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Abstract: COVID-19 has escalated into one of the most serious crises in the 

21st Century. Given the rapid spread of SARS-CoV-2 and its high mortality rate, 

here we investigate the impact and relationship of airborne PM2.5 to COVID-19 

mortality. Previous studies have indicated that PM2.5 has a positive relationship 

with the spread of COVID-19. To gain insights into the delayed effect of PM2.5 

concentration (µgm-3) on mortality, we focused on the role of PM2.5 in Wuhan 

City in China and COVID-19 during the period December 27, 2019 to April 7, 

2020. We also considered the possible impact of various meteorological 

factors such as temperature, precipitation, wind speed, atmospheric pressure 

and precipitation on pollutant levels. The results from the Pearson‟s correlation 

coefficient analyses reveal that the population exposed to higher levels of 

PM2.5 pollution are susceptible to COVID-19 mortality with a lag time of more 

than 18 days. By establishing a generalized additive model, the delayed effect 

of PM2.5 on the death toll of COVID-19 was verified. A negative correction was 

identified between temperature and number of COVID-19 deaths, whereas 

atmospheric pressure exhibits a positive correlation with deaths, both with a 

significant lag effect. The results from our study suggest that these 

epidemiological relationships may contribute to the understanding of the 

COVID-19 pandemic and provide insights for public health strategies. 

 

Keywords: Correlation analysis; COVID-19; Lag time; Mortality; PM2.5. 
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1. Introduction 

 Since December 2019, the coronavirus disease outbreak (COVID-19) has 

resulted in a global health catastrophe caused by the severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2). COVID-19 was first officially reported 

in Wuhan, but the source of the virus is unknown (Special Expert Group for 

Control of the Epidemic of Novel & Pneumonia of the Chinese Preventive 

Medicine, 2020). The disease spread rapidly with much higher infection levels 

and speed than comparable epidemics such as Middle East Respiratory 

Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS) (Ganesh 

et al., 2021), disrupting normal lifestyles and social frameworks (Candido et al., 

2020). The SARS-CoV-2 variant strains currently prevalent are Alpha, Beta, 

Gamma, Delta, Epsilon, Theta, Kappa, Lambda, and Mu, making the epidemic 

more serious (Chen, Wang, & Wei, 2021). The mortality rates of COVID-19 

varies in different regions based on the local conditions and medical facilities, 

with an average of 2.21% as of March 15, 2021 (https://covid19.who.int/). 

Factors affecting mortality are widely discussed, including air quality, 

meteorological conditions (Rahman et al., 2021), travel habits (B. Wang et al., 

2020) and social distance (Neto et al., 2021). Among them, air quality and 

meteorological conditions are relatively uncontrollable factors.  

PM2.5 is airborne particulate matter with an aerodynamic diameter of less 
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than 2.5 μm (Sciences & Centre, 2012), which can be inhaled into the distal 

regions of the lung, and has a protagonist role (Mehmood et al., 2021), as well 

as the ability to carry into the respiratory system hazardous elements and 

organic and organometallic toxic substances; potentially resulting in lung and 

cardiovascular diseases (Kesic, Meyer, Bauer, & Jaspers, 2012; Mehmood et 

al., 2021; Xu et al., 2021). It has been found that SARS-CoV-2 RNA exists in 

urban environmental PM samples(Kayalar et al., 2021). Chronic exposure to 

certain air pollutants may lead to more severe and lethal COVID-19 outcomes 

(Domingo, Marques, & Rovira, 2020). Numerous studies have now shown that 

the inhalation of particulate matter pollution has a strong correlation with the 

prevalence and mortality of COVID-19 (De Angelis et al., 2021; 

SanJuan-Reyes, Gomez-Olivan, & Islas-Flores, 2021; Sasidharan, Singh, 

Torbaghan, & Parlikad, 2020), and could even lead to increased susceptibility 

to the disease (Chakrabarty et al., 2021; Coccia, 2020; Milicevic et al., 2021). 

In an Italian case study, it was shown that the daily COVID-19 cases were 

directly related to the mobility habits of a person(s) 21 days prior to infection 

(Carteni, Francesco, & Martino, 2020). It was also noted that a small increase 

in air pollution led to a large increase in COVID-19 infectivity and mortality in 

England (Travaglio et al., 2021). A study in California found that PM2.5 pollution 

caused by wildfires was correlated with mortality rates of COVID-19 (Meo et al., 

2021). However, most studies have not considered the lag effect of PM2.5 on 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

 

mortality from COVID-19, particularly in the time interval between exposure to 

PM2.5 pollution, and physiological responses to this inhalation hazard. 

