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Human dental pulp stem/stromal cells (hDPSCs) derived from the permanent secondary dentition are recognised to possess
certain advantageous traits, which support their potential use as a viable source of mesenchymal stem/stromal cells (MSCs) for
regenerative medicine-based applications. However, the well-established heterogeneous nature of hDPSC subpopulations,
coupled with their limited numbers within dental pulp tissues, has impeded our understanding of hDPSC biology and the
translation of sufficient quantities of these cells from laboratory research, through successful therapy development and clinical
applications. This article reviews our current understanding of hDPSC biology and the evidence underpinning the molecular
basis of their heterogeneity, which may be exploited to distinguish individual subpopulations with specific or superior
characteristics for regenerative medicine applications. Pertinent unanswered questions which still remain, regarding the
developmental origins, hierarchical organisation, and stem cell niche locations of hDPSC subpopulations and their roles in
hDPSC heterogeneity and functions, will further be explored. Ultimately, a greater understanding of how key features, such as
specific cell surface, senescence and other relevant genes, and protein and metabolic markers, delineate between hDPSC
subpopulations with contrasting stemness, proliferative, multipotency, immunomodulatory, anti-inflammatory, and other
relevant properties is required. Such knowledge advancements will undoubtedly lead to the development of novel screening,
isolation, and purification strategies, permitting the routine and effective identification, enrichment, and expansion of more
desirable hDPSC subpopulations for regenerative medicine-based applications. Furthermore, such innovative measures could
lead to improved cell expansion, manufacture, and banking procedures, thereby supporting the translational development of
hDPSC-based therapies in the future.

1. Introduction

The dental pulp tissues of postnatal human teeth are now
well-established to harbour a unique and varied source of
mesenchymal stem/stromal cells (MSCs). Due to the essen-
tial roles that MSCs play during tissue development and in

mediating reparative responses within the dentine-pulp
complex [1], there is a strongly held belief that the dental
pulp offers a potentially viable source of MSCs for regenera-
tive medicine-based applications. Such principles are based
on their availability and ease of isolation using minimally
invasive techniques from the pulpal tissues of extracted
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teeth, whilst mitigating many of the ethical issues associated
with the collection of MSC populations from other tissue
sources, coupled with their similarities to human bone
marrow-derived MSCs (hBMMSCs), the current “gold stan-
dard” MSC source [2–4].

MSCs within both human exfoliated deciduous teeth
(stem cells from human exfoliated deciduous teeth (SHEDs)
[5]) and the permanent secondary dentition (human dental
pulp stem/stromal cells (hDPSCs) [6, 7]) have been widely
isolated and characterised, in terms of their distinct cell sur-
face marker expression profiles, self-renewal and clonogenic
characteristics, proliferative capacities, multipotent differen-
tiation capabilities (e.g., dentinogenic, osteogenic, chondro-
genic, adipogenic, myogenic, neurogenic, hepatogenic, and
angiogenic lineages), and other desirable genotypic/pheno-
typic properties [8–12]. Therefore, hDPSCs, particularly
those isolated from extracted third molar teeth due to ortho-
dontic reasons, have received considerable attention for the
development of more effective stem/stromal cell-based
regenerative therapies. Indeed, despite much hDPSC-based
research being dedicated toward demonstrating their benefi-
cial effects as a regenerative dental pulpal therapy during end-
odontics [13, 14], hDPSCs have also been shown to promote
tissue repair following transplantation into various animal
model defects in vivo, related to pathologies associated with
other clinical disciplines, such as orthopaedics, neurology,
ophthalmology, hepatology, and cardiology [8, 11, 12, 15].

Despite such advances in our understanding of hDPSC
biology and the continued development and evaluation of
hDPSC-based therapies for clinical use, challenges remain
which impact on the potential and exploitation of this
MSC source in regenerative medicine. Although methodolo-
gies exist enabling the routine isolation of hDPSCs from
dental pulp tissues, as with MSCs sourced from other tissues
[16–19], an unequivocal issue which merits significant con-
sideration is the established heterogeneous nature of MSC
populations within the dental pulp, as isolated hDPSCs are
invariably comprised of many individual subpopulations
with contrasting biological and regenerative characteristics.
Such traits have presented a major obstacle to the transla-
tional development of hDPSC-based therapies for clinical
application, especially if hDPSC subpopulations possess
divergent proliferation and differentiation properties to per-
mit predictable and reproducible regenerative outcomes.
Ever since the pioneering work of Gronthos et al. [6, 7],
who originally described the characterisation of a unique
population of postnatal hDPSCs from the dental pulp of
human third molar teeth, the heterogeneity between hDPSC
subpopulations within dental pulp tissues has been indisput-
able. Specifically, hDPSCs shared a similar immunophenotype
to hBMMSCs and exhibited a high degree of clonogenicity,
self-renewal, rapid proliferative rates, and multipotency capa-
bilities, including differentiation into odontoblast-like cells
and the production of sporadic, but densely calcified, nodules.
Subcutaneous hDPSC transplantation into immunocompro-
mised mice also resulted in the formation of a functional
mineralised dentine-like tissue and associated dental pulp-
like tissue in vivo, distinct to that formed by hBMMSCs
[6, 7, 20]. However, further analysis of individual hDPSC

subpopulations derived from single-cell colonies revealed
significant differences in their proliferative and odontogenic
potentials. Despite heterogeneous, multicolony hDPSC pop-
ulation expansion being capable of achieving >120 popula-
tion doublings (PDs) ex vivo, only 20% of purified
clonogenic hDPSC subpopulations were capable of prolifer-
ating >20PDs. Furthermore, only two-thirds of these hDPSC
subpopulations were capable of forming abundant ectopic
dentine in vivo [6–8].

Although Gronthos et al. concluded that isolated
hDPSCs only represent a minor fraction of the total cell
number within dental pulp tissues (approximately 400 fibro-
blastic colony-forming unit (CFU-F) colonies per 105 cells
plated) [6, 7], additional confirmation of the limited propor-
tion of isolated hDPSC subpopulations capable of undergo-
ing extensive ex vivo expansion and odontogenesis further
highlighted the considerable heterogeneity surrounding the
proliferative, lineage differentiation and other biological
characteristics of hDPSC subpopulations. Thus, such cir-
cumstances have since confounded efforts to purify and pro-
file large numbers of particular hDPSC subpopulations with
the desired genotypic and phenotypic qualities required for
the development of MSC-based therapies. As it has been
estimated that undifferentiated MSC populations only com-
prise around 0.001-0.01% of the total number of cells within
tissues such as adult human bone marrow [21], the proce-
dures used for the harvesting of sufficient quantities of
hDPSC subpopulations for evaluation and development for
clinical use become a significant consideration. As a result
of such low MSC yields from native tissues, extensive
ex vivo expansion is often necessary to obtain sufficient cell
numbers for successful therapy development, especially where
allogenic MSC-based therapies are concerned [22, 23], with
typically reported MSC therapeutic doses in the range of 108

cells for routine cell transplantations [24, 25].
Consequently, a remaining challenge to the routine use

of hDPSCs for regenerative medicine-based applications is
the identification of particular molecular markers capable
of discriminating hDPSCs with superior regenerative proper-
ties, versus lesser quality subpopulations. This review provides
a comprehensive overview of our current understanding of
hDPSC biology and the molecular basis behind hDPSC het-
erogeneity. Based on this knowledge, we further outline some
of the key advances which have led to particular cellular
markers being harnessed to distinguish between hDPSC sub-
populations, in terms of their proliferative, multipotency,
immunomodulatory, and other regenerative properties over-
all. Such characteristics may subsequently be exploited for
the development of strategies that allow for the selective
screening, improved isolation, and enrichment of superior
quality hDPSC subpopulations from dental pulp tissues, lead-
ing to improved cell expansion, manufacture, and banking,
thereby supporting the translational development of hDPSC-
based therapy development.

