly was based on the same logic as 

the first stage of the control system. A simple Python node was used only in this version to 

calculate the expected combinations between the input variables. Then it outputs all the 

combinations, each with an index that can be again controlled by one slider in Grasshopper. 

This method benefits of saving the calculation time as it happens once, and this does not take 

additional time whenever the slider triggers a new iteration to be generated. Moreover, due 

to its simple function as a Python code, time is saved for the computation force needed to 

automatically run either the simulations or predictions. The main limitation of running the 

simulations of urban scale solar radiation was that the aimed database was larger than the 

limit of animating sliders allowed by Grasshopper. The Grasshopper animation limit for sliders 

stops at 10,000 runs per animation. Running the whole database of 23328 urban scale solar 

radiation on one PC was already a time-consuming process. Therefore, distributing the 

database simulation run on different PCs to collect the results in a parallel manner was an 

efficient way to do such a large-scale simulation. This shown in Figure 6-2, and the whole 

input and output controls are shown in Figure 6-3 to illustrate how the slider controls the 

import rhinoscriptsyntax as rs 

 

u = range (UV) 

r = range (RA) 

m = range (MA) 

s = range (SW) 

x = range (RSB) 

y = range (SBSB) 

b = range (BC) 

h = range (HD) 

 

for i in u: 

    for j in r: 

        for k in m: 

            for g in s: 

                for t in x: 

                    for d in y: 

                        for w in b: 

                            for e in h: 

                                print i,j,k,g,t,d,w,e 

Figure 6-2 The Python code used to calculate the combinatorial options  
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iteration process to generate different geometries of neighbourhoods to simulate its solar 

radiation.  

The database was built on four PCs. The time consumed to run the solar radiation analysis of 

the 10,000 urban neighbourhoods was between 24 and 30 hours for each of these runs. The 

database took more time in total, considering the tools' challenges and some access issues to 

the PCs allowed for this research. Each of the computers used contained intel i7 (8 cores, 3.4 

GHz) processors with 32 GB. The operating system was Windows 7 and 64-bit version.   

The data recorded was based on the variables and the simulation results, and the time it took 

to record each entry. In this way, simulating the whole urban configuration is calculated by 

the difference between these entries. This was done using Grasshopper components. The 

time component can state the immediate time when it has an input of a text panel with “Now” 

as an input. This needed to be refreshed with a trigger related to the moment when the 

Figure 6-4 The time recording definition 

Figure 6-3 Urban scale iteration Grasshopper definition 
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simulation has ended, using the simulation result as a trigger to generate an actual value by 

comparing it with zero value. As long as the simulation had some results calculated, the trigger 

will be a “true” value that triggers a gate with a now value for both its options to make sure 

that no simulation gets recorded more times than it consumed due to faulty results that may 

occur over the vast number of iterations. In later stages, both gate entries included the time 

trigger to avoid accumulating the fault pausing time to the first working database log entry.  

Figure 6-4 shows this simple definition and how it works.   

 Individual buildings Iteration control definition 

Creating the database of simulation results for individual buildings has aimed for more than 

just the validation of the framework results. It was collected to be used as a training dataset 

for the neural network node used to predict the simulation results based on that training.  

The creation of these datasets had two major challenges. The first was the dual control of two 

sliders, one for the urban scale iteration and the other for the individual building’s iterations. 

As mentioned earlier, there is a limitation in the Grasshopper platform to automate the 

process with more than one slider. There are some open-source codes available online to 

solve this limitation. Some of these codes were written in Python language and could update 

the slider’s start and end. The one used briefly to control the iteration of the individual 

building was downloaded from the Grasshopper forum and Rhinoceros Discourse website 

(Deleuran 2018; Piacentino 2018). The main idea of this code was to break down the 

Grasshopper script responsible for building the slider and redefine it based on maximum and 

minimum inputs defined by the user. In the framework, this was used to create a slider that 

gets its maximum value automatically changed based on the changing number of buildings in 

every newly generated neighbourhood. 

This solution worked for redefining the slider selecting the building to run the simulation 

automatically. However, once the whole process is set to the automatic iteration of 

neighbourhoods and running each building to set up a database of tags and the building’s 

solar radiation results, it failed to update the number. The failure occurred as it picks up only 

the first number input and iterates within the limits of the first number input as a maximum 

number of building indices to be selected. This means if the first generated has 100 buildings, 
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and the following one has 112 buildings, then the second neighbourhood will not have the 

last 12 buildings in it simulated.  

Another trial to utilize this technique in the controlling code for iterating both urban 

neighbourhoods and the individual buildings to get simulated and build a database of tags 

and solar radiation results is to use the Python code shown earlier. However, this time 

calculate the combinatorial options for iterating the neighbourhood’s variables and the 

number of buildings set to be an input to the process. This way attempted to use the 

maximum animation limitation mentioned earlier and aim for a smaller number of urban 

iterations for each run with less than 10,000 buildings in all of them combined. This new 

Python node was meant to be before the urban control code. It generates all the 

neighbourhoods' options accompanied by the building indices for each of these 

neighbourhoods. The slider for generating urban neighbourhoods is changing based on the 

change in the length of this list. This solution failed to be updated for automatic simulation 

runs. It is clear that it is challenging to have dynamic automatic simulation runs for a variable 

number of buildings, which meant it was necessary to run each neighbourhood on its own, 

then change the slider controlling the building selection for each generated neighbourhood 

which seemed to be a time-consuming task. The other way to overcome this is to find a 

representative average number of buildings for each group of neighbourhoods, which 

seemed a reasonable solution, especially with the fact that this database is used only to train 

the neural network and verify its prediction on the building level.  

Another challenge was the fact that random seeds in Decoding Spaces are not responsive to 

its fixed input. This means that each time the controlling slider changes its value, it will trigger 

the generation node to generate a different street network. For later stages of building the 

database, this was amended with a better version of the plug-in, making it easier to collect 

the data. However, there was an issue due to the nature of the generation code being 

dependent on the list order. Each slider change triggers the generation node to get the same 

street network for this updated version, but not necessarily the same order of buildable areas 

generated. This does not mean that the tag will not describe the geometry correctly but only 

means that the order of the tags is not the same during the simulation time. This was solved 

by a component from the Metahopper plug-in called Freeze. This component’s task was to 

freeze the value coming out of the slider towards generating the urban neighbourhood’s 
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geometry until it finishes running through the individual buildings one by one. Then, it triggers 

only when the value of the neighbourhood generation changed to the following tested one. 

This required the remap of the values coming from the slider to be convenient for both 

triggers, one for the urban scale generation and the other for iterating between the individual 

buildings within these urban configurations. Moreover, that is what formed the final version 

of controlling the framework simulation and database building stage.  

The basic concept of this technique was to redevise the decimal distance between two 

numeric values to the approximated number of buildings for each group of urban 

configurations for each simulation run. Simply, the same slider will have the value of 1.000 

and keep changing its decimal value to be 8.005, 8.020, 8.100...etc using these decimal values 

to run individual buildings after it gets to be remapped as index numbers of these buildings 

in its list to be 1, 2, 3...etc. This takes place while the value of (8) is given once to the urban 

generation process. Then, once the slider reaches a value starting (9), it charges the urban 

iteration control definition to generate the following urban configuration and stands still for 

the next trigger.  

This method provided a convenient way to conduct the simulation automatically and 

simultaneously, utilizing multiple PCs to collect the database for buildings tags. The database 

at first in the initial state aimed at 2,000 urban configurations to be simulated on an individual 

building level. The first database building stage was stopped at 1,200 urban configurations 

collection, around 180,000 building tags with their individual performance, due to the 

challenges mentioned earlier that caused repetitive tags and occasionally geometrically non-

conforming urban configurations. This data set was used later for neural network training 

purposes only, but not for verification, as it was challenging to recall the exact buildings due 

to the difficulties. Then another run was designed and aimed for the same number of urban 

configurations, resulting in a total of almost 200,000 building tags. The two sets of data 

resemble around 5% of the total pool of iterations which acts as a reasonable resource for 

training within the available resources. The collection of this database was utilizing 10 PCs in 

the media lab of the Welsh School of Architecture, Cardiff University. The specification is the 

same as mentioned before for the urban scale database collecting. 
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To understand the classification process, it is helpful to explain the building tags generated by 

the framework to explain the framework capabilities. The tag starts with initials for the block 

orientation, followed by its exposure to the main street status. Then, the building orientation 

initial is followed by the urban void exposure status. After this comes the number of edges 

for the buildable area next to it, whether the building has a court or not, and the built area 

comes after this in numbers. Furthermore, it ends with the height comparison, which starts 

with the height status of each surrounding building and its orientation. Between brackets, it 

summarises the height comparison status, how many buildings are higher, equal or lower. 

Figure 6-5 shows the initial stage of the tag created by the framework. This shows the initial 

stage of the classification tag and what gets recorded to classify the buildings. Moreover, it 

shows that the first tag version varied between text and numbers due to seeking more user-

readable classification tags. This was done using initials for orientations and court typologies, 

urban void exposure, and height comparison.   

 

Figure 6-5 Explanation of building’s text tag 
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 Initial testing accuracy for stage one 

The first testing process aimed to investigate the current status of a tag regarding its capability 

to find similarities and detect similar buildings with the same tag. So, it was a simple trial to 

test if the Grasshopper code can detect buildings within the same. After generating the tags 

detection or lookup runs, this means testing the extent the tag needs to find most of the 

configuration’s buildings matches. The classifying tests were done for solar radiation 

simulation for an urban configuration as it is one of the minor time-demanding analyses in 

the environmental aspects. Six iterations were assigned to do this classification to test the 

accuracy of the tags. As shown in Figure 6-6, those six iterations were generated from two 

street networks with the change of key urban void status. Then a detailed run for each 

building was done in all six iterations. Then the Grasshopper definition was developed to 

locate the distinct buildings with distinct tags. By calculating the average of those distinct tags 

based on their number of repetitions each, speculation can be done summing these averages 

to represent the whole configuration’s solar radiation. This Grasshopper definition was based 

totally on Grasshopper “Data Set” components and how it compares different sets of data, 

including text and number data formats. This definition is built from two components. The 

first component is to set the duplicates that the configuration might have. It delivers this new 

set of building tags for another Grasshopper text comparison component to set the text tag 

comparison between the tags saved database and the newly generated tags. The tags’ index 

is used to find its saved performance and use it to compare it with the result of direct 

simulation. The data in these tests are saved in excel sheet format (Microsoft Corporation 

2010). It was exported to Grasshopper using Bumblebee, a plug-in for linking excel sheets to 

Grasshopper (Mans 2016). 

 

01a)    02a)      03a)       01b)       02b)        03b) 

Figure 6-6 Six different cases that were tested using the described clustering technique  
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Table 6-3 Case accuracy in comparison with the number of distincts in every classification trial 

For each case, a multistage classification has been made. The first stage was with tags 

including all orientation aspects for buildings and blocks added to the building court status 

and number of edges and the urban void exposure. The second trial added heights only to the 

classification tags. Moreover, the next trail added the built-up area for each building. Finally, 

the comparison of the surrounding height was added for the final and optimal accuracy trial.  

As shown in Table 6-3, Multi-populated urban voids have higher accuracy in all trials due to 

the effect of urban void exposure status on the performance and consequently on the 

classification proximity. 

On the other hand, iterations with no voids at all have a lower accuracy level. Although 

removing an urban void should have improved the similarity and the accuracy of classification, 

it did not. Furthermore, the correlation between the unique ratios and accuracies through 

the different trials is positive in both aspects. The difference between the final stage and the 

prior stages is clearly higher. The optimal accuracy reached to more than 95%, but on the 
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36% 46/123 33% 45/114 22% 36/132 34% 47/148 31% 41/142 21% 34/157 

53% 65/123 48% 60/114 35% 51/132 52% 74/148 42% 60/142 35% 59/157 

59% 72/123 55% 69/114 41% 60/132 66% 104/148 54% 84/142 49% 92/157 

99% 120/123 99% 111/114 94% 124/132 100% 148/148 95% 133/142 95% 151/157 
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Figure 6-7 A) six case comparisons for distinct tags ratio B) accuracy through different trials 
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other hand, it is not expected to save time as the unique tag ratios are also higher (see Figure 

6-7) 

 Second phase of testing accuracy for stage one 

Height surrounding comparison (described in Figure 5-15) was the first change added to the 

classification tag for the next testing stage. A larger number of buildings was saved in a small 

tags database for this stage of testing. This database of saved results consisted of 40,000 

building tags with solar radiation results generated from around 380 urban configurations. 

The second stage of testing, described in Figure 6-8, was done by running a detection test on 

this database of building tags. This was carried out in two phases. In the first phase, 100 

random configurations were selected within the previously run configurations. The second 

stage runs a detection test on the tags against another 100 configurations selected from the 

initial larger pool of configurations that did not have any saved tags.  

 
Figure 6-8 Second phase tag testing flow chart 
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The solar radiation for urban configurations was also saved from simulations for the urban 

configurations without breaking them down into their constituent buildings. This allowed 

comparing the results from the lookup summed results with the urban configuration results 

to test their accuracy. The framework was set to look up similar tags in the saved database 

and get their solar radiation. The total result of the urban configuration is calculated by 

summing these looked up saved results. It is important to note that this initial detection 

process had some tolerance of the tag parameters. For example, it looked for the same 

number of surrounding buildings with the same height comparison relationship but not 

necessarily the same area or height if they were not available. If a building or block orientation 

was north-west and was not found, it can be replaced with either north or west with the same 

urban void and boundary street exposure conditions. It is important to note that these 

simulations were conducted on regular computational facilities. The number of computers 

dedicated for simulations varied from four to six computers over the time of conducting these 

runs. The computers used had the same specifications as those used for the preliminary study 

and previous framework testing stages (see section 6.3.1.1). All solar radiation analyses used 

the weather file of Aswan city in southern Egypt (24.0889° N, 32.8998° E), and it was done 

using Ladybug tools components for solar radiation calculations and visualizations. 
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a)                                                                           

 

b) 

 

c)  

 

d) 

Figure 6-9 a) the graph shows the results comparison between the saved and estimated results, b) shows the 
correlation between saved and estimated results for the first phase of this analysis c) the graph shows the results 

comparison between the saved and estimate 
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As shown in Figure 6-9, The first phase of testing in the second stage, which was within the 

saved database of tags, got an average accuracy of 98% with the lowest accuracy of 93%. The 

time consumed was an average of five to six minutes for each configuration to get its results 

against double this time when the test was run in the same way for each building on its own, 

then summing the results to get the total performance calculation. It is important to highlight 

that the initial runs of the total configuration as a whole did not take more than 30 seconds 

for each. However, the importance of this is discussed in the following section.  

Table 6-4 A comparison for this stage of the detection process between the lookup and saved results for both 
the text and solar radiation results  

While the same time was consumed during the second phase, the accuracy dropped to 

around 86%, with 71% of the original model for saved solar radiation results. Also, this phase 

failed to look up eight out of the aimed at 100 configurations. An example of tag detection at 

this stage is shown in Table 6-4. It shows the low effect of numbers used to tag areas and 

heights against letters used to different features of the tagging text. Figure 6-10 shows a 

sample showcase for the detection process results. It shows the deviation between the actual 

results compared with the estimated results but in individual building scale. This deviation is 

the main reason the following stage of developing the classification tag consisted of just 

numerical fragments, as shown in the following section. 

Case number Text tag detail Solar radiation 

kWh/sqm 

A1 SE_notexposed_SE_UVNX_5+_NC_2146_75.0_LoNWLoNLoNE_(

0*H,0*=,3*L) 

9.55 

A2 SE_notexposed_SE_UVNX_5+_C_2996_60.0_LoWLoNWLoN_(0*

H,0*=,3*L) 

11.97 

B1 SE_notexposed_W_UVX_-

=4_NC_1173_7.5_HoEHoSEHoSHoSHoN_(5*H,0*=,0*L) 

1.44 

B2 SE_notexposed_W_UVX_-

=4_NC_2030_7.5_HoEHoSHoSWHoWHoN_(5*H,0*=,0*L) 

2.40 
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T-A1)                             P-A1)                             

 

T-A2)                   P-A2) 

 

T-B1)                               P-B1)………………… 

 

T-B2)                                P-B2) 

Figure 6-10 shows a selected showcase for the detection process results. Two buildings were selected 

from the same configuration (A1 and B1) and the detected equivalent buildings that have the nearest 

tags are shown as A2 and B2. Each case has a top view (T) and perspective view (P) 
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During testing, the study was faced with multiple challenges. Some of these were inherited 

by the limitations of the tools used. Others were caused by the limited capabilities of the 

computational facilities used to handle such a large amount of data and environmental 

performance simulation. This has limited the inputs for this stage of testing to the numbers 

as mentioned above, which are still compelling compared to common practices for such 

analysis. This testing stage has shown a great deal of time-saving while accuracy did not show 

the same significance of the development. So, more development was necessary for the tag 

and its detection process to reach for better results and closer to accurate results.  

