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Abstract

Demand forecasts are the basis of most decisions in supply chain management. The

granularity of these decisions, either at the time level or the product level, lead to dif-

ferent forecast requirements. For example, inventory replenishment decisions require

forecasts at the individual SKU level over lead time, whereas forecasts at higher levels,

over longer horizons, are required for supply chain strategic decisions, such as the lo-

cation of new distribution or production centres. The most accurate forecasts are not

always obtained from data at the ’natural’ level of aggregation. In some cases, forecast

accuracy may be improved by aggregating data or forecasts at lower levels, or disaggre-

gating data or forecasts at higher levels, or by combining forecasts at multiple levels of

aggregation. Temporal and cross-sectional aggregation approaches are well established

in the academic literature. More recently, it has been argued that these two approaches

do not make the fullest use of data available at the different hierarchical levels of the

supply chain. Therefore, consideration of forecasting hierarchies (over time and other

dimensions), and combinations of forecasts across hierarchical levels, have been recom-

mended. This paper provides a comprehensive literature review of research dealing with

aggregation and hierarchical forecasting in supply chains, based on a systematic search

in the Scopus and Web of Science databases. The review enables the identification of

major research gaps and the presentation of an agenda for further research.
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1. Introduction

Forecasts are required to support most of the decisions in managing the supply chain.

Two of the main dimensions that characterise the granularity of the decisions are the time

and the product. For the product dimension, decisions go from the individual SKU level,

such as in inventory control, up to the level where all SKUs are considered, such as in ag-

gregate capacity planning. For the time dimension, operational decisions are made at the

daily or weekly levels, whereas tactical and strategic decisions are made at monthly and

yearly levels. At the strategic level, supply chain managers deal more and more with an

uncertain capacity and face increasing market and technological changes, which pushes

them to consider the assortment of all products offered to those markets when manag-

ing capacity and deciding about distribution channels (online, store or omnichannel).

At the tactical level, decisions are taken about product assortments, and production and

warehousing capacities. Finally, at the operational level, decisions are made to control

activities such as inventory replenishment, production schedules, transportation plans,

workforce rostering and after-sales services.

1.1. Framework

Traditionally, planning processes at different levels have been conducted independently.

It is now recognised that there are advantages of co-ordinating logistical plans through a

‘Sales and Operations Planning’ process (Harwell 2015, Lapide 2016, Fildes et al. 2019).

This is intended to ensure coherence between strategic, tactical and operational plans

and decisions across long-, medium- and short-term horizons, and determines why fore-

casts are needed, as indicated in the leftmost column of Figure 1. This figure aims to

give a unifying framework for the topics covered in this review. The arrows going from

left to right show how planning and decision processes should inform forecast require-

ments and different ways in which forecasts may be implemented. The bottom arrow,

going from right to left, indicates that the final forecasts should inform the planning and

decision processes.
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Figure 1: Framework for aggregation and hierarchical approaches in demand forecasting

Figure 1 Alt Text: A box with three levels of the planning and decisions processes (strategic, tactical and

operational), leading to a box with the forecast granularity requirements, leading to a final box with the

hierarchical and aggregation methods

The granularity of the forecasting requirements, both cross-sectionally and temporally,

should be determined by the planning and decision requirements. These links are shown

by the dashed arrows between the first and second columns of Figure 1. For example,

as discussed earlier, an inventory replenishment decision requires short-term forecasting

over lead time at the individual SKU level. Considerations such as these address the

question of what to forecast.

It has also become evident that forecasting methods can be conducted at all levels simul-

taneously. Forecasting at different levels does not have to rely only on data at the level of

interest. The question of how to forecast can be addressed by methods that utilise data

or forecasts at any level of the hierarchy (shown by the arrows between the second and

third columns in Figure 1). This change in perspective opens up opportunities for differ-

ent approaches to forecasting, by combining forecasts over different levels of a hierarchy.
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Alternatively, forecasts can be derived using bottom-up or top- down methods, shown

by the vertical arrows in Figure 1 and discussed further in the next sub-section.

1.2. Aggregation Approaches

Different aggregation approaches have been used to deal with the historical demand and

forecasting data granularity. Temporal and cross-sectional aggregation approaches rep-

resent the oldest approaches. These approaches were presented as good alternatives

to manage the demand and to reduce the degree of uncertainty through "risk-pooling"

(Chen et al. 2007, Chen and Blue 2010). Temporal aggregation refers to aggregation across

time, whereas cross-sectional aggregation refers to aggregation across a dimension (e.g

products) in a particular time period (Syntetos et al. 2016). There has been a considerable

body of literature dealing with forecasting by aggregation, extending back to the 1950s,

mainly in the economics and finance literature, e.g. Theil (1954), Quenouille (1958) and

Amemiya and Wu (1972). Aggregation approaches started to attract the attention of sup-

ply chain forecasting researchers in the 2000s, with a stream of literature dealing with

the bottom-up (BU) and top-down (TD) approaches. The TD approach can be viewed

as a demand aggregation approach (associated with a disaggregation mechanism of the

forecasts), whereas BU can be viewed as a forecast aggregation approach. Two temporal

aggregation approaches have been considered in the supply chain forecasting literature:

aggregation with blocking and aggregation with resampling (or bootstrapping). In the

former, overlapping or non-overlapping blocks of consecutive time periods are used to

aggregate the demand. In the latter, demand over random (not necessarily consecutive)

time periods are aggregated. The choice of aggregation approach (or combinations of

forecasts across the hierarchies) should be driven by accuracy considerations, subject to

the constraints of the data available to the forecaster. For example, if transactional time-

stamped data is available, then there is complete freedom to employ any level of temporal

aggregation. On the other hand, if the finest level of granularity available is one week,

then additional data would need to be collected to allow the application of forecasting

methods based on daily patterns.

1.3. Previous Reviews

Over recent years, there have been a few review papers in the literature dealing with

topics related to our paper, such as forecasting for inventory planning, supply chain fore-
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casting and the bullwhip effect (Syntetos et al. 2009, 2016, Wang and Disney 2016). The

most recent and the closest to our topic is by Syntetos et al. (2016), which identified gaps

between theory and practice in supply chain forecasting. They proposed a framework

based on three dimensions of the supply chain: length, depth and time. Temporal and

cross-sectional aggregation were identified as important aspects of the "time" and "depth"

dimensions, respectively, within the proposed framework. In the last five years, the field

has moved on rapidly, particularly with regard to hierarchical forecasting. Recent devel-

opments are covered in the current review.

1.4. Aims of this Review

This paper seeks to achieve three aims relating to demand forecasting in supply chains.

Firstly, informed by the framework in Figure 1, we bring together the most recent work

on aggregation and hierarchical forecasting, based on a systematic review. Compared to

a traditional ‘narrative’ literature review, a systematic literature search enables a more

transparent, rigorous and comprehensive review (Meza-Peralta et al. 2020). We empha-

sise the importance of improving both accuracy and inventory performance. These com-

mon objectives can be achieved by data aggregation (prior to forecasting), or by forecast

aggregation, or combining using hierarchical approaches. Although the means differ, the

objective is the same - namely to improve performance at a given level of the hierarchy.

Secondly, we aim to identify open research questions in aggregation and hierarchical

forecasting. Specific gaps in research are identified at the end of each of the major sections

of this review. We bring these findings together at the end of the paper, leading to our

presentation of an agenda for further work in this area.

Thirdly, we aim to generate debate on themes that cut across both aggregation-based and

hierarchical forecasting. These themes relate to the requirements of such forecasts and

their evaluation.

The paper is structured as follows. The following section presents the methodology used

to conduct the systematic review. Section 3 reviews the literature that deals with tempo-

ral aggregation, covering research on blocking and resampling procedures. In Section 4,

we discuss research related to cross-sectional aggregation, with a focus on the top-down

and bottom-up approaches. Section 5 addresses the latest advances in forecasting hier-
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archies and combinations. In Section 6, we discuss the practical implications of recent

developments. We close the paper with conclusions and identified gaps in the literature.

2. Review methodology

We performed a systematic review of the literature to (i) identify all published supply

chain forecasting research articles that deal with aggregation and hierarchies; and (ii)

qualitatively evaluate their contribution to the field of supply chain forecasting and ag-

gregation; and iii) summarise their findings, strengths and limitations.

The Scopus and Web of Science electronic databases were used to search for all articles

published between 1900 and 2021. The following search ontology was used: “["supply

chain" OR "inventory" OR "spare part*" OR "intermittent demand"] AND ["forecast*"]

AND ["aggregat*" OR "bootstrap*"]”. This search ontology was restricted to the title, or

keywords, or abstract. The keywords used in the search ontology were determined by

the authors of this review by examining well-known papers in the area and identifying

appropriate key words to address the three aspects of "supply chain", "forecasting" and

"aggregation". It was found that many papers addressing supply chain issues do not use

the term as a keyword or in the abstract, and so alternatives were provided. Similarly,

some papers do address temporal aggregation using bootstrapping but do not use the

term "aggregation" explicitly. The terms "combination" and "hierarchy" were considered

but not used because they generated too many papers outside the scope of this review.

However, the number of papers in this area is still quite modest and checks have been

made to ensure that there have been no significant omissions.

Application of the search ontology yielded 673 documents. Then, we screened the docu-

ments in both Scopus and Wed of Science databases, excluding a document if:

• Source type is not "Journal"

• Document types is not "Article"

• Subject (research) area is not relevant, e.g. Physics and Astronomy, Chemistry

• Source title (Journal) is not relevant, e.g. International Journal Of Vehicle Design
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• Language is not English

After these exclusions, 310 documents remained.

We also included 78 articles from other sources. These articles include methodological

and background papers on temporal and cross-sectional aggregation, not necessarily re-

lated to supply chain topics. This judgment was made by the authors of this review,

based on their knowledge of the literature.