After the outbreak of the COVID-19 epidemic, the Municipal Government 

of Wuhan City officially reported the daily number of patients and deaths from 

January 23th, 2020 and implemented strict lockdown measures on the same 

day. The relationship between fine (i.e., PM2.5) and nanoparticulate (i.e., 

ultrafine) atmospheric matter and COVID-19 in Wuhan has been widely 

discussed (Lin, Zhang, Xie, Fan, & Liu, 2021). Some studies have observed 

that the air pollutants, including NO2，PM2.5，PM10, and CO decreased during 

the epidemic period (J. X. Chen et al., 2021; Sulaymon et al., 2021). Some 

studies have explored the real-time effect of PM2.5 on the mortality of 

COVID-19 in Wuhan (Yao et al., 2020). However, since PM2.5 is such a critical 

factor, further investigations are needed. Wuhan City was closed for 76 days 

and was re-opened on April 8th, 2020. During this period, the COVID-19 

epidemic was affected by decreased routine human behaviors, and the period 

can be considered as a complete cycle from the beginning to end of the 

COVID-19 Wuhan epidemic. Thus, this cycle offers an important opportunity 

for studying the influence of air pollutants and meteorological factors on that 

epidemic. In addition, due to the mid-way change in testing standards, the 

number of confirmed COVID-19 has significantly increased. In addition, some 

asymptomatic cases or patients with very mild symptoms were not able to be 
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tested over this period. Therefore, although the number of actual cases of the 

disease is uncertain, the number of deaths is clearly documented.  

Understanding the correlation of the COVID-19 deaths, PM2.5 and 

meteorological variables improves our understanding of the incubation period 

of the SARS-CoV-2 virus contracted by airborne transmission. In this study, we 

focus on the period from December 27th, 2019 to April 7th, 2020, collated air 

pollutants and meteorological data during the Wuhan epidemic, and collected 

information on the case fatality rate of one COVID-19 epidemic cycle in Wuhan 

from January 23th, 2020 to April 7th, 2020. Based on these data, the 

cumulative correlation between PM2.5 and COVID-19 mortality were assessed. 

2. Methods and Data sources 

2.1 Methods 

All analysis were performed with IBM SPSS Statistics for Windows, 

Version 25.0 (IBM Corp., Armonk, NY, USA) and OriginPro, Version 2019 

(OriginLb Corp., Northampton, MA, USA). 

2.1.1 Pearson correlation analysis 

Correlation analysis was employed to determine whether there was a 

relationship between the following two variables: (1) PM2.5 concentration and 

(2) COVID-19 mortality rate. The Pearson's correlation coefficient was utilised 

to measure the statistical relationship between these two continuous variables. 

Correlation coefficients were applied to define the relationship between air 
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pollutants and human disease (Seposo, Ueda, Sugata, Yoshino, & Takami, 

2020), including COVID-19 (Choi, Peters, & Mueller, 2010; Daniele & 

Francesco, 2020). The formula for the correlation coefficient was as follows: 

 

𝑅 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

 

 

Where 𝑥𝑖  and 𝑦𝑖  are the i-th sample values of variables X and Y 

respectively. 𝑥̅, 𝑦̅ are the mean value of variables X and Y correspondingly. R 

is a dimensionless value with a range [-1, 1]. If the R value is positive the two 

variables are positively correlated, and negative R values show a negative 

correlation. The larger the |R| value (the closer to 1 or -1), the stronger the 

correlation between the two variables. If the R value is +1 or -1, it indicates that 

the two variables have a strict linear relationship (Choi et al., 2010). 

2.2.2 Principal Component Analysis 

PCA (Principal Component Analysis) uses dimensionality reduction to 

transform multiple indicators into a few Principal components. By simplifying 

the data structure, the index load and variance contribution rate on the 

principal components are used to calculate the index weight, so as to achieve 

comprehensive evaluation(Eder, Bash, Foley, & Pleim, 2014; Groth, Hartmann, 

Klie, & Selbig, 2013). PCA is widely used in the study of atmospheric pollutants 

and meteorological factors (Mor et al., 2021; Nguyen et al., 2021; Xiao et al., 
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2014). This study first determined the correlation between the number of 

COVID-19 deaths and variables such as air pollutants and meteorological 

factors based on Pearson's analysis results. PCA was used to reduce the 

dimensionality of relevant variables to obtain the synergistic relationship 

among variables. 