 
Table 6-5 The interpretation of geometrical features in numeric values 

Learning from the previous tests, this final stage of the tag contained only numerical 

classification data. This means it had to interpret the data from the text as numbers. The 

orientation aspects of the tags had to be changed, starting with east equaling a value of 00 

until it ends with north-east with the value of a 07. Then the rest of the aspects had a 00 or 

01 interpretation as it was just a status of whether it has the feature or not. Height and area 

were recorded as their original values. Then the three cases of height comparison were 00 for 

higher and 01 for equal height in surrounding buildings, and 02 for lower heights. Table 6-5 

illustrates the details of this interpretation process.  The numeric way of saving the 

surrounding height comparison is saved by the dedication of four digits for each surrounding 

Block 

orientation 

Boundary 

street 

exposure 

Building 

orientation 

within the 

configuration 

Urban void 

exposure 

Area’s 

number of 

edges 

Court 

condition 

Height comparison  

0 East 

0 

Exposed 

to main 

street 

0 East 

0 Not 0 5+ 0 Has 

0 Higher 

1 
South-

east 
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South-

east 

2 South 2 South 

3 Southwest 3 
South-

west 

1 Equal 

4 West 

1 Not 

4 West 
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Exposed 

to main 

street 

1 
4 and 

less 
1 Not 

5 Northwest 5 
North-
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2 Lower 

6 North 6 North 

7 Northeast 7 
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building. The first two digits state the height status as either higher, lower or equal. The other 

two digits report the orientation of that building. For example, if the four digits state 0204, 

the building is lower than the central tagged building (02), and its orientation is to the west 

(04). This is explained in Figure 6-11 and Figure 6-12 for the selected showcase. The same 

process is made for the broader radius of comparison but only for the highest building found 

in this radius, and it adds the height of it to this tag fragment.  

The information on the tag still follows the same order as for the previous stage. The data 

recorded on this tag was saved to excel sheets recording each tag segment individually, 

making it easier to control and call it back to Grasshopper when needed.  

This tag version was enhanced in its classification and annotation process to enhance the 

different fragments and geometrical features. Following the detection, the definition needed 

development to enhance its functionality in finding similarities between the saved and 

generated tags. This lookup process is discussed in the following section.  

 

A)             B) 

Figure 6-11 The geometrical example for the tag showcase  



 Chapter 7                                                                                    Artificial Neural Network Application 

149 

  

Fi
gu

re
 6

-1
2

 F
in

al
 s

ta
ge

 o
f 

th
e 

te
xt

 t
ag

 w
it

h
 t

h
e 

su
rr

o
u

n
d

in
g 

h
ei

gh
t 

co
m

p
ar

is
o

n
 e

xp
la

in
ed

 in
 c

o
lo

u
r 

 



 Chapter 7                                                                                    Artificial Neural Network Application 

150 

 

The first stage of the detection process was mainly dependent on the Grasshopper 

component to search for text similarities. As this version of the tag is numerical, a series of 

numerical equality tests were built to investigate the similarities between the saved database 

tags and the new neighbourhood configuration generated tags. This process was sequential, 

meaning each stage was dependent on the previous one. This means the database options 

become narrowed down at each testing stage, limiting the similar tags to their minimum until 

it isolates the exact duplicate of the generated tags. Also, to avoid time consumption and 

adding more controls to the process, this detection process was done on the whole generated 

tags at once. This means that the generated tags are inputted into the process as a list, not 

one by one.  

The first stage of this detection process was to break down the tags into their fragments, 

allowing each stage to conduct the similarity test on one fragment at a time. Following this, 

the first comparison test was to find database tags that have areas equal to the ones that the 

generated tags have recorded. To do this, the framework used a simple equality testing 

component in Grasshopper. This component’s role was to create a series of lists based on the 

number of generated tags. Each list consists of the same number of values as the database 

number of tags with a true or a false in each index. This true or false value is determined 

based on the probability if this index is for a database tag that equals the generated tag or 

not. Then, this process acts as a gateway over the database to allow the tags with a true value 

to continue to the next stage and remove the ones with a false value. (see Figure 6-13) For 

example, suppose the generated tags are for 100 buildings in the configuration, and the saved 

database consisted of 1,000 saved tags. In that case, the equality component will create 100 

lists with 1000 true or false values in each of the lists in this example. This means that a 

generated tag will have every database tag that has an equal area to it gathered in one list at 

the end of this stage. For instance, if a building has an area of 250 square metres, then all the 

saved database tags with areas equal to 250 square metres will be gathered in one list due to 

this process. Moreover, this happens for all the generated tags simultaneously; thus, this 

results in a series of lists with available area similarities.  
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These lists, or as it is called in Grasshopper definitions, “Tree”, are the input for the following 

test, which is the same as the area test, but in this stage of the lookup, it is done for the height. 

The only difference in this stage is that instead of testing the equality over the whole database 

tags, it is only performed over the tags that passed through the first stage.  

Figure 6-13 Simplified diagram of the tag similarity test 

 

After the height test, the lookup algorithm reduces the similarity options based on each tag 

fragment. The order of these tests follows the tag’s recorded order to be as follows: 

• Block orientation tag fragment 

• Block exposure to the main street tag fragment  

• Building orientation tag fragment 

• Building number of edges tag fragment 

• Building court status  

• Building exposure to urban voids. 
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Then due to the different nature of the tag fragments that recorded the height comparisons, 

the lookup process had to follow a different way of comparison rather than the 

straightforward equality test.  

As seen in Figure 6-12, the text tag fragment that annotates the summary of the surrounding 

buildings is not just one number. It was hard to simplify this into one number annotation due 

to the nature of the data generated, recording the geometrical features. The major goal of 
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the lookup process is to find a way to create a mask that approves the exact similar tags and 

stops the non-similar tags from continuing to the next stage, as discussed in the earlier 

fragment lookup explanation. This was done by breaking this tag fragment into three different 

tests based on the summary status for higher, equal and lower surrounding buildings. So, in 

this case, the lookup process ensures that similar database tags annotate the same number 

of buildings for each relation. This was done by first breaking down the fragment into three 

streams, one for each height relation. After that, each database tag is tested to determine 

whether it has three true values from the three tests, and those which have three actual 

values are selected as matches and continue to the next phase. This happens for the 

generated tags and what remains of the database tags up until this stage. This allowed the 

interpretation of the surrounding buildings’ height status to be quantified and helps the 

following phase of the lookup process, which deals with the details of the surrounding 

buildings’ height status by adding orientation to each building.  Figure 6-14shows a simplified 

diagram of the data flow of the lookup test for one generated tag. 

The next tag fragment to be tested is the detailed height relationship and orientation of the 

surrounding buildings. From Figure 6-12, it can be indicated that the way of annotating this 

data needed to be formalized. The length of this fragment is based on the number of the 

surrounding buildings. This resulted in an unformalized nature to this fragment as nine 

buildings and others might surround some buildings might have only two surrounding 

buildings. This led to a difference in the length of this fragment. The process broke it down 

into three parts based on height relationship to the tagged building to formalise this fragment. 

This led to three streams of testing like the previous one. The fragment was coded to annotate 

the orientation starting with east interpreted as 00 and then continues anti-clockwise 

recording of the orientations ending with north-east as 07. These interpretations are shown 

in Table 6-5. This made it hard to deal with the text as a number for the equality test, as some 

text annotations might start with a higher building to the east and a lower building to the 

south; this means the fragment will record this as 00000202. This as a number will be 202, 

which will cause lots of misleading results. To fix this, the numbers were reversed to ensure 

that all the starting zeros are at the right side of the fragment before it becomes numerically 

tested against the database saved fragment, which becomes broken down and reversed to 

meet the needs of the fragment lookup process.  
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The last tag fragment to be tested is the second wider area height comparison. In this stage, 

as shown in Figure 6-12, the fragment is only annotated for the highest building on the 

broader comparison area just to enhance the inter-shadowing effect on the tagged building. 

The fragment states the building height and orientation regarding the tagged building as a 

reference. The same process of breaking up and running the similarity test on each part of 

the fragment and combining the result is conducted for this stage. The similarity test has two 

parts, one for height and the other for the orientation and relationship – either it is equal or 

higher. Instead of using four digits to indicate the height relationship and orientation, it was 

reduced to two digits as the use of “zero” is useless in this case. If the building has a higher 

building to the southeast, it will be annotated as 0001. The first two digits will be used for the 

relationship description, 00 as the building is higher than the tagged building. The last two 

digits are for the orientation, which is 01 as it is to the southeast of the tagged building; in 

this case, the lookup process reduces this to be just 01. 

This process has shown a multistage check for similarity to overcome the lack of lookup 

accuracy seen in the early stages of the text tag tests. This also gave more clarity to check the 

accuracy of the process and enhance it when needed, rather than depending on ready-made 

components that could not allow change to the process. The numerical nature of this tag 

made it easy to run the similarity tests and increase the lookup's accuracy. The data retrieval 

also had some edits as it had to be cleaned due to some tags being recorded with false values 

from incomplete runs. Moreover, some bugs in the generated code might cause some illegal 

plots to occur, like buildable areas intersecting with street boundary. Sometimes this was due 

to the nature of the plug-in Decoding Spaces being in its early developing stages.  

Moreover, this was challenged by some limitations of the generated code of the Decoding 

Spaces plug-in. This caused some challenges to find similarities in the database for 

configurations with the same inputs. This will be discussed in further detail in the following 

section, along with the preparation of the database for training the neural network node.  

 
 

This chapter focused on the data generation part of the framework. After discussing 

generating the neighbourhood geometry and its modelling process, this chapter discussed 

the parallel generation of classification tags and the development of the whole framework 
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iteration control code, database building and recalling the database and the similarity lookup. 

The discussion also focused on its time and the accuracy of the results.  

This research is aiming at a proof of concept result for this framework. It is the reason the 

database had to have some geometrical limitations where it is set to be generated with 

variables based on the literature review. The testing was aimed at the least time-consuming 

performance aspect, which is solar radiation.  

Building the database and automating the iteration process for later optimisation stages 

needed a simple bespoke definition that combined Python coding and some Grasshopper 

plug-ins to generate different iteration of urban neighbourhoods’ geometry and select 

buildings for simulation and database setup. This controlling definition is not aimed only at 

building the database, but it is further used for iterating optimisation alternatives.  

The discussion on the development of the classification tags illustrated the details of the text 

tags and their geometrical annotation relationships. Moreover, it showed the different testing 

results for the initial stages of the classification tag until it reached its final refined version 

that was used to build the database. The results showed clear time-saving gains while the 

accuracy is enhanced by the change of the nature of the tag from being a mix of text and 

integer indications to be solely a numeric-based tag.  

The database lookup and data retrieving have been explained, likewise, in this chapter. Each 

segment of the tag had a different logic for conducting its similarity test based on the nature 

of each segment. This has led to an enhanced lookup process that does not allow for 

approximation of similarity to enhance the earlier accuracy of the results. 

This far, the research at hand has explained the building of a database that includes 

classification tags and solar radiation results. This chapter has described the methods used in 

building this database and the enhancement of the tag features and retrieving the data results 

back to the framework, in addition to illustrating the different levels of the control system to 

iterate alternatives.  

Having discussed how to construct the database of classified geometries and how to generate 

geometrical variables of urban neighbourhoods, the following chapter of this research 

addresses ways of implementing Artificial Intelligence (AI) applications on this database to 
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save the simulation time, maintaining a high ratio of accuracy and optimizing the 

performance. 
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7 Artificial Neural Network Application  
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The aim of building this framework is to provide an innovative, efficient way to optimize urban 

geometry. The previous chapters have described the methods used to build an innovative 

iterative modelling and classification framework capable of classifying urban geometry based 

on its buildings geometry and attaching it to its solar radiation performance. This proved to 

save time in rerunning each urban geometrical alternative. It achieved considerable accuracy 

in its initial tests considering the limitations mentioned earlier. The last version of the 

classification tag was enhanced to limit the approximation and enhance the similarity lookup. 

This far, the lookup finds an exact match for previously saved buildings that have the same 

geometrical features as the ones in the simulation. This limited the framework's capabilities 

to open up to different geometrical options, like plots with a different set of areas and heights, 

for example.  

As mentioned earlier, the broad definition of optimisation is to find an optimal solution for a 

design problem. This research looks into optimizing the urban geometry based on its 

environmental performance regarding the solar radiation on the neighbourhood. Another 

aspect of this design problem is to achieve the highest possible Floor Area Ratio (FAR) for the 

tested neighbourhood.  This means that this version of the framework reduces the solar 

radiation in an urban neighbourhood in hot arid weather conditions (Aswan, Egypt) without 

sacrificing the FAR of the total urban configuration. The benefits and capabilities of applying 

Artificial Intelligence to solve problems go as far back as the work of (Turing 1948)in his 

famous publication “Intelligent Machinery”. Machine learning was defined simply by Turing 

to be “mimicking education” to allow the machine to learn and interact with definite 

commands. Turin’s definition did not mention the capabilities of a machine interacting with 

new undefined commands or problems. However, he hinted at this in earlier sections of the 

paper while comparing human education and problem-solving behaviour with the 

prospective machine behaviour.   

This chapter discusses the implementation of Artificial Intelligence to enable the framework 

to recognise urban geometries that are not typical to the saved database and allow it to 

optimise urban geometries based on their solar radiation performance without sacrificing the 

accuracy achieved by the conventional simulation methods. 
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The literature has illustrated the use of machine learning techniques in architectural and 

urban design problems.  An Artificial Neural Network (ANN) is one of these techniques. It is 

clear from its name that it is a mathematical way of imitating how the human brain neurons 

work. A concise guide to ANN concepts and core models can be found in Jian’s “Artificial 

Neural Networks: A Tutorial” (Jain et al., 1996). According to the paper, the main idea is to 

mimic the human neuron’s act between receiving and transmitting signals based on the 

history of a mathematical threshold equation. The equation outputs a certain value based on 

its inputs, and the multiplication of these equations or nodes creates what is known as layers, 

and a series of layers creates the neural network structure. The paper also categorises ANNs 

into two main categories: feed-forward and recurrent/feedback networks. The major 

difference is that in recurrent networks, the node in later layers can give earlier nodes to 

enhance the prediction based on this feedback. 

On the other hand, a feed-forward network has a simple one-way flow of data prediction, 

which is why the node developed for this problem depends on this method to avoid 

complexity. ANN has shown its potential to be used as a prediction and classifying method for 

different datasets in different fields (Paliwal and Kumar 2009). ANN principles have been 

applied in urban design and planning to predict different urban-related features such as urban 

growth, spatial factors, outdoor thermal comfort, etc. It was also recommended for use when 

compared against other methods of machine learning for these prediction studies on urban 

features (Azari et al., 2016; Chan & Chau, 2019; Lin et al., 2020; Lin et al., 2011; Samardžić-

Petrović et al., 2017; Shafizadeh-Moghadam et al., 2017). In this chapter, ANN is tested to 

assess its accuracy in predicting the solar radiation performance of urban configurations 

based on the classified geometry of buildings. The first trial in this investigation was to use an 

available ready-made tool for ANN principles within the platform of Grasshopper. This tool 

was named LunchBox ML. ANN is one of the ML developed methods in this tool kit embedded 

in Grasshopper visual programming language. 

 LunchBox ANN node tests 

LunchBox (PROVING GROUND, 2018) is a Grasshopper plug-in used in the first test stages of 

implementing the ANN application in this framework to test its efficiency to predict solar 

radiation results based on the training data of the classified geometry database. LunchBox 



 Chapter 7                                                                                    Artificial Neural Network Application 

160 

nodes for ANN request the dataset of training which has two inputs. The first needed input is 

“training inputs”, which is the database entries used to train the NN. For this test, the data 

used for training was a margin of 2,000 building tags collected from around 125 urban 

configurations. Another input is the new generated entry that is aimed to be predicted by the 

ANN. There has to be a unified boundary or maximum and minimum value for each of the 

database training entries for the ANN to work. This was done by remapping the database 

entries from 0 to 1, meaning the remapping process revalued each index of the list to fit within 

0 and 1. So, if the entry was, for example, 50 in a boundary that starts with 0 and ends with 

200, then the value after remapping will be 0, 25. This helps the ANN to define and relocate 

the new generations within a unified design space.  

Another input to the LunchBox ANN node was “labels”. Then comes the “hidden neurons” 

input which is the number of neurons in a single layer network created by this ANN node. The 

node also takes a value of Sigmoid’s alpha under the name “alpha”. The mathematical role of 

the Sigmoid function in the neural network is to remove the threshold that triggers education 

in the node, regenerate itself, and allow the network to work on just enhancing its weights 

(Winston 2010). The Sigmoid function is not the only mathematical way to do this, yet it is 

one of the most frequently used (Jain et al., 1996; Winston, 2010).  

“Iteration” is also a value of the number of revisions each node will have to learn to enhance 

its accuracy to meet the training data input with its prediction. This process is named the 

“backpropagation”. It is mainly concerned with calculating the difference between the 

predicted results and the aimed results. This difference consequently will affect the node’s 

weight and impact the overall result. The input, in this case, controls the maximum number 

of repetitions of this process to allow the NN to look for a nearer to optimal prediction with 

more iterations for each node to learn and enhance its prediction. The last input of the node 

is “random seed”, and it is not fully clear which part of the network structure this random 

seed will change (Jain et al., 1996).   

The flow of testing at this stage was planned to use the lookup algorithm to find similar 

buildings with tags then use these found tags and their performance as a benchmark for 

accuracy. This allowed the lookup process to be tested against newly generated urban 

configurations. This process can be considered a part of the continuous testing and 

development of the lookup process. The lookup limitations highlighted in section 6.6 are 
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discovered during this testing phase, especially for the building iteration control algorithm. 

The lookup process in this stage mainly dealt with simple tag fragments as this was an early 

stage of testing the ANN application within the framework. The tag fragments used for the 

similarity test were as follows: 

• Block orientation tag fragment 

• Block exposure to the main street tag fragment  

• Building orientation tag fragment 

• Building number of edges tag fragment 

• Building court status  

• Building exposure to urban voids 

• Building height  

• Building buildable area 

These simple fragments consist of one numeric value each, which allowed the algorithm to 

find approximate tags that match the generated tags for these features.  