2. Current Understanding of hDPSC Biology

2.1. Development and Stem Cell Niche Locations. Despite
dental pulp being recognised as a highly vascularised and
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innervated tissue comprising of a multi-heterogeneous pop-
ulation of cells [1], hDPSCs are established to be
ectomesenchymal-derived stem cells, originating during
embryonic tooth development from migrating cranial neural
crest cells and possessing MSC-related properties [26–29].
During development, neural crest-derived cells delaminate
from the periphery of the neural tube, migrate to the oral
region, and undergo epithelial-mesenchymal transition, dif-
ferentiating into neural crest stem cells and subsequently
into several other cell types and tissues within the craniofa-
cial region (Figure 1). As the self-renewal and multipotency
of premigratory and postmigratory neural crest cells are
thought to be maintained by neural crest-derived MSCs
within developing tissues [30, 31], neural crest cells confer
the advantageous regenerative properties of MSCs within
the craniofacial region, including hDPSCs [11, 12, 27–33].

In postnatal tissues, hDPSCs remain quiescent within
their stem cell niche microenvironments of the healthy
dentine-pulp complex [34, 35], for instance, through their
differentiation into newly formed odontoblast-like cells or
restoration of pulpal fibroblast composition during tertiary
(reparative) dentinogenesis [1, 32, 36–38]. Although the
ontogeny, anatomical locations, and identities of hDPSCs
within the dental pulp remain to be fully established, initial
studies proposed that hDPSCs originate from within the
cell-rich subodontoblast layer residing adjacent to the post-
mitotic primary odontoblasts, from fibroblast-like cell popu-
lations within the dental pulp stroma, and from perivascular
regions associated with the pulpal vasculature [32, 37–41].
However, as hDPSCs adjacent to the primary odontoblasts
are unlikely to contribute significantly to the regeneration
of odontoblast-like cells during tertiary dentinogenesis
[42], pericyte-derived subpopulations within the perivascu-
lar niche have since been established to possess particularly
prominent roles in responding to tissue injury within the

dentine-pulp complex, although contributions from
nonpericyte-derived MSCs also occur [37–44]. Conse-
quently, it is now believed that hDPSCs exist within several
different niches throughout the dental pulp, albeit with dis-
tinct intrinsic characteristics and regenerative properties
based on their respective locations within the tissue [3, 45,
46]. Thus, it has been speculated that the hDPSC subpopula-
tions with contrasting developmental lineages within the
dental pulp respond differently during tissue repair, which
may account for the diverse proliferative and odontogenic
responses originally observed within the dentine-pulp com-
plex, following transplantation of individual single colony-
derived hDPSC strains [1, 3, 6, 7].

2.2. Immunophenotypic Features. In accordance with the
minimal criteria stipulated for the classification of human
MSCs by the Mesenchymal and Tissue Stem Cell Committee
of the International Society for Cell and Gene Therapy
(ISCT) [47], hDPSCs exhibit adherence to tissue culture
plastic under standard culture conditions and specific cell
surface antigen expression (positive CD73, CD90, and
CD105 expression and negative CD11b, CD14, CD19,
CD34, CD45, CD79α, and human leukocyte antigen-
[HLA]-DR expression) and exhibit multipotent differentia-
tion capabilities of osteogenic, chondrogenic, and adipogenic
lineages. However, although some controversy still sur-
rounds the appropriateness and use of these specific criteria,
particularly with contradictory reports around the expres-
sion of certain hematopoietic stem cell markers [48], it has
been widely confirmed that hDPSCs demonstrate positive
expression of the ISCT-recommended MSC markers, CD73
(5′-ectonucleotidase), CD90 (Thy-1), and CD105 (endo-
glin), and negative expression of the hematopoietic stem cell
markers, CD3, CD8, CD11b, CD14, CD15, CD19, CD33,
CD34, CD45, CD71, CD79α, CD117, and HLA-DR [6, 8,

Ectoderm (i) (ii)

(iv)

(v)

(iii)

Neural tube

Neural crest-derived cells Neural crest-derived stem cells

Delamination & cells
migration Epithelial-mesenchymal

transition

Figure 1: Summary of the events involved in hDPSC formation from migrating neural crest-derived cells during embryonic tooth
development. (i) During development, neural crest-derived cells delaminate from the periphery of the neural tube and migrate to the
oral region. (ii) Neural crest-derived cells undergo epithelial-mesenchymal transition, differentiating into neural crest stem cells and (iii)
subsequently into several other cell types and tissues within the craniofacial region. (iv–v) These include the various cell types which
comprise the dentine-pulp complex, including hDPSCs.
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9, 11, 12, 49–52]. However, there is currently no specific
marker for hDPSCs, and although expression of a wide
range of other mesenchymal, embryonic, neural crest, and
other cell surface markers has been extensively examined,
the heterogeneous nature of hDPSC subpopulations within
dental pulp tissues and their distinct immunophenotypic
characteristics have led to considerable inconsistencies and
diversity being displayed in their marker expression profiles
[9, 11, 48]. Nonetheless, in addition to CD73, CD90, and
CD105, hDPSCs have been reported to express numerous
other MSC surface markers, such as CD13 (aminopeptidase
N), CD29 (β1-integrin), CD44, CD166 (activated-leucocyte
cell adhesion molecule), and CD271 (low-affinity nerve
growth factor receptor, LANGFR/p75) [9, 11, 49–56]. Con-
sistent with their proposed location within the perivascular
niche [37–44], hDPSCs have also been demonstrated to
positively express perivascular cell (STRO-1 (stromal pre-
cursor antigen 1), STRO-3, and PDGFR-β (platelet-derived
growth factor receptor-β)), endothelial cell (CD106, vascu-
lar cell adhesion molecule-1; CD146, melanoma cell adhe-
sion molecule), smooth muscle cell (α-smooth muscle
actin (αSMA)), and pericyte (3G5, ribosomal protein S14;
NG2, neuron-glial antigen 2) markers, with hDPSCs pre-
dominantly presenting a pericyte-associated phenotype [6,
9, 12, 43, 44, 50–53, 56, 57].

Analysis of embryonic stem cell markers has revealed
varying levels of OCT4 (octamer-binding transcription fac-
tor-4), NANOG (homeobox transcription factor), SOX2
(SRY- (sex determining region Y-) box 2), SSEA4 (stage-
specific embryonic antigen-4), and Slug expression in
hDPSCs, which regulate stem cell properties such as self-
renewal, multi/pluripotency, and mesenchymal lineage
commitment [9, 11, 49, 50, 53, 58–60]. Furthermore,
hDPSCs exhibit positive gene expression for self-renewal
and multipotency marker, BMI-1 [53, 61, 62]. Based on
their neural crest origins, expression of various neural line-
age markers has also been identified in hDPSCs, including
CD117 (c-Kit), CD271, Nestin, glial fibrillary acidic protein
(GFAP), β-III tubulin, S100, Notch 1, musashi-1, synapto-
physin, microtubule-associated protein 2 (MAP-2), and
oligodendrocyte-associated CNPase [11, 12, 49, 50, 52, 53,
63–65].