The parameters involved in the main factor analysis were determined 

according to the correlation between individual factors and the number of 

deaths. Principal components were determined and the load of each principal 

component was calculated according to the measurement criteria of 

eigenvalue>1 and variance contribution rate reaching 80%. 

2.1.3 Generalized additive model 

GAM (Generalized additive model) represents a method of fitting a 

smooth relationship between two or more variables. GAMs are useful when the 

relationship between the variables is expected to be of a complex 

form(Verbeke, 2007). The GAM (Generalized additive model) analysis was 

performed by the 'mgcv' package (v 1.8-31) in R v4.0.3. The main advantage 

of this model is its flexibility to allow non-parametric fittings with relaxed 

assumptions on the actual association between response and predictor that 

provides the potential for better fitting to data than purely parametric models. 

This model has been widely used in air pollution research and epidemiology 

(Manoj, Satheesh Kumar, Valsaraj, Sivan, & Vijayan, 2020; Rahman et al., 
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2021). The GAM is used in this study to analyze the additive relationship 

between PM2.5 and meteorological factors COVID-19. The core GAM equation 

is: 

 

𝑔(𝐸(𝑌|𝑋1, 𝑋2, ⋯ 𝑋𝑃)) = 𝑠0 + 𝑠1(𝑋1) + 𝑠2(𝑋2) + ⋯ +𝑠𝑝(𝑋𝑃) 

 

Where, Y is the dependent variable and X is the independent variable 

𝑠𝑖(𝑋𝑖), 𝑖 = 1,2, ⋯ 𝑝 are smooth functions which are obtained by the backfitting 

algorithm. In this study, 𝑋𝑖 was set as PM2.5, temperature, air pressure, FAC1, 

FAC2 and FAC3 according to the linear correlation. 

2.2 Data sources 

Wuhan is in the east of Hubei Province, China, at the intersection of the 

Yangtze River and the Hanshui River (coordinates: 29°58′- 31°22′N and 

113°41′- 115°05′E). Wuhan has a humid climate with four distinct seasons. 

Winter is cold (December to February 4⁰C average) and summer is hot (June 

to August 29⁰C average), with an annual average rainfall of 644.7mm year 

(1985-2015; Climate & Weather Averages in Wuhan, Hubei, China; 

timeanddate.com). The study period (January 23th, 2020, to April 7 th, 2020) 

covers the winter and spring seasons in Wuhan. 

The daily COVID-19 death data (i.e., January 23th to April 7th, 2020) in 

Wuhan was obtained from the website of the China Health Committee 
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(http://www.gov.cn/fuwu/bm/wsjkw/index.htm). The mass concentration data of 

PM2.5, PM10, SO2, NO2, O3, and CO represents the average value of urban 

national control points from the Wuhan air quality real-time release system 

(http://gis.hbj.wuhan.gov.cn:8088/Air/Default.aspx). Meteorological data were 

obtained from the open data platform (http://hz.zc12369.com/home/). The 

relevant urban meteorological stations to obtain the required meteorological 

variables, included temperature (°C), humidity (%), precipitation (mm), wind 

speed (m/s), and atmospheric pressure (hPa). 

3. Results 

3.1 Real-time analysis 

3.1.1 Daily new death toll of COVID-19 

    Since January 23th, 2020, Wuhan City has officially counted and released 

the number of new daily deaths caused by the COVID-19 epidemic. As shown 

in Figure 1, the deaths in Wuhan from January 23th, 2020 to April 7th, 2020, 

presented a quasi-normal distribution. According to the changing trends, three 

stages were identified, including (1) the increased period of deaths (January 

23th to February 4th) with the average death cases of 27.85, (2) the outbreak 

peak period (February 5th to February 24th) with the average death cases of 

89.45, and (3) the declined period of deaths (February 25th to April 7th) with the 

average death cases of 12.30. These three stages defined a relatively 

complete epidemic cycle, and categorized as Stage 1, Stage 2, and Stage 3 in 
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Figure 1. “The New Coronavirus pneumonia diagnosis and treatment plan” 

(trial version fifth) has added “clinical diagnosis cases” in the case diagnosis 

classification of Hubei(China & Medicine, 2020), so that patients receive 

standardized treatment as early as possible. On February 12th, 13436 new 

confirmed cases were reported in Wuhan, and the corresponding new deaths 

on February 12th increased to 216. 