The initial use of the lookup showed that it found similar tags. Thus, for the first stage of 

testing, the lookup was skipped while testing the neural network on its own to have a clear 

understanding of its impact.  

 

A)        B) 

Figure 7-1 The tested urban configuration showcase A) Top view  & B) perspective view 
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The configuration tested for this ANN application consisted of 152 buildings. It had two urban 

voids, one with 25% of the configuration area to the southwest and another void to the north 

with a 6% area. The street width in this configuration was 12 metres. The random angle 

allowed for the junctions was set to 0, and the maximum arms set to six arms. This has caused 

this semi-fragmented street network shown in Figure 7-1. The height distribution is based on 

two attractor points to the north-west and south-west of the configuration causing the higher 

buildings to be on the east side of the configuration. Each of the buildings was selected on its 

own and had a simulation running while the rest of the list of buildings was fed to the 

simulation as context. The results of these simulations are the results compared to the 

predictions of this stage of ANN application testing.  

 LunchBox testing results 

To test its applicability, a quick test with a single ANN layer was structured to test its capability 

of prediction and the time it consumes to get the results for a range of 10 urban 

configurations.  

The ANN layer consisted of five neural nodes, and the test was conducted on another PC with 

ten nodes for a single layer.  

Time was a key element in structuring this test. The time consumed for the ten-node layer 

was between two to six minutes to predict one tag, which led to a whole day needed to 

predict only one configuration. The five-node ANN took only 20 minutes to predict a 

configuration with almost 150 buildings in it. Almost the same time was consumed when the 

whole list of tags was fed into the node. This raised a question about editing the code to avoid 

consuming time to repeat the training time and enable the prediction time to be faster and 

more dynamic if applied to different generated entries. It is important to note that the neural 

network setting was to only ten iterations, a minimal number to allow the learning process to 

occur within the different database inputs.  

Considering this time limitation, the testing focused on predicting urban configuration to test 

its accuracy. The testing was focused only on the five neurons in the hidden layer. Then, the 

accuracy was calculated by comparing the database results for individual tags with the ANN 

output prediction for each tag based on the eight tag fragments mentioned earlier.  
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The first test achieved around 50% accuracy in the direct value correlation between the 

prediction and the simulation of the same urban configuration. That was with an alpha of 2, 

and this took around five minutes of training and prediction. Then, when reduced to .015 to 

reduce the prediction error, this resulted in almost 48% accuracy with the same amount of 

time consumed. The subsequent trial was to raise the iterations to 100 and reached up to 

79.5%, yet it took 52 minutes to train and predict the 152 building tags of this configuration 

at hand. The last trial was to raise the iterations to be 1,000 iterations. This increase did not 

result in a significant accuracy change as it reached 80%, while the training and prediction 

consumed two hours and 42 minutes. The results of these tests are shown in Figure 7-2.  
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solar radiation simulation  results 

Correlations between simulation results and LunchBox NN 
node prediction

5 Nodes hidden layer, .015 Alpha, 10 iterations
5 Nodes hidden layer, 2 Alpha, 10 iterations
5 Nodes hidden layer, .015 Alpha, 100 iterations
5 Nodes hidden layer, .015 Alpha, 1000 iterations
Linear (5 Nodes hidden layer, .015 Alpha, 10 iterations)
Linear (5 Nodes hidden layer, 2 Alpha, 10 iterations)
Linear (5 Nodes hidden layer, .015 Alpha, 100 iterations)
Linear (5 Nodes hidden layer, .015 Alpha, 1000 iterations)

Figure 7-2 Acccuracy results for different LunchBox testing phases 
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To calculate the urban scale results, the individual building results were summed for each trial 

compared to the sum of the simulation results. As shown in Figure 7-3, the difference of 

changing the alpha value is not as significant as the increase of iterations from 10 to 100. The 

first test was 70% close to the simulation results summary, while the change of alpha value 

increased that to 71.5%. The similar accuracy levels for the 100 and 1,000 iteration tests were 

clearer in the summed results. Both of the tests achieved 85% accuracy for the whole 

configuration solar radiation prediction in kWh/m2. 

These tests have provided a clear understanding of the extent of applying ANN on predicting 

solar radiation performance for an urban configuration using a classified database of 

buildings. It is important to note that this training has only included the 20,000 entries of the 

actual 400,000 database of building tags with solar radiation performance. This showed that 

applying ANN prediction using this extensive database allows for a novel way to save the time 

consumed for simulations. The time consumption in these tests is one of the limitations of 

using this LunchBox ANN node. The fact that the number of requested predictions does not 

significantly affect the time for training and prediction has indicated that this can be enhanced 

by separating the training from the prediction process. In this way, the training of the ANN 

will take place only once while the time consumed for it can be reutilized in predicting 

different entries. Although the LunchBox node has an open-source code available, the code 

uses unclear classes and does not have enough resources to learn the source code core 
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principles (Proving Ground, 2017). This led the research to look for another resource to apply 

ANN principles within this framework scope. The idea is to find an open-source code for ANN 

that can be edited to enable it to separate the training and the predictions.  

  Open-source Python ANN node 

One of the benefits of the previous phase of testing the ANN application is the fact that the 

ANN node has accepted multiple inputs for prediction, which allowed the framework to avoid 

the limitation of having a dual control system for iterating the geometry and tags on the 

buildings’ and the urban configuration’s scale. This meant that the control part of the 

framework in this stage was responsible only for iterating the urban configurations.  

The ANN node used for this framework is an open-source Python code initially inherited from 

a blog website that teaches how to build a neural network in a simple method with no loaded 

libraries (The Codacus, 2017) and goes through different stages of enhancements until it 

reached to the final version used. In this section, the parts added during development to the 

original code will be discussed, along with the initial and final stages of testing the utilization 

of ANN principles on the database at hand to get the optimal time-saving and accuracy 

needed. The original code was divided into a series of classes, each of which defines some 

functions to build the ANN simply.  

The first class defines the connection between the neurons. This is to define the neuron 

weights and their inter-connection in the network. The neuron class follows that by defining 

each neuron’s place in the layers and its static value, learning triggers and learning rate. This 

is followed by the code lines that define the network-related values as the Sigmoid Value and 

its derivation through learning and defining the error rate for each neuron to be calculated 

later in the code to calculate the backpropagation between different layers of the ANN. This 

leads to the last section of this class focused on the data flow between neurons and layers. 

Feed-forward is defined in a section to handle the data received by the neuron, either as 

directly from the ANN inputs or internally between layers. It gets to be multiplied by the 

weight of the connection connecting this neuron to its previous layer. The last section in this 

class is the definition of backpropagation. As mentioned earlier, this process is responsible for 

the neuron learning process. This happens by changing the weights to reduce the error of 
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prediction. This allows it to enhance the learning for each neuron based on its weight and 

collectively for the whole ANN error to be reduced.  

The following class is the one that builds the network out of these neurons. This class is 

responsible for structuring the neurons based on the input of layers and their included 

neurons. This structure is named in the code by “Topology”. It is a list input of the number of 

neurons in each layer of the ANN. The dataset used to train the network is handled in the 

following section by calculating the initial error of the network in comparison to the input 

data targets.  This is followed by the sections responsible for calling the feed-forward 

functions for every neuron in the network from the input layer to the output layer. The section 

is doing the same calling process for the backpropagation function for every neuron in the 

network from the output to the input layer. The last section of this class is the results 

collecting section in the network class. Then, the original state of the code had a testing set 

of data at the end to test the whole ANN process after the training code class.   

  ANN Python customization 

The main idea of editing this code was to separate the training process from the prediction 

process. This took place by creating two Grasshopper Python components. The first 

component was used for the training part of the ANN application. It consisted of the original 

code classes for Connection, Neuron and Network. They added one more class instead of the 

original training class in which the training took place and then extracted the trained network 

as an output to be fed into the second component. As shown in Appendix C, this class of code 

identifies different parts in the ANN. It starts with calling the neuron eta and alpha static 

values identified earlier in the parts of code adapted from the original code as static values 

and obtained from an integer input to the component. Then it identifies “maxiterations”, 

which is the maximum number of iterations allowed for learning over the whole ANN before 

it starts to output predictions. This number is set as an input to the Grasshopper component 

to be set by the user. Then it calls the feed-forward and backpropagation process over the 

input data and its targeted results. These are also fed to the Grasshopper component as a list 

of target data. The input name is “Classification Data”. Another input is the tree of lists 

containing the data used to train the network. Each list contains one column of the training 

database parameters and is named “Training Data” when input into the component. Another 

input is the “Error Threshold”, which is used to break the training process by comparing it 
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with the ANN calculated error. Then the network is defined from these inputs and built based 

upon the “topology” input, which is a list with the neuron number of each layer. The last lines 

of the code export the trained ANN as an output with the name “nn”. 

The following component is responsible for receiving the trained ANN and new data to be 

predicted. The code sets the input data under the name “test data” and creates a predicted 

list. Then it activates the trained ANN. The rest of the code is about activating the “feed-

forward” function and obtaining the prediction results of the input data, either as one entry 

or a list of entries to be predicted at the same time. Then, the component exports the output 

predictions. This code is shown in Appendix C. 

It is important to note that the output of the prediction, in this case, follows the same 

remapping process as that of the training data targets. If the training data had its targets 

remapped to be between 0 and 1, then the output prediction will fall between the same 

bounds. Therefore, another remapping process had to take place to get the results back to 

the target original status.   

Through this two-component sequence the time for iterating the prediction has been reduced 

and the training time is accounted as just one time, and the trained ANN is reused for different 

inputs following the training time. This saved the overall time and allowed for predicting 

different urban configurations in less time. As discussed earlier, the size of the input training 

data has a significant impact on the training time. However, this method of separating the 

training enabled the loading of larger datasets and enhanced the possibility of testing it 

against different urban iterations.  

This version of the ANN code had some training to consume around four hours to train a 

dataset of 50,000 entries and 24 minutes for a dataset of 500 entries. It took around 20 

milliseconds to predict one urban configuration with three configurations per minute with an 

average of 80 tags in each one. The training settings also needed several trials for testing and 

adjustment to reach the settings for each dataset size. This led to having a rather generic way 

of enhancing the training and having more control over the accuracy rate achieved in the 

training rate. The direct feature that can give such control was to trigger the learning error 

rate by detecting the mean square error achieved by each learning iteration. Based on this, 
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the ANN will break or continue learning. There was a need to get an output of this feature to 

understand the nature of training that took place to get the ANN ready for prediction.  

The first trial undertaken for this objective was to extract the mean square error for each 

iteration. Then, the ANN training stops based on the outcomes of the extraction of these 

mean square errors. The basic idea is to have a case that when the mean square error reaches 

a certain value for a number of iterations, this will stop the training.  Another case was for the 

training to be stopped due to reaching the maximum number of iterations. Furthermore, the 

import sys 

import math 

import random 

import pickle 

 

sys.path.append(pythonPath) 

import network 

 

tempList = [list(i) for i in trainingData.Branches] 

trainingInputs = [] 

for i in range(len(tempList[0])): 

    newList = [] 

    for j in range(len(tempList)): 

        newList.append(tempList[j][i]) 

    trainingInputs.append(newList) 

tempList = [list(i) for i in trainingP.Branches] 

trainingOutputs = [] 

for i in range(len(tempList[0])): 

    newList = [] 

    for j in range(len(tempList)): 

        newList.append(tempList[j][i]) 

    trainingOutputs.append(newList) 

 

tempList = [list(i) for i in validationData.Branches] 

validationInputs = [] 

for i in range(len(tempList[0])): 

    newList = [] 

    for j in range(len(tempList)): 

        newList.append(tempList[j][i]) 

    validationInputs.append(newList) 

tempList = [list(i) for i in validationP.Branches] 

validationOutputs = [] 

for i in range(len(tempList[0])): 

    newList = [] 

    for j in range(len(tempList)): 

        newList.append(tempList[j][i]) 

    validationOutputs.append(newList) 

 

nn = network.Network(topology) 

nn = nn.trainNetwork(trainingInputs, trainingOutputs, validationInputs, 

validationOutputs, errorThreshold, maxIterations, eta, alpha) 

pickledNetwork = pickle.dumps(nn) 

iterations = nn.iterations  

mseList = nn.mseList 

stop = nn.stop 

Figure 7-4 Final version of the component of calling and training the Pickled ANN 
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last case was to achieve the error threshold without reaching the required number of 

iterations with the square mean error value to stop the training.  

A more structured way to control the training was to enable what is known as “cross-

validation” of the ANNs. Cross-validation is simply a method to hold part of the training 

dataset and use it for testing the predictions to enhance the predictions for new data entries. 

This way prevents over-optimistic results of testing the prediction results against itself as it 

was used once before in training. So the preserved set of data used for the testing set of data 

within the training process ensures the ANN is not trained only for the input data set. Thus, it 

allows the predictions to be more accurate when it predicts data that it did not see before 

during the training phase. There are different ways of conducting this method within the 

training phase (Arlot & Celisse, 2010; Pedregosa et al., 2010; Varoquaux et al., 2015). The 

most straightforward application of cross-validation was chosen to be implemented in this 

research. These cross-validation techniques are about holding a part of the training data and 

testing the ANN prediction to ensure the prediction error from the validation data set is less 

than the one calculated from the training dataset (Arlot and Celisse 2010). 

The final version of the code regarding this included three cases in which the training was 

stopped. The first reason to stop the training and extract the ANN was that the maximum 

iterations allowed had been reached. The code exports a value of number 1 to indicate that 

the training has stopped because of this reason. Then, in the second case,  the validation error 

achieves better results than the error threshold defined as an input to the node: here, the 

code exports a value of a number 2. The last case where the training is stopped is when the 

validation error is less than the training error, and this cause has an indication of number 3 as 

an output from the Grasshopper node. The calculation of the training error is not collected 

before the ANN runs 25% of the determined maximum number of iteration to give the ANN 

a meaningful time to train before initiating any of the three causes where training is stopped.  

The code was also edited to export a list of mean square errors for each iteration to show the 

development over time. Also, another output is the number of iterations that took place until 

the ANN reached its final training to indicate in case the reason training was stopped was due 

to not reaching the maximum number of iterations.  
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As shown in Appendix C, the code starts with calling the inputs and defining them. Then it 

starts the ANN training for the training data and collecting the error ratios for the training. 

Following this, the prediction starts on the cross-validation dataset, followed by collecting the 

validation error by comparing it with the validation target inputs. The last section of this class 

is to determine when to stop the training based on the three cases mentioned earlier.  

This version of the ANN was capable of handling the whole dataset with iterations reaching 

1,000. Although the training still consumes some time, lasting in some instances to seven and 

a half hours to load 100,000 entries and train the ANN for 1,000 iterations on an ANN with 

two hidden layers. This time is still reasonable if factored to iterating different urban 

configurations and getting the performance prediction in almost 20 seconds maximum. This 

capability was further developed by importing a Python library that enables the saving of the 

trained ANN to be recalled and used for different iterations and on different PCs (Python 

Software Foundation, 1990). The library name is “Pickle”. It has the function of calling for a 

version of the ANN code saved outside Grasshopper in plain text and using it to train the ANN 

on the dataset inputs. It generates a version of the trained ANN that can be saved in text 

format to be reused in predicting different newly generated entries.  

Application of this library to the ANN nodes resulted in having the ANN part of the framework 

consisting of three parts. The first part is the actual ANN code saved in text format containing 

the last version of the ANN code, including the cross-validation application. Another part is 

the call-out node in Grasshopper. This component is now responsible for calling the ANN code 

and training it and extracting the trained ANN and an optimal Pickled version to reuse it, and 

the regular ANN outputs mentioned earlier. The last component is the prediction component. 

It stays a Grasshopper component that receives the trained ANN, either directly from the 

Grasshopper training component or a pickled ANN after being called into the Grasshopper 

platform.  

As shown in Figure 7-4 Final version of the component of calling and training the Pickled ANN,  

the code calls the training text code-named “network,” then it runs the training and validation 

using the input datasets for each function. Finally, the last lines of code identify the node 

outputs, which consist of the pickled ANN named “nn”, the number of iterations, Mean 

Square Error (MSE) list for each iteration “mseList” and the training stop reason named 

“stop”.  
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 ANN node testing results 

The previous section has discussed the different versions and development of the application 

of ANN principles through Python coding to be hosted on the Grasshopper platform and 

embedded within the framework to predict solar radiation performance on an urban level to 

save simulation time. The different versions of this node have been tested to record its timing 

and accuracy compared to the conventional simulation results saved in the tag’s database.  

  First phase of testing ANN node 

The first phase of the test has been set to have the ANN predicting the solar radiation based 

on the classification tags found by the lookup definition. This way allows testing the validity 

of the lookup process and the accuracy of the ANN predictions.  

The early trials of the ANN code with its first adopted version have shown some indications 

to enhance the structure of the hidden layers and the input settings to reach close to optimal 

settings that can produce reasonably accurate predictions.  
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Figure 7-5 ANN prediction correlation with saved database simulation results for ANN with 5,000 training 
dataset and 1,000 iterations 
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The first trial of training the first version of the ANN was to use 5,000 entries from the 

database with 1,000 iterations on a three-hidden layer structure for it. The layers contained 

10, 7 and 4 neurons each, as in the input order to output direction. The Alpha was set to .015, 

and error threshold to be .0001, and eta to be .01. This training has taken around 40 minutes 

to have a trained ANN as an output. Then the subsequent trial took a sample of 20 urban 

configurations to test the lookup and ANN training. As mentioned earlier, the lookup process 

Figure 7-6 Comparison between simulation and prediction results for 300 configurations with ANN trained on 
50,000 entries and 10,000 iterations setting. 
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is tested to look for similar tags and extract their solar radiation results from the database; 

then, it feeds these tags to be predicted by the ANN. The predictions are collected for each 

configuration and compared with the sum of database saved results for the same 

configurations. The lookup in this stage found around a 50% average of similar tags for each 

configuration. As shown in Figure 7-5 & Figure 7-7, The results for the 20 urban configurations 

were around 88% of value difference, and the prediction took less than 20 seconds to predict 

around 70 tags and record it in Excel.  