2.3. Self-Renewal and Multilineage Differentiation
Characteristics. High self-renewal capabilities are one of the
defining features of hDPSCs [2, 6–8]. Although hDPSCs
and hBMMSCs both share similar spindle-shaped morphol-
ogies, gene expression profiles, and differentiation pathways
overall, hDPSCs have been shown to maintain higher
colony-forming efficiencies and proliferation rates than
hBMMSCs, associated with the elevated expression of cell
cycle-related genes, such as cyclin-dependent kinase 6 and
insulin-like growth factor 2 (IGF-2), by hDPSCs [6–8, 66].
Indeed, heterogeneous hDPSC populations have been
proven to possess considerable expansion potentials achiev-
ing >120PDs ex vivo, although considerable variations in the
proliferative capacities of individual hDPSC subpopulations
have been highlighted, as most are only capable of achieving
<40PDs in culture [6–8, 52, 53, 67].

Under basal conditions, hDPSCs express osteogenic
marker genes, including runt-related transcription factor 2
(RUNX2), type I collagen, dentine sialophosphoprotein
(DSPP), osteocalcin, osteopontin, osteonectin, alkaline phos-
phatase, and bone morphogenetic proteins (BMP-2, BMP-4);
adipogenic marker genes, such as peroxisome proliferator-
activated receptor γ (PPARγ), lipoprotein lipase (LPL), lep-
tin, and adipophilin; chondrogenic markers, such as type II
collagen and SOX9; and myogenic markers, such as αSMA,
myosin, myogenin, and desmin [2, 6–8, 12, 49]. Such geno-
typic qualities support the extensive plasticity displayed by
hDPSCs, a hallmark feature which makes these populations
such attractive propositions in regenerative medicine, in
terms of their potential to mature into more specialised
cells for the potential repair of dental and nondental tissues
throughout the body [11, 15, 27–29]. Under appropriate
inductive conditions in vitro, hDPSCs can be induced to
undergo differentiation into numerous cell types associated
with both mesodermal and nonmesodermal (ectodermal
and endodermal) lineages, including odontoblasts, osteo-
blasts, chondrocytes, adipocytes, glia cells, neuronal cells,
oligodendrocytes, Schwann cells, retinal ganglion-like cells,
endothelial cells, pancreatic cells, cardiomyocytes, hepato-
cytes, melanocytes, skeletal muscle cells, and bladder
smooth muscle cells [8–12, 15, 50], well beyond the mini-
mum multilineage differentiation criteria stipulated for
hBMMSCs by the ISCT [47]. Such findings have subse-
quently led to further evaluation of hDPSC differentiation
potency and regenerative potentials in vivo, most notably
following transplantation into various animal disease and
trauma models [8–12, 15].

2.4. Immunomodulatory and Anti-Inflammatory Properties.
In addition to their proliferative and differentiation charac-
teristics, hDPSCs have further been demonstrated to possess
potent immunomodulatory and anti-inflammatory proper-
ties. hDPSCs do not express the major HLA class II surface
antigen and are capable of inhibiting CD4+ and CD8+ T-
cell proliferation and proinflammatory cytokine production,
in addition to inducing their apoptosis. Such responses are
induced by the secretion of soluble factors, such as human
leukocyte antigen G5 (HLA-G5), interleukins (IL-6, IL-10),
transforming growth factor-β1 (TGF-β1), hepatocyte growth
factor (HGF), and Fas ligand (FasL), via hDPSC-derived
exosome release and through the induction of endoplasmic
reticulum (ER) stress in T-cells [68–75]. hDPSCs can also
prevent T-helper 17 (Th17) cell activation, whilst stimulat-
ing regulatory T cell (Treg) differentiation, and suppress B
cell proliferation and differentiation, influencing immuno-
globulin production [69, 71–73, 76]. hDPSCs further attenuate
activated peripheral blood mononuclear cell (PBMC) prolifer-
ation via TGF-β1, indoleamine 2,3-dioxygenase (IDO), and
HGF secretion [77, 78] and regulate the differentiation and
functions of macrophage subtypes through IDO-mediated
inhibition of tumour necrosis factor-α (TNF-α) secretion
and development of the proinflammatory M1 macrophage
phenotype, in addition to stimulation of anti-inflammatory
M2 macrophage polarisation by inhibiting Toll-like receptor
(TLR) and nuclear factor κΒ (NFκΒ) signalling [78, 79].
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3. Markers Implicated in Distinguishing hDPSC
Subpopulations with Distinct Characteristics

In light of the established heterogeneous nature of hDPSC
subpopulations, a comprehensive understanding of the bio-
logical characteristics of hDPSCs has been crucial to efforts
aimed at developing strategies for their exploitation as novel
tissue regeneration therapies for clinical applications. Conse-
quently, numerous studies have now reported the isolation
and characterisation of single colony-derived clonal popula-
tions of hDPSCs utilising strategies and specific biological
characteristics as markers, to selectively obtain more refined
subpopulations for regenerative medicine purposes. A sum-
mary of these proposed heterogenic markers, their subcellu-
lar locations, and the purported hDPSC characteristics
which these markers identify is presented in Figure 2 and
Table 1.

3.1. Cell Surface Markers. To date, the most widely analysed
and exploited biological characteristics described for the
detection and purification of particular hDPSC subpopula-
tions have been based on their relative expression of specific
mesenchymal, embryonic, and neural crest cell surface
markers [11, 50, 51]. Notably, early characterisation studies
utilised a combination of perivascular markers (STRO-1,
CD146, and 3G5), to colocalise STRO-1 and CD146 to the
microvasculature and confirm that most hDPSCs reside
within the perivascular niche of dental pulp tissues [43].

Numerous studies have since employed these and a vari-
ety of additional cell surface markers for the isolation and
discrimination of distinct hDPSC subpopulations. STRO-
1+/CD146+ subpopulations have been identified as highly
proliferative, multipotent hDPSCs and are often coexpressed
with other embryonic stem cell markers, such as OCT4 and
NANOG, which aid the maintenance of MSC characteristics
[59, 80]. These subpopulations have been shown to possess
superior colony-forming efficiencies, compared to their
STRO-1-/CD146- counterparts, and able to proliferate
>40PDs. STRO-1+/CD146+ hDPSCs are also capable of
forming dentine/pulp-like structures [12], although certain
STRO-1+/CD146+ clones were reported to exhibit restricted
differentiation potential [80]. Thus, further attention has
focussed on the characterisation of STRO-1+ hDPSC sub-
populations also positive for hematopoietic stem cell
markers, c-kit+ (CD117) and CD34+. These multipotent sub-
populations can undergo osteogenic differentiation in vitro
[81], whilst c-kit+/CD34+/STRO-1+ hDPSCs also coexpres-
sing flk-1 (vascular endothelial growth factor receptor 2
(VEGFR2)) not only have strong osteogenic capacities but
are also capable of angiogenic differentiation in vitro, codif-
ferentiating into osteoprogenitor and endothelial progenitor
cells [50, 82]. Furthermore, STRO-1+/c-Kit+/CD34- and
STRO-1+/c-Kit+/CD34+ hDPSCs have been proposed to rep-
resent distinct subpopulations, with contrasting cell prolifer-
ation, stemness, and differentiation properties, especially in
terms of their ectodermal lineage capabilities, with STRO-
1+/c-Kit+/CD34+ hDPSCs possessing a greater propensity
towards neurogenic commitment [83]. It has since been
shown that STRO-1+/c-Kit+/CD34+ hDPSCs, expressing

CD271, Nestin, and SOX10, are capable of differentiating
into Schwann cell-like cells in vitro and promoting axonal
regeneration in vivo [84]. Thus, these studies suggest that a
larger pool of hDPSCs exist within dental pulp tissues with
enhanced multipotency towards mesodermal and ectoder-
mal lineages, represented within a highly proliferative
STRO-1+ population comprising several interrelated sub-
populations [85].