Following that, we checked for duplication and removed duplicated articles. After their

removal, 303 documents remained. Then, unique records were assessed for eligibility

to be included in the review sample. Our inclusion criterion consists of any article that

is related to supply chain forecasting by temporal or cross-sectional aggregation. The

exclusion criteria were identified by the authors of the review after reading all of the

abstracts and, in some cases, the full-text articles. It was agreed between the authors

of this review to exclude a document from the review sample if it falls into one of the

following categories:

• DP - demand planning rather than forecasting

• EI - economics of inventories, i.e. aggregate inventories in the economy rather than

in a supply chain

• IP - inventory planning, primarily about optimisation rather than forecasting

• IS - information sharing and bullwhip effect

• NSC - not supply chain

• TM - using aggregation terminology but not in the sense defined in this paper as

temporal, cross-sectional, hierarchies and cross-temporal.

Full-text articles were assessed, using these criteria, for eligibility by the authors of this

review, independently. In case of any conflict in the judgement, the lead author of the

paper made the final decision whether to include the article in the final review sample or

not. This assessment led to the exclusion of 170 papers. The end result was to identify

133 papers for full review.
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Figure 2 illustrates the systematic literature search and its result.

Figure 2: Systematic literature review flow chart

Figure 2 Alt Text: Four levels of the systematic literature review are shown: Identification, screening, eligi-

bility and included where the first level shows the initial number of papers considered (n=413) and the last

level shows the final number of studies included in the review (n=133)

For the purpose of checking the systematic literature review process and facilitating fu-

ture reviews on the same topic, a file with the final list of papers and the excluded ones

is provided by the authors upon request.

Our review of the papers included in the final list generated by the systematic literature

review revealed three main topics: i) temporal aggregation, ii) cross-sectional aggregation

and iii) hierarchical reconciliation and combination. These are the themes of the following

sections.
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3. Temporal aggregation

Temporal aggregation, or aggregation across time, refers to the process of deriving a low

frequency demand series from a high frequency demand series, e.g. weekly demand or

monthly demand being derived from daily demand (Nikolopoulos et al. 2011, Petropou-

los et al. 2016). In supply chain forecasting, it is usually performed on demand data

directly. It can also be performed on demand forecasts. For example, Verstaete et al.

(2019) aggregated the estimated sales for the entire selling period.

The aggregation of demand over time can be done using blocking or resampling pro-

cedures. In the former, demands are aggregated from blocks of consecutive periods

whereas, in the latter, demands are aggregated from randomly resampled periods. In

the following subsections, we present each aggregation approach in more detail, and we

provide a review of the related literature.

3.1. Aggregation with blocking

Two blocking procedures are commonly considered for temporal aggregation: non-

overlapping aggregation and overlapping aggregation. In the former, the demand is

divided into consecutive non-overlapping bucket times, where the length of the bucket

time is the same and equal to the aggregation level. For example, based on the daily

demand over 28 days, a weekly aggregated demand is obtained, which consists of four

demands over four blocks of seven days. Non-overlapping temporal aggregation has the

advantage of retaining auto-correlation structures in the demand. However, the main

disadvantage is the fact that only few blocks are obtained if demand history is short or

the aggregation level is long. Moreover, if the history length is not a multiple of the

aggregation level, then some of oldest data are discarded.

In overlapping aggregation, the demand is divided into consecutive overlapping blocks

with a moving block over time where the block’s size is equal to the aggregation level.

At each time period, the block is moved one period ahead, so the oldest observation is

dropped and the newest is included. The main advantage of the overlapping tempo-

ral aggregation approach is that more blocks are available than in the case of the non-

overlapping approach. However, in this approach there is a correlation that is induced

between blocks, even if it is not present in the original disaggregated demand. Also, un-
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der this approach, less ‘weight’ is given to the most recent observations, as they appear

in fewer blocks.

3.1.1. Theoretical foundational work on aggregation with blocking

The foundational work on temporal aggregation with blocking started in the 1970s. It

analysed the impact of temporal aggregation on the characteristics of time series when

they are modelled as autoregressive integrated moving average (ARIMA) processes. The

research started with the work of Amemiya and Wu (1972) for the non-overlapping ag-

gregation case. It was shown that, if a time series follows a p-th order autoregressive

process, ARIMA(p,0,0), then the non-overlapping aggregates follow a mixed autoregres-

sive moving average (ARIMA) model of order (p, 0, q∗) where q∗ = [ (p+1)(m−1)
m ] and [x]

denotes the integer part of the real number x. This result was generalised by Weiss (1984)

and it was shown that the temporal aggregation of an ARIMA(p, d, q) process follows

an ARIMA(p, d, r) process where r = [ (p+d+1)(m−1)+q
m ]. Wei (1978) studied the aggrega-

tion effect on univariate multiplicative seasonal time series models. It was shown that,

for an ARIMA process of order (p, d, q)×(P, D, Q)s, the corresponding aggregate process

is an ARIMA(p, d, r)×(P, D, Q)s∗ if s is a multiple of m (where r = [ (p+d+1)(m−1)+q
m ] and

s∗ = s/m) and an ARIMA(P + p, D + d, r) if m is a multiple of s. Brewer (1973) also pre-

sented a generalisation of the results for ARIMA models with exogenous variables, i.e.

ARIMAX models. It is shown that the temporally aggregated ARIMAX model is an ARI-

MAX. For overlapping temporal aggregation, Hotta et al. (1992) have shown that that the

temporal aggregation of an ARIMA(p, d, q) process follows an ARIMA(P, d, Q) process

where P ≤ p and Q ≤ q + m − 1. Mohammadipour and Boylan (2012) examined the

case of integer autoregressive moving average, INARMA(p, q), processes. They showed

that the aggregation of an INARMA(p, q) process over a forecast horizon results in an

INARMA(p, q) process with the same INAR and INMA parameters but with a different

innovation parameter. Theoretical results of the impact of temporal aggregation on the

characteristics of time series are summarised in Table 1.
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Disaggregate demand process Aggregated process (over m periods)

Non-overlapping
ARIMA(p, d, q) ARIMA(p, d, r)

aggregation where r = [ (p+d+1)(m−1)+q
m ]

ARIMA(p, d, q)×(P, D, Q)s ARIMA(p, d, r)×(P, D, Q)s∗ if s = k ∗ m

where r = [ (p+d+1)(m−1)+q
m ] and s∗ = s/m

ARIMA(P + p, D + d, r) if m = k ∗ s

Overlapping
ARIMA(p, d, q) ARIMA(P, d, Q)

aggregation where P ≤ p and Q ≤ q + m − 1

INARMA(p, q) INARMA(p, q)

with innovation term Zt = Po(λ) with innovation term Zt = Po(m ∗ λ)

Table 1: Impact of temporal aggregation on the characteristics of time series

The above cited research has built the basis for a considerable literature that includes an-

alytical and empirical research on forecast accuracy and inventory performance of tem-

poral aggregation with blocking. In the following two sections, we review both analytical

empirical research on aggregation with blocking from the perspectives of forecast accu-

racy and inventory performance.

3.1.2. Forecast accuracy evidence of aggregation with blocking

Most of the research on forecast accuracy of temporal aggregation with blocking is em-

pirical in nature. Nikolopoulos et al. (2011) was among the first studies in the supply

chain literature that empirically analysed the effect of non-overlapping blocks temporal

aggregation on demand forecast accuracy. Based on the intermittent demand data of 5000

SKUs from the Royal Air Force (RAF, UK), the authors showed the potential benefits of

the aggregation-disaggregation approach (referred to as the ADIDA approach) when it is

used with the Naïve and Syntetos-Boylan Approximation (acronym SBA to be used here-

after) forecasting methods. Different aggregation block lengths were tested, from two

months up to 24 months and the disaggregation process was done using equal weights.

Forecast accuracy was measured with several scaled and relative error metrics including

the mean absolute scaled error (MASE) and the relative geometric root mean squared er-

ror (RGRMSE). The empirical investigation indicated the potential benefit of identifying

an optimal aggregation level.
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Spithourakis et al. (2011) extended the work by Nikolopoulos et al. (2011) to empiri-

cally investigate the performance of the non-overlapping aggregation approach for fast-

moving demand. They used data related to 1428 monthly time series from the M3-

Competition. The study revealed the considerable reduction of the symmetric MAPE

using the aggregation approach when it is associated with forecasting methods such as

naïve, single exponential smoothing and the Theta method. Spithourakis et al. (2014)

presented the ADIDA framework as a multi-rate signal processing system and they pro-

posed some mathematical properties of each block of the system. Building on the ADIDA

framework, Fu and Chien (2019) proposed a method that integrates temporal aggrega-

tion and machine learning techniques to forecast the intermittent demands of electronics

components. Based on demand histories of 265 products from a worldwide leading elec-

tronics distributor, they empirically showed, based on Root Mean Squared Error, Mean

Absolute Error and MASE, that the proposed method is more accurate than benchmark

forecasting methods for intermittent demand as well as machine learning methods. Jin

et al. (2015) empirically analysed the impact of non-overlapping temporal aggregation

when order data or point of sales (POS) are used to generate forecasts. Their empirical

investigation was based on weekly and monthly order and POS data over two years from

a large US consumer packaged goods manufacturer. The forecast accuracy was measured

using the mean absolute deviation (MAD). They first empirically confirmed the findings

of Rostami-Tabar et al. (2013) on the direct impact of autocorrelation in the data on the

relationship between the aggregation approach and forecast accuracy. They also showed

that when order data are used, the aggregated approach significantly improves the fore-

cast accuracy, whereas the opposite effect occurs when POS data are used.

Analytical research on forecast accuracy of temporal aggregation with blocking is rela-

tively scarce. In the case of intermittent demand, Mohammadipour and Boylan (2012)

analysed the impact of non-overlapping aggregation when demand follows integer au-

toregressive moving average (INARMA) processes. They showed, through a simulation

based on theoretically generated demand data and empirically by means of data of two

real demand data series from the automotive and aeronautics industries, that in most

cases, forecasting using a temporally aggregated process leads to lower mean square

errors (MSE) compared to the cumulative h-step-ahead forecasting method. The outper-

12



formance is pronounced when the autoregressive parameter is high. The comparative

performance is reversed in the case of an INARMA(1,1) demand process with small au-

toregressive and moving average parameters and short length of forecast horizon.