The following test to this one aimed to investigate the enlargement of the dataset and 

maximize the iterations to understand the ANN training behaviour. It had 50,000 entries from 

the database with two layers of seven and four nodes from input to output order. This trial 

used 10,000 iterations to test the need for a large number of iterations and to know its time 

cost. The alpha and eta and error threshold was set as in the previous test trial. This training 

took 37 hours and 30 minutes to finish. Then the testing took place on 300 iterations. The 

configurations’ solar radiation was calculated by summing the simulation results and 

predictions for each configuration. The lookup in this stage was not in its last updated version, 

but it followed the same structure and methods mentioned in section 6.6. Therefore, the 

lookup managed to find around 30% similar tags in the database, which was fed into the 

prediction component. A minute was enough to finish the prediction of three urban 

configurations and record it in Excel sheets. The accuracy achieved a 42% value correlation 
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between the summed simulation results and the summed prediction results. This ratio is 

driven by a similar ratio in most comparisons between the two results on the individual 

building scale (see Figure 7-8 & Figure 7-6).   

Following this, the first edit of the ANN code was done and tested for different sample sizes. 

The test again was for the found tag sign in the database. The settings were the same as for 

the training component. The only changed parameters were for the iterations, and the 

topography was two hidden layers with seven and four neurons from input to output. It was 

tested for 300 urban configurations.  

Table 7-1 showing the difference in time and correlation accuracy in different training data sizes and  
maximum iterations 

The iteration change has shown a clear difference in the time consumption and accuracy, as 

shown in Table 7-1. Moreover, the increase of sample size has shown a clear enhancement in 

the prediction results. It is important to note that the high accuracy ratio is due to the 

comparison between the prediction and the dataset introduced for the training. These results 

led to the development of the node to have a cross-validation part of making sure that ANN 

is not biased towards the training data only.  

 

 

Training data size Iterations Time consumed for 

training (hours) 

Correlation accuracy for 

trained data  

50,000 1,200 3.9  83% 

75,000 1,200 5.8 92.7 

5,000 1,000 2 38.3% 

75,000 1,000 5.5 87.7% 

100,000 1,000 7.4 94.5% 
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Table 7-2 showing the difference in time and correlation accuracy in different ANN settings 

This was followed by a series of tests of the training with different settings to understand 

better the parameters and the continuous editing of the code. These tests were conducted 

on only one configuration with small-sized training data. The tags tested for that configuration 

were around 140 tags out of 160 total buildings in the neighbourhood. The test did not use a 

fixed number due to the change in the lookup process and the limitations of the generation 

algorithm mentioned earlier.   

As shown in Table 7-2, the variation of the training data size tested was between 500 and 

10,000 entries. The topography of the ANN has been changed between a different number of 

Training 

data size 

Hidden layers 

from input to 

output 

iterations Error 

threshold 

Eta  Time for 

training 

(minutes) 

Correlation accuracy 

for trained data 

500 7 8,000 .0001 .2 16  92% 

2,000 7 8,000 .0001 .2 66  89 % 

2,000 7 8,000 .0001 .15  66  88 % 

500 3 5,000 .0001 .01  84% 

500 12 5,000 .0001 .01  86% 

500 2 5,000 .0001 .01  84.7% 

500 5 5,000 .0001 .01  86.2% 

500 7 5,000 .0001 .2  93.1% 

500 7 5,000 .0001 .5  92.2% 

500 7 5,000 .0001 .3  92.7% 

2,000 7 5,000 .0001 .2 40  89.5% 

500 12, 9, 5, 3, 2 5,000 .0001 .2 31.5  Faulty results 

500 12, 9, 3, 2 5,000 .0001 .2  Faulty results 

500 12, 3 5,000 .0001 .2 19  90.6% 

500 12, 3 5,000 .01 .2 18.4  Faulty results 

500 12 5,000 .0001 .01  86.2% 

500 7 5,000 .0001 .01  86.1% 

1,000 7 5,000 .0001 .2 17.3  98.2% 

10,000 7 5,000 .0001 .2 42  84.6% 

10,000 9, 3 5,000 .0001 .2  87.7% 
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neurons from a single layer and reached five hidden layers with different values shaping a 

structure of pyramidical shape from input to output direction. Guided by the previous tests, 

there was a maximum of 8,000 iterations with mostly 5,000 iterations to balance the sample's 

small size. The error threshold was set to be either .01, .001 or .0001 in most cases. Changing 

the eta varied between .01 and .5 and was .2 in most cases. Not all time consumption was 

documented, yet the time recorded indicated the impact caused by the change of parameters 

and provided an insight into the boundaries of the time consumption cost. The recorded time 

varied between 66 and 16 minutes for the least training parameter settings. The accuracy 

being tested against known data to the ANN achieved optimistic ratios. The accuracy achieved 

a high of 98.2% and a low 84% accuracy to compare the prediction and simulation results of 

data that were part of the training dataset.  

These tests illustrated the impact of parameters on the training time consumption for the 

training and the expected accuracy for ANNs predicting the solar radiation of the database at 

hand. 

  Second phase of testing ANN node (testing data that was not part of the 

training) 

The tests against the unseen data followed this stage in different scales of sample sizes. In the 

unseen data tests, the accuracy was calculated for database tags that were not introduced by 

the training component.  

The tests with unseen data were conducted with different sample sizes. Predictions were also 

made on the scale of the tags and for the whole configuration for each training sample size 

to show the impact of changing the sample size on the accuracy. This helped to show the 

importance of the sample size to reach a reasonable accuracy of predictions and the impact 

of changing settings on the training consumed time with the larger datasets.  

The first data sample size was a 10,000-entry dataset. To minimize the time consumption, 

there was only one hidden layer with seven nodes in this ANN. The training parameters were 

set to 250 iterations with an error threshold of .001. The MSE list output started with the 

value of 0.002739 and ended up with 0.002726. The reason for stopping the training was 

because the maximum number of iterations allowed had been reached. The training time was 

a little more than four minutes. 
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This ANN was tested on 100 randomly selected configurations from the larger pool of 

configurations for the framework testing. This test resulted in a high coefficient of 

determination (R-squared value) with 74.4% for the positive linear correlation between the 

two results (see Figure 7-9). 
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Figure 7-9 Correlation of simulation and prediction for 100 random urban configuration for ANN 10,000 
training dataset 
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Another test was done for the same ANN, but this time for a set of 100 configurations that 

share some features with the training database. This test had a better result due to the 

relativity of the features. It resulted in an 89% R2 value which illustrates a high correlation 

factor (see Figure 7-10). This difference in results comes from the role played by the lookup 

in finding more similar tags from the database and reducing the number of classification tags 

fed to the ANN prediction node.  

The last test, shown in Figure 7-11, was to have this correlation between the prediction and 

simulation results on the building level. This was conducted by loading 1,000 tags from the 

database not included in the training dataset for this ANN and comparing its saved results 

with the prediction. The correlation got an 87.9% R2 value for this linear regression test.   
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Figure 7-11 Correlation of simulation and prediction for 1,000 building classification tag for ANN 10,000 
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The following phase of these tests was in respect of the same three groups of predictions for 

the ANN node that was trained on 20,000 dataset entries. It is important to note that these 

performance predictions were new to the ANN node and were not part of the loaded training 

datasets. The training ended after one iteration with the same settings as the previous dataset 

sample size due to the cross-validation data achieving an MSE that was less than the training 

MSE dataset. The time consumed for this short training run was two minutes. As shown in 

Figure 7-12, the first group of random 100 configurations achieved a value of 83%.  
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Figure 7-13 Correlation of simulation and prediction for 100 urban configuration for ANN 20,000 training dataset 
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Figure 7-12 Correlation of simulation and prediction for 100 random urban configuration for ANN 20,000 training 
dataset. 
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The second group test achieved better results with a 90% R2 value, a considerably high 

coefficient of determination for such a linear correlation graph (see Figure 7-13). Following 

those two groups, the classification tag test of 1,000 building performance predictions 

achieved a 93.4% R2 value unexpectedly with fewer training iterations (see Figure 7-14). 
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Figure 7-14 correlation of simulation and prediction for 1000 building classification tag for ANN 20000 training 
dataset 
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Following those two sample sizes, the research enlarged the sample size to  150,000 tags for 

a training dataset. 

The 150,000 entry ANN had the same settings as previous ones. Only the error threshold was 

changed for more iterations in the training phase. The error threshold has been reduced to 

be .0001. This resulted in running the whole 250 allocated iterations of training which started 

with an error of 0.001877 and ended up with an error value of 0.001588. The time consumed 

for training this ANN was almost 38 minutes. The same three groups of testing have been 

introduced to prediction also for this version of ANN testing.  
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Figure 7-15 Correlation of simulation and prediction for 100 random urban configuration for ANN 150,000 
training dataset 
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Figure 7-16 Correlation of simulation and prediction for 100 urban configuration for ANN 150,000 training 
dataset 
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The first group of 100 random configurations achieved an 80% R2 value for this correlation 

between simulation results and ANN predictions (see Figure 7-15. The 100 configurations 

which shared similar features to the database achieved 95.8% for the same value (see Figure 

7-16). This high value is due to the larger number of tags found by the lookup due to the larger 

size of the used sample. As shown in Figure 7-17, The last group of testing was for the 1,000 

individual tags comparison from the database. This correlation reached 94% for the R2 value.  

The last test of unseen data has been set for a sample of 200,000. To better understand the 

ANN's performance on this sample, multiple settings were tested against the same three 

groups of predictions. The first ANN setting had the same settings as the previously tested 

ANNs. For this one, the MSE list started with .00151 and reached a low of .001408 for the last 

trained iteration error threshold. Another ANN was set to have two hidden layers of seven 

and four neurons, respectively, from input to output direction. The maximum number of 

iterations was set to 1,000 iterations. The rest of the settings have not been changed. The 

MSE list started with .001248 and ended the training with a value of 0.001115. It is important 

to note that the MSE list only starts recording after 25% of the iterations have been done. 

This means that in this case, the MSE list has only 750 iterations, and the first ANN had 187 
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ANN Prediction results for solar radiation of 1000 building classification tag kWh/m2 
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classification tags
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Figure 7-17 Correlation of simulation and prediction for 1,000 building classification tag for ANN 150,000 
training dataset 
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values. This is also the reason behind the MSE lists, in this case starting at different values of 

MSE for its first recorded iteration. The time consumed for the first ANN was five hours of 

training, and the ANN with two hidden layers took six hours and 24 minutes.  

As shown in Figure 7-19, The first group of random selected urban configurations achieved an 

R2 value of 79.3%. This was enhanced with the added hidden layer to be 83.2% for the 

correlation of predictions and simulation results.  
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Correlation between simulation and prediction results for 100 random 
urban configuration (200,000 training datasets)

ANN with 2 hidden layers and 1000 iterations ANN with 1 hidden layers and 250 iterations
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Figure 7-19 Correlation of simulation and prediction for 100 random urban configuration for 2 ANNs with 
200,000 training dataset 
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Figure 7-18 Correlation of simulation and prediction for 100 urban configuration for 2 ANNs with 200,000 
training dataset 
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The 100 configurations that had similar features of the training database were already 

included within the training data by enlarging it. Thus, the test resulted in a high correlation 

coefficient reaching 99% for the ANN with two hidden layers and 96% R2 value for the ANN 

with one hidden layer. (see Figure 7-18 

Finally, the 1,000 Tag results, shown in Figure 7-20, had a closer variation between the results 

of the two tested ANNs. The R2 for the ANN with one hidden layer was 93.7%. This was slightly 

enhanced for the ANN with two hidden layers by getting a value of 93.9% for the R2 of the 

tested correlation. It is important to note that this high value is not due to the lookup 

assistance as it was not used for the individual classification tags’ predictions in any of the 

unseen tests.  

 

In this investigation, the aim was to assess the ANN addition to the framework and apply its 

principles in utilizing the classified database to predict performance on an urban level. This 

was conducted through various studies with different types of datasets and different sizes; 

the prediction was done for individual classification tags and summed up the urban 

configuration performance. These tests have shown the benefit of reducing the time of 

getting the performance, allowing for the performance information to be included within the 
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Figure 7-20 Correlation of simulation and prediction for 1,000 building classification tag for ANN 150,000 training 
dataset 
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early stages of design. The accuracy achieved with the applied ANN code provided significant 

results for the individual building tags predictions.  

 Time performance 

The assessment of time-saving performance is calculated by comparing the time consumed 

by the ANN node with the time consumed by the conventional simulation methods.  On a 

building level, ANN predictions consume 3% of the simulation time. This is due to the 

capability of predicting the whole set of building tags for a configuration in one run instead of 

simulating the buildings with their different context and getting the results for it  

It is important to note that the training time is not factored into these comparisons due to 

the difference in the number of buildings and configurations that can be done using these 

trained ANNs. Moreover, solar radiation simulation is one of the least time-consuming 

simulation aspects compared to other simulation aspects like energy demand or daylighting 

performance. This finding result shows the potential to utilise this classification method 

accompanied by ANN predictions to get even better time-performing frameworks that will 

reach even better time-saving results.  

 Prediction accuracy comparison to saved simulation results  

In this chapter, the ANN node has been tested and developed through different phases. The 

ANN node developed for this framework had a simple cross-validation method embedded in 

the training class of coding in its last version. This was linked to the stop of training after 

reaching an error threshold. The last phase of testing was also conducted over datasets that 

were not used for training. Then it was also done over different sample sizes to find the better 

sample size performance. The test for each sample size investigated three groups of 

predictions. One of these prediction tests was for predicting the classification building tags. 

The comparison for this test was to feed in 10,000 tags from the saved database, with these 

tags not being a part of the training dataset. Then the prediction results were compared with 

the saved simulation results.  

These tests have shown a positive linear correlation between the prediction and the solar 

radiation simulation in kWh/m2. This correlation testing was looking mainly for the accuracy 

of prediction in total. Coefficient of determination (R2) is recommended to measure the ANN 

prediction results with a clear indicator of accuracy (Zikmund et al. 2003). Further 
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investigation of the accuracy and relation to individual variables and prediction nodes will be 

considered in future work using other statistical indicators. As shown in Figure 7-11, Figure 

7-14, Figure 7-17 and Figure 7-20, the coefficient of determination (R2) accuracy for this 

comparison starts with 87% for the smallest dataset sample size of 10,000 training entries. It 

then is enhanced to be 93% with double that size. This value is slightly enhanced for the 

150,000 training entry sample size to 94%. The last two tests with the 200,000 sample size 

had similar results for their correlation R2. These high results were also accompanied by a 

similar correlation in the actual values between the prediction and simulation at the building 

level. This means that the error in prediction values follows almost the same percentage as 

shown in the figures. The high value of correlation with this simple ANN has shown the 

capability of utilizing this method of classification with ANN. It is worth noting that there is a 

role for the lookup process in achieving this high level of accuracy. The tags were not part of 

the tested database for each sample size. The same sample size was also applied for the 

lookup process, yet being part of the large database gave it the benefit of finding some 

identical tags in the database. The percentage of found tags did not exceed 20% in any case 

of the different sample size tests. This highlights the importance of coupling between the two 

processes of finding similarities between the available database and the input testing data 

and the prediction outcome of the ANN node. This combination of findings supports the 

conceptual premise that applying ANN principles can achieve such high accuracy of 

predictions to save time for the desired simulation and the reuse of the trained ANN nodes 

to be utilized with different case studies using the same weather file and location.   

The impact of the lookup was clearer in the urban scale testing of the last version of the ANN 

node. The urban scale testing had two groups of testing, each of which had 100 urban 

configurations in it. The first group comprised urban configurations selected with shared 

urban inputs as included in the database for training. The other group was randomly 

generated within the pool of iterations for this case study as the framework generation in 

Table 6-1. The accuracy for predicting the solar radiation on the urban configuration was 

investigated by comparing the urban configuration simulation results against the outcome of 

the framework combining the lookup process and the ANN prediction. This was done by 

feeding all the tags of the buildings to the lookup process to find similarities within the training 

data sample. The unique tags continue to be the input to the ANN prediction. The tag 
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predictions and the found tags are summed to get the final prediction for the solar radiation 

on the urban configuration. This number is compared with the simulation outcome.  

The R2 results for the selected 100 configurations were 89%, 90%, 95%, and 99% for the four 

different tested training sample sizes in the same order from smallest to largest as shown in 

respectively (see Figure 7-10, Figure 7-13, Figure 7-16 and Figure 7-18). These values were 

lower for the randomly generated 100 configurations predictions’ correlations. Figure 7-9 

shows that R2 values started with 74% for the smallest training sample size, followed by 83% 

and 80% for the 20,000 and 150,000 dataset samples, as shown in Figure 7-12 and Figure 

7-15, respectively. The last result for the 200,000 training dataset was 83%, as shown in Figure 

7-19. This difference in correlation coefficient values for the two groups of urban 

configuration predictions can show the impact of the lookup process to enhance the overall 

result of the predicted urban configuration. These accuracy levels can be found similar to 

other investigations of applying ANN methods on different data sets and for different 

prediction goals (Chan & Chau, 2019; Lin et al., 2020). Although these findings for prediction 

results on an urban scale seem in line with the building prediction scale's findings, it shows a 

positive linear correlation. However, these correlations are not at the same level of accuracy. 