3.1.2 Meteorological conditions during COVID-19 

The dominant wind direction in Wuhan throughout the year is from the 

north. Figure 2 shows the variation of several meteorological factors during 

COVID-19 in Wuhan. Table 1 lists the average values of these meteorological 

factors in the three stages of the COVID-19 epidemic cycle. In addition, the 

coefficient of variance(CV) describes the volatility of the data. During the study 

period, the temperature (T) range was 2.2-19.8°C, with an average at 10.7°C. 

The data show an overall upward trend. The temperature in Stage 2 had an 

opposite trend in comparison with daily new deaths. The relative humidity (RH) 

range was 60.0-94.0%, with an average of 78.1%. The range was large with a 

downward trend. The wind speed (WS) range was 0.3-4.6m/s, with an average 

of 1.3m/s and shows an upward trend in general. The atmospheric pressure 

(AP) range was 1006.0-1032.0hPa, (average 1019.4hPa) and is highest in 

Stage 1 and Stage 2, with an overall downward trend. The pressure in Stage 2 

had a similar trend based on a comparison with daily new deaths. The 
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atmospheric rainfall (AR) range was 0-26.7mm, with an average 2.7mm, with 

less and irregular rainfall during the period under study. According to the 

comparison of coefficient of variation, among the five meteorological factors, 

AR has the largest volatility and the other four have smaller volatility. 

3.1.3 Air quality during COVID-19 

Although some studies have shown that the level of air pollutants was 

lower during COVID-19 lockdown compared with the period before the onset of 

COVID-19 epidemic (Sulaymon et al., 2021), there were positive and negative 

excursions during the COVID-19 epidemic period in Wuhan (Figure 3). 

The concentration of PM2.5 varied from 8 to 97 μg/m3 with an average of 

38.3 μg/m3 and was higher during the outbreak and increasing periods of the 

epidemic, with a downward trend in general. The concentration of PM10 varied 

from 12 to 103 μg/m3 with an average of 51.6 μg/m3. The trend of PM10 was 

similar to PM2.5, but with a distinct increase during Stage 3. The concentration 

of NO2 varied from 10 to 43 μg/m3 with an average of 21.9 μg/m3, with a steady 

trend in Stage 1 and 2, and a sudden increase in the latter part of Stage 3. The 

concentration of CO varied from 0.5 to 14 μg/m3 with an average of 0.9 mg/m3, 

reflecting no major change. The O3 concentration ranged from 39 to 157 μg/m3 

with an average of 85.3 μg/m3, and SO2 was from 5 to 17 μg/m3 with an 

average of 8.1 μg/m3. The changes of O3 and SO2 were relatively synchronous, 

showing an upward trend overall (Table 2). According to the comparison of 
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coefficient of variance, among the six pollutants, PM2.5 and O3 have the 

greatest volatility. Although PM2.5 decreased, the increase in SO2 and NO2 

increased the proportion and risk of secondary aerosol PM2.5 (Sun et al., 2020). 

The formation efficiencies of secondary aerosols were enhanced during the 

lockdown due to the increase of atmospheric oxidation capacity, as also noted 

in another recent study (Tian et al., 2021). As shown in Figure 3, these 

pollutants do not display significant correlations with the daily death toll.  

Table 3 shows the correlation between PM2.5 and meteorological factors 

such as air temperature, humidity, wind speed, air pressure and rainfall. PM2.5 

is affected by several meteorological factors in Stage 1 and Stage 3, but not in 

Stage 2. From the correlation coefficient of the whole stage, PM2.5, air 

temperature and air pressure are independent of each other. This also 

provides a basis for selecting variables in the next “GAM” analysis. 

3.1.4 Results of principal factor analysis 

The principal component analysis of air pollutants and meteorological 

factors was carried out, and KMO and Bartlett spherical test were selected to 

confirm the applicability of the data. KOM is 0.638 and greater than 0.6. The p 

value of Bartlett's spherical test was 0.00, which was less than the significance 

test limit of 0.05. Therefore, the input data are suitable for principal component 

analysis. In this study, the maximum variance method is used to rotate the 

initial load matrix, and the factor with load value greater than 0.5 is selected as 
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the corresponding principal factor.  

Three factors with eigenvalues > 1 are selected as the main factors 

(Figure 4). Component 1 mainly includes PM10, PM2.5, NO2 and CO, 

accounting for 35.02%. Component 2 mainly includes RH and O3_8h, 

accounting for 24.22%. Component 3 mainly includes AP, T and SO2, 

accounting for 23.7%.  