In the case of fast moving demand, temporal aggregation with blocking was analytically

studied by Rostami-Tabar et al. (2013) and Rostami-Tabar et al. (2014). They considered

auto-regressive moving average (ARMA) demand processes and the single exponential

smoothing forecasting method to derive the MSE of the non-overlapping aggregation

approach. They numerically and empirically showed that the aggregation approach usu-

ally outperforms non-aggregation for negatively auto-correlated demand and the out-

performance is pronounced for high aggregation levels. More recently, Rostami-Tabar

et al. (2021) compared, numerically and empirically, using monthly time series of the

M4-competition dataset, the MSE of the overlapping and non-overlapping temporal ag-

gregation approaches when forecasting finite auto-correlated demand. They showed that

the aggregation approach is preferred to non-aggregation when forecasting negatively

auto-correlated series. Moreover, they provided evidence of the outperformance of the

overlapping aggregation approach compared to the non-overlapping one for short time

series and similar performance between the two approaches when the demand history

becomes long.

3.1.3. Inventory performance evidence of aggregation with blocking

Porras and Dekker (2008) is the first empirical work published in the literature to study

the inventory performance of the overlapping temporal aggregation when it is used to

estimate the empirical distribution of lead-time demand. Based on the case of a Dutch

petrochemical complex, the authors compared the performance of overlapping temporal

aggregation against the resampling approach proposed by Willemain et al. (2004) when a

reorder point policy is used. The empirical study revealed that the former approach over-

all yielded considerable cost savings compared to the latter. It was also shown that the

overlapping aggregation approach can lead to low achieved service levels. Van Winger-

den et al. (2014) extended the method of Porras and Dekker (2008) in two ways. Firstly,

the window is placed at random over L consecutive periods (for a fixed number of times).

Secondly, they allow the window size, L, to vary, by sampling from the realised lead

times. The new method, called ‘Empirical Plus’, was tested empirically using 6000 parts
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from three companies. The evaluation was not conducted using forecast accuracy mea-

sures, but with the inventory metrics of fill rates and holding costs. The researchers

found that, for most parts, the new method did not perform as well as SBA, but Em-

pirical Plus was better than SBA for parts with infrequent demands and low variability

in demand sizes. Zhu et al. (2017) tackled the service level under-achievement issue in

Porras and Dekker (2008). They combined the aggregation approach with extreme value

theory (EVT) to improve the modelling of the tail of lead-time demand. They conducted

an empirical investigation using datasets composed of 5549 spare parts from the auto-

motive and aeronautics industries. They showed that the proposed approach (called

‘empirical-EVT’) gets closer to the target cycle service level (CSL) than the basic overlap-

ping aggregation approach.

Babai et al. (2012) concluded that most of the literature dealing with temporal aggregation

focused only on the forecasting accuracy of the aggregation approaches without assess-

ing their economic effects. To address this issue, they conducted an empirical investiga-

tion using 4815 SKUs from the RAF to compare the inventory performance (expressed

through inventory holding costs and achieved cycle service levels) of forecasting using a

non-aggregated approach and a non-overlapping aggregation. They demonstrated that

aggregation leads to higher service-cost efficiency than the non-aggregation approach for

high target CSLs.

Boylan and Babai (2016) was the first paper to conduct a theoretical analysis of the ac-

curacy of the overlapping and non-overlapping aggregation approaches. This work fo-

cused on the estimation of the cumulative distribution function (CDF) of demand when

demand is independent and identically distributed (i.i.d.). They showed that both ap-

proaches lead to unbiased estimates and derived variance expressions of the CDF esti-

mators for each approach. They also provided evidence, numerically and empirically,

that the overlapping approach often leads to a better estimate than the non-overlapping

one. However, the latter can outperform the former when the demand history is very

short. The analysis of both approaches under an order-up-to-level inventory control pol-

icy revealed that when the aggregation level increases the overlapping approach leads to

a reduction in backorders when the target cycle service level is high.
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3.2. Aggregation with resampling

3.2.1. Foundational work

Quenouille (1958) and Tukey (1958) proposed jackknife estimation of a parameter, by

systematically omitting each observation from a dataset, calculating estimates, and then

averaging these estimates. The jackknife can be used to estimate the bias and variance of

an estimator, and its confidence intervals. This approach inspired Efron (1979) to develop

bootstrap estimation, whereby observations are resampled with replacement, and each

observation has an equal probability of being selected. The bootstrap has been applied

in many different domains and has become a staple method in statistical science.

3.2.2. Lead-Time Demand Resampling

Bookbinder and Lordahl (1989) were the first to apply bootstrapping methods to the es-

timation of inventory reorder levels. It is assumed that there is a record of previous lead

time demands (LTDs). Bootstrap samples, of the same size, are generated by sampling

with replacement. The resulting bootstrap distribution over the bootstrap samples is

used to estimate the parameter of interest. Bookbinder and Lordahl (1989) focused on

the estimation of the p-th fractile of the demand distribution, assuming that the LTD is

a stationary random variable and the demand for each SKU is independent of all oth-

ers. Using synthetic data, they found that the bootstrap can provide acceptable estimates

for two-point and bimodal distributions, unlike the normal distribution. No empirical

evaluations were undertaken.

Lordahl and Bookbinder (1994) proposed a weighted average of two order statistics to

estimate the reorder point. Their simulation analyses focused on synthetic data, gener-

ated from a discrete two-point distribution, and bimodal mixtures of normal distribu-

tions that are approximately symmetric, negatively skewed and positively skewed. They

found the bootstrap method to perform well in terms of inventory service, without an

undue increase in inventory costs. However, the effect of autocorrelated demand was

not investigated.

Independently from Bookbinder and Lordahl (1989), Wang and Rao (1992) also proposed

using bootstrapping methods to estimate the lead-time demand distribution and reorder

points for an inventory control system. In their analyses, they recognised that both de-
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mand and lead times may be stochastic, and that demand may be autocorrelated. The

issue of serial independence of demand observations had been examined by Ray (1980),

who concluded that the assumption of independence will be conservative against run-

outs when there is negative autocorrelation, but will be inadequate when there is positive

autocorrelation. Bootstrapping lead-time demands mitigates this problem, because au-

tocorrelation of demands over individual periods within lead time is captured, although

autocorrelation of successive lead times is not. Wang and Rao (1992) investigated the

performance of the bootstrap method, using synthetic data, for a range of auto-regressive

parameters in an AR(1) demand process and mean values for geometrically distributed

lead times, with demand assumed to be normally distributed. The results for the boot-

strap estimates were favourable in terms of bias and standard error.

3.2.3. Block resampling

Rather than resampling demands from previous lead times, an alternative approach is

to resample demands from previous blocks of time, of fixed length, which may not have

coincided with the time elapsing between ordering and receipt. Hall (1985) proposed

resampling non-overlapping and overlapping blocks, in the context of spatial data. For

univariate time series data, proposals for non-overlapping blocks (Carlstein 1986) and

overlapping blocks (Künsch 1989) were made. The latter approach is also known as the

Moving Blocks Bootstrap. Park and Willemain (1999) commented on the problem of the

dependence structure near the block endpoints, which affects both approaches. They pro-

posed a ‘Threshold Bootstrap’ method to address this problem. Monte Carlo simulation

experiments showed that, if well calibrated, the Threshold Bootstrap can perform better

than the Moving Blocks Bootstrap in estimating the standard error of the sample mean

for a variety of auto-regressive moving average time series.

3.2.4. Resampling demands from individual periods

Fricker and Goodhart (2000) examined the demand distributions of the Marine Expedi-

tionary Force. They found that direct sampling of lead-time demands was infeasible. Be-

cause of a lack of historical data on the inventory position, they could not directly resam-

ple lead-time demands. They also recognised that it was possible to design a resampling

scheme that made more efficient use of the available historical data, for independent and

identically distributed time series. They proposed random resampling of demand from
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individual periods (with replacement). For a fixed lead time of L periods, the resampling

is done L times, to give the first resampled lead-time demand. This process is repeated

many times, and yields estimates of the Cumulative Distribution Function of lead-time

demand, and the associated quantiles required for inventory reorder levels.

Willemain et al. (2004) took this idea further, in the context of intermittent demand, by

including a Markov chain structure for the resampling of demand occurrence, which

takes into account the historical conditional probabilities of demand occurrence, given

demand occurrence (or non-occurrence) in the previous period. Their method was not

extended to take into account autocorrelation in the series of non-zero demands, nor

the cross-correlations between demand intervals and non-zero demand sizes. This is

not merely of academic interest: Willemain et al. (1994) had found indications of such

correlations in a previous study, subsequently confirmed for a significant minority of

aircraft spare parts from the US Defense Logistics Agency (Altay et al. 2012).

Willemain et al. (2004) also introduced a ‘jittering’ procedure, whereby resampled de-

mand values are adjusted by adding an amount calculated as the product of a standard

normal variable and the square root of the demand value. This allows for the generation

of plausible values that have not been previously observed. Rego and Mesquita (2015)

identified a bias introduced by this procedure and proposed an alternative ‘jittering’ pro-

cedure, which significantly reduces the bias, but does not eliminate it entirely.

A US Patent was granted (Willemain and Smart 2001) for software including the intermit-

tent demand resampling procedure of Willemain et al. (2004). The features and benefits

of the new package were presented to professional practitioners as well as to academics,

as summarised by Smith and Babai (2011), and the software has continued to be used by

commercial organisations over the last 20 years.

3.2.5. Resampling demand size and demand intervals

Zhou and Viswanathan (2011) proposed an alternative resampling approach. Instead

of resampling demands (including zeroes) from individual periods, demand sizes (non-

zeroes only) and demand intervals are resampled separately. This method has the advan-

tage that it does not impose a demand interval distribution, although it does assume that

successive intervals are independent. Its disadvantage is that there may be few demand
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intervals to resample if the demand is highly intermittent. Hasni, Babai, Aguir and Je-

mai (2019) have numerically and empirically evaluated the inventory performance of this

method and compared it to that of Willemain et al. (2004). They found that the former

outperforms the latter in terms of inventory cost reduction for moderately intermittent

demand data and long lead times.

3.2.6. Resampling immediately after demand occurrence

Teunter and Duncan (2009) proposed an adaptation to simple resampling of demands

from previous individual periods. In their adaptation, the first resample is taken from

non-zero demands, with the remaining resamples over the lead time being taken from all

previous demands. This restricts attention to those review cycles with some demand and

discounts those cycles without demand.