This can be noted from the difference in values between prediction and simulation outcomes 

for the tested urban configurations, especially the random ones. A possible explanation of 

this might be the selection of the training database. The training database was built from 

similar groups of urban configurations, and it was not selected from different feature groups 

in the available pool of iterations. This was due to the limitation of automating a random 

selection of the buildings in the database, leading to more geometrically unacceptable 

solutions in the database. Another explanation for this is the expected aggregation of the 

prediction error becoming clearer with the addition of the classification tag prediction results. 

These findings show that there is still room for improvement in using the prediction on an 

urban scale applying this classification method. However, there are some immediately 

reliable conclusions for the framework aiming for a proof of concept. These are based on the 

found linear positive correlation to utilize this node of ANN in the following optimisation stage 

applying genetic algorithm principles to highlight the optimal solution in this pool of 

iterations.  
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This chapter has shown different stages utilizing  ANN principles within this framework to test 

its potential in predicting solar radiation performance compared to simulation results and the 

accuracy of predicting the performance at building and urban level, and the potential time 

saved in the process. The Artificial Neural Network principles have been applied to the 

classified database of building classification tags and the solar radiation results. These 

principles were introduced and discussed within the first trial of utilizing ANNs on this 

database by using a ready-made plug-in (LunchBox). This tool was tested for different neural 

network settings. The different tests have shown the need for developing an Artificial Neural 

Network that separates the training time and the prediction time to reduce the time 

consumed and enable the prediction to take place for different data inputs without 

reconducting the training.   

This outcome drives the research to depend on a basic open-source code for a neural network 

to create a sequence that separates the training and prediction time. This open-source Python 

code was selected to be simple and not depend on ready-made libraries that apply ANN 

principles to reduce the dependencies and allow the editing of the code to occur. The 

separation of training and prediction codes happened by creating two Grasshopper Python 

components for each function. Another phase of developing the code was by adding cross-

validation principles to the training component. This allowed the training to check its 

prediction error before releasing the trained ANN. The training had three different settings for 

the process to be stopped based on the maximum iterations set for the training, the relation 

between the validation error and the error threshold or the relation between the validation 

error and the training error. The last used version of this ANN class in the framework allowed 

the Pickle Python library to be utilized. This package allowed for the reuse of the trained ANN, 

even for different files and in parallel times. This is due to its capability of saving and recalling 

the trained ANN from a saved directory. 

The testing of this ANN sequence took place during and after the development time. The 

multiple tests shown in this chapter varied from the early tests, including data entries that 

were part of the training data or testing data that was part of the classification tags database 

but was not part of the training data. This was for the first stage of testing during the time of 

developing the ANN nodes. These different tests have shaped the direction of developing the 
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ANN nodes and have shown the initial potential of utilizing ANN prediction methods on the 

database at hand. Another stage of testing followed this one using only the last updated 

version of the ANN code with its capabilities of Pickling. This stage tested different training 

data sizes. The tests aimed to test the time saved by the ANN prediction compared to the 

time consumed for the simulation. It aimed to compare the results for both methods to 

measure the accuracy achieved by the ANN prediction compared to the simulation results 

acting as the benchmark for this comparison. To do this, each training database size predicted 

100 configuration solar radiation results based on the sum of predictions for the buildings in 

it. This was done twice, once for a 100 configuration that shares some of the same urban 

generation settings, and another 100 was selected randomly over the whole database of 

testing. Each of the training sizes had been tested the same way for 10,000 building tags.  

The results of these tests have shown the significance of the size of data entry. Moreover, the 

accuracy for the largest training dataset size with a 200,000 classification tag database has 

shown an R2 of 93% when comparing the prediction against the simulation results. Although 

some smaller datasets show similar R2 values as the largest dataset sample size, the error 

ratio is less for the largest training data size.  For the urban configuration prediction results, 

the 100 urban configurations have achieved almost 90% for the R2 correlation value, while 

the 100 random selected configurations achieved 83% for the same value. The effectiveness 

of the lookup process in the framework was shown by an impact on the selected urban 

configurations that share related settings with the training data input, which led to fewer 

predictions and closer results recalled by the lookup process. The high value for an individual 

building is also due to the elimination of the summing factor. The urban configuration results 

for both the simulation and the predictions were summed from the individual building results, 

while the building correlation was calculated directly without intermediate processes that 

might affect the accuracy. This method has already shown  acceptable accuracy. It also opens 

the door for other simulation aspects to be considered utilizing the same method of 

depending on the individual building results to build a database for predicting urban 

configuration results. 
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8  Genetic Algorithm Application and Framework Testing  
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The following chapter discusses adding the last node to the framework to allow for 

optimisation between different iterations and benefit from the ANN application on a larger 

scale than the training input datasets.  

The literature has shown the influence of applying genetic algorithms (GA) in solving design 

problems, especially with finding an optimal solution for environmental performance. GA is 

looking for optimal performing solutions in a pool of iterations without running the whole 

available iterations. It is known as the mathematical way of mimicking the evolution theory. 

This might be the reason some of the literature name it the “evolutionary algorithm”. A simple 

definition of GA can be to mix the different parameters or chromosomes (for example, x, y) 

to create different solutions to a problem (for example, xxyy or xxxy). Then, it evaluates the 

performance of these generated solutions compared to the set or desired solution output. 

The solutions that are closer to the desired performance or the optimal performance than the 

rest of the generated solutions form the start of the following step of this process, which is 

called the “generation”. The number of solutions in each generation is mainly called the 

“population” of this generation. This process continues until the GA finds an optimal solution 

or it reaches a set threshold for the generation’s number. The mixing of these parameters is 

conducted through two methods. The first method is “cross over”. This is the simple way of 

mixing or mating the different parameters with each other to create a different solution for 

the set problem. The other method is called “mutation”. This is related more to the change 

of the chromosome itself from its original status, so it does not remain in its original input 

status through the process of multiple generations (Whitley 1994; Winston 2010).  

There are different ways to implement the GA principles in problem-solving and optimisation 

in general. This was interpreted by different tools and interfaces hosted on the Grasshopper 

platform. The literature has shown different applications for different tools that apply GA to 

optimisation in enhancing the environmental performance for the built environment (Rutten 

2013; University of Applied Arts Vienna and Bollinger+Grohmann Engineers 2014). These 

tools widened the reach of this method by being available in Grasshopper as it is widely used 

for built environment modelling and performance analysis.  
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After developing the ANN capable of utilizing the classified database to predict the 

performance for both the building and urban scale, GA is used in this framework to conduct 

the optimisation part to look for the optimally performing urban geometry based on the 

prediction inputs coming from the ANN output. The criteria chosen to determine this optimal 

solution was solar radiation performance for the urban scale geometry and the Floor Area 

Ratio (FAR) of these configurations. The two factors should be conflicting as the test site 

(Aswan, Egypt) falls in a hot arid zone. This causes the solar radiation to be higher with higher 

buildings that need to have a high FAR value. This is why the optimisation problem is defined 

as a multi-objective optimisation. The tool used to conduct this optimisation in the framework 

is called “Biomorpher” (Harding 2017).  Biomorpher is a tool that applies a method of GA that 

is named a cluster-oriented genetic algorithm.  The major difference of this method is its 

capability of approximating the available pool of iterations into regions to find the closest 

optimal region instead of running the GA evaluation on each individual in its population. This 

helps save time for the generation (Bonham and Parmee 2004). Biomorpher has been 

embedded into the framework to implement the GA optimisation because of its capability of 

controlling the process and visualizing the options. Additionally, the classifying approach of 

the GA makes the implementation computationally efficient.  

 Initial framework test  

The first test to implement the GA was set to have a 1,000 pool of iterations as the limit for 

the testing. It aimed to reach the largest possible FAR from these iterations with the lowest 

solar radiation possible. These two values were input from the framework’s different classes. 

The FAR for each configuration was calculated by extracting the buildable area and 

multiplying it by the number of buildings. Each building had a floor height equal to 3 metres 

high. Then the sum of this process is divided by the total area of the buildable plots in the 

configuration at hand. The performance prediction is calculated by running the buildings’ 

classification tags through the lookup process to find similar tags to extract their performance 

from the database. Then the rest of the unique tags with no similarities are predicted by the 

ANN class of the framework. The sum of the two values is the prediction fed to the GA 

component to act as fitness for the generation process.  
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The other inputs to Biomorpher’s GA component are the slider responsible for controlling the 

iteration process as a “genome” and the geometry of the urban configuration itself after 

converting it to a “mesh” geometry. The genome is the name used to refer to the identifying 

features of each tested iteration. The mesh is one of the geometrical modelling 

representations used by the software platform.  

The first trial was to test the use of Biomorpher, finding an optimal solution within 1,000 

urban configurations. This sample of 1,000 urban configurations was part of the database for 

this stage of testing. The generation settings avoided all mutations, and the crossover was set 

to be 10% of the population. A 100 population for each generation was set for this phase of 

the testing. This test aimed to find the result of using Biomorpher as a typical GA application 

where the generation and offspring selection is conducted automatically based on the fitness 

preference. As mentioned earlier, the fitnesses were set to reduce the solar radiation while 

achieving the maximum FAR possible.  

The test has aimed to get only five successive generations to test the time consumption too. 

The whole GA run took around 500 minutes. This test result came up with a high value of the 

FAR within the highest 15% of the iteration pool. However, the solar radiation was not within 

the same ratio as the lowest solar radiation saved results of the iteration pool.  

Figure 8-1 The generation plot of the two fitnesses in the first GA testing 
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However, this run has shown the capabilities of the tool. The sequence of development 

through the five generations is shown in Figure 8-1 for both the fitnesses. It shows the 

continuous reduction of the solar radiation fitness in blue. Furthermore, it shows the increase 

of the FAR value, in red, then it declined for the 5th generation, which was led by the 

prioritization of lower solar radiation value.  

This process gave a clear understanding of the performance of the tool. Another trial was 

conducted with the same settings.  

This time the generation was done by selecting the optimal clusters for each generation to 

create the offspring of the following generation. This test was done for a greater number of 

generations and consequently for a longer time. It had ten generations, and in each 

generation, the largest FAR and the lowest solar radiation value clusters were selected to 

continue the process. It took around 12 hours to finish this trial. The final 12 clusters of the 

last generation of this test are shown in Figure 8-2; each geometry is basically a representative 

of a cluster.  

The representative iteration with the highest FAR value was shown in Figure 8-2: cluster 0. It 

had a higher value of FAR of 14.01707 with solar radiation of 900.5328 kWh/m2 . As shown in 

Table 8-1, this iteration falls in the four highest FAR values in the whole pool of 1,000 

iterations. One of the higher iterations with a higher value of FAR has a higher value of solar 

Figure 8-2 The last 12 clusters of the GA 10th generation for the 1,000 iteration pool test 
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radiation. This excludes it from being an optimal choice for the two performing aspects. Figure 

8-3 shows the visual difference between the GA found result and the top two optimal choices 

with priority to FAR values over the 1,000 results pool.  

 

Table 8-1 showing the highest nine FAR values in the 1,000 pool of iterations with the GA chosen iteration 
highlighted in blue 
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4,485 1 0 0 2 0 0 1 0 900.2714 14.31869 

4,050 0 3 1 0 0 0 0 0 1067.043 14.29413 

4,320 0 3 2 2 0 0 0 0 885.4684 14.26613 

4,482 1 0 0 2 0 0 0 0 900.5329 14.01707 

4,068 0 3 1 0 1 0 0 0 1052.692 13.99231 

4,212 0 3 2 0 0 0 0 0 1024.055 13.97646 

4,698 1 0 2 0 0 0 0 0 1013.996 13.97238 

4,860 1 0 2 0 0 0 0 0 1013.889 13.97159 

4,377 1 0 0 0 0 0 1 0 1024.955 13.9209 

4,503 1 0 0 2 1 0 1 0 876.2165 13.84315 
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 Second framework test with 12,000 available iterations  

The next test followed the same procedure to find an optimal solution within a larger pool of 

iterations. In this test, the pool of iterations was half of the available iterations by the 

generation class. The optimal solution chosen from this test took 13 generations with an hour 

for each generation, and the setting was 50 population per generation with no mutation and 

10% crossover.  

The plot of the GA process shows fluctuating behaviour in looking into the design space of the 

available iterations. The gap between the two fitnesses throughout the plot shows the 

Figure 8-5 Second test results’ plot with 13 generations.  

Figure 8-4 The last 12 clusters of the GA 13th generation for the 12,000 iteration pool test 
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progress the GA is trying to make by looking for the highest FAR, in red, and the lowest solar 

radiation result, in blue. Although the FAR reached a peak in the 9th generation, yet the relook 

of the next generation’s clusters resulted in a slightly lower solar radiation option by the 13th 

generation, as shown by the difference in the gap between the two fitnesses in Figure 8-5. 

Another note on the results of this test is that the highest FAR representative cluster does not 

have the best performing solar radiation. The higher FAR cluster had solar radiation of 1294.7 

kWh/m2 with a FAR of 16.64; this was cluster number 6 within the last generated 12 clusters, 

while cluster 11 had better performance for both fitnesses, not just FAR. The representative 

cluster 11 had a significantly lower solar radiation of 906.3 kWh/m2, while the FAR value is 

also lower with a slight difference. This representative had a 16.2 FAR value, which is not that 

different from the highest FAR achieved by this generation. This was the cluster with the 

number 11, as shown in Figure 8-4   

When it came to comparing this result with the saved simulation result, this urban 

configuration had an optimal performance considering the two fitness performances. The list 

of the saved performances and FAR values was sorted in order from larger to smaller based 

on the FAR values. This is done to prioritize the FAR value for neighbourhood design which is 

a usual constraint for the designer to achieve higher FAR, allowing for more economic value 

for the land use. As shown in Figure 8-6, the selected representative cluster achieved the 

lowest solar radiation result within the highest 40 FAR values in the pool of iterations for this 
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 Chapter 8                                                                     Genetic Algorithm Application and Framework Testing 

198 

test, marked with a dashed line. In contrast, its FAR value is the 12th highest value in a pool of 

more than 12,000 iterations. The following higher FAR values in the graph do not have lower 

solar radiation than the selected representative cluster. Error! Reference source not found. 

shows the top 20 iterations with the highest FAR values in the saved pool of iterations. It is 

important to note a difference in values between the GA selection of optimal performing solar 

radiation predictions and the saved database of solar radiation simulation results. This is due 

to the difference between ANN predictions and the actual simulation result and the fact that 

the database of urban configuration performance results were saved out of simulations 

conducted over the whole configuration, while the prediction results are the sum of the 

predictions of each building in that configuration. Its number does not just select the 

configuration, but also the urban generation parameters are checked to be the same features 

for discussed configurations. Also  

Table 8-2 The highest 20 FAR values in the save results 
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1 2 0 1 0 1 0 1 0 1,063.583 17.37746 

2 2 0 1 1 1 0 1 0 994.0439 17.22447 

3 2 0 1 0 0 0 1 0 1,085.866 17.16701 

4 2 2 1 1 1 1 1 0 1,554.55 17.13628 

5 2 0 1 1 0 0 1 0 1,020.48 17.07668 

6 2 0 1 2 1 0 1 0 919.1503 17.0214 

7 2 2 2 0 0 0 0 0 975.5042 16.64382 

8 2 0 1 1 2 0 1 0 959.0805 16.57062 

9 2 0 1 2 0 0 0 0 955.3986 16.44351 

10 2 0 3 1 0 0 1 0 1,058.776 16.41231 

11 2 0 1 2 2 0 1 0 886.6475 16.39362 

12 2 2 2 2 0 0 0 0 785.624 16.216 

13 2 0 1 0 1 0 0 0 1,057.446 16.12415 

14 2 2 2 1 0 0 0 0 889.4906 16.0172 

15 2 0 1 1 1 0 0 0 989.7215 15.96211 

16 2 2 1 0 1 0 0 0 1,096.213 15.95576 

17 2 0 3 2 0 0 1 0 987.7892 15.95179 

18 2 0 2 1 0 0 1 0 1,036.448 15.94575 

19 2 0 2 1 0 0 1 0 1,036.205 15.94575 

20 2 0 2 1 0 0 1 0 1,036.851 15.94575 
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as shown in Figure 8-4, the limitation of the geometry generation tool produced some 

configurations that need to be deselected from the GA selection process. Furthermore, some 

configurations do not fully restrict the boundary rectangle due to some limitations in the 

package used in the geometry generation process. 

The optimal solution for this test did not fully cover the rectangular boundary, not just due to 

the generation of urban voids but also due to some generation process limitations. This 

allowed for its high FAR value, although this did not count as a bad result for the buildings as 

every buildable area does not intersect with its surrounding ones, nor do the buildings have 

any unacceptable results regarding their extrusions. Nevertheless, the following test tried to 

find an optimal solution covering the whole area of the given boundary and committed to the 

generated urban voids.  

 Framework test for total available iterations  

The last stage of this test was to test the optimisation capability within the boundaries of the 

whole pool of iterations allowing Biomorpher to look for an optimal solution within the large 

database of configurations. In this test, the Biomorpher setting was 100 populations for each 

generation, and the same settings as the previous test came to cross over, which was 10% 

and no mutation was permitted.  