Further studies into CD146+ hDPSCs have determined
that these subpopulations are capable of promoting minera-
lisation and regenerating the dentine-pulp complex in vivo,
identical to that formed by multicolony-derived hDPSCs
[42, 86]. In vivo regenerated dentine and dentine-pulp com-
plex were also significantly thicker and displayed uniform
expression of dentine matrix protein-1 (DMP-1) and DSPP.
Alternatively, CD146- subfractions have been reported to
exhibit potent neurogenic potential, with the additional ele-
vated expression of neurotrophic factors [87].

As CD271+ cells are regarded as being of neural crest ori-
gin [63, 64], these have been identified as subpopulations
with enhanced neurogenic potential, exhibiting high expres-
sion for neural markers, such as Nestin, SOX1, and SOX2,
and the ability to differentiate into the neuronal cell lineage,
compared to CD271- hDPSCs [88]. Although positive
CD271 expression is relatively low across all hDPSCs, highly
proliferative, multipotent hDPSC subpopulations exhibit no
CD271 expression (CD271-), unlike their low proliferative/
unipotent CD271+ counterparts [52, 53]. In accordance with
CD271 expression being proposed to significantly influence
multipotent differentiation capabilities in hDPSCs, CD271-

subpopulations have been demonstrated to possess superior
colony-forming efficiencies, prolonged proliferation, and
multilineage potential in vitro, in addition to enhanced bone
formation capabilities in vivo [64, 65]. Furthermore, CD271
has recently been identified to be highly expressed within
STRO-1+/c-Kit+/CD34+ hDPSC subpopulations, possessing
slow proliferation rates, reduced stemness, and early-onset
senescence, compared to their STRO-1+/c-Kit+/CD34- coun-
terparts [83]. However, despite differences in CD271 expres-
sion, both hDPSC subpopulations exhibited similar
osteogenic, myogenic, and adipogenic differentiation,
although STRO-1+/c-Kit+/CD34+ hDPSCs expressing
CD271 demonstrated greater neurogenic lineage commit-
ment. That said, not all studies have demonstrated complete
inhibition of multipotent differentiation in CD271- express-
ing hDPSCs [63, 83].

Other MSC markers demonstrated to distinguish partic-
ular traits between hDPSC subpopulations include CD105,
as CD105+ hDPSC subpopulations exhibit high proliferative,
migratory, and multipotent differentiation potentials, espe-
cially towards the angiogenic lineages, exhibiting high
expression of vascular endothelial growth factor (VEGF)
and other proangiogenic factors such as granulocyte-
macrophage colony-stimulating factor (GM-CSF) [89].
Upon transplantation into a mouse hind limb ischaemia
model, CD105+ hDPSCs were able to regenerate high densi-
ties of capillaries within sites of injury. Such findings may be
related to their ontogeny, as CD105 is a membrane glyco-
protein expressed in vascular endothelium, as CD105+ cells
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ADGRA2, ANTXR1, ASPM, ATP8B1, AURKB,
CCNB2, CDC2, CDC20, CENPF, CEP55, CHEK1, CIT,
CKS2, COL2A2, COL3A1, DLG7, DSP, E2F2, GINS2,
ICAM1, INHBA, ITGA8, LDB2, MAD2LI, NCAPG,
NNAT, OXTR, PBK, POLQ, PTTG1, RPA3, RRM2
SERPINE1, SORRT1, SRGN, TOP2A, TWIST-1, UBE2C

STRO-1+

Longer telomeres8-OHdGlow

GSTZ1high

ALDH-1high

SOD2high
GSTZ1high

+

Extracellular:
increased MMP-9

Cytoplasmic:
protein carbonyl contentlow

CD146+

CD117+

CD34+

CD105+

IGF1R+

VEGFR1high

SSEA-4+

CXCR-4+

PDGFR-β+

BMI-1–

CD271–

Figure 2: Summary of the subcellular locations of the proposed heterogenic gene, protein, and other biochemical markers implicated in
distinguishing high stemness, proliferative, multipotency, and other regenerative characteristics between hDPSC subpopulations.

Table 1: Summary of the cell surface, senescence and other relevant gene, protein and metabolic markers implicated in distinguishing high
stemness, proliferative, multi-potency and other regenerative characteristics between hDPSC sub-populations.

Marker Associated properties of hDPSC sub-populations References

STRO-1+ High colony forming efficiency, high proliferation, multi-potent [59, 80, 83, 85]

CD146+ High colony forming efficiency, high proliferation, multi-potent, high odontogenic differentiation [43, 59, 80, 86]

CD146- High neurogenic differentiation [87]

CD117+ (c-kit+) High odontogenic, osteogenic, neurogenic, adipogenic, myogenic and angiogenic differentiation
[50, 81–84,

94]

CD34+ Low stemness, low proliferation, high osteogenic, neurogenic and angiogenic differentiation [50, 81–84]

CD271+ Low proliferation, bi-/uni-potent, high neurogenic differentiation [52, 53, 88]

CD271- High colony forming efficiency, high proliferation, multi-potent
[52, 53, 64, 65,

83]

CD105+ High proliferation, high migration, multi-potent, high angiogenic differentiation [89]

CD51+ (CD140α+) High odontogenic, osteogenic and chondrogenic differentiation [64]

SSEA-4+
High proliferation, multi-potent, high osteogenic, chondrogenic and neurogenic differentiation,

low adipogenic differentiation
[58]

BMI-1- High stemness, high proliferation, low multi-potency [61, 62]

CXCR-4+ (CD186) High colony forming efficiency, high proliferation, multi-potent [57, 91, 92]

PDGFR-β+ High proliferation, high odontogenic differentiation [93]

IGF1R+ High stemness, high proliferation, multi-potent, immunomodulatory, anti-inflammatory [94]

VEGFR1high High angiogenic differentiation [95]

Long Telomeres High proliferation, resistance to senescence, high stemness, multi-potent [53, 103]

Low Oxidative
DNA & Protein
Biomarkers

High proliferation, resistance to senescence, high stemness, multi-potent [53, 104]

SOD2high High proliferation, resistance to senescence, high stemness, multi-potent [52, 53]

GSTZ1high High proliferation, resistance to senescence, high stemness, multi-potent [52, 53]

Mitofilin+ High stemness, multi-potent [112]

ALDH-1high High stemness, multi-potent [113]

MMP-9high High stemness, high proliferation, multi-potent, increased matrix remodelling [116]
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are also found within the perivascular niche. Similar results
were evident in a cerebral ischaemic model, whereby their
transplantation resulted in new vessel formation in the isch-
aemic zone and subsequently promoted neuronal regenera-
tion by endogenous neuronal cells [89].

CD51+/CD140α+ hDPSCs have also been identified as a
subpopulation capable of odontogenesis, osteogenesis, and
chondrogenesis. Their odontogenic and osteogenic differen-
tiation capacity was demonstrated to be greater than that of
the STRO-1+/CD146+ hDPSCs, producing greater quantified
alkaline phosphatase activity and mineralised tissue forma-
tion [64]. However, despite the expression of other MSC
markers, such as CD29+, CD44+, and CD73+, having been
suggested to correlate with hDPSC stemness, these have
been precluded as having potential benefits as markers for
the isolation of hDPSC subpopulations [28].