Teunter and Duncan’s modification may be applied to the resampling schemes of Wille-

main et al. (2004) and Zhou and Viswanathan (2011). It gives the distribution of lead-time

demand, conditional upon that demand being non-zero. The empirical higher inventory

efficiency of this modified method, when compared to the standard resampling method,

was shown by Hasni, Aguir, Babai and Jemai (2019).

3.2.7. Resampling dependent on elapsed time since last demand occurrence

Pennings et al. (2017) introduced a variant of the Willemain et al. (2004) method, based

on approximating the probability of a demand occurrence using an empirical distribu-

tion of demand occurrences over the lead time (conditional on elapsed time since the

last demand occurrence). The authors also developed a parametric method taking this

into account. In their empirical analyses of five datasets, they found their parametric ap-

proach to be better than their non-parametric methods in terms of of forecast accuracy

(Geometric Mean Absolute Error). Mixed results were obtained for inventory perfor-

mance.

3.3. Empirical evidence

Willemain et al. (2004) compared the lead-time demand distributions generated by their

method with that predicted by Croston’s method coupled with a normal distribution.

The comparison was undertaken on over 28,000 SKUs from a variety of sectors. It was

conducted using the Probability Integral Transformation (PIT) technique, recommended
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by Willemain et al. (2004) and subsequently extended by Kolassa (2016). Willemain et al.

(2004) found their method to perform better than Croston according to the PIT measure.

Porras and Dekker (2008) compared the overlapping blocks method with the approach

advocated by Willemain et al. (2004), based on an empirical analysis of spare parts from a

Dutch petrochemical complex. They examined the inventory cost implications of the two

methods, finding that the overlapping blocks method produced lower costs, with both

methods attaining a 90% fill rate.

Rego and Mesquita (2015) analysed over 10,000 SKUs from a Brazilian automotive man-

ufacturer. They compared an adapted form of the method by Zhou and Viswanathan

(2011) with parametric forecasting methods, including the Syntetos-Boylan Approxima-

tion (Syntetos and Boylan 2005). The evaluation was based on a trade-off between inven-

tory costs and fill rates, for each of the quadrants identified by Syntetos et al. (2005). They

found a clear preference for the method of Zhou and Viswanathan (2011) for ‘lumpy’

demand, for the Syntetos-Boylan Approximation for ‘erratic’ demand, with the results

being less clear for the ‘smooth’ and ‘intermittent’ categories.

Syntetos et al. (2015) examined over 4000 series from the US jewellery and over 3000 se-

ries from the electronics sector. They compared the approach of Willemain et al. (2004)

with Croston’s method and the Syntetos-Boylan Approximation. Evaluations of invento-

ries showed modest gains in cycle service levels for the method of Willemain et al. (2004)

for the jewellery data, but with the opposite result for the electronics dataset.

Hasni, Babai, Aguir and Jemai (2019) undertook a direct comparison of the bootstrapping

methods of Willemain et al. (2004) and Zhou and Viswanathan (2011). The inventory re-

sults were favourable for SBA, but with the advantage over the bootstrapping methods

diminishing as the backordering costs increased. Babai et al. (2020) compared both of

these bootstrapping methods with neural network (NN) methods, finding that the NN

approaches could achieve better inventory efficiency that the bootstrapping methods.

Hasni, Aguir, Babai and Jemai (2019) proposed a modification of these two bootstrap-

ping methods where the lead-time demand is adjusted by considering that a demand

occurs in the first period of each lead-time bucket. A service driven inventory system

was considered with two objective service measures: the cycle service level and the fill
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rate. They provided empirical evidence that the proposed adjusted methods result in a

higher service-cost efficiency compared to the original methods.

Overall, the empirical results are quite mixed, with no clear ‘winner’ emerging from the

published studies. The idea of comparing results based on data features (such as by Rego

and Mesquita (2015)) seems more promising. However, a different categorisation method

may be needed than that proposed by Syntetos et al. (2005) which was designed for com-

paring different parametric methods, and not for comparing bootstrapping methods.

3.4. Gaps of research

Research on temporal aggregation in the supply chain forecasting literature has seen

many important developments over the years. However, research has been predomi-

nantly empirical rather than analytical and based on forecast accuracy evaluations with

less interest in supply chain performance.

In the particular context of intermittent demand, INARMA process modelling has been

used to bring a foundational framework to develop knowledge on temporal aggregation

(with blocking) for this type of demand. However, with the exception of the work by Mo-

hammadipour and Boylan (2012) which focused only on the forecast accuracy of overlap-

ping aggregation, there are no analytical developments in this area. Inspired from the rich

supply chain forecasting literature based on the ARIMA framework, the INARMA mod-

elling should be considered to make important developments in analysing forecasting by

temporal aggregation of intermittent demand (both overlapping and non-overlapping)

and the implications on supply chain performance.

It is also worth noting that most of the temporal aggregation research has been built on

the non-overlapping aggregation assumption and little research was dedicated to over-

lapping aggregation. As shown earlier in the paper, under the ARIMA framework, the

characteristics of demand when aggregated with an overlapping approach have not been

fully identified yet, which makes the analytical developments less advanced.

Further, despite the rich literature relating to temporal aggregation with resampling,

there has been a lack of theoretical research on the resampling methods that are com-

monly discussed in the literature. For example, the resampling approach developed by
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Willemain et al. (2004) has been implemented in commercial demand forecasting soft-

ware used by many companies without examination of its theoretical foundations. This

opens up an avenue for further research to analyse the theoretical properties of such

methods.

Finally, although most of the research discussed in this paper deals with point forecasts,

it should be noted that a stream in the forecasting literature has been developed to deal

with prediction intervals and distributions. This is very important from the supply chain

forecasting perspective since the determination of safety stocks and inventory policies

parameters rely on such forecasts. This is in line with the research related to aggrega-

tion with resampling, where the relevant literature develops interesting approaches to

forecast lead-time distributions. However, no research has been conducted on tempo-

ral aggregation with blocking aiming at improving the forecasting performance under

prediction intervals and distributions, which constitutes a big gap in the supply chain

forecasting literature.

4. Cross-sectional aggregation

Cross-sectional aggregation, also known as hierarchical or contemporaneous aggrega-

tion, refers to the aggregation across a number of SKUs at a specific time period. Existing

approaches to cross-sectional aggregation include the bottom-up, the top-down and the

middle-out approach.

4.1. Top-down, Bottom-up and Middle-out

The bottom-up (BU) approach is based on forecasting each series at the bottom-level, and

then aggregating these forecasts to produce forecasts for all the series to the group level

(if a forecast at the aggregate level is required). Top-down (TD) consists in forecasting

directly at the group level (after aggregating the demand) and then disaggregating these

forecasts down to the bottom level (if a forecast at the disaggregate level is required). The

middle-out (MO) approach combines bottom-up and top-down approaches. A middle

level is first chosen and then the BU approach (or the TD approach) is used to gener-

ate coherent forecasts for the series above (or below) the middle level by aggregating

(or by disaggregating) the middle level forecasts. The three cross-sectional aggregation

approaches are illustrated in Figure 3.
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Figure 3: Illustration of the bottom-up, top-down and middle-out approaches

Figure 3 Alt Text: Three levels of a hierarchy are shown and in each level the corresponding aggregation and

disaggregation processes are indicated under the Top-Down, Middle-Out and Bottom-Up approaches

4.1.1. Theoretical foundational work on cross-sectional aggregation

The foundational work on cross-sectional aggregation can be divided into two streams.

The first stream in the literature deals with the performance analysis of TD and BU ap-

proaches. This stream of the literature started with the work of Theil (1954) and was

mainly conducted in the economics domain (Shlifer and Wolff 1979, Lütkepohl 2011).

There whave been disagreements in that literature on the outperformance of the top-

down or the bottom-up forecasting approach. Theil (1954) and Grunfeld and Griliches

(1960) argued that the TD approach is more efficient and more accurate for stable de-

mands whereas Orcutt et al. (1968), Edwards and Orcutt (1969), Dangerfield and Mor-

ris (1992), Zellner and Tobias (1998) and Weatherford et al. (2001)), among others, ar-

gued that BU is preferred when there are differences across time series. As stated by

Schwarzkopf et al. (1988), this disagreement is mainly due to type of the generating data

process, the forecasting method and the considered forecast accuracy method.

The second stream analysed the impact of cross-sectional aggregation on the charac-

teristics of time series when they are modelled with ARIMA processes. Granger and

Morris (1976) showed that the cross-sectional aggrgation of the demand of N subaggre-

gate SKUs following ARMA(pi,qi) is an ARMA(x,y) demand where x ≤ ∑
N
i=1(pi) and

y ≤ max(x − pi + qi). Particularly, aggregating two subaggregate ARMA(1,1) processes

with the same parameters leads to the same ARMA(1,1) process. It was also shown

by Harvey (1993) that the cross-sectional aggregation of the demand of two subaggre-

22



gate SKUs following AR(1) processes with parameters φ1 and φ2 is an AR(1) process if

φ1 = φ2, an AR(2) process if φ1 = −φ2, and an ARMA(2,1) otherwise. Another exam-

ple is the work by Silvestrini and Veredas (2008), which showed that the cross-sectional

aggregation of two ARIMA(0,1,1) processes is an ARIMA(0,1,1) process. These results

on the impact of cross-sectional aggregation on the characteristics of some processes are

summarised in Table 2.