This larger number of populations made the generation take a longer time than previously. In 

this test, each generation took around one hour and 40 minutes. The 4th generation showed 

a near-optimal performing representative cluster in comparison with the previous test 

Figure 8-7 The representative clusters for the 4th and 5th generations of the full database test (red dots for 
FAR results and blue dots for solar radiation prediction in kWh/sqm) 
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results. This iteration has a solar radiation value of 1081.61 kWh/m2 and a FAR value of 15.21, 

as shown in Figure 8-7. 

Biomorpher did not find a better performing solution until generation 20. Figure 8-8 shows 

the representative clusters of the last four generations of the process and their results for 

solar radiation in kWh/m2 with a blue dot beside it and the FAR values of the iterations with 

a red dot beside it. For this reason, the test reinstated the generation 4 results and tried to 

drive the generation process towards a better performing option by only selecting the most 

optimal representative clusters. Reinstating means getting Biomorpher back to the stage of 

generating a certain generation. After this, the test continued for another four generations 

with this new selection of clusters. However, it has shown a slightly better performing 

Figure 8-8 The last four generations in the last full database test (red dots for FAR results and blue dots for solar 
radiation prediction in kWh/sqm) 
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iteration. This iteration has a solar radiation value of 1204.8 kWh/m2 and a FAR value of 15.84, 

as shown in Figure 8-9. 

The final trial was to start a new GA test, but this time instead of selecting a random set of 

the population for the initial generation, it was set to start with this solution.   

This time it took three generations to get a better performing iteration. It is important to 

know that these three generations did not try to look far from the starting point of the first 

Figure 8-9 The representative clusters of the reinstating trial showing the optimal performing representative 
cluster in cluster 1 

Figure 8-10 The third generation of the directed retest for the whole database test 
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set of populations. This might raise queries about the tool’s capability to examine the selected 

iterations and the diversity of its generation process if it only focuses on iterations with 

relative settings. The third generation had a cluster with a solar radiation value of 1147.65 

kWh/m2 and a FAR value of 16.57, as shown in Figure 8-10.  

This phase of testing has shown the importance of the user interaction with the GA generation 

stage of the framework. As shown in the multiple trials, the test took different directions to 

look for better performing iterations while reducing the time consumed by directing the 

generation breeding process, which is a rare feature in the available tools applying GA 

principles in the same platform. Moreover, it has shown a limitation of the tool. When starting 

the proceedings with a given set of iterations, it does not look further within the pool of 

available iterations. It is important to note that this generation process was done without 

reviewing the simulations in the saved database of urban configurations. After finishing this 

optimisation process, the comparison was made as done in previous tests with the saved 

simulation results to get the location of the GA optimal solution against the optimal solution 

of the saved results.  

After these different trials, the GA pointed out the configuration with the 14th highest FAR 

value. This is the 5th lowest solar radiation in the highest 20 FAR values in the pool of 23,328 

urban geometrical iterations. The highest 20 FAR iteration results are shown in Table 8-3, with 

the GA selected iteration highlighted in colour. Its order as the 5th optimal solution can be 

seen more clearly in Figure 8-11. This result shows the potential of using this framework to 

provide guidance through the early stages of urban design, being capable of reaching this 

efficient level of accuracy considering the time saved from simulating the total number of 

iterations to reach the optimal solution.  

The following step of testing the framework was to utilize this set of classifications, prediction 

and optimisation on an existing neighbourhood boundary and test its effectiveness of being 

integrated to optimize an already designed neighbourhood. This test will be discussed in the 

following section.  
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Table 8-3 The highest 20 FAR values in the save results of the total database with the pointed out iteration in 
blue 
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1 5 2 1 0 0 0 0 0 1,048.129 17.60369 

2 3 2 1 1 0 0 0 0 1,013.694 17.5942 

3 2 0 1 0 1 0 1 0 1,063.583 17.37746 

4 2 0 1 1 1 0 1 0 994.0439 17.22447 

5 2 0 1 0 0 0 1 0 1,085.866 17.16701 

6 2 2 1 1 1 1 1 0 1,554.55 17.13628 

7 2 0 1 1 0 0 1 0 1,020.48 17.07668 

8 2 0 1 2 1 0 1 0 919.1503 17.0214 

9 5 2 1 2 0 2 0 0 1,046.329 17.01338 

10 0 2 1 1 0 0 0 0 1,009.887 16.95517 

11 5 2 1 2 1 0 0 0 922.0213 16.77168 

12 4 2 1 2 1 0 0 0 932.8184 16.71138 

13 2 2 2 0 0 0 0 0 975.5042 16.64382 

14 2 0 1 1 2 0 1 0 977.3871 16.56767 

15 2 2 2 2 1 0 0 0 778.3127 16.55688 

16 2 0 1 2 0 0 0 0 955.3986 16.44351 

17 2 0 0 1 0 0 1 0 1,080.064 16.4123 

18 2 0 1 2 2 0 1 0 886.6475 16.39362 

19 0 2 1 1 0 1 0 1 1,157.974 16.30851 

20 2 2 2 2 0 0 0 0 785.624 16.216 
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Figure 8-11 Highest 40 FAR values with their solar radiation results from the total database and the GA found 
iteration (in dashed line) 
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The testing in this phase aimed to investigate the different phases of the framework. Each 

phase of the framework was tested by applying a new boundary to the generation process, 

generating new classified geometries, predicting the solar radiation for the newly generated 

urban iterations, optimizing the pool iterations and comparing the optimal solution with the 

actual case study status. This test will highlight the strengths and weaknesses of the 

framework at its current status as a proof of concept, and it provides a clear path for the 

future work of this research.  

 Case study location 

The location of an existing case study selection was made based on the weather file used to 

build the training database. The location of the testing neighbourhood boundary was selected 

from the city of New Aswan in southern Egypt. This is one of the new cities commissioned by 

the government to accommodate the Egyptian population growth. Being a twin city and an 

extension to the original city, it falls within the same climate and weather conditions. The 

total planned area of the city is 91.532112 km2. It targets 850,000 inhabitants by 2023 (New 

Urban Communities Authority at The Ministry of Housing. Utilities & Urban Communities [no 

date]). The residential sector has different types and classes of housing among other different 

land-use types in the city prospectus land use map (see Figure 8-13). The existing status of 

Figure 8-12 The current status of New Aswan, Egypt (Gorelick et al. 2017)  
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the city is as shown in Figure 8-12. It shows that the city is still under ongoing construction. 

The satellite photos were taken from the Google Earth tool (Gorelick et al. 2017). 
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The neighbourhood case study is located in the built part of the city. The location of the 

selected neighbourhood and its detailed urban design plan with building plots are shown in 

Figure 8-14. The heights of the buildings were approximated from the Google Earth images of 

the site. This is shown in the satellite image of the site (see Figure 8-15). Heights were 

Figure 8-14 A) case study neighbourhood location in the city land use map. B) detailed urban design of the selected 
neighbourhood and boundary highlighted in colour edited by the researcher. (New Urban Communities Authority at 

The Ministry of Housing. Utilities & Urban Communities. [no date])  

 

A)         B) 

Figure 8-15 Selected neighbourhood current status (Gorelick et al. 2017) 
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approximated from the number of floors shown in this image to model the existing status of 

the neighbourhood.  

This helped create a model for the existing status of the neighbourhood (see Figure 8-16). The 

selected neighbourhood has an area of 237,866.71 m2, with 60% of this area dedicated to 

open spaces. The buildings in this neighbourhood came with two heights. Two typologies of 

the buildings had a four-floor height, and the other two typologies had a five-floor height. 

Assuming that one floor was 3.5 metres high based on the literature, these heights could be 

assumed to be 14 and 17.5 metres high for each group of typologies (Attia and Evrard 2013; 

 

A)         B)  

Figure 8-16 Model of the designed status of the neighbourhood A) the top view of the existing status of the 
neighbourhood. B) perspective view for the model. 

 

A)         B) 

Figure 8-17 Model of simulation results for selected neighbourhood A) the top view of simulation results the 
existing status of the neighbourhood. B) perspective view for the model results. 
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Sabry et al. 2014). This low density of built-up areas and low-rise buildings resulted in a low 

value of FAR. As shown in Figure 8-17, This neighbourhood has a 1.27 FAR value. The total 

built-up area for all the buildings calculated from the model was 51,339.91 m2. The total 

number of building prototypes was 256 buildings in the model. The model had a simulation 

of its solar radiation to act as a benchmark for the framework results. This simulation of solar 

radiation result was 224.8 kWh/m2.  

 Framework generation testing for the existing case study  

The boundary and the existing context of the selected neighbourhood were used as a fixed 

input to the framework. Another input consisted of the three main streets entering the 

neighbourhood. The streets were input as lines to be a starting point of the street generation 

process of the decoding spaces component. The generation process needed some editing to 

get the building footprints and urban voids closer to the model of the existing status of the 

neighbourhood. This included the changing of the urban voids percentage to match the one 

of the existing model. Another edit was to remove the entire built-up neighbourhood from 

the options of urban voids for the same reason. Another adjustment was to reduce the 

minimum distance between the streets to comply with the model distances. This changed 

from 50 metres in the previous studies to be 30 metres in this test. Also the built-up area 

width was reduced from 30 to 20 metres to allow for smaller building plots to be created and 

compared with the model of the existing case study. The classification of urban geometry 

went with no obstacles as the framework has followed its normal data flow.  

 ANN testing for the existing case study 

The framework prediction was tested by running a solar radiation simulation for 1,000 

random urban configurations and comparing its results with the framework prediction results 

for the same configurations. The results have shown a high correlation between the two 

results (see Figure 8-18). It had a 94% R2 value for the correlation, which is a significant 

positive correlation noting that the training data of this ANN node is generated from different 

settings, neighbourhood boundary and context conditions. The error was decreased in this 

prediction test due to the reduced number of buildings generated for each configuration after 
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increasing the urban void percentage. This led to a reduction of the error aggregation in the 

addition of tags prediction. 

 GA testing for the exiting case study  

The prediction test result led to the continuation of testing for the final stage of the 

framework. GA optimisation using Biomorpher was conducted on the whole pool of iterations 

using the simulated model as a threshold for the framework to achieve or enhance. The same 

procedure of testing the GA application previously was set to be conducted in this testing 
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Figure 8-18 Framework prediction testing results 

Figure 8-19 Existing case study GA optimization plot 



 Chapter 8                                                                     Genetic Algorithm Application and Framework Testing 

210 

phase. The time consumption took around 52 minutes for each generation. This was done for 

six generations. At the 6th generation, there was more than one cluster that had better 

performing iterations for solar radiation results and FAR values.  The plot of these six 

generations shows the development of the GA optimisation for the two fitnesses. It shows 

that the solar radiation values are decreasing throughout the six generations of this test, 

shown by the blue line, while the FAR was fluctuating in the red line (see Figure 8-19). Two 

representative clusters were performing better for both fitnesses. A solar radiation simulation 

was conducted for these two cluster representatives to get their actual simulation results. 

The simulation results are compared with the existing model results in Figure 8-20 and the 

FAR results. It can be seen that the performance for the two fitnesses are better performing 

for the two GA selected iterations. 

The final models of the two iterations are shown in Figure 8-21. It shows the top view and the 

perspectives of both iterations and the visualized results of the simulation. Iteration 2 had a 

FAR value of 1.4 and solar radiation of 221.2 kWh/m2. It has 108 buildings with a total built 

area of 64,295.4 m2. Iteration 1 had better-performing fitnesses. It had lower solar radiation 

with only 200 kWh/m2 and a 1.6 FAR value. It had fewer numbers of buildings with only 98 

buildings and a total built-up area of 55,128.4 m2.  
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Although both models had different settings regarding the urban void status, iteration 1 had 

 

1P) 

 

1T)         2T) 

 

2P) 

Figure 8-21 Two GA selected models and simulation visualization results shown in perspectives (P)and top views (T) for 
iterations 1 and 2 
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one central urban void space while option 2 had the randomly generated five urban voids 

scattered through the neighbourhood. The two provide further compactness than the existing 

model. Both of the GA models had fewer buildings with a larger built area, while the existing 

model determined the urban void percentage. Another note is that the typology of buildings 

in iteration 1 had courts in some buildings, which can be one reason for the lower solar 

radiation results. This highlights the importance of further investigation of the building 

typologies and their impact on this neighbourhood scale. The street network for the selected 

models has a different set of rules in its creation. Thus it resulted in the fragmented network 

shown for iteration one and the almost perpendicular one for iteration 2. This is another 

opportunity to develop the framework further to provide more defining parameters, shape 

grammar and classes that provide more control over the network, and test its impact when 

introducing some street network principles to the framework, like hierarchy.  This 

optimisation test was done in two days when considering the time consumed to edit the 

framework setting to match the existing neighbourhood model. These two optimally 

performing iterations can guide further development in the later design stages, considering 

that this is set to be an early stage of the design optimisation framework.  

This simple test shows the capability of the framework at its current status as a proof of 

concept. The framework at this stage provided a method of simplifying the geometry through 

classification, applying ANN to predict performance and GA for searching for a better 

performing alternative than the conventional design method.  

 

This chapter discussed the last phase of the framework: to apply the last stage of optimising 

the geometry based on its solar radiation results and floor area ratios. The framework used a 

Grasshopper plug-in that applies Genetic Algorithm (GA) methods, Biomorpher, That allows 

the control of iteration process limiting the time consumed for optimisation stage. Moreover, 

it has a clustering nature due to its cluster-oriented genetic algorithm that enhanced its time 

consumption and computational cost.  

The first stage of testing this application of GA principles within the framework was based on 

comparing its optimized results to the saved database of FAR and solar radiation results. This 

was for three sizes of the database. The first test was conducted with 1,000 available urban 
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configurations. Compared with the saved simulation database, the framework got the third 

optimal solution. At the same time, it ran for five generations taking around 4 hours using the 

ANN prediction with the Biomorpher clustering GA application. The following test was 

conducted with over half of the saved database. This test the importance of selecting the 

generation clusters feature in Biomorpher because of the need to eliminate the iterations 

that were not affected by the generation process limitations. The results of this test have 

reached the lowest possible solar radiation in the 20 highest FAR from the testing sample.  

The final test of the database was on the whole saved urban configurations. This test has 

shown a limitation of the GA tool about its capability to overcome its local optimal solution 

and look further for better performing results with different settings. This limitation can be 

evaded by the user interaction and choice of alternatives. The final database testing phase 

has led to finding the 5th optimal solution for higher FAR and lower solar radiation in a pool 

of 23,383 different urban configurations taking around 24 hours of running. This genetic 

algorithm runs with modification of cluster selection done by the researcher (see section 

8.3.3).  

Following these tests, the framework was utilized in an existing context. The selection of the 

existing neighbourhood was based on location in New Aswan, Egypt. This is one of the new 

Egyptian cities that was planned to host the expected urban growth. The neighbourhood 

design was modelled and simulated to get an insight into its density and solar radiation 

performance. The framework settings were edited to adapt to the existing case study 

geometry status. These edits included the change of available options of urban voids and the 

percentage of it. 

Moreover, the street network initial start was an input to the framework and the existing 

urban context model and site boundary. The geometry classification and tag creation for the 

buildings did not have any challenges because the flow of the framework did not change. The 

prediction testing achieved a high value of correlation compared to simulated results of the 

generated sample of the new generated pool of iterations. The last phase of optimisation 

utilizing Biomorpher was done with the same settings used in the database testing phase. The 

testing went for six generations with six hours to reach the two iterations that had a better 

performance for solar radiation and FAR values for the same neighbourhood boundary and 

context. The framework has proved its capability of finding a better performing iteration in a 
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short time that is convenient to guide and inform the decision-making process for the early 

stages of design. However, there is room for further investigation regarding some aspects, 

like the inclusion of building typologies and street network hierarchy as framework 

parameters. In its status as a proof of concept, the framework has shown a significant time-

saving capability along with accurate results in comparison with traditional methods of 

simulation. It has also shown its capability of classifying geometry on an urban scale, 

predicting its solar radiation performance and searching for optimally performing iterations 

in a large pool of iteration on a neighbourhood scale. This chapter has shown the potentiality 

of the methods used in this framework if implemented in further detailed neighbourhood 

scale models with even more performance aspects like energy demand and lighting 

availability, and outdoor thermal comfort, for example. 

 These outcomes will have a clear impact on the decision making process for similar weather 

conditions and globally, if modelled and trained, to further implement a data-driven approach 

in urban design for neighbourhood scale. This will benefit different stakeholders and decision-

makers to have performance-based decisions in the early stages of design which will help 

guide climate-resilient neighbourhood designs. For example, taking the Egyptian case study, 

applying such a method in Egypt's early neighbourhood design stages will provide some 

assistance to meet the local government’s aims and promises to achieve the United Nations 

Sustainable Development Goals. (United Nations Development Program UNDP 2015; 

Sustainable Development Goals Knowledge Platform 2021). This framework will also assist 

private sector owners, and real estate developers comply with these government plans and 

what it can save regarding the post-occupancy costs. 

On the one hand, Egyptian urbanised new cities and settlements are growing. It is important 

to highlight that there is a significant portion of this Egyptian urbanization owned and 

managed by the private sector. (Metwally and Soliman Abdalla 2013; Mohammed and 

Hammad 2019). While, prices for utilities, especially energy, are continuously rising. This 

means this urban growth has an economic challenge in addition to its environmental burden. 