Although the majority of isolated hDPSCs exhibit nega-
tive hematopoietic stem cell marker expression, a small per-
centage (≤2%) has been found to be positive for markers,
such as CD34+ and CD117+ [8–12, 50, 51]. CD34+ hDPSC
subpopulations have reduced proliferative capacities, but
with an enhanced neurogenic potential, compared to their
CD34- counterparts [83, 84]. CD34+ clones also express
lower levels of MSC markers, such as CD133 and CD44.
CD34+ clones have the ability to undergo osteogenic, adipo-
genic, myogenic, and neurogenic differentiation. Most sig-
nificantly, CD34+ hDPSCs show superior neurogenic
potential and are capable of differentiating into Schwann
cells, which upon in vivo transplantation were capable of sci-
atic nerve regeneration in an animal model [83, 84]. CD34+

hDPSC subpopulations express greater Nestin and CD271
than CD34- clones and express GFAP. Subpopulations coex-
pressing STRO-1+/c-kit+/CD34+ were also able to undergo
osteogenic, adipogenic, and myogenic differentiation
in vitro, but no significant differences were evident in the
differentiation capacities between CD34- and CD34+ sub-
populations [81, 83, 85]. CD117+ hDPSCs have been found
to be capable of osteogenic, adipogenic, myogenic, and neu-
rogenic differentiation, coexpressing with STRO-1+/CD34+

as described above [81, 83, 85]. CD117 (c-Kit) is a tyrosine
kinase III receptor that acts in concert with stem cell factor
(SCF) as its ligand, with proposed roles in maintaining the
self-renewal properties of hDPSCs [90]. However, CD117
expression was gradually lost during differentiation [82].

In terms of embryonic stem cell and self-renewal
markers, SSEA-4+ hDPSCs have been characterised as being
highly proliferative subpopulations, with multipotent capac-
ities towards osteogenic, chondrogenic, and neurogenic line-
ages, but impaired adipogenesis [58]. Furthermore, reduced
BMI-1 expression has been correlated with the maintenance
of stemness and extended proliferative properties in
hDPSCs, albeit resulting in potential impairments in differ-
entiation potential [61, 62]. Expression of the stromal cell-
derived factor (SDF)-1α receptor and C-X-C chemokine
receptor type 4 (CXCR-4, CD186) has further been identi-
fied to distinguish hDPSCs with greater colony formation
efficiencies and proliferative and multilineage differentiation
capacities than their CXCR4- counterparts [57, 91, 92]. Sim-
ilarly, hDPSCs sorted by their expression of PDGFR-β dem-

onstrated that PDGFR-β+/c-kit+ subpopulations exhibited
enhanced proliferation and prominent odontogenic differ-
entiation in vitro, coupled with enhanced mineralisation
and dentine/pulp-like tissue formation in vivo [93]. IGF1
receptor (IGF1R), regarded as a pluripotent marker of
embryonic stem cells, was also found to be expressed in
hDPSCs, with IGF1R+ subpopulations displaying both self-
renewal and multipotency potentials, especially towards
neurogenic and angiogenic lineages [94]. Similarly, enriched
populations of VEGFR1high hDPSCs have a strong ability to
undergo angiogenic differentiation in vitro, producing
increased blood vessel sprouting and neovascularisation
than VEGFR1low subpopulations [95].

3.2. Markers Related to Self-Renewal, Proliferation, and
Resistance to Cellular Senescence. In light of the integral
importance of self-renewal, clonogenicity, colony-forming
efficiency, and ex vivo expansion potential to the develop-
ment of hDPSCs for regenerative medicine, numerous stud-
ies have established a number of relevant cellular markers
capable of distinguishing hDPSC subpopulations with supe-
rior self-renewal and proliferative capabilities. As detailed
above, STRO-1+/CD146+, CD271-, BMI-1-, and CXCR-4+

hDPSC subpopulations have been shown to possess superior
colony-forming efficiencies and stemness properties than
their STRO-1-/CD146-, CD271+, BMI-1+, and CXCR4-

counterparts [57, 59, 62, 64, 65, 80, 83, 91, 92].
Another significant drawback of hDPSC heterogeneity

stems from the original findings that only 20% of purified
clonogenic hDPSC subpopulations are capable of undergoing
>20PDs [6–8], prior to proliferative decline and the onset of
replicative (telomere-dependent) senescence. Such events sig-
nificantly impede the ex vivo expansion capabilities of hDPSCs
necessary to produce sufficient cell numbers for clinical use,
characterised by progressive telomere shortening, inhibition
of G1-S phase transition, and permanent growth arrest. This
is associated with the loss of telomeric TTAGGG repeats, pos-
itive senescence-associated β-galactosidase staining, and
increased tumour suppressor (p53 and retinoblastoma protein
(pRb)) and cyclin-dependent kinase inhibitor (p21waf1 and
p16INK4a) gene expression [96, 97]. These events are recog-
nised to significantly alter the MSC genotype and phenotype,
ultimately leading to impaired cellular regenerative properties
and disrupted local tissue microenvironment signalling mech-
anisms, through the secretome associated with the senescence-
associated secretory phenotype (SASP) [96–98].

Although hDPSC susceptibility to replicative (telomere-
dependent) and oxidative stress-induced (telomere-indepen-
dent) premature senescence has previously been recognised
[52, 53, 61, 62, 99], the relative expression levels of many cell
surface markers have been implicated as being indicative of
elevated rates of hDPSC proliferation and/or expansion poten-
tial, including STRO-1+, CD34-, CD90+, CD105+, CD117+,
CD146+, CD271-, CXCR4+, PDGFR-β+/c-kit+, and IGF1R+

[50, 57, 59, 64, 65, 80–83, 85, 86, 89, 91–94]. Reduced BMI-1
expression in hDPSCs has been demonstrated to delay replica-
tive senescence and limit senescence marker (positive
senescence-associated β-galactosidase staining and elevated
p16INK4a expression) detection [62].
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Additional studies have focussed on understanding the
telomere dynamics underlying hDPSC heterogeneity and
the intrinsic mechanisms responsible for protecting highly
proliferative hDPSC subpopulations from accelerated telo-
mere erosion. SSEA-4+ hDPSCs have been found to possess
longer telomeres and higher proliferation rates, compared to
SSEA-4- subpopulations [58]. More recently, significant var-
iations in the ex vivo expansion capabilities of individual
hDPSC subpopulations have been demonstrated, with highly
proliferative hDPSCs capable of achieving >80PDs, whereas
low proliferating hDPSCs only complete <40PDs before
senescence, correlating with hDPSCs with high proliferative
capacities possessing longer telomeres. This leads to the
delayed detection of senescence-related markers, such as
positive senescence-associated β-galactosidase staining and
elevated p53, p16INK4a, and p21waf1 expression [52]. Thus,
it is likely that such highly proliferative hDPSCs are respon-
sible for the extensive expansion potential of heterogeneous
hDPSC populations (>120PDs) in vitro, as previously
described [6–8]. Low proliferative hDPSC senescence was
also associated with the loss of stem cell marker characteris-
tics, positive CD271 expression, and impaired osteogenic/
chondrogenic differentiation, in favour of adipogenesis.
In contrast, highly proliferative hDPSCs exhibited no
CD271 expression but retained stemness and multipo-
tency capabilities, only demonstrating impaired differenti-
ation following prolonged in vitro expansion (>60PDs).
As most studies have only reported negligible reverse
transcriptase human telomerase catalytic subunit (hTERT)
expression in hDPSCs [52, 53, 61, 100, 101], hTERT is
unlikely to be responsible for maintaining telomere integ-
rity and the proliferative/multipotency capabilities of
highly proliferative hDPSCs. Thus, the absence of hTERT
implies that other intrinsic mechanisms may account for
differences in telomere lengths, proliferation rates, and
differentiation capabilities between high and low prolifer-
ative hDPSC subpopulations.

