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Figure 1. Mouse model of chronic aristolochic acid nephropathy (AAN). (A) Workflow of the animal model used.
Aristolochic acid (2.5 mg/kg) was administered i.p. on 4 occasions on days 0, 3, 7 and 10. (B) Significant difference of
serum creatinine at the end of the experiment (n=7 in each group). (C) Masson’s Trichrome stain of kidneys from health
mouse (left, Naive) and mouse with chronic AAN (right, AAN) taken at day 28. Cytoplasm in stained red, collagen in
blue and nuclei are in dark brown that helps to identify renal fibrosis. Significant fibrotic changes developed in mouse
kidney due to AAN. (D) (E) (F) Immunohistochemistry stain of Ki67, alpha-SMA and HAVCR1 for Naive/AAN
kidneys. Micrographs shown are representative of 4 naive mice and 4 AAN mice. (G) (H) Quantification of collagen
(cyan signal) in Masson’s Trichrome stain and alpha-smooth muscle actin DAB signal were used to confirm fibrosis in
the AAN model. (I) Nuclear Ki67 DAB signal was used to quantify proliferating cells as a percentage of all
hematoxylin stained cells. (Scale bar = 50um)
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Figure 2. Clustering and cell-type identification of 23,885 nuclei using combined datasets from four naive and
four AAN mice. (A) Uniform manifold approximation and projection (UMAP) plot of the combined dataset is shown
by splitting conditions. We identified all major cell types in kidney and four new classes of cells, labeled as proliferative
cell and New-PT clusters 1-3. (B) Dotplot shows the expression levels and the percentage of gene expression of the
canonical genes in each distinct cell type. (C) Feature plot of regional-specific genes shows the expression of CypZel
(purple) in cortical PTCs and Cyp7b1 (green) in medullary PTCs. (D) Expression of canonical genes of principal cells
(PCs) in outer and inner medullary collecting duct shows the PCs from the two different regions were well-clustered.

JG cell, Juxtaglomerular cells; PT, proximal tubule; S1/S2/S3, segment 1/2/3 of proximal tubule; DTL, descending thin
limb; ATL, ascending thing limb; TAL, thick ascending limb; DCT1/DCT2, distal convoluted tubulel/2; CNT,
connecting tubule; PC-OMCD, principal cell-outer medullary collecting duct; PC-IMCD, principal cell-inner medullary
collecting duct; IC-A, intercalated cells, type A; IC-B, intercalated cells, type B.
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Figure 3. Gene expression profiles of Proximal Tubular Cell clusters. (A) Dotplot shows the expression levels and
the percentage of gene expression in each cluster of the canonical genes in the normal and new classes of PTCs. (B) (C)
(D)Volcano plots show the significant genes in differentially expressed gene analysis of the three New-PT clusters by
comparing the RNA profiles of one cluster to all other clusters of the dataset. Significance was defined as a gene with
an adjusted p value < 0.05, a = 0.25 average log fold difference between the two groups of cells, and with presence
detected in at least 10% of cells in either of the two populations.
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Figure 4. Trajectory, RNA velocity and pseudotime analysis of the Proximal Tubular Cells. (A) Trajectory analysis
shows dynamic process of the PTCs. RNA expression profiles change continuously along the anatomic axis in normal
PTCs (PT-S1 to PT-S3). (B) RNA velocity analysis shows New-PT1 is an intermediate cell type that may differentiate
toward two directions “New-PT1 — New-PT2 - proliferative PT - normal PTCs and “New-PT1 — New-PT3”. The
New-PT 1-3 and the proliferative PTCs are more likely to differentiation and the normal PTs are the mature populations
(C) PTC pseudotime analysis.
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Figure 5 Immunofluorescence stain of the New-PT clusters. Co-staining of sections from Naive and AAN kidneys
for, (A-B) SLCA4 and VCAMI1, (C-D) HAVCRI1 and P21, (E-H) Foxdl and Akap12, (I-L) Foxdl and WT1 (Scale Bar
=20um). (F, H, J, L) Foxdl, Akap12, WT1 were detected in glomeruli as well as tubulointerstitium
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Figure 6. Pathway analysis based on KEGG database. Results shows metabolic reprogramming, enrichment of
cellular communication and cell motility, and various immune activations in New-PT clusters. The enrichment was
calculated by comparing the RNA profiles of one New-PT cluster to all other PTC clusters. Pathways with a false
discovery rate < 0.25 were listed.
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Figure 7. Ligand-receptor analysis. (A) PT S1-S3 are combined to normal PT and fibroblast-1, 2 are combined to
Fibroblast for ligand-receptor analysis. Heatmap shows the cross product of ligand gene expression from normal PT,
New-PT1, New-PT2, New-PT3 and receptor gene expression from (B) fibroblast, (C) immune cells, (D) normal PT..
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