All these factors are adding to the economic and environmental feasibility for novel 

performance-based design approaches provided by this framework at its final stage(Hongyun 

and Radwan 2021). Applying data-driven design solutions in early neighbourhood design 

stages allow different stakeholders to have a capable, clear and feasible design approach to 



 Chapter 8                                                                     Genetic Algorithm Application and Framework Testing 

215 

designing climate-resilient neighbourhoods. This research will guide urban design approaches 

and explain urban geometry dynamics to different designers, decision-makers, and 

policymakers. It will also interact with different design aspects like socio-spatial integration in 

design and informing participatory practices while informing the design stakeholders’ 

agendas with quantitative numerical performance data. 
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This chapter discusses the main findings and conclusions of this research. It also explores its 

innovative approach for performance-based design and optimisation and the possibility of its 

inclusion in the early stages of urban design, exemplified by the hot arid climate zone 

represented by Aswan, Egypt. It will also discuss the findings from testing this framework as 

a proof of concept and its capabilities and the opportunities for further development of this 

framework to be comprehensive and robust in guiding the neighbourhood early stage of 

design with performance-based data.  

The study in hand determined the effect of urban geometry on urban performance, 

specifically urban direct solar radiation, in an algorithmic approach 

The second aim of this study was to investigate the possibility of utilising this relationship in 

building a data-driven optimisation framework for the neighbourhood scale. To achieve this, 

the research investigated the geometrical impact on different aspects of performance in two 

different climatic conditions focusing on energy demand (see Chapter Four). The results of 

these preliminary studies and their analysis shaped the research scope towards creating a 

novel workflow that breaks urban neighbourhood models into a classified set of variables that 

relates to both building and urban levels (see Chapters Five & Six). The following was to 

implement ANN method on this geometry classification to predict its solar radiation and 

overcome the simulation computational and time costs (see Chapter Seven). The last part of 

this paper moved on to investigate and test the application of GA to optimise urban geometry 

based on its solar radiation results and FAR in Aswan, Egypt (see Chapter Eight). 

 

The literature has discussed the continuous development of computational modelling for the 

built environment and highlighted the complexity of creating urban models. Several studies 

have reviewed other aspects of urban geometry modelling and its impact on urban 

performance aspects using different scale models for simulation. Some of these studies have 

investigated the possibilities of utilising this impact in an optimisation process or method. As 

pointed by literature (see chapter two) , time consumption is also another challenge to search 

for performance-based design on an urban scale. This directed the research started with a 
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preliminary study that investigates the limitations of modelling and simulation state-of-the-

art tools. Also, it aimed to achieve a better understanding of the relative importance of 

geometrical variables within an urban context on the performance outcomes. 

This investigation used a simulation engine, named Ladybug tools, to run a sensitivity analysis 

on four geometric variables in an urban context using the parametric notion of Grasshopper 

platform and its VPL nature. The environmental performance aspects were chosen for this 

sensitivity analysis focused mainly on energy demand and, as shown in appendix A, solar 

radiation and daylighting availability. This was tested for one cooling-oriented weather file, 

Aswan, Egypt, and another heating-oriented one, London, UK. The test for Aswan was with 

materials based on literature settings then repeated with ASHRAE's recommended set of 

materials for the tested locations. The settings and results of these preliminary studies are 

shown and discussed in Chapter Four.  

These sensitivity analyses clarified the tested variables' impact on energy demand for heating 

and cooling. This was calculated by grouping iterations based on its variables and measure 

the impact caused by the variation of each geometrical variable. It showed the order of this 

impact on energy demand between the tested variables for both tested locations. The order 

of this relative importance changed between London and Aswan, as shown in Figure 4-17. 

This was done on the scale of the tested building by summing up all zones results.  

These results have achieved the goal of understanding the relative geometrical importance 

of energy demand and provided a clear understanding of quantifying these differences 

between geometrical variables for both tested locations. Although there is a difference in 

impact order between the two chosen locations, the parameters with contextual impact, 

height, and built area ratio had more significance than the other two variables related to 

building typology and orientation. Another stage of analysing energy demand followed this 

analysis stage to investigate these results on the zones' level and orientation. This analysis 

showed a clear pattern of energy demand for each of cooling and heating. It was proved that 

zones with more exposure to the outdoor had significantly different energy demand profiles 

than zones that fall on more adiabatic floors. In addition, this study illustrated the challenges 

and limitations of conducting such a comprehensive simulation on an urban scale. It also 

provided a clear understanding of the needed computational power to run this amount of 

simulations. These results lay the groundwork for the following steps of the research scope.  
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The preliminary studies utilised parametric modelling tools to investigate the capability of 

generating different models with a set of variables to break down the challenge of urban 

modelling complexity into its essential geometrical variables. This approach proved helpful 

in expanding our administration of urban modelling complexity by breaking it down to its 

geometrical parameters. These results added to the growing body of research that highlights 

the relationship between geometry and performance. Moreover, it helped to establish the 

framework's classification approach to achieve the research aim of optimising neighbourhood 

geometry based on performance aspects. As to urban performance aspects, preliminary 

studies compelled the research scope to investigate optimising direct solar radiation in 

neighbourhoods due to its low computational costs and time consumption. This thesis scope 

is a proof of concept for the framework capabilities and objectives. This study has shaped the 

methods used in this research to create this framework as a proof of concept to generate 

neighbourhood models, classify it based on geometrical features, predict its solar radiation 

performance to overcome the time constraint and provide an optimal solution to fulfil the 

aim and guide different stakeholders in the early stages of design.  

 

The research scope started with setting out the pool of iterations available for testing. Based 

on literature and preliminary studies, generating these iterations focused on emphasising the 

chosen platform of modelling (Mcneel 2014). This generative modelling stage was done by 

dividing the workflow into two parallel routes, one for the generated geometry and another 

for creating a classification attribute. The initial generation of the model used generation 

components from a ready-made plug-in for the modelling platform, Decoding Spaces (Koenig 

et al. 2017). The choice of both the modelling platform and the plug-in as the initial generation 

step of the framework was to fulfil the literature recommendation of creating more accessible 

tools for users, allowing for more user agency. It was recommended to reduce dependency 

on ready-made plug-ins, known as "black box" tools that did not allow for much user 

interaction. This reason was also the drive to add more capabilities to the ones that were 

available in Decoding Spaces.  

The final version of the generation and classification workflow consisted of ten classes that 

varied between generative and analytical modelling tasks. The generative modelling tasks 

received multiple user inputs to control the model and its possible variations. At the same 
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time, the analytical classes were responsible for providing the geometrical analysis needed to 

classify each building characteristics as an attribute to the geometrical models. The whole 

process is discussed in detail in Chapter Five. This work also showed some limitations of the 

used tool. Some of the generated options had irregular configuration forms due to some short 

comes of the tool. Dependency on a continuously developed tool was another limitation for 

this plug-in and other plug-ins during the development and testing of the framework.  

This work contributes to existing knowledge of urban parametric modelling methods by 

providing a novel way of generating geometrically classified urban modelling iterations. This 

approach has proved helpful in expanding our understanding of how to handle urban 

modelling complexity by analysing and classifying geometrical characteristics. This complexity 

breakdown provided an addition to the initially used plug-in and the conventional practice of 

parametric urban modelling by adding this novelty of producing a list of text classification tags 

of the neighbourhood buildings' geometrical attributes, in addition to its capability of 

controlling generated model in terms of height distribution, urban voids placement, and 

percentage. The generation framework also proved its capability of accepting different 

geometrical contextual conditions by testing its generative and classification capabilities with 

varying boundaries of neighbourhoods.  

 

Chapter Six is discussing the classification database setup and the iteration pool settings. 

Besides, it goes through multiple stages of investigation and development for the 

classification tag as data texts. The principal theoretical implication of this classification is 

that its capability to find similarities to overcome the simulation time consumption 

limitation, highlighted by the preliminary studies. Thus, research has also developed a text-

based lookup to compare the generated tags to the saved database to find similar buildings 

in the generated neighbourhoods. This data handling and automation of the iteration process 

have allowed additional capabilities to allow the dynamic generation of different 

neighbourhood models.  

The generation of the classification tags into clear numeric textual nature preserved 

accessibility to users while allowing for applying machine learning methods to these datasets. 

This was fulfiling the purpose to investigate the potentiality of predicting simulation results 
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utilising ANNs principles to enhance the time consumption of the process. Chapter Seven 

shows the phases of implementing these ANN principles on a dataset of classification tags 

attached to its saved direct solar radiation simulation results. It started with a trial of a ready-

made plug-in that offered the application of ANN in Grasshopper platform. Following this, the 

research developed its own bespoke ANN node. This ANN node is initially an open-source 

python code (The Codacus 2017). The code had fewer library dependencies to allow for future 

development and further access to this framework component. This process went through 

multiple phases of development and testing of this node and its capabilities of predicting solar 

radiation results for the classified database.  

Testing this python coded component was shown with different dataset scales and was 

conducted over three different testing groups. The first group was on buildings level, 

comparing building solar radiation results directly to predictions from trained ANN for 10,000 

buildings and its classification tags. Another group was for 100 urban configurations that we 

are sharing some geometrical generation settings to the configurations used in training the 

ANN. The final group was for another 100 urban configurations selected randomly from the 

total pool of available iterations. Urban accuracy tests were done by summing the complete 

ANN prediction results with the tags found by the lookup code to compare them with urban 

solar radiation simulation results.  

These tests were done on unseen datasets for four different sizes of training to examine the 

appropriate size of the needed training to reach for a significant accuracy. The different 

dataset sizes were 10000, 20000, 150000 and 200000 entry databases. The final test was 

repeated with varying training settings, and the testing was for both trained ANNs. These test 

results are shown in section 7.2.3.  

The assessment of time-saving performance is calculated by comparing the time consumed 

by the ANN node with the time consumed by the conventional simulation methods. On a 

building level, ANN tags' prediction consumes 3% of the simulation time. This is due to 

predicting the whole set of building tags for a configuration in one run instead of simulating 

each building with its different context and getting its results. 

It is important to note that the training time is not factored into these comparisons due to 

the difference in the number of buildings and configurations used by these trained ANNs. 
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Moreover, solar radiation simulation is one of the least time-consuming simulation aspects 

compared to other simulation aspects like energy demand or daylighting performance. This 

finding result shows the potential of utilising this classification method accompanied by ANN 

predictions to get even better time-performing frameworks that will reach even better time-

saving results for other more time-consuming aspects of environmental performance. 

For accuracy assessment, the aim focused on the prediction accuracy without giving attention 

to the impact of the individual parameters on the prediction results. Therefore accuracy was 

measured by R2  value results (Zikmund et al. 2003). The final test of 200000 dataset results 

for the similarly selected 100 configurations was 0.99 R2 value for the tested training sample. 

As shown and discussed in section 7.3, This value was lower for the randomly generated 100 

configurations predictions' correlations shows that R2 value result was 0.83. This difference 

in correlation coefficient values for the two groups of urban configuration predictions can 

show the impact of similarities between the tested configurations and the ones used in 

training. The accuracy achieved in these tests has passed the significance level suggested by 

(Henseler et al. 2009), where it is essential to mention that the level of an acceptable R2 value 

is rarely determined. However, these achieved accuracy levels can be found similar to other 

investigations of applying ANN methods on different data sets and for different prediction 

goals in the urban design context (Chan & Chau, 2019; Lin et al., 2020). These correlation 

findings are in line with the building accuracy results, which achieved a 0.93 R2 value. 

These results have shown the significance of applying ANNs to predict solar radiation on the 

neighbourhood scale. Moreover, it emphasised the impact of investigating the relationship 

between geometry and environmental performance on the urban level. It demonstrated a 

direct benefit of exploring this relationship on enhancing the early stages of the design 

decision-making process and promising optimisation of both its function and product. This 

enhancement was done by illustrating the impact of this classification method when utilised 

in predicting solar radiation performance and its capability of saving simulation time and cost 

while achieving acceptable accuracy. It also provided a novel way of tackling the design 

problem through technology and highlighted some of the potentialities and challenges of the 

data-driven design methods. 
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These findings laid the ground for further investigation on other aspects of environmental 

performance, energy demand, daylighting availability, etc..,  to allow for faster, more efficient 

and informed decision making in the early stages of urban neighbourhood design.  

 

The final stage of this research was to investigate the potentialities of optimising 

neighbourhood geometry based on its solar radiation prediction achieved by the developed 

ANN. Optimisation of the design was by selecting the optimal solution within the available 

pool of iterations. This was done with attention to the importance of tackling the time 

constraint to provide an efficient inclusion of data-driven solutions in the early stages of 

design. Another aspect to take into consideration was the aim of keeping the framework 

accessible to its users. For these goals, the framework used a ready-made open-source tool 

available on Grasshopper platform and named Biomorpher. This tool allowed for user 

interaction within the generative process to assess and determine the direction of the 

optimisation process. Chapter Eight illustrates the different tests conducted using 

Biomorpher as a tool for optimisation within the framework scope. The tool input was live 

from ANN prediction results. The framework had FAR added as an extra fitness to ensure this 

multi-objective optimisation process had less bias in determining its optimal solution based 

on one fitness while ignoring any other, sometimes contradicting, fitnesses.  

 The first phase of testing continued the same pool of iterations set at the beginning of 

developing the framework. The tests varied in size by testing the framework to find optimal 

solutions within smaller portions of this pool, simply reducing the iteration number to make 

it easy for the framework to get to the optimal solution within what is available for it. These 

tests were on 1000, 12000 and 23328 (total number of available urban configurations in the 

pre-set pool of iterations).  

The final and largest test resulted in finding the 5th optimal solution based on the two 

determining fitnesses in around 24  hours, saving more than 80% of the time needed to run 

the 23328 simulations to get the optimal solution through conventional ways.  

The following and final phase of testing was conducted on an existing neighbourhood to 

examine the framework's capability of running a generative optimisation process on an 

existing neighbourhood boundary and the extent of optimisation it can achieve against a 
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conventionally designed neighbourhood sharing the same climatic conditions. The tests were 

done on a selected neighbourhood in the city of new Aswan, Egypt, after building the exiting 

model and running its solar radiation simulation to benchmark the framework results. In this 

test, ANN predictions were also tested for 1000 generated buildings in this neighbourhood 

geometry to test the classification capability and its achieved accuracy. This test resulted in a 

0.94 R2 value for positively correlated predictions compared to the simulation results of the 

same generated buildings. These results came in line with the previous ANN findings showing 

consistent results while changing the context and boundary, yet following the same 

generative and classification methods. Biomorpher ran for six generations for optimisation 

capability testing, taking less than 6 hours while reaching more than one better-performing 

iteration than the benchmarked existing neighbourhood design. Two of the optimal solutions 

were simulated to compare the solar radiation results to the benchmark. Both results of the 

simulation were again better performing than the existing design while providing higher FAR 

results. It is important to note that the optimal solutions' building typologies were different 

from the existing ones, resulting in lower buildings with larger plots and denser urban 

configurations.  

 

These concluded results emphasised this proof of concept capability of optimising urban 

neighbourhood geometry based on its solar radiation predictions. It also provides a 

constructive method of handling urban complexity through the classification of its 

geometrical features. This outcome responds to the research scope of investigating the 

relationship between geometry and its performance and utilising this relationship into a novel 

data-driven optimisation framework that enhances the process and the product of early 

stages of neighbourhood design. Although it is still a proof of concept, this framework allows 

decision-makers, planners, architects and real estate developers to make performance-based 

decisions in the early stages of neighbourhood design as it provides a time saving, accurate, 

accessible and efficient process of solar radiation optimisation.  

Currently, the framework's can contribute to providing a roadmap to benefit from the link 

between geometry and performance on the urban level. The framework managed to illustrate 

a method of overcoming urban complexity by classifying geometrical features allowing for the 



 Chapter 9                                                                                                                                         Conclusion  

225 

implementation of ANN application and GA optimisation to alleviate the computational and 

time cost challenge facing the data-driven approach in the early stages of urban design.   

This research lays the ground for further development of the framework and its methods. 

Once this approach of data-driven design gets validate will influence the decision process in 

the early stages in design within the local policy and regulation of the designed project. For 

the Egyptian case, there is a continuous increase in urbanisation (World Bank group 2019). 

The current government plans more urban growth to accommodate this grown urban 

population in new cities and communities (Egyptian New Urban Communities Authority 

2020). These newly developed cities have a significantly large portion of it planned with 

private sector developers to be gated communities or private owned neighbourhoods 

(Metwally and Soliman Abdalla 2013; Mohammed and Hammad 2019). At the same time,  

Egypt is proposing its 2030 vision which aims to fulfil the United Nations Sustainable 

Development Goals (SDGs) (United Nations Development Program UNDP 2015; Sustainable 

Development Goals Knowledge Platform 2021; United Nations Development Program UNDP 

[no date]). This tool assists different stakeholders in analysing these new urban expansions 

and communities with evidence-based design decisions in the early design stages. In Egypt's 

case, the benefits of using such a framework will help governmental decision-makers and 

planners and extend this benefit to private sector real estate developers and architects and 

urban designers. This method of including data-driven design in the early stages of urban 

neighbourhood design complies with the current movement towards climate-resilient new 

urban communities in Egypt.   

The findings also open the door for further development to build a robust and better visually 

presented tool capable of conducting urban geometry optimisation for other aspects like 

daylighting availability and different climates, as long as it is thoroughly tested and prepared. 

It can be argued that these outcomes would lead to a significant change of the early stage of 

neighbourhood design as it will allow for more climate-based performance to guide the 

geometry and urban configuration across the neighbourhood scope. 