Oxidative stress is another prominent mediator of cellu-
lar senescence in MSCs, associated with the excessive gener-
ation of reactive oxygen species (ROS) at the expense of
endogenous enzymic and nonenzymic antioxidant defence
mechanisms, leading to indiscriminate oxidative damage to
biomolecules, such as DNA, proteins, and lipids and acceler-
ating premature senescence [53, 96, 97, 102]. As with previ-
ous studies confirming differences in replicative senescence
susceptibilities between high and low proliferative hDPSCs
[52], similar variations in the relative susceptibilities of
hDPSC subpopulations to premature senescence have also
been confirmed, following continual exposure to oxidative
stress [53]. Although all hDPSC subpopulations exhibit
accelerated susceptibilities to premature senescence, highly
proliferative hDPSCs (CD271-) showed most resistance to
premature senescence, achieving 50-76PDs similar to
untreated controls (>80PDs). In contrast, low proliferative
subpopulations (CD271+) collectively displayed accelerated
premature senescence (4-32PDs), even in untreated controls.
Whilst telomere lengths were largely unaffected by oxidative
stress exposure, elevated premature senescence susceptibili-
ties in low proliferative hDPSCs (2-10PDs) were accompa-

nied by the loss of certain stem cell markers and increased
oxidative DNA (8-hydroxy-deoxy-guanosine (8-OHdG))
and protein (protein carbonyl content) damage, absent in
highly proliferative hDPSCs until 45-60PDs [53]. Such find-
ings of enhanced low proliferative hDPSC subpopulation
susceptibilities to oxidative damage are supported by recent
single-cell Raman spectroscopy studies, which demonstrated
distinctive decreases in nucleic acid and protein spectral
intensities in low proliferative hDPSCs, as a consequence
of accumulative exposure to ROS-induced biomolecular
damage [103].

Further studies led to the discovery that increased super-
oxide dismutase 2 (SOD2) and glutathione S-transferase ζ1
(GSTZ1) expression and SOD activities were present in
highly proliferative hDPSCs (10-25PDs), which declined
during culture expansion [53]. However, low proliferative
hDPSCs (2-10PDs) exhibited inferior SOD-, catalase-, and
glutathione-related antioxidant expression and activities
overall. As mitochondria are the principle cellular source
of ROS during senescence, mitochondrial SOD2 and mito-
chondrial/cytosolic GSTZ1 are likely candidates as the prin-
ciple protective enzymic antioxidant defence mechanisms
against oxidative stress in highly proliferative hDPSC sub-
populations, preventing mitochondrial damage and hDPSC
senescence and leading to the extended maintenance of pro-
liferative, stemness, multipotency, and other cellular charac-
teristics [52, 53, 62, 96, 104–107]. Thus, such telomere
length, senescence, oxidative stress, and antioxidant charac-
teristics may be utilised as predictors of hDPSC proliferative
and multipotency qualities for future regenerative medicine
exploitation [108]. Evidence is increasingly emerging to
highlight mitochondrial dynamics, metabolism, oxidative
stress, and function as having a major impact on the pheno-
typic responses of hDPSCs and other MSC populations, such
as differentiation [109–111]. Indeed, cell proliferation-
inducing protein 52 (mitofilin) is an antagonist of mitochon-
drial activation during differentiation located within the
inner mitochondrial membranes of hDPSCs, which becomes
depleted during normal differentiation [112]. Consequently,
the selective isolation of mitofilin+ hDPSCs has been shown
to result in the isolation of more primitive cells with greater
differentiation efficiencies. Therefore, a better understanding
of the molecular profiles, mitochondrial-related stem cell
markers, and morphological characteristics of hDPSC mito-
chondria may further prove effective in the selection of supe-
rior quality hDPSC for clinical applications.

3.3. Multipotency or Specialised Differentiation Markers.
Another essential facet of hDPSC stemness, which makes
them appealing options for regenerative medicine, is their
potential multipotency capabilities [11, 15, 27–29]. Conse-
quently, a wide range of studies have implicated individual
or collections of cell surface markers as being indicative of
multipotent differentiation characteristics in hDPSC sub-
populations, including STRO-1+/CD146+[59, 80], c-kit+/
CD34+/STRO-1+ [50, 81–83], CD51+/CD140α+ [64],
CD105+ [89], CD271- [52, 53, 64, 65, 83], CXCR4+[57, 91,
92], and IGF1R+ [94]. Similarly, SSEA-4+ hDPSCs possess
multipotent capacities towards osteogenic, chondrogenic,
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and neurogenic lineages but impaired adipogenesis [58].
However, reduced BMI-1 expression is associated with lim-
ited hDPSC differentiation potential [61, 62]. Furthermore,
despite not distinguishing multipotent properties, certain
cell surface markers have been attributed to the identifica-
tion of hDPSC subpopulations with specific mesodermal or
ectodermal differentiation lineage capabilities. For instance,
STRO-1+/c-Kit+/CD34+, CD146-, and CD271+ hDPSCs
have a greater propensity towards neurogenic commitment
[83, 84, 87, 88], whilst CD105+, VEGFR1high, and PDGFR-
β+/c-kit+ subpopulations have strong tendencies for angio-
genic [89, 95] and odontogenic [93] lineage differentiation,
respectively. Thus, such limited lineage differentiation ten-
dencies may point towards more refined indications for such
subpopulations in future for more specific regenerative
applications, such as nerve injury and cardiovascular or
tooth repair, thereby utilising these hDPSCs for optimised
clinical scenarios for which they appear best suited.

Multipotency has further been revealed to be influenced
by hDPSC telomere lengths and relative susceptibilities to
replicative senescence, with hDPSC subpopulations with
longer telomere lengths and higher proliferation rates dis-
playing tripotent osteogenic, chondrogenic, and adipogenic
lineage differentiation, in contrast to low telomere length,
unipotent hDPSCs which only exhibit adipogenesis [52, 58].
As high and low telomere length hDPSCs express CD271-

and CD271+ levels, respectively [52, 53], positive CD271
expression in low telomere length hDPSC subpopulations
may explain their more lineage-restricted capabilities, consid-
ering the established inhibitory effects of CD271 on multipo-
tent differentiation in hDPSCs [64, 65].

3.4. Immunomodulatory Markers. Of the various hDPSC
characteristics which may be exploited for regenerative med-
icine purposes, the abilities of specific markers to selectively
distinguish hDPSC subpopulations with exceptional immu-
nomodulatory and anti-inflammatory potencies are the area
which is currently most limited [11, 68–79]. However,
IGF1R+ hDPSCs have been reported to possess immuno-
modulatory and anti-inflammatory properties, following

in vivo transplantation into a rodent hypoxia-ischemia
model [94].

3.5. Other Markers Associated with Other Regenerative
Characteristics. hDPSC subpopulations expressing the intra-
cellular enzyme, aldehyde dehydrogenase-1 (ALDH-1),
associated with improved stemness have been found to be
capable of osteogenic, chondrogenic, and adipogenic differ-
entiation. These subpopulations have also been immunolo-
calised to the perivascular niche and the perineurium of
nerve bundles [113]. The relative abilities of hDPSC subpop-
ulations have further been exploited through their contrast-
ing migratory responses to GM-CSF in culture, with highly
migratory hDPSCs also exhibiting improved proliferative
responses and other regenerative properties overall [114,
115]. Although most studies have established hDPSC het-
erogeneity using two-dimensional (2D) culture approaches,
a recent study demonstrated that highly proliferative/multi-
potent and low proliferative/unipotent hDPSCs in three-
dimensional (3D) type I collagen gels exhibit comparable
gel contraction capabilities and matrix metalloproteinase-2
(MMP-2) expression/activities, although highly prolifera-
tive/multipotent hDPSC subpopulations possess higher
MMP-9 expression/activities, which may impact on the abil-
ities of these subpopulations to regulate cellular functions
within the stem cell niche and remodel/degrade 3D biomate-
rial scaffolds; and their regenerative properties overall [116].