3.2 Lag time analysis 

3.2.1 Analysis results of linear correlation for the lag effect of 

Meteorology and PM2.5 on COVID-19 deaths  

The study of the lagged correlation of the COVID-19 deaths, PM2.5 and 

meteorological variables may indicate the incubation period of the 

SARS-CoV-2 virus caused by airborne transmission. Pearson correlations 

were used to evaluate the linear correlation in Wuhan during the COVID-19 

epidemic. Some studies have attempted to establish a lag correlation between 

the number of cases per day and pollutants in COVID-19 infection. A study on 

the possible influence of a pollutant to an infection lag time of 0-14 days found 

a lag effect for PM2.5 (Q. Wang & Li, 2021). In this study, we increased the 

potential lag time, by using the SPSS software to adjust PM2.5 over the range 

of 0 to 28 days with a view to quantify its impact on the number of deaths per 

day. We observed a cumulative relationship between PM2.5 and death rates 

from December 27th, 2019, to April 7th, 2020, using 28 correlation analyses, 
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and conducted a two-tailed test. At the same time, we considered the influence 

of meteorological factors. In Figure 5, PM2.5, temperature, humidity, wind 

speed, atmospheric and pressure precipitation demonstrated the influence of 

coefficient curves under different lag days.  

Our results indicate a significant positive correlation between PM2.5 and 

the number of deaths per day at the level of 0.05 (two-tailed) on the 14th to 

17thday of adjustment, and at the level of 0.01 (two-tailed) on the 18th to 27th 

day of adjustment; with the highest correlation coefficient on the 18th day 

(Figure 5a). The temperature was negatively correlated with the number of 

deaths (G. Zhu et al., 2021). With the increase of adjustment days, the 

absolute value of the correlation coefficient between the temperature and the 

number of deaths reveals an increasing trend, with the highest value on the 

26th day (Figure 5b). A positive correlation was seen between atmospheric 

pressure and the number of deaths, and the correlation coefficient uncovered 

a peak on day 3 (Figure 5e).  

Therefore, we conclude that PM2.5 pollution has a greater impact on the 

mortality rates of COVID-19 after 18 days (Figure 6). Among the 

meteorological factors, temperature shows a strong negative correlation with 

the number of deaths, whereas atmospheric pressure displays positive 

correlation. The influence of PM2.5 has a more obvious delay effect. 

The adjusted time series analysis showed that PM2.5 with a lag time of 18 
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days is significantly correlated with the daily death toll (Figure 6), at Stage 1 

and the first half of Stage 3, with a significant correspondence between the 

number of COVID-19 deaths and PM2.5. Overall, the adjusted daily PM2.5 and 

death toll show a low-high-low trend in these three stages. The corresponding 

change in pattern was not very clear in Stage 2 when the COVID-19 epidemic 

was in the early Stage of the outbreak. The number of newly confirmed cases 

increased sharply, which may be the reason for the observed increase in 

mortality in Stage 2. At the end of Stage 3, the effect of PM2.5 was not obvious, 

which could be attributed to the rapid development of the epidemic 

preventative measures during the epidemic (e.g., masks, hand washing, social 

distancing and lockdowns). As a result of these public health interventions, the 

daily death toll gradually approached zero, which curbed the larger-scale 

spread of COVID-19 in the region. In general, PM2.5 played a greater role at 

the beginning of the rising and declining stages of COVID-19.  

3.2.2 Analysis of generalized additive model for the lag effect of 

meteorology and PM2.5 on COVID-19 deaths 

The generalized additive model is used to study the additive correlation 

and influence of various factors on the death toll of COVID-19. We used the 

PM2.5, temperature, and atmospheric pressure of lag 18 days to establish a 

generalized additive model. The family is set to "quasipoisson", and the 

smoothing parameter "k" is set to 3.  
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The additive relation of PM2.5 on daily COVID-19 deaths and its 

relationships with PM2.5 concentration, air temperature, air pressure, FAC1, 

FAC2, and FAC3 are shown in Figure 7. The additive positive correlation 

between PM2.5 and death of COVID-19 is significant, which is consistent with 

the results of the Pearson correlation analysis. However, it does not increase 

monotonically, which may be affected by the change of statistical mode in the 

second stage. There is an opposite relationship between temperature and 

COVID-19 deaths. Similarly, the temperature changes in the generalized 

additive model are consistent with the results of the Pearson correlation 

analysis. The deaths of COVID-19 decrease with the increase of temperature. 