Subaggregate demand processes Cross-sectional aggregated process

N products
ARMA(pi,qi) ARMA(x,y)

where x ≤ ∑
N
i=1(pi)

and y ≤ max(x − pi + qi)

2 products
ARMA(1,1) ARMA(1,1)

AR(1) AR(1) if φ1 = φ2

with parameters φ1 and φ2 AR(2) if φ1 = −φ2

ARMA(2,1) otherwise

ARIMA(0,1,1) ARIMA(0,1,1)

Table 2: Impact of cross-sectional aggregation on the characteristics of time series

4.1.2. Performance of cross-sectional aggregation

In the supply chain forecasting literature, the work by Zotteri et al. (2005) is among the

first that empirically analysed the performance of TD and BU approaches. They used

sales data from a food retailer to show that both TD and BU can lead to substantial im-

provements in the mean absolute percentage error (MAPE) and that the choice of the

best level of aggregation depends on the underlying demand generation process. Zotteri

and Kalchschmidt (2007) compared the MSE of TD and BU forecasting approaches where

the forecasting is made at the SKU/store level or at an aggregated level for a set of ge-

ographical locations of SKUs/stores. They assumed stationary and non-correlated (over

time and across SKUs) demand that is estimated using the minimum MSE method. They

concluded that BU should be used only in cases of low demand variability and small

size chains. Viswanathan et al. (2008) compared the performance of TD and BU through

simulation experiments on subaggregate SKUs with intermittent demand. The forecasts

under the BU approach were generated using Croston’s method whereas, under TD, the

forecasts were calculated using SES (since the degree of intermittence of the aggregate
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demand was low). The forecast accuracy was measured by means of the mean absolute

deviation (MAD) and the inventory performance was reflected through the total inven-

tory cost including the holding and the shortage costs). The simulation results showed

that when the variability of demand intervals of the subaggregate SKUs is low, BU leads

to more accurate forecasts than TD (in forecasting at the aggregate level), but when this

variability increases, the relative performance of TD improves and it becomes better than

the latter under a high number of SKUs. Moreover, if one aggregates a high number

of subaggregate SKUs having their demand intervals and demand sizes highly variable,

TD is the best forecasting method. They also showed that under TD, SES outperforms

Croston in most cases when forecasting the aggregate demand. It should be noted that

there is a considerable body of research that analysed the performance of cross-sectional

aggregation in terms of forecast accuracy or inventory performance, without referring to

the TD or BU approach. This research includes Razi et al. (2004), Zhou et al. (2007), Stri-

jbosch et al. (2008), Murray et al. (2018a) and Murray et al. (2018b), Villegas et al. (2018)

and Narayanan et al. (2019).

Inspired by the BU and TD approaches, Li and Lim (2018) proposed a method to forecast

intermittent demand at the store level for a fashion retail in Singapore. The method, re-

ferred to as the greedy aggregation-decomposition method, is composed of three-steps.

The first step of the method consists in forecasting the daily demand by using a modifi-

cation of the Holt-Winters method after cross-sectionally aggregating the demand of all

SKUs. The second step consists in forecasting the demand size and interval for each SKU

by using SES as in Croston’s method. The last step is to allocate the total demand to each

SKU at each store based on size and interval forecasts generated in the first steps, instead

of using the popular proportional allocation method as in the TD approach discussed

in Gross and Sohl (1990). The method was assessed using MAE and measures related

to MASE. The outperformance of the proposed method was shown when compared to

some benchmark methods commonly used in the literature for intermittent demand fore-

casting.

Analytical research on cross-sectional aggregation is relatively scarce. Widiarta et al.

(2007) is among the first research works that analytically evaluated and compared, by

means of the MSE, the performance of TD and BU approaches for autocorrelated de-
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mands in the supply chain. They assumed an autoregressive AR(1) demand process that

is forecasted at the SKU level using SES. They showed that if the lag-1 autocorrelation

of the demand for at least one of the SKUs in the family is higher than 1/3, the BU ap-

proach leads to lower variance of forecast error than TD. Widiarta et al. (2008) extended

the previous work when the demand of all the subaggregate SKUs follow an MA(1) pro-

cess. They showed that the performance of the TD and BU approaches is the same if the

smoothing constants used for forecasting the subaggregate SKUs and the aggregate fam-

ily demand are set to the optimum value or equal to each other. Under the same demand

process and forecasting method, Widiarta et al. (2009) additionally showed, by means of

simulation, that when the correlation parameters of the subaggregate SKUs are negative,

TD outperforms BU in terms of variance of forecast error. When the parameters have

different signs, BU performs better TD when the correlation between the components is

negative, whereas when the correlation between the components is positive, TD becomes

the preferred approach.

Sbrana and Silvestrini (2013) and Rostami-Tabar et al. (2015) analytically derived the

MSE expression of BU and TD approaches when forecasting aggregate and subaggre-

gate demand in the case of a non-stationary demand process. They assumed that

the sub-aggregate demand follows an Integrated Moving Average of order one (i.e.,

ARIMA(0,1,1)) demand process and it is forecasted using SES. By means of numerical

experiments, they showed that when the moving average parameter for all the subaggre-

gate SKUs or the smoothing constant used for these SKUs are identical, the performance

of BU and TD is the same. Moreover, Rostami-Tabar et al. (2015) demonstrated, based

on an empirical investigation using data of a European superstore, that when the de-

mands of the subaggregate SKUs are highly autocorrelated, the performance of BU and

TD is also the same for all autocorrelation values, according to ratios of variances. Their

investigation revealed that, at the aggregate level, BU is preferable to TD when the cross-

correlation between the sub-aggregate SKUs is positive and low or takes negative values.

These findings confirm the early simulation based results shown by Fliedner (1999) on

the benefit of demand cross-sectional aggregation of highly negatively cross-correlated

subaggregate items. At the sub-aggregate level, BU outperforms TD when the smoothing
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constant is set to its optimal value for both approaches, regardless of the cross-correlation,

the disaggregation weight or the values of the process parameters.

Kremer et al. (2016) assessed how judgment affects the relative accuracy of the BU ap-

proach and the direct forecasting at the group level (referred to as top-direct) approach.

They provided evidence that BU outperforms top-direct, using an MAE measure, if the

subaggregate items are affected similarly by short- and long-term shocks, e.g., prod-

ucts that are affected similarly by general market growth (“change”) and weather effects

(“noise”).

4.2. Seasonal group indices

An important special case of cross-sectional aggregation relates to the forecasting of sea-

sonal time series. These are ubiquitous in retailing but accurate seasonal estimation us-

ing classical methods requires long demand histories (Hyndman and Kostenko 2007). In

practice, organisations are often obliged to contend with short demand histories, because

the product is relatively new to the market, or because the entire history is not available

on an Enterprise Resource Planning system.

Classical methods for forecasting seasonal demand, such as the Holt-Winters method,

rely only on a product’s own demand history. Methods like these are sometimes known

as ‘Individual Seasonal Indices’ (ISI) methods. They will not produce accurate forecasts

if there are short demand histories or even for longer histories if the data are very noisy.

However, there is an opportunity to generate more accurate forecasts if the individual

series is part of a group of seasonally homogeneous series (for example, across locations,

or across products).

There are two basic methods of seasonal aggregation, to form ‘Group Seasonal Indices’

(GSI). One approach is to sum demands across a seasonal group and then to estimate

the seasonal indices (for all series) from the aggregate series (Withycombe 1989). This

is known as the ‘Withycombe Group Seasonal Index’ (WGSI). The other approach is to

calculate individual seasonal indices for each item in the group and use this average for

all items in the group (Dalhart 1974). This is known as the ‘Dalhart Group Seasonal Index’

(DGSI). Both of these approaches address seasonality for non-trended data.
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Chen and Boylan (2007) commented that, instead of applying the ISI or a GSI method

for all products, one can choose between ISI or GSI for each product and, further, choose

between WGSI and DGSI. They found that WGSI is more accurate than ISI. in terms of

mean square error, if the coefficient of variation of the deseasonalised individual series

is greater than the coefficient of variation of the deseasonalised aggregate series. These

results show that more noisy time series can ‘borrow strength’ from other series with ho-

mogeneous seasonality, but less noisy series may ‘borrow weakness’ even if the seasonal

patterns are homogeneous.

The above studies are restricted to non-trended data. Dekker et al. (2004) and Ouwe-

hand et al. (2005) proposed an adaptation of the Hot-Winters method, whereby level and

trend estimates are updated at the level of the individual series, but seasonal indices are

updated using aggregated data across a product family. Empirical results on data from

food and electrotechnical wholesalers showed that the adapted method was more accu-

rate than the classical Holt-Winters approach, based on an assessment of MAD, MSE and

symmetric MAPE measures.

Most research work on seasonal aggregation has assumed that the groupings are given.

For example, an organisation’s standard product groupings could be used. This approach

has limitations because homogeneity in product features is not always associated with

seasonal homogeneity (Zotteri et al. 2005). Boylan et al. (2014) proposed a k-means clus-

tering method, based on theoretical linkages to the MSE criterion. Testing on empirical

data from a lighting company showed that the approach may be used with confidence if

a company lacks a grouping method.

4.3. Gaps of research

Despite the huge literature dealing with the comparative performance of BU and TD

approaches, there is still a lack of simple theoretical rules and indications on which ap-

proach should be used in general and complex situations.

It is also worth stating that most of the research dealing with the analysis of performance

of the cross-sectional aggregation approaches in the context of intermittent demand has

been empirical in nature and simulation-based. Similar to the case of temporal aggrega-

tion, the INARMA modelling represent an interesting framework to model such demand
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patterns, which should be further considered in the literature to strengthen the findings in

this area with some theoretical properties of the cross-sectional aggregation approaches.

Finally, another gap in the research dealing with cross-sectional aggregation consists in

the focus of the relevant research on forecast accuracy and the limits in using other utility

functions when evaluating the effectiveness of the considered approaches. The inventory

service level/cost is an obvious utility function that should be considered at the bottom

levels of the hierarchy but other utility functions (e.g. finance, marketing) could be used

at different upper levels of the hierarchy. Evaluating the performance of cross-sectional

aggregation approaches under different utility functions for different levels of the hierar-

chy is lacking in the existing literature.

5. Hierarchical reconciliation and combination

Temporal and cross-sectional aggregations, discussed in previous sections, are limited

in the sense that they do not fully utilise all the information available at various levels

of aggregation. In this section, we discuss some approaches designed to overcome this

limitation. These approaches include hierarchical and grouped time series reconciliation,

multiple temporal aggregation, and temporal and cross-temporal hierarchies.

5.1. Hierarchical and grouped time series reconciliation

In supply chains, a collection of time series can be represented as a hierarchical or

grouped time series structure. (For example, the total demand for a retail item can be

disaggregated into demand on each regional warehouse, and further disaggregated by

demand on each retail outlet.) These categories are nested within the larger group cat-

egories and the resulting time series of nested categories are refereed to as “hierarchical

time series” (Hyndman et al. 2011). An alternative aggregation structure is grouped time

series where the collection of time series can be grouped together in a number of non-

hierarchical ways. For example, a supply chain manager might be interested in attributes

such as product family, customer type, price range, etc. Such attributes do not natu-

rally disaggregate in a unique hierarchical manner as they are not nested (Hyndman and

Athanasopoulos 2021). In supply chains, one may have more complex structures includ-

ing both hierarchical and grouped time series. For example, it would be natural for the
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supply chain manager to be interested in demand by product family, customer type and

also by geographic locations.

The traditional methods discussed in Section 4 (BU, TD and MO) have some limitations.

They only use base forecasts from a single level of aggregation which have either been

aggregated or disaggregated to obtain forecasts at other levels. Hyndman et al. (2011)

proposed the optimal combination (OC) approach as an alternative which uses the in-

formation available at all levels of the structure. This approach first generates forecasts

at each node of the hierarchy separately and then combines and reconciles all forecasts,

in order to produce coherent forecasts. That is, forecasts can add up in a way that is

consistent with the aggregation structure of the hierarchy or group that defines the col-

lection of time series. For example, considering the demand for a retail item, forecasts

of demand for the item in regional stores should add up to demand forecasts for re-

gional warehouses, which should in turn add up to give a demand forecast at the total

level. Following the development of the optimal combination approach, several exten-

sions have been proposed that focus on the theoretical advancement of forecast recon-

ciliations on both points (Hyndman et al. 2016, Wickramasuriya et al. 2019, Panagiotelis

et al. 2021) and probabilistic forecasts (Taieb et al. 2017, Jeon et al. 2019, Taieb et al. 2020,

Panagiotelis et al. 2020). While these hierarchical time series reconciliation and combi-

nation approaches have wide applications, there are a limited number of studies that

investigate the application in the real supply chains. Mircetic et al. (2021) used real time

series of a supply chain distribution network from a European brewery company to as-

sess the performance of optimal reconciliation proposed by Wickramasuriya et al. (2019)

and Hyndman and Athanasopoulos (2021) against the BU and TD approaches using an

empirical investigation. The dataset available for the purpose of this research consisted

of weekly time series for 56 SKUs for the period from 2012 to 2015. These time series

were then grouped based on: i) regions (marketing regions); ii) distribution centres; iii)

wholesalers; and iv) product types. The ETS models from the forecast package in R were

used to produce the out-of-sample base forecasts for 52-steps-ahead (one year ahead),

which is required for planning. They reported forecast accuracy using Root Mean Square

Scaled Error (RMSSE) and showed that the forecast performance of BU and OC evalu-

ated across the whole structure is not statistically different. They also examined the point
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forecast combination of BU and OC instead of using them individually. They showed

that combining the forecasts of OC and BU produce consistently more accurate forecasts

through all nodes of the supply chain grouped structure.

There are three studies (Abolghasemi et al. 2019, 2020, Spiliotis et al. 2020) that use a

dataset containing sales of 55 products for 120 weeks, obtained from a food manufactur-

ing company in Australia. Each product forms a hierarchy with three levels: 12 distribu-

tion centers at the bottom, two retailers in the middle and the total, giving 660 product-

location combinations at the bottom level. Retailers at the middle level of the hierarchy

have different sales patterns, while the bottom level series have a similar sales pattern to

the middle-level series.

Abolghasemi et al. (2019) investigated the hierarchical forecasting problem of sales time

series in the presence of promotion on a three-level structure including top, middle and

bottom levels. They used a middle-out (MO) approach to generate forecasts at all lev-

els. Forecasts are first generated at a middle level and then the middle-level forecasts are

aggregated to the top level and disaggregated to the lower levels. They proposed using

machine learning (ML) models including artificial neural networks (ANN), extreme gra-

dient boosting (XGBoost), and support vector regression (SVR) for dynamic hierarchical

forecasting where the time series dynamics may change due to promotion. These mod-

els estimate the proportions of lower-level time series from the upper level. They also

compared the proposed approaches with various variations of optimal combination, BU,

TD and MO approaches. They used ARIMAX with price as the explanatory variable to

generate base forecasts of four-step-ahead and eight-step-ahead averages. The symmet-

ric MAPE measure was used to evaluate the forecast accuracy. The results showed that

the performance of the considered approaches depends on the forecasting horizon and

the level of the hierarchy. At the bottom level, the XGBoost outperforms the other ML

and statistical models. For the top level, they showed that the best forecasts across the en-

tire horizon are generated with the TD and the top-down forecasted proportions (TDFP)

model.

From the existing hierarchical approaches, the accuracy of an optimal combination ap-

proach with minimum trace was shown superior in many empirical studies over other
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alternatives (Wickramasuriya et al. 2019). However, there are still some circumstances

where this method may fail, which are summarised in Abolghasemi et al. (2020). In fact,

there is no single approach that generates accurate forecasts across all levels of different

hierarchical and/or grouped time series structures. The suitability of approaches may

depend on the characteristics of the time series and the structure of the hierarchy. Abol-

ghasemi et al. (2020) examined the selection of suitable approaches, based on time series

features, and used Machine Learning (ML) for classification. They compared the pro-

posed approach against BU, TD and MO approaches. To generate forecasts for 4 weeks

ahead, they used a regression model with ARMA errors (Reg-ARMA), where product

prices are used as a predictor variable. They used the MASE and RMSSE error metrics

to examine the performance of hierarchical approaches. The results indicated that, on

average, the proposed approach was the most accurate hierarchical forecasting method.

A detailed analysis showed that the TD approach outperforms the proposed approach

at the top level. They recommended to expand model selection to reconciliation method

selection when dealing with forecasting hierarchical and grouped time series. While the

hierarchical combination approaches explored in the literature are generally linear in na-

ture, Spiliotis et al. (2020) proposed a non-linear approaches to the problem of hierarchi-

cal forecast reconciliation. They used Random Forests (RF) and XGBoost (XGB) methods

to derive the combination weights for the forecasts across the various aggregation lev-

els. These methods have been shown to perform well in time series contexts and cross-

learning. They used ARIMA to estimate the base forecasts and to act as a benchmark

against BU, TD and OC. They evaluated the forecasting performance of the hierarchical

forecasting methods using MASE, RMSSE and absolute mean scaled error (AMSE). They

showed that ML reconciliation approaches were superior to existing, linear ones, in terms

of forecast accuracy.

The above studies have examined the application of the OC approach and its extensions

in the supply chain. The overall conclusion is that using information across the hierar-

chy improved forecast accuracy, compared to a situation when separate levels are used

to generate forecast requirements. Moreover, using a combination of hierarchical ap-

proaches or multiple approaches instead of using a single approach for the entire hierar-

chy can improve accuracy. However, it is not easy to draw concrete conclusions on when
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each approach provides more accuracy. Datasets used in these studies have weekly gran-

ularity, so it may not be appropriate to generalise results to other granularities such as

sub-daily, daily and monthly. More studies with other time granularities in the supply

chain should be considered.

The M5 forecasting competition (Makridakis et al. 2020) was organised as an online con-

test to predict the sales of thousands of products from a US retailer (Walmart). It is the

biggest, so far, of a series of forecasting competitions organised since 1982 by Professor

Makridakis, aimed at enhancing forecasting methodology and practice (Makridakis et al.

1993). The purpose of the M5 forecasting competition was to compare the empirical ac-

curacy of forecasts (up to 28 days ahead) using a wide range of forecasting methods in

a hierarchical supply chain with grouped time series, thereby allowing assessment of

methods based on aggregation and hierarchies. The dataset contains 42,840 daily time

series of sales data in total. It has a structure with the SKU items at the bottom level and

aggregation based on three states in the US, store, department and product categories. In

addition to the sales time series, it also includes the exogenous variables of promotions,

price, and special events for the bottom level series. Both point forecasts and prediction

intervals are generated at all levels for 28 days ahead. Results of the M5 competition

(Makridakis et al. 2021, 2020) show that ML approaches such as LightGBM outperform

statistical models in forecasting hierarchical retail sales. Moreover, results indicate that

using exogenous variables improves forecast accuracy, according to RMSSE for point esti-

mates. The M5 competition is the most comprehensive experiment related to hierarchical

forecasting in supply chains so far. There is a special issue under preparation for the

International Journal of Forecasting that will be dedicated to the competition.

There are some other studies that proposed hierarchical forecasting approaches that are

more specific to the context of supply chains. These approaches also used all information

available in a hierarchy. Nenova and May (2016) used an empirical approach to create

a model to forecast the optimal forecast aggregation technique for a data set with two

levels of hierarchies: bottom and top. The approach establishes a relationship between

correlation of time series at the bottom level and the outperforming aggregation. There-

fore, it is possible that various approaches are used in the forecasting process instead of

using one approach. They developed an analytical model to choose an expected optimal
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forecast consolidation strategy. They showed an accuracy gain from using the proposed

procedure, as opposed to using the same strategy (e.g. BU or TD) for all datasets. (Accu-

racy of hierarchical approaches was reported using MAE and RMSE.) The paper does not

explicitly describe what values of correlation favour the BU or TD approach. Also, their

approach was not compared with the OC approach in terms of performance or computa-

tional time.

Pennings and Van Dalen (2017) proposed an integrated hierarchical forecasting approach

to forecast the demand of products at different hierarchical aggregation levels. It first gen-

erates forecasts at all levels and then incorporates available information. The generated

forecasts are already reconciled and add up in the same manner as data in the hierarchy.

Therefore, this approach avoids ex-post revising of forecasts, as is done in the OC ap-

proach. Two different datasets from food and personal care sectors were used to evaluate

forecasting and inventory performance. The results demonstrate that forecast accuracy

and inventory performance can be substantially improved with respect to the BU, TD

and the optimal combination approaches. (Forecast accuracy based on MAPE.)

Huber et al. (2017) proposed a decision support system to provide hierarchical forecasts

at different organisational levels, based on point-of-sales data of multiple items. The

approach identifies clusters of items that are used to extend the hierarchy based on intra-

day sales patterns. They used univariate and multivariate ARIMA models to forecast

time series. They evaluated the proposed approach in the context of demand forecasting

for an industrialised bakery. The dataset comprises point-of-sales data over 18 months of

16 articles that are sold in six stores and two regions and articles can be grouped into two

categories. The clustering approach in hierarchical forecasting seems to outperform tra-

ditional BU and TD approaches, based on forecast evaluations using MAPE and RMSE.