Microarray studies by Menicanin et al. [117] compared
the global gene expression profiles of highly proliferative/
multipotent hDPSC clones with low proliferative potential
cell clones with restricted differentiation potential, in order
to identify potential biomarkers of highly proliferative sub-
populations with multipotent capabilities. In total, 24 genes
were identified to be upregulated in highly proliferative/mul-
tipotent hDPSCs associated with cell cycle progression,
mitosis, and cell division; DNA repair and replication; gene
transcription; and cell proliferation and differentiation
(Table 2). A more recent study by Kobayashi et al. [80]
reported similar findings, revealing 1227 genes that were
related to multipotency, 90 of which were also associated

Table 2: Summary of the marker genes identified to exhibit upregulated expression by microarray analysis, which distinguishes between
high proliferative/multipotent hDPSCs and low proliferative hDPSC subpopulations. Adapted from Menicanin et al. [117].

Gene functions Gene symbol

Cell cycle, mitosis, and cell division
ASPM, AURKB, CCNB2, CDC2, CDC20, CENPF, CEP55, CIT, CKS2, DLG7, MAD2L1,

NCAPG, PBK, PTTG1, UBE2C

DNA repair and replication CHEK1, E2F2, GINS2, POLQ, PTTG1, RPA3, RRM2, TOP2A

Transcription regulation CENPF, E2F2, LDB2, PTTG1, TWIST-1

Cell proliferation and differentiation CENPF, CHEK1, CIT, CKS2, TWIST-1

Table 3: Summary of the marker genes relating to multipotency, stemness, or differentiation, identified to be differentially expressed by
microarray analysis, which distinguishes between high proliferative/multipotent hDPSCs and low proliferative/lineage-restricted hDPSC
subpopulations. Adapted from Kobayashi et al. [80].

Gene symbol

Genes positively correlated with multipotency ATP8B1, DSP, ICAM1, INHBA, NNAT, OXTR, SERPINE1, SORT1, SRGN

Genes negatively correlated with multipotency ADGRA2, ANTXR1, COL1A2, COL3A1, ITGA8
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with stemness or differentiation. Based on their relative
levels of expression, 14 of these 90 genes were selected as
candidate hDPSC markers, particularly in relation to their
multipotency, stemness, or differentiation characteristics,
between high proliferative/multipotent hDPSCs and low
proliferative/lineage-restricted hDPSC subpopulations
(Table 3). Thus, the characterisation of such hDPSC subpop-
ulations provided an array of novel candidate marker genes
of increased stemness, proliferation, and multipotency, facil-
itating their improved isolation and the enrichment of supe-
rior quality hDPSCs for regenerative medicine applications.

4. Future Perspectives and Considerations

Although individual hDPSC subpopulations do share certain
similarities, hDPSC heterogeneity is now a well-established
concept. Furthermore, despite a greater insight into the
complex molecular factors and processes that underpin
hDPSC heterogeneity being achieved since their original
characterisation by Gronthos et al. [6, 7] and advances in
the identification of a plethora of purported markers that
discriminate between distinct hDPSC subpopulations, many
important questions remain to be addressed. Firstly, why do
diverse niches of hDPSC subpopulations exist within the
dentine-pulp complex with contrasting immunophenotypes
and proliferative/differentiation potentials, despite these tis-
sues primarily consisting of odontoblasts and pulpal fibro-
blasts [1, 3, 6, 7, 32, 39, 40, 118]. Certain hDPSC
subpopulations would undoubtedly be responsible for
replenishing odontoblasts and pulpal fibroblasts lost due to
disease and trauma during tertiary dentinogenesis [1, 32,
36–44, 119]. However, considering the neural crest origins
of ectomesenchymal-derived hDPSCs, together with the
highly vascularised and innervated nature of dental pulp tis-
sues [1, 26–32], it is reasonable to assume that other hDPSC
subpopulations are responsible for vascular and neural cell
replacement and the identification of neural and perivascu-
lar cell markers within the dental pulp [6, 9, 11, 12, 37–44,
49–53, 56, 57, 63–65]. That said, as the identification of stem
cell markers is an essential prerequisite to enable the selec-
tive screening, isolation, and purification of hDPSC subpop-
ulations for particular therapeutic applications, it remains
plausible that additional minor hDPSC subpopulations exist
within dental pulp tissues which are yet to be isolated and
explored, due to a lack of understanding regarding their
intrinsic stem cell marker properties, niche locations, and
roles within the dentine-pulp complex.

Although the impact of underlying factors associated
with the individual patient donors of the permanent denti-
tion used as sources of hDPSCs, such as their genomic com-
position, age, gender, health, diet, and environmental and
other unknown factors, on the genotypic and phenotypic
characteristics of hDPSC subpopulations is still open to
speculation and remains to be fully established, these are
highly likely to contribute to the issue of hDPSC heterogene-
ity [19]. However, from a wider perspective, more pertinent
questions which certainly provide significant contributions
to the complex heterogeneous nature of hDPSCs surround
the developmental origins, hierarchical organisation, and

precise niche locations of individual subpopulations within
dental pulp tissues, in addition to the extent to which the
entire heterogeneous populations within the dental pulp
are comprised of true multipotent hDPSCs or a collection
of unique committed progenitor cells with specialised
lineage-restricted differentiation capabilities [9, 80]. Further-
more, despite standard methods being established for the
isolation and characterisation of hDPSCs [120], the methods
of derivation, cell culture conditions, the stage of the cell
cycle, and proliferation or commitment upon isolation again
could be influential factors on the regenerative properties of
hDPSCs and warrant additional consideration [19, 120].

4.1. Developmental Origins. Gronthos et al. [6, 7] originally
proposed that the heterogeneous nature of hDPSCs may
reflect differences in their developmental stages or may even
represent different pulpal cell lineages. Since then, studies
into the developmental potentials of different hDPSC clones
have suggested that a number of subpopulations exist within
the dental pulp, derived from either the mesoderm or ecto-
derm of migratory cranial neural crest cell origins [26–29,
64, 83]. Several studies indicate that intrinsic positional
information can dictate the neural crest stem cell phenotype
within tissues and that environmental signals can regulate
neural crest cell developmental fate and differentiation. As
postmigratory neural crest cells only comprise a small pro-
portion of the larger DPSC population overall and their mul-
tipotency is believed to persist within tissues [27–33], it is
plausible that such differential developmental origins within
the DPSC population contributes to their heterogenic
nature. However, pericyte-derived subpopulations within
the perivascular niche have been ascribed principal roles in
mediating tissue repair responses within the dentine-pulp
[37–44]. It has also been proposed that the relative contribu-
tion of pericyte-derived and nonpericyte-derived MSCs to
cell differentiation in tissues depends on the extent of the
vascularity and its kinetics of growth and/or repair. Thus,
in tissues with high vascularity, such as dental pulp, the peri-
cyte contribution to MSCs would be expected to be consid-
erable [1, 121].