The degree of freedom (EDF) of AP is 1 (Table 4), which means that there is a 

linear correlation between AP and death toll, but there is no additive 

relationship. FAC1 related to PM10, PM2.5, NO2 and CO was positively additive 

correlated with the number of deaths. FAC2 associated with RH and O3_8h 

had no additive correlation with the number of deaths. FAC3 related to AP, T 

and SO2 was negatively additive correlated with the number of deaths. We 

used the subgroup analysis method for sensitivity analysis. The analysis 

results show that (Table S4), the sensitivity is low and the model is relatively 

stable. 

4. Discussion 

PM2.5 can act as a vehicle or nucleation site to transport harmful 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

 

substances directly into the respirable regions of the human lung, ultimately 

resulting in the translocation of pollutants into the systemic circulation. 

Exposure to ambient PM may also reduce the resistance to infection in the 

population (Maleki, Anvari, Hopke, Noorimotlagh, & Mirzaee, 2021). People 

exposed to higher levels of PM2.5 pollution are more likely to suffer from 

cardiopulmonary diseases (Manojkumar & Srimuruganandam, 2021), 

including IHD (Ischemic Heart Disease) (Nirel et al., 2021), COPD (Chronic 

Obstructive Pulmonary Disease) (Guo et al., 2021), lung cancer (Hvidtfeldt et 

al., 2021), and strokes (Niu, Liu, Yu, Wu, & Xiang, 2021). The adverse health 

outcomes are more significant for persons who have these pre-existing 

diseases (Cheng et al., 2021; Mahmood et al., 2021; W. T. Zhu et al., 2021). A 

recent study suggested that long-term exposure to poor air quality may 

aggravate the clinical symptoms of COVID-19 (Al-Kindi et al., 2021).  

Airborne particles can act as the possible carriers of the SARS-CoV-2 

virus into the human body, resulting in increased morbidity and mortality (Cao 

et al., 2021; Maleki et al., 2021; Nguyen Thanh et al., 2021; Nor et al., 2021). It 

has been revealed that the interaction of SARS-CoV-2 with PM is possible in 

moist environments. After drying, PM can serve as a carrier for transmission of 

SARS-CoV-2 immobilized on their surface (Borisova & Komisarenko, 2020). 

The SARS-CoV-2 virus has been detected in hospitals, buses, subways and 

other environments (Hadei et al., 2021; Moreno et al., 2021; Nor et al., 2021; 
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Yarahmadi et al., 2021).  

The increase of secondary aerosols may also lead to an increase in the 

death toll of COVID-19. Some studies have noted that during the lockdown, O3 

in Wuhan has increased by more than two times compared with the values 

before the lockdown (C. W. Huang et al., 2021; Lian et al., 2020), which can 

boost atmospheric oxidizing capacity and further enhance the formation of 

secondary organic aerosols (X. Huang et al., 2021; Le et al., 2020; Meng et al., 

2021). An increase in the formation efficiency of secondary aerosols 

represented by nitrate and secondary OA was observed in Wuhan and many 

other areas during the COVID-19 lockdown (Sun et al., 2020; Tian et al., 2021; 

Z. L. Wang et al., 2021; Zheng et al., 2020). It has been found that secondary 

aerosols can carry toxic bacteria (Jiang, Xia, & Liu, 2021) and are more 

harmful to humans than primary aerosols (Lin et al., 2016). Therefore, the 

increase of secondary aerosol may be an important factor in PM2.5 role in the 

mortality of COVID-19. 

In addition, PM2.5 can upregulate ACE-2 (Du et al., 2020), the receptor of 

the SARS-CoV-2 virus (Baildya, Ghosh, & Chattopadhyay, 2021), and increase 

the chance of viral RNA entering cells (Nguyen Thanh et al., 2021). Thus, the 

potential role of fine particles in the transmission of COVID-19 is of increased 

importance. The findings in this study support the urgent need to implement 

environmental mitigation strategies for reducing airborne particulate pollution. 
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There is a lag time between the inhalation of PM2.5 and the onset of adverse 

respiratory responses (Dong, Wang, Wang, & Bao, 2021; X. L. Zhu et al., 

2021). A Mexican study, at an individual level, did not find robust evidence for 

short-term PM2.5 exposure increasing the chances of dying from COVID-19 

(Lopez-Feldman, Heres, & Marquez-Padilla, 2021). This supports findings that 

COVID-19 mortality seems to be driven mainly by longer-term (i.e., lagging, 

chronic or cumulative) rather than the short-term (i.e., acute) factors. Our 

results also suggest that the COVID-19 epidemic was established in Wuhan 

before any mobility restrictions were implemented. 