Li and Lim (2018) proposed a greedy aggregation–decomposition approach to forecast in-

termittent demand in a hierarchical structure of a fashion retailer. The proposed approach

utilises both forecasts at top and bottom aggregation levels, unlike the traditional BU and

TD approaches. The performance of the approach was compared against popular inter-

mittent demand forecasting including Croston, SBA, TSB as well as temporal aggregation

approach such as MAPA and ADIDA, used in each level separately. Using a real database

of the SKU-store-day demand over two years provided by a retailer, they showed that the
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proposed method that combined information in the hierarchy outperformed other exist-

ing intermittent demand forecasting methods. The revised mean absolute scaled error

(RMASE), MAE and MASE were used to evaluate forecast accuracy.

There is no consistent agreement among studies to determine the conditions under which

each hierarchical reconciliation and or combination approach works better. The perfor-

mance of these approaches generally depends on the characteristics of time series, fore-

casting horizon, level of aggregation and the structure of the hierarchy.

5.2. Temporal hierarchies and Multiple temporal aggregation

Similar to hierarchical and grouped time series in cross-sectional aggregation, one can

also create coherent forecasts in temporal hierarchies, or benefit from obtaining different

information at multiple levels of aggregation in non-overlapping temporal aggregation.

The idea here is to exploit the information available at various levels of temporal aggrega-

tion instead of using only one single optimal temporal aggregation level (Rostami-Tabar

et al. 2013, Kourentzes et al. 2017).

Combinations of forecasts at different levels of temporal aggregation were evaluated em-

pirically by Moon et al. (2012). They tested direct methods, TD methods and combination

methods on a sample of 300 items with lumpy demand patterns from the South Korean

Navy. Monthly, yearly and quarterly aggregations were compared and it was found that,

overall, the best year-ahead forecasting method was a simple (unweighted) combination

of the forecast for quarterly aggregated data (adjusted for linear trend) at group level and

a forecast of monthly aggregated data at the item level. This evaluation was conducted

considering both forecast accuracy and inventory costs. Mean absolute deviation and

RMSE were used to evaluate the forecasting performance.

Further, Moon et al. (2013) examined features leading to the outperformance of direct

methods or methods based on group level time series. The performance was evaluated

according to a measure based on absolute error to mean demand ratios. It was found

that the correlation between demands for different items, the variability in demand vol-

ume, and the equipment group had the greatest influence on relative forecasting perfor-

mance. A logistic regression classification model was found to be marginally superior to

the method based on group level time series.
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The idea of multiple temporal aggregation was also explored in a paper by Kourentzes

et al. (2014). They proposed the Multiple Aggregation Prediction Algorithm (MAPA)

which first constructs multiple time series from the original series using non-overlapping

temporal aggregation, for example creating weekly and monthly series from daily series.

Then, an appropriate state-space exponential smoothing (ETS) model is fitted to each

series separately and its respective time series components are forecast. Next, the time

series components from each aggregation level are combined to create the final forecast.

The advantage of this approach is that it is not restricted to any assumption regarding

the time series process. It also benefits from forecast combination (Blanc and Setzer 2016)

and reduces the uncertainty in model selection. However, there are some limitations

in using MAPA: i) the forecasting model is not flexible because it uses only ETS fam-

ily of models, so this is the only forecasting approach available in the framework; ii) in

time series with peaks in the seasonality (i.e. within day or within week peaks), the ap-

proach might be problematic because it shrinks seasonal indices. There are few studies

that investigated the application of this approach and modelling with multiple tempo-

ral aggregation level in general in supply chains. Petropoulos and Kourentzes (2014)

provide empirical evidence on intermittent demand using a large data set of spare parts

demand. They showed that combination across forecasts generated from multiple non-

overlapping temporally aggregated series using the same single forecasting method or

multiple methods improves the forecasting performance. Five different errors measures

including scaled Mean Error, scaled Absolute Error, scaled Squared Error, scaled Periods

in Stock and scaled Absolute Periods in Stock were used to assess the performance of the

approaches.

Kourentzes and Petropoulos (2016) extended the MAPA approach to include external

variables such as promotions. They examined the performance of the proposed approach

using historical demand time series of cider of a popular brand in the UK. They bench-

marked against the extended exponential smoothing that includes external promotional

data. Their results indicated that the proposed approach outperforms all benchmarks.

(Scaled Mean Error and scaled Mean Absolute Error were used to report the forecasting

performance of approaches.) Barrow and Kourentzes (2016) also compared MAPA with

standard forecasting methods such as ETS, ARIMA and Theta using time series of sales
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of products from a major UK fast moving consumer goods manufacturer. They indicated

that the forecast resulting from MAPA outperforms others in terms of forecast accuracy

and bias. They used scaled mean error (sME) and scaled median error (sMdE) to mea-

sure forecast bias, and scaled mean squared error (sMSE) and scaled median squared

error (sMdSE) to measure the magnitude of forecast errors.

Petropoulos et al. (2019) empirically investigated the inventory performance of MAPA

using the monthly industry series of the M3 competition. They indicated that multi-

ple temporal aggregation not only improves the forecasting performance but also gener-

ates smoother forecasts which minimises the bullwhip effect and has the best trade-off

curves for inventory costs versus service levels. (Lei et al. 2016) proposed a new algo-

rithm that combines MAPA with fuzzy Markov chain model (FMC-MAPA). Material de-

mand data from the STATE GRID Corporation of China was used to test the forecasting

accuracy of the new approach by comparing it with the exponential smoothing (ES) and

fuzzy Markov chain (FMC) benchmarks. The results showed that FMC-MAPA with, an

equal weight dissaggregation method, outperformed the benchmarks. They indicated

that forecasts generated from the combined method are more stable and robust than the

ES and FMC models, separately.

Building on the idea of optimal reconciliation proposed by Hyndman et al. (2011) and

multiple aggregation levels by Kourentzes et al. (2014), Athanasopoulos et al. (2017) pro-

posed Temporal Hierarchies Forecasting (THieF). A temporal hierarchy is created consid-

ering high frequency time series at the bottom level (e.g. hourly time series) and lower

frequency time series at higher levels(e.g. daily = 24 hours and weekly=7 days). It can

be created for any time series using non-overlapping temporal aggregation. THieF com-

bines forecasts from all levels of the hierarchy. This approach overcomes the limitation of

MAPA. It allows for other forecasting models to be used and it does not shrink the sea-

sonal indices arbitrarily. Given the fact that supply chain forecasting informs decisions at

multiple level of time granularity (e.g. short term, mid-term, long-term), this approach

was recommended to practitioners as forecasts are based on the same information about

the future. Using monthly and quarterly series of the M3 competition and weekly data

of AE departments, Athanasopoulos et al. (2017) showed that forecasting with temporal

hierarchies can improve forecast accuracy significantly. The forecasts are evaluated using
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the Relative Mean Absolute Error (RMAE) and MASE. THieF has also some limitations:

i) when constructing new series from the original series, the frequency of the new time

series cannot be a fraction, it must be an integer, ii) the approach also uses a linear com-

bination of forecasts generated at all levels to create the reconciled forecasts. Therefore, it

is sub optimal at each separate level of aggregation. Moreover, the relationship between

final reconciled forecast and forecasts at each level might not be linear. We should also

note that both approaches, i.e. MAPA and THieF, are based on non-overlapping tempo-

ral aggregation. These approaches cannot accommodate the use of overlapping temporal

aggregation.

Building on the THieF framework proposed by Athanasopoulos et al. (2017), Kourentzes

and Athanasopoulos (2021) extended the idea to forecast intermittent demand series in

a temporal hierarchy focusing on forecast improvement at the disaggregate intermittent

demand level. They demonstrated that the proposed approach brings significant gains

for both point and quantile forecasts, through an empirical investigation using a dataset

of aircraft spare parts. They evaluated the forecast accuracy using four metrics, the Mean

Error (ME), RMSE, the Mean Interval Score (MIS) and the Pinball loss (PIN).

5.3. Cross-temporal hierarchies

In the previous sections, temporal and cross- sectional aggregation are used separately.

This means that either: i) cross-sectional aggregation is considered only at one level of

temporal granularity (e.g. monthly) or ii) multiple temporal granularities (e.g. hourly,

daily, weekly etc) are used, assuming a single level in the cross-sectional structure (e.g.

total). Using either of the approaches separately in a supply chain provides benefits

but, in practice, multiple levels of temporal granularities across the entire cross-sectional

structure are required. Generating forecasts for all levels of temporal and cross-sectional

granularities first requires producing forecasts for each level of temporal aggregation

considering the whole cross-sectional structure. This will need some post-processing to

generate forecasts for the entire levels, which are also coherent (Kourentzes and Athana-

sopoulos 2019). This problem has been addressed by creating a framework to gener-

ate cross-temporally coherent forecasts that supports all levels of temporal and cross-

sectional aggregation. This framework allows the generation of a single version of the

forecast, which is critical for supply chains to align decisions across different horizons
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and across different departments. The approach has not yet been examined using real

data from supply chains, but Kourentzes and Athanasopoulos (2019) indicated that it

provides further forecast accuracy gains to either cross-sectional reconciliation and its

variations (Hyndman et al. 2011) or temporal hierarchies forecasting (Athanasopoulos

et al. 2017). This was based on an anlaysis of tourism data, using the Average Relative

Mean Squared Error (AvgRelMSE) to track the forecast accuracy. More specific to supply

chains, Punia et al. (2020) proposed a cross-temporal forecasting approach that generates

coherent forecasts for all levels of decision making for a retailer including products, time,

and channel dimensions of supply chain forecasting. Additionally, the authors investi-

gated the suitability of TD and BU approaches in the context of online and offline retail.

They showed that forecasts from the proposed framework significantly improve forecast

accuracy, compared to direct forecasts at all levels of retailer decision making. The fol-

lowing error metrics were used to examine the forecast accuracy: average relative mean

absolute error (ARMAE), average relative mean squared error (ARMSE) and the average

relative mean absolute percentage error (ARMAPE). A weekly dataset consisting of ten

SKUs for more than two years was used for the empirical analysis, which is rather too

limited for reliable conclusions to be drawn.

5.4. Gaps of research

The idea of using available information at various levels of cross-sectional and temporal

aggregation to improve forecasting performance is promising and there have been mul-

tiple theoretical developments in this area that potentially could be very useful in supply

chain forecasting: i) it can improve forecast accuracy ; ii) it can reduce the risk related to

model selection and uncertainty and ii) it is better aligned with multiple levels of decision

making, which is essential in modern supply chains. However, there are still important

gaps in this area of research.

Despite the recent developments of hierarchical and temporal hierarchies, there is a need

to examine empirically the validity of these theoretical developments and how they

might benefit supply chains to make better and more aligned decisions with other parts

of the network. In particular, the challenging problem of investigating the benefit of both

temporal and cross-sectional hierarchies beyond forecast accuracy still remains a huge

gap in the literature. In fact, forecasts are required at multiple levels of the hierarchy to
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inform different type of decisions in finance, logistics, marketing or transportation plan-

ning, etc. These departments might have different conflicting objective functions. More-

over, the evaluation requires the knowledge of how these functions are implemented, as

well as their relevant utility functions.

Another important question is how to evaluate the performance of the entire hierarchy.

Currently, forecasting performance is evaluated and reported at each level separately

and the forecasting performance is averaged to report the performance across the entire

structure. It is desirable that forecasting performance metrics are introduced that would

be able to measure the performance of each approach in the hierarchy as a whole, rather

than focusing on the performance on the top or the bottom or the middle level.

Research on reconciliation (both temporal and cross sectional) and combination of mul-

tiple levels of aggregation shows that forecasts can be improved, but the conditions for

this improvement remain unclear. Generally, the structure of the data and its features

play a critical role in determining the conditions under which each approach should be

recommended. Very little research has examined the association between data structure

and characteristics of time series and the performance of approaches. This is the case for

both continuous and discrete time series. The association of time series characteristics

from all levels of the hierarchy in both cross-sectional and temporal hierarchies, and not

only the original series, with the performance of approaches needs to be investigated.

Although the hierarchical models utilise the information available through the historical

time series, this is not the case for potentially useful exogenous variables. The potential

benefit of incorporating exogenous variables in a hierarchy structure still needs to be

examined. There are various types of exogenous variables that might be useful in this

case: i) variables that are independent of the aggregation level, ii) variables that could

be aggregated in the same way as the time series data, and iii) variables that are unique

to each level. Determining when incorporating such models provides benefits to the

supply chain, as well as identifying what type of exogenous variables should be used,

has important implications in practice.

Obviously, point forecasts do not provide information about the uncertainty in supply

chain forecasting. However, most of the articles reviewed in this study report only point
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forecast accuracy. Investigating uncertainty in forecasting hierarchies in terms of predic-

tion intervals and/or probabilistic forecast is another important gap.

Finally, the theoretical developments in this area do not support the count nature of time

series. Many forecasts ultimately will be used as inputs in count numbers to other func-

tion in supply chains. Therefore, extending hierarchical, temporal and cross-temporal

reconciliation to account for count time series is of practical as well as theoretical impor-

tance.

6. Practical Implications

As previous sections of this review have indicated, the aggregation and hierarchical fore-

casting literature has evolved considerably over recent decades. Greater emphasis on

aggregation and hierarchies in academic research has been reflected by developments in

commercial software. Some examples will suffice to illustrate this trend. Demand Works

has introduced a feature enabling users to work at any level of aggregation, without being

constrained by predefined hierarchical structures. Relex software has extended forecast

visibility to any level of granularity or aggregation. Logility includes facilities to disag-

gregate forecasts at higher levels down to the lowest levels. SAS and SAP have adopted

the ‘optimal combination approach’ as an alternative to the traditional top-down and

bottom-up methods. Finally, Blue Yonder allows forecasts to be generated at multiple

levels of the hierarchy, enabling trends and seasonality at higher levels to drive forecasts

at lower levels. A survey of forecasting software that includes more details on forecasting

features, such as temporal aggregation and hierarchical forecasting, is provided in Fildes

et al. (2018).

These developments now mean that practitioners have a wider choice of methods that

they can implement in practice. They should certainly consider using recently developed

hierarchical methods, given the encouraging empirical evidence on forecast accuracy.

Cross-temporal methods should also be considered. However, the empirical evidence

has focussed on a relatively small number of cross-sectional series (typically less than 100

at the bottom level of the hierarchy). As the number of series grows, hierarchical meth-

ods can become computationally expensive. If this problem becomes prohibitive, then

benefits may still accrue from aggregation methods. Indeed, they should always be used
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as a benchmark method, to ensure that the added complexity of hierarchical methods

is worthwhile. There are no comprehensive rules for the outperformance of top-down

or bottom-up approaches. Simulation comparisons are recommended, not only in terms

of accuracy but also with regard to inventory performance. For inventory applications,

temporal aggregations should be evaluated, using the lead time as the level of aggrega-

tion.

7. Conclusions

7.1. Main findings

The research reviewed in this paper has led to important developments, including mak-

ing better use of the data available over different time and hierarchical levels. There have

been significant advances in the analytical modelling of aggregation, as summarised in

Sections 3 and 4, and in the understanding of hierarchical forecasting, as outlined in Sec-

tion 5. We summarise in Table 3 the main findings that arise from the literature with

regard to the contexts where temporal and cross-sectional aggregations are beneficial. It

should be noted that most of these findings hold when the performance is considered

at the aggregate level. Note also that some of these findings are supported more consis-

tently in the literature than others as discussed earlier in the paper. The corresponding

sections in the paper are also indicated in Table 3.

Furthermore, it has been pointed out in this paper as one of the findings that hierarchical

forecasting does not generalise the aggregation approach. This is demonstrated by the

fact that forecasting methods based on temporal aggregation with overlapping blocks

is not integrated within the hierarchical and combinations approaches proposed in the

literature.

7.2. Main research gaps

Overall, there has been significant progress in the forecasting literature in recent years,

not only in analytical developments but also in empirical research. However, our lit-

erature review has identified several research gaps, which have been discussed in the

concluding sub-sections of this paper. In this section, building on these gaps, we draw

together the major research themes that provide an agenda for further research. In Sec-

tion 5.1, we reviewed the results of the M5 forecasting competition (Makridakis et al.
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Temporal aggregation Cross-sectional aggregation
Bottom-Up Top-Down

Intermittence High intermittence
degree (Long demand
intervals) and Low
variability of demand
sizes [Section 3.1.3]

Low variability of de-
mand intervals of the sub-
aggregate SKUs [Section
4.1.2]

High variability of de-
mand intervals and de-
mand sizes for subaggre-
gate SKUs (especially for
a high number of ag-
gregated SKUs) [Section
4.1.2]

Seasonality The coefficient of vari-
ation of the deseason-
alised individual series is
greater than the coeffi-
cient of variation of the
deseasonalised aggregate
series [Section 4.2]

Correlation Negatively auto-
correlated demand
[Section 3.1.2]

Negative cross-
correlation between
the subaggregate SKUs
(or positive very low
cross correlation)

High positive cross-
correlation between the
subaggregate SKUs

and and
Correlation parameters of
the subaggregate SKUs
are with different signs
[Section 4.1.2]

Negative auto-correlation
of the subaggregate SKUs
[Section 4.1.2]

Table 3: Contexts where aggregation is beneficial: main findings from the literature

2020). The M5 competition included grouped time series, thereby allowing assessment

of methods based on aggregation and hierarchies through the supply chain. This compe-

tition was important because it went beyond the evaluation of point forecasts, to include

prediction intervals as well. These intervals are crucial for many supply chain applica-

tions and it is important that future studies also take interval forecasts into account.

Research on hierarchical forecasting and combinations has mainly focused on statistical

forecasting methods and, more precisely, extrapolative techniques. Further research is

required to integrate other forecasting approaches. Judgmental forecasting is used exten-

sively in demand forecasting in supply chains but, except for the work by Kremer et al.

(2016), no research has looked at judgmental forecasting when dealing with aggrega-

tion and hierarchies. Furthermore, the M5 competition (Makridakis et al. 2021, 2020) has

provided evidence on the potential benefit of using machine learning techniques and in-

corporating exogenous variables when forecasting hierarchies and combining forecasts.

Hence, further research into this would appear to be merited.
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From the theoretical perspective, the INARMA demand process modelling has been

shown to provide a good framework to deal with intermittent demand within supply

chains and count series in general (as discussed in Section 3.1). So far, this modelling

framework has been employed for temporal aggregation but it would also be an inter-

esting framework to develop a theoretical basis for the research on hierarchical forecasts

and combinations.

7.3. Open debates

In the hierarchical literature, there is an emphasis on strict coherence, so that there are

no discrepancies in the sum of forecasts at a lower level matching the corresponding

forecast at a higher level. The emphasis is based on the assumption that strict coherence

of forecasts will contribute towards coherence in decision making. This is an issue that

warrants further debate. Is strict coherence necessary for enhanced decision making?

Could a weaker definition of coherence lead to any benefits in forecasting or supply chain

performance?

The impact of judgemental forecasting has already been mentioned as a research gap.

Empirical and laboratory-based research on judgement in forecasting is well established.

Questions of how such research should be conducted, based on judgmental amendments

to aggregation or hierarchical forecasts, have not yet been debated.

Another issue that is unresolved is the assessment of forecasting accuracy across the

whole supply chain. Accuracy measures for a single series, or for multiple series at the

same level, have been discussed extensively. Measuring accuracy across the chain has

received less attention. From an accuracy-implication perspective, the total inventory

cost (across all levels) and the inventory service (at the customer level) would seem to be

paramount. So, how should accuracy measures be weighted across the different levels?

In conclusion, aggregation and hierarchical forecasting have seen major advances in re-

cent years. These advances have not been confined to the pages of academic journals.

They have been made available to practitioners through the availability of commercial

and open-source software. It is hoped that this review will stimulate wider use of the

methods surveyed in this paper, debate on the questions raised above, and further re-

search on the remaining gaps in our understanding of this important subject.
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