Although details on the nature and developmental ori-
gins of individual hDPSC subpopulations within human
dental pulpal tissues have largely remained elusive, much
progress has been made through the study of a mouse inci-
sor stem cell model, regarded as an attractive system for
the study of adult dental stem cell biology [122]. This model
has permitted investigations into the properties, distinct
locations, and contributions of active MSC subpopulations
to the constant growth and repair of dentine and pulp tissues
within continuously erupting incisor teeth, to compensate
for tissue loss during occlusion. These constantly active
MSCs can be subsequently distinguished from lesser active
MSCs resident within the molar teeth, which do not undergo
continual growth in adult mice [32, 118]. It has been estab-
lished that incisor MSCs are a heterogeneous population,
consisting of cells from different neural crest-derived tissues,
with the ectomesenchymal cells giving rise to dental pulp
and odontoblast cells, as evident in humans. Furthermore,
through exploitation of genetic-based lineage tracing, it
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was revealed that differentiated odontoblasts originate from
perivascular NG2+ pericytes during mouse incisor growth
[44, 123]. It has further been shown that all NG2+ perivascu-
lar cells are derived from GLI family zinc finger 1 (Gli1+)
cells, which are preferentially localised surrounding the vas-
culature. Although the majority of Gli1+ cells in the mouse
incisor do not express classic MSC markers, such as CD44,
CD73, CD105, CD146, or Nestin, Gli1+ cells are activated
in response to incisor injury. Thus, Gli1+ cells are the major
source for odontoblasts and pulp cells during incisor growth
and repair, although in contrast to incisors, mouse molars
do not contain Gli1+ cells around the dental pulp vascula-
ture, whereas NG2+ pericytes are present [124]. However,
as lineage tracing quantification indicated that only 15-16%
of newly differentiated odontoblasts were derived from
NG2+ perivascular cells, other MSC-like cells of nonpericyte
origin were also shown to be present in the dental pulp and
contribute to the majority of odontoblasts. Indeed, as certain
MSCs have been shown to differentiate from peripheral
nerve-associated glial cells [125], lineage tracing of Schwann
cells as the predominant glial cell type confirmed that
odontoblast-like cells originate from neural crest-derived
Schwann cells and Schwann cell precursors, thereby initiat-
ing reparative dentinogenesis and supporting dental pulp
cells through the formation of Schwann cell-derived odonto-
blasts. Therefore, as Schwann cells do not express perivascu-
lar markers, pericytes and Schwann cells are regarded as
distinct dental stem cell populations within the neurovascu-
lar bundle regions of mouse incisor dental pulp, with diverse
contributions to homeostasis and repair.

Lineage tracing experiments have since shown that
αSMA-expressing, perivascular niche-derived MSCs gener-
ate a small number of newly formed odontoblasts during
primary dentinogenesis, although their contribution to the
formation of new odontoblast-like cells during reparative
dentinogenesis is far more significant [126]. Further studies
have also identified that 30% of MSCs in continually grow-
ing mouse incisors exhibit positive CD90 expression during
postnatal development, although CD90+ MSCs decrease in
number during adulthood [127]. However, following adult
incisor injury, CD90+ MSCs reappear and contribute to
reparative processes, replenished by mitotic cells within the
mouse incisor pulp, positive for hematopoietic stem cell
marker, Celsr1+. Such lineage tracing analysis has also dis-
covered Axin2+ cells in the odontoblast layer and the dental
pulp in the proximal region of the mouse incisor, whose
progeny contributes to dental pulp cell and odontoblast
numbers, implying that Axin2+ cells are transit amplifying
cells (TACs) [127]. Similarly, Axin2+ cells in mouse molars
differentiate into new odontoblast-like cells that secrete the
reparative dentine via Wnt/β-catenin signalling in response
to injury [128]. Additionally, PDGFRβ+ cells are recognised
as identifying MSCs within the cervical loop region and
TACs of the mouse incisor model [129], which are distinct
MSC populations to those found in the neurovascular niches
[123–125]. Therefore, markers, such as NG2+, Gli1+, CD90+,
αSMA+, Celsr1+, Axin2+, and PDGFRβ+, amongst others yet
to be identified, may shed light on similar hDPSC subpopu-
lations within the perivascular niches of human dental pulp

tissues and their roles in repair and regeneration within the
dentine-pulp complex.

4.2. Stem Cell Niches within the Dental Pulp. It is widely
accepted that MSCs reside in quiescent states within various
specialised niches and uniquely organised local microenvi-
ronments that enable the maintenance and regulation of
MSC self-renewal, proliferation, migration, and differentia-
tion in response to injury, via direct cell-cell/cell-matrix
interactions and communications mediated through
secreted factors [6, 130, 131]. From original suggestions that
hDPSCs originate from niches within the cell-rich subodon-
toblast layer, the dental pulp stroma, and especially from
perivascular regions surrounding the pulpal vasculature
[32, 37–44], it is now believed that several stem cell niches
exist within the dental pulp containing distinct multipotent
hDPSCs and other regenerative characteristics, supported
by the identification of hDPSC subpopulations of pericyte
and nonpericyte origins during previous human and mouse
localisation and lineage tracing studies, as described above.
However, further research is still necessary to explore the
precise locations of as yet unexplored stem cell niches within
the dental pulp and the extent to which local niche microen-
vironments influence hDPSC heterogeneity. Not only would
such undertakings help in understanding whether isolated
multipotent hDPSCs are derived from one highly prolifera-
tive multipotent population or from many committed
hDPSC progenitor subpopulations with distinct lineages,
but also assist in endeavours to develop more novel 3D scaf-
fold materials which recapitulate the physiochemical proper-
ties of the native stem cell niche microenvironment, leading
to improved regulation of transplanted hDPSC regenerative
responses in situ [132–134].

4.3. Hierarchical Organisation. The ability to self-renew is
one of the defining features of hDPSCs, recognised as involv-
ing either the slow cell division of an original mother stem
cell to generate daughter cells with identical developmental
potential to the original mother stem cell during symmetric
division; or mother stem cell division into an identical copy
of the mother cell and a highly proliferative TAC, possessing
multipotent differentiation capabilities during asymmetric
division. However, as TACs further divide to form larger
colonies, they achieve a more mature progeny with reduced
proliferative capabilities and the induction of replicative
senescence, becoming more lineage-restricted. Consequently,
stem cells expanded during development are maintained in
quiescent states within the homeostatic stem cell niche
microenvironments and participate in tissue repair as
required, upon exposure to tissue perturbations or stressors
[135, 136]. TACs have been suggested to arise within the
postnatal dental pulp in response to cavity-induced injury
and first to differentiate into new odontoblast-like cells [37].

As with MSCs derived from other tissues, the presence of
a hierarchy amongst hDPSCs in adult dental pulp, with a
small subpopulation of self-renewing, highly proliferative
multipotent stem cells resident within a larger compartment
of predominantly less proliferative and more committed,
bipotent or unipotent subpopulations, has been proposed
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for some time [6, 7, 137]. Nonetheless, the findings of more
recent reports on hDPSC heterogeneity would certainly sup-
port the hierarchical model, in that small minority subpopu-
lations within the dental pulp are highly proliferative,
multipotent hDPSCs, whilst the majority are low prolifera-
tive, more lineage-restricted bipotent or unipotent hDPSCs
[52, 53]. These highly proliferative, multipotent hDPSCs
are believed to be responsible for maintaining the stem cell
pool through their self-renewal ability and differentiation
into cells of different lineages [1, 6]. As highly proliferative,
multipotent hDPSCs with longer telomeres are expanded
ex vivo and become senescent, they lose their proliferative
capabilities and also become more lineage-restricted with
bipotent or unipotent properties [52, 53]. As asymmetric
stem cell division involves true mother cells giving rise to a
multitude of differentiated daughter cells without themselves
going through a high number of cell divisions, only a limited
amount of telomere shortening occurs in such cells, thereby
maintaining telomere length integrity