The influence of meteorological factors has also been widely studied. The 

longevity of SARS-CoV-2 outside hosts decreases at high temperature and 

under sunlight (Yap, Liu, Shveda, & Preston, 2020). Respiratory-related 

mortality will increase with decreasing temperatures (Dadbakhsh, Khanjani, 

Bahrampour, & Haghighi, 2017). In a cold environment, the susceptibility of the 

host may be higher due to slower mucociliary clearance or decreased immune 

function under these conditions (Ficetola & Rubolini, 2021; Lowen & Steel, 

2014). Areas with high atmospheric pressure are generally more moist 

compared to lower pressure areas, thereby providing more transport potential 

for active and invasive pathogens (Aidoo, Adebanji, Awashie, & Appiah, 2021). 

The investigations conducted in India (Kulkarni, Khandait, Narlawar, Rathod, & 

Mamtani, 2021) and in Italy (Lolli, Chen, Wang, & Vivone, 2020) considered 
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that temperature was negatively correlated with the risk of COVID-19; these 

findings are consistent with our results. The study conducted in Ghana  

(Aidoo et al., 2021) had similar conclusions with our study in that there was a 

positive correlation between air pressure and the risk of contracting COVID-19. 

However, our results do not agree with studies that suggest that high 

temperature is conducive to the spread of the virus (Jain, Sharma, Goyal, 

Kaushal, & Sethi, 2021), or atmospheric pressure has a negative correlation 

(Sharma, Bansal, Yadav, Jain, & Garg, 2021). Researchers have suggested 

that air humidity is the most important climatic factor in spreading the virus, 

while temperatures do not have a strong influence (Crema, 2021). 

Although the lag time correlation between the COVID-19 mortality and 

exposure to airborne PM2.5 has been proposed, the limitation of this study still 

exists. Firstly, we have not considered impacts from personal behaviors like 

social distancing and personal hygiene (Bang et al., 2021; Magnan, Gibson, & 

Bryan, 2021). Secondly, the current study only considered the Wuhan city, lack 

of research in the neighboring regions which might have a trans-regional 

influence for the COVID-19 transmissions. Finally, the model needs to be 

tested in other high incidence areas in the world. 

5. Conclusion 

In conclusion, the concentration of PM2.5 is related to the risk of 

contracting COVID-19, and its delayed effect on the mortality of COVID-19 is 
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identified to be more than 18 days. COVID-19 mortality in Wuhan was driven 

mainly by the longer-term rather than the short-term factors. Relevant 

administration departments and policy makers should consider that the 

incubation period of the SARS-CoV-2 is longer than 18 days, which is even 

longer than the public think of 14 days. The temperature has a strong negative 

correlation with COVID-19 deaths in Wuhan, while atmospheric pressure has a 

positive correlation.  

Code availability 

Source code, with full documentation and examples, are freely available 

under the GNU General Public License on the WeirauchLab GitHub page: 

https://github.com/Fossette-x/COVID-19-and-PM2.5-in-Wuhan.git 
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Figure 1. The number of new deaths per day during the COVID-19 epidemic 

cycle in Wuhan, divided into three stages.  

The death data in the figure cover the period from January 23, 2020 to April 7, 

2020. The yellow shaded region indicates the increased period of deaths, the 

red region corresponds to the outbreak peak period, and the green region 

shows the declined period of deat. 
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Figure 2. Changes in meteorological factors during COVID-19 in Wuhan.  

The figure shows the data of temperature (T), relative humidity (RH), wind 

speed (WS), atmospheric pressure (AP) and atmospheric rainfall (AR) from 

January 23, 2020 to April 7, 2020, as well as the corresponding daily death 

number. The yellow shaded region indicates the increased period of deaths, 

the red one indicates the outbreak peak period, and the green one shows the 

declined period of deaths. 
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Figure 3. Changes in the concentration of air pollutants during COVID-19 in 

Wuhan.  

The air pollutants data include PM2.5, PM10, NO2, SO2, CO and O3 from 

January 23, 2020 to April 7, 2020. The yellow shaded region indicates the 

increased period of deaths, the red one shows the outbreak peak period, and 

the green one corresponds to the declined period of deaths. 
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Figure 4. Scree Plot and Component diagram in rotated space. 