 

This thesis has provided a deeper insight into the relationship between geometry and 

environmental performance on an urban scale. The contribution of this study confirmed the 
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capability to enable the inclusion of climate-based optimisation in the early stages of design 

for a neighbourhood scale as a proof of concept in Aswan, Egypt.  This was achieved through 

the different stages of parametric generation and classification data flows. Moreover, it has 

shed new light on the implementation of Artificial Intelligence to enhance the time 

consumption of the simulation process to include performance-based decisions in the early 

stages of design on an urban scale. This took place in predicting the performance of urban 

configurations utilising Artificial Neural Networks and using a cluster-oriented genetic 

algorithm tool to conduct geometry optimisation on an urban scale for newly designed and 

existing contexts. However, it is essential to note that it is still a proof of concept. Therefore, 

The future work of developing this framework aims for a robust tool capable of efficiently 

conducting optimisation to include performance-based knowledge in the early stages of 

urban design with a user-friendly interface. So far, the framework is hosted on Grasshopper 

due to its accessibility to architects and designers. Yet, it will get an even more accessible and 

user-friendly interface in its final versions to reach more users and hopefully reach the stage 

of having a framework capable of generating optimised models for neighbourhood 

configurations with acceptable visualised performances.  

This framework has shown the potential benefits of following these methods of prediction 

and optimisation. Future studies may investigate the same techniques on more complex and 

computational costly simulation aspects like energy demand, lighting availability, outdoor 

thermal comfort, etc., which will give a further comprehensive analysis of the urban geometry 

in the early stages of design.  

The framework also will be developed to have the capabilities to be conducted on different 

climate conditions and weather files. This will be done by building the needed dataset for 

training the neural network to predict urban performance in these climate results. 

Another methodological advancement is to add weights to the classification fragments based 

on their relative impact on investigated performance aspects. This will be done through more 

data analysis and engineering phases that will determine the used fragments impact on 

performance and assign weights on it while training the ANN for prediction. This will build an 

even more accurate flow of generation, classification, prediction and optimisation for 

neighbourhood designs in these different climate zones.
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  Geometrical parameters and simulation settings  

The first stage of the preliminary   study was conducted on energy demand for heat loss and gains while lighting consumption was normalized 

by setting the lighting controls to a static ON/OFF controls system. The building areas varied from 50% to 90% of each cell’s area with a 10% 

differentiation for each group. In addition to scale, the height was a feature of geometrical variation in the study. Building heights varied between 

3.5 metres and 24.5 metres with variation of a 3.5 metres floor height for each group. Moreover, the whole configuration is rotated by 11.25 

degrees for each group of rotations creating five groups. Finally, the case study building has a fixed WWR for its four direction facades. The WWR 

varied between 20% and 80% with a 10% variation for each group iteration. These variables are shown in the following table 

Geometrical parameters for the first phase of the sensitivity analysis 

Geometrical Variables 

Height (metres) 3.5 7 10.5 14 17.5 21 24.5 

Scale (built area ratios) 50% 60% 70% 80% 90%   

Orientation (degrees) 0 11.25 22.5 33.75 45   

Window-to-wall ratio 20% 30% 40% 50% 60% 70% 80% 

These parametric variations created 1,224 iterations. The simulation was done for heights then repeated with a changed built area ratio then 

with a different orientation and finally with the change of WWR.  

The analysed building has a 30% core to perimeter ratio. Energy Plus midrise apartment zone programs were chosen for the building zones with 

the apartment program for the perimeter zones and corridor program for the core zones. All zones are conditioned with the default set ideal air 

loads system for Heating, Ventilation and Air Conditioning (HVAC). The grid cell size is 23 by 23 metres as representing the common size of land 

in Egypt (El-deep et al., 2012) 

  Material inputs  

The inputs for material were adjusted based upon some studies made in the same geographical context (El-deep et al. 2012; Attia and Evrard 

2013). The material properties were fixed for all the iterations and designed based upon the specification of the Chartered Institution of Building 

Services Engineers (CIBSE) Guide for environmental design (Butcher 2006). Following table shows the material parameters used in the study. 

The material parameters used in the study 

CUSTOMIZED MATERIALS 

External Wall Internal Wall 

U-Value 3.10 U-Value 5.29 

Materials CEMENT PLASTER 

BRICK (EXPOSED) 

CEMENT PLASTER 

Materials CEMENT PLASTER 

BRICK INTERIOR (EXPOSED) 

CEMENT PLASTER 

Internal Floor External Roof 

U-Value 1.43 U-Value 0.36 

Materials CERAMIC-FLOOR-TILES 

CEMENT-MORTAR(MOIST) 

CONCRETE CAST(HEAVYWEIGHT)  

GYPSUM-PLASTER 

Materials CEMENT-MORTAR(MOIST) 

EXPANDED POLYSTYRENE (EPS) 

CONCRETE, CAST (HEAVYWEIGHT) 

Single Glazed Window   

U-Value 5.7   

Materials CLEAR GLASS 3MM   
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  Results  

As shown in the following figure,The results show a repetitive pattern of consumption for cooling. Where the consumption is reduced with the 

variation of heights the consumption continues descending for the next built area ratio group. There is a minimal effect to this loop from the 

orientation changes until the first group of WWR changes, and then there is a clear step in the consumption pattern, starting the next loop of 

readings. This step of change gets smaller with higher values of WWR. Furthermore, the results illustrated the clear correlation between solar 

gains and cooling consumption.  

This repetitive nature of the results encouraged the addition of another performance aspect to get a better insight about the performance. 

Therefore, the following phase added daylight availability as a core performance aspect to get this balance of performance between the energy 

demand and the daylighting availability, especially with the fact that WWR is affecting the results pattern significantly.  

 
The comparison is for cooling and lighting energy consumption, once with lighting dimming controls and the other with standard on/off lighting controls. 

The six groups are categorized by rotation angle and WWR for each group and each group has full heights and scale ranges mentioned earlier 

(see following figure). The groups are as shown in the following table. 

 

Figure of  Group intervals for each parameter on the chart for the first 200 cases 
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Figure of Annual solar gains and cooling energy consumption correlation 

0

100

200

300

400

500

600
1

3
3

6
5

9
7

1
2

9

1
6

1

1
9

3

2
2

5

2
5

7

2
8

9

3
2

1

3
5

3

3
8

5

4
1

7

4
4

9

4
8

1

5
1

3

5
4

5

5
7

7

6
0

9

6
4

1

6
7

3

7
0

5

7
3

7

7
6

9

8
0

1

8
3

3

8
6

5

8
9

7

9
2

9

9
6

1

9
9

3

1
0

2
5

1
0

5
7

1
0

8
9

1
1

2
1

1
1

5
3

1
1

8
5

1
2

1
7

Annual Cooling Energy Consuption 

Figure of Annual cooling consumption for 1,224 iterations 



 Appendices          Apendix A 

 

256 

Table of Features of the six groups 

Group name Rotation angle WWR 

A1 0 20% 

A2 0 50% 

A3 0 80% 

B1 45 20% 

B2 45 50% 

B3 45 80% 

 

 

A1        A2  

 

 

A3        B1 

 

 

B2        B3 

Figure shows six example cases of the six groups  
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  Remarks on general lighting results  

The lighting energy consumption results for the six groups are shown in the following figure,  Each group of seven high buildings is shown by the 

major vertical guidelines. Each group has a different built-up area ratio increasing from 50% in the group from index 1 to 6 until it reached a 90% 

built-up ratio for the group starting at index 29 to 35. The initial observation shows a direct effect on daylighting availability distribution. The 

first notice of the result is that the WWR grouping has a pairing effect on the results. This is shown in that the A trend lines have a close trend 

line with the B groups. This shows that the orientation does not have as much significance as the WWR. After the direct effect of WWR the scale 

and the context proximity also show a great effect, especially in the lower floors in the higher cases which leads to the rise of lighting energy 

consumption. The margin of consumption for each height group increases simultaneously by the increase of built-up area ratios. Further, there 

is a gap between the consumption of the seven-floor-height prototype and its following one-floor-height prototype: the gap increases and 

becomes clearer with the increase of built-up area ratios for the groups A3 and B3 of .8 WWR, while it does not show as significant for groups 

A1 and B1 with .2 WWR which have a smoother trend line. For each height group, the increase of height also brings an increase of lighting energy 

consumption. This can caused by the increase of lit area and the increase of shaded areas, due the context getting higher and the lower floors 

receiving less daylighting. It is important to note that the whole margin of the lighting energy consumption falls in a small range from almost 34 

kWh/sqm to almost 48 kWh/sqm for the whole range of iteration. As per cooling consumption, the pattern of consumption does not have the 

same baseline of applying the on/off controls as the one existing for lighting, so it will be included in the discussions of the groups’ results.  

Figure shows the Lighting consumption patterns of the six groups compared with no dimming kWh/m2 results 
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  Group A1 (rotation = 0, WWR = 20%) 

The general note here in the following figure is the general decline of cooling consumption over the whole group due to the increase of built-up 

area ratios for the results of both diming and no dimming lighting controls, while the light energy consumption does not show the same impact 

occurring due to the iteration either for height or built-up area ratios. Another note for the cooling energy consumption within the height groups 

is that it starts with a slight increase between one- and two-floor-height iterations then starts the continuation of its general decline of the trend 

line.   

  Group A2 (rotation = 0, WWR = 50%) 

The change in values for cooling is different from the previous group as the bigger the built area and higher the configuration the more apparent 

the difference. With regard to lighting energy consumption, the change of urban configuration has more effect in this case on the dimming 

controls due to the bigger WWR ratio. The decline pattern is steep with the lower values of built area ratios which means the height is now as 

effective when it comes to larger built-up area ratios. This can be reasoned by the fact that less sun penetration is allowed to the configuration 

which minimizes the effect of height in comparison with built-up area ratios due to the proximity of buildings. This change in cooling consumption 

pattern is still consistent. 

  Group A3 (rotation = 0, WWR = 80 % ( 

The effect of outdoor geometrical changes is more apparent in this group on lighting consumption with dimming controls applied. On the other 

hand, the cooling values are getting reduced for the densest configurations. Then, the dimming-applied model begins to have a fraction of higher 

values of cooling consumption, but this did not change the pattern of cooling consumption consistency between different lighting controls. 

Figure of Annual cooling & lighting consumption results comparison for group A1 
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Figure of Annual cooling & lighting consumption results comparison for group A2 
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  Group B1 (rotation = 45, WWR = 20%) 

In general, the values of energy consumption for cooling and lighting are getting closer to group A1 when the configuration gets dense. 

Furthermore, the values are closer when it comes to one-floor runs and then continues to repeat the pattern again with the repetition of heights 

with different scales. 

  Group B2 (rotation = 45, WWR = 50%) 

The pattern and almost the same difference in consumption values are repeated in this group again with the same proximity in the lower heights 

lighting consumption values of group A2. 

  Group B3 (rotation = 45, WWR = 80%) 

The main difference in this group is that the lighting values are almost like group A3 due to the high value of WWR. But the cooling still has the 

same pattern of proximity to group A3. 

Figure of Annual cooling & lighting consumption results comparison for group B2 
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Figure of Annual cooling & lighting consumption results comparison for group A3 
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Figure of Annual cooling & lighting consumption results comparison for group B1 
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  cooling lighting availability and heating energy demand correlation 

There is also a significant finding about the impact of differentiating lighting control systems on cooling consumption for the six different groups. 

There is a continuous linear correlation for the two lighting control systems on the results of cooling consumption.These linear correlations are 

a further reason for rerunning the simulation with a set of materials that is based on the ASHREA benchmark recommendation for this climate 

zone and other climate zones with different cooling and heating requirements. 

Figure of Annual cooling & lighting consumption results comparison for group B3 
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A) 

 

B) 

Figure of The linear correlation of the comparison between the cooling consumption with standard ON/OFF 
lighting controls (vertical axis) and the cooling consumption with Dimming Lighting controls (horizontal axis) for 
A) groups A1, 2 and 3 and B) groups B1, 2 and 3 
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  Heating lighting availability and heating energy demand correlation 

Heating energy demands in the London and Birmingham cases have shown a clear linear correlation between the two ways of calculating the 

energy performance with the change of lighting controls. The change of lighting control systems affected the values of calculated energy 

consumption for heating demands without changing the patterns of this consumption. 

The correlation between lighting and energy demand proved to exist throughout the three selected climate conditions. This linear correlation 

shows that there is a balance between energy demand and the lighting analysis. The patterns of energy consumption for heating and cooling 

purposes did not show a significant change in response to the essential change of lighting controls and its sensitivity to the actual daylight. This 

means that the change of lighting controls did not affect optimal solutions by adding more sensitivity to the daylight provision in the zones. This 

emphasized the opportunity to run a holistic simulation through a sequential approach as a way of breaking down the environmental 

performance simulation on an urban scale in a multistage framework.  

 

 

 

A) 

 
B) 

 
Figure of shows the linear correlation between heating energy demand for the two different lighting 

methods used in A) Birmingham, UK, B) London, UK  
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  Material inputs  
 

 
Birmingham, UK 

Material name U-value 

ASHRAE 90.1-2010 Extwall Mass 

Climate Zone 5 

0.55 

Interior Wall 2.58 

Interior Floor 1.44 

ASHRAE 90.1-2010 Extroof Iead 

Climate Zone 2-8 

0.28 

ASHRAE 90.1-2010 

Extwindow 

Nonmetal 

Climate Zone 5-6 

1.98 

  Relative importance results  
 

 

 

 

Figure of Different height groups’ relative importance for heating, cooling and lighting (with dimming) energy 
consumption for Birmingham, UK  
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Figure of Built-up area ratio variations’ heating consumption average comparison in kWh/m2, built-up area 
ratio variations’ bound correlated in kWh/m2 for Birmingham, UK 

 

Figure of WWR variations’ heating consumption average comparison in kWh/m2, WWR variations’ bound 
correlated in kWh/m2 for Birmingham, UK 
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  Detailed zone energy demand analysis  
 

 

 
 

 
Figure of Orientation variations’ heating consumption average comparison in kWh/m2, orientation variations’ 

bound correlated in kWh/m2 for Birmingham, UK 
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Figure of One-floor prototype heating consumption results average per orientation for Birmingham, UK 
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Figure of Two-floor prototype heating consumption results average per orientation for Birmingham, UK 
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Figure of Three-floor prototype heating consumption results average per orientation for Birmingham, UK 

40

45

50

55

60

65

70
north heating kWh/m2

NE Heating kWh/m2

east heating kWh/m2

SE Heating kWh/m2

south heating kWh/m2

SW Heating kWh/m2

west heating kWh/m2

NW Heating kWh/m2

Birmingham  heating consumption average for zones in different orientations 
(four-floor prototype)

1 Avg.

2 Avg.

3 Avg.

4 Avg.

Figure of Four-floor prototype heating consumption results average per orientation for Birmingham, UK 
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Figure of Five-floor prototype heating consumption results average per orientation for Birmingham, UK 
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Figure of Six-floor prototype heating consumption results average per orientation for Birmingham, UK 
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Figure of Seven-floor prototype heating consumption results average per orientation for Birmingham, UK 
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12  Appendix B (preliminary study code) 
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Grasshopper canvas high resolution screen shot for the pilot study including custom materials and ASHRAE materials (source : author) 
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13  Appendix c (Geometry & classification tag ) 
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14  Appendix D (ANN prediction) 
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Grasshopper canvas high resolution screen shot for ANN training class (source : author) 
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def trainNetwork(net, inputs, outputs, errorThreshold, maxIterations, eta, alpha): 

    Neuron.eta = eta 

    Neuron.alpha = alpha 

    for i in range(maxIterations): 

        err = 0 

        for j in range(len(inputs)): 

            net.setInput(inputs[j]) 

            net.feedForward() 

            net.backPropagate(outputs[j]) 

            err = err + net.getError(outputs[j]) 

        # print "error: ", err 

        if err < errorThreshold: 

            break 

    return net 

# Build Network 

net = Network(topology) 

net = trainNetwork(net, inputs, outputs, errorThreshold, maxIterations, eta, alpha) 

nn = net 

The training network added class (source : author) 

tempList = [list(i) for i in testData.Branches] 

input = [] 

for i in range(len(tempList[0])): 

    newList = [] 

    for j in range(len(tempList)): 

        newList.append(tempList[j][i]) 

    input.append(newList) 

net = nn 

output = [] 

if isinstance(input[0], list): 

 for anItem in input: 

  net.setInput(anItem) 

  net.feedForward() 

  output.append(net.getResults()) 

else: 

 net.setInput(input) 

 net.feedForward() 

 output = net.getResults() 

print output 

Prediction component code 

def trainNetwork(self, trainingInputs, trainingOutputs, validationInputs, validationOutputs, errorThreshold, 

maxIterations, eta, alpha): 

        Neuron.eta = eta 

        Neuron.alpha = alpha 

        iter = 0 

        stop = 0 

        while (stop == 0): 

            trainingError = 0 

            validationError = 0 

            for i in range(len(trainingInputs)): 

                self.setInput(trainingInputs[i]) 

                self.feedForward() 

                self.backPropagate(trainingOutputs[i]) 

                trainingError = trainingError + self.getError(trainingOutputs[i]) 

            trainingError = trainingError / len(trainingInputs) 

            validationError = trainingError*2 

            if iter >= maxIterations*0.25: 

                validationError = 0 

                for i in range(len(validationInputs)): 

                    self.setInput(validationInputs[i]) 

                    self.feedForward() 

                    validationError = validationError + self.getError(validationOutputs[i]) 

                validationError = validationError / len(validationInputs) 

                self.mseList.append(validationError) 

            iter = iter + 1 

            if iter >= maxIterations: 

                stop = 1 

            elif validationError < errorThreshold: 

                stop = 2 

            elif validationError < trainingError: 

                stop = 3 

        self.iterations = iter 

        self.stop = stop 

        return self 

 
Training the neural network class in its final version 