The rotated component matrix is shown in table S2 Table S2. 
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Figure 5. The correlation coefficient of the cumulative impact of PM2.5 and 

meteorological factors on the number of COVID-19 deaths per day.  

The horizontal coordinates are the number of days forward, and the vertical 

coordinates are the correlation coefficient. The figure shows the correlation 

between PM2.5 (a), temperature (b), relative humidity (c), wind speed (d), 

atmospheric pressure (e) and atmospheric rainfall (f) and daily death number 

with different adjustment days. PM2.5 has a significant lag effect on the 

number of COVID-19 deaths. The related sig. value (two tails), covariance and 

standard deviation are in Table S3. 
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Figure 6. Comparison of PM2.5 concentration and daily COVID-19 deaths. Note 

that values of the PM2.5 concentrations are 18 days ahead. 
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Figure 7. The results of the generalized additive model showing the additive 

relationships between daily COVID-19 deaths and the PM2.5 concentration, air 

temperature, air pressure, FAC1 (PM10, PM2.5, NO2 and CO), FAC2 (RH and 

O3_8h) and FAC3 (AP, T and SO2). The upward trend of the curve indicates 

that term has a positive effect on the daily death number, and the downward 

trend of the curve indicates that term has a negative effect on the daily death 

number. 
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Table 1. Average values of meteorological factors in the three stages 

Meteorology Stage 1 Stage 2 Stage 3 Whole stage 
Coefficient of  

Variance 

Temperature (℃) 5.66  8.69 13.13  10.68  0.45  

Relative humidity (%) 80.92  78.3 77.12  78.08  0.11  

Wind Speed (m/s) 1.08  1.19 1.36  1.27  0.70  

Air pressure (hPa) 1023.23  1023.15 1016.47  1019.38  0.01  

Air rainfall (mm) 1.08  3.01 3.00  2.68  2.31  

 

Table 2. Average value of pollutants in each Stage of the Wuhan epidemic 

cycle 

Pollutant 
Stage 

1 

Stage 

2 

Stage 

3 

Whole 

Stage 

Coefficient of  

Variance 

PM2.5 (μg /m
3
) 54.6  32.9  35.3  38.3  0.45 

PM10 (μg /m
3
) 60.2  41.1  53.2  51.6  0.38 

SO2(μg /m
3
) 7.1  7.8  8.6  8.1  0.36 

CO (mg /m
3
) 0.8  0.9  0.9  0.9  0.25 

NO2 (μg /m
3
) 23.6  19.9  22.4  21.9  0.39 

O3_8h (μg /m
3
) 82.8  74.2  92.1  85.3  0.49 

 

Table 3. Influence of the correlation coefficient of on the meteorological factors 

on PM2.5 in each Stage 

 PM2.5 in Stage 1 PM2.5 in Stage 2 PM2.5 in Stage 3 
PM2.5 in Whole 

Stage 

Temperature  0.432 0.321 0.542** 0.099 

Relative humidity -0.539 -0.216 -0.461** -0.271* 

Wind Speed -0.779** 0.034 -0.072 -0.15 

Air pressure -0.684** -0.18 -0.097 -0.004 

Air rainfall -0.564* -0.161 -0.258 -0.253* 

Significance codes: 0.01 „**‟, 0.05 „*‟. The related sig. value (two tails), covariance and 

standard deviation are in Table S1. 

 

Table 4. Approximate significance of smooth terms 

Terms EDF
a
 P-value Deviance explained

b
 

PM2.5 1.98 1.03*10
-5

*** 

57.8% Temperature 1.92 2.14*10
-4

*** 

Air pressure 1.00 0.47 

FAC1 1.27 6.6*10
-3

 ** 39.5% 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

 

FAC2 1.64 0.19 

FAC3 1.00 5.7*10-5 ***  

Significance codes:  0 „***‟, 0.001 „**‟, 0.01 „*‟.  

a：EDF represents the estimated degree of freedom. Higher EDF values represent more 

complex splines. 

b：Deviation explained refers to the degree of interpretation of the model to the data. 
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Graphical abstract 
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Highlights： 

 The influence and importance of PM2.5 on the risk of COVID-19 

mortality. 

 18 days delay on COVID-19 mortality after high PM2.5 exposure. 

 Mortality is partially driven by long term PM2.5 exposure. 

 Negative correlation between temperature and COVID-19 

mortality 

 Positive correlation between atmospheric pressure and 

COVID-19 mortality 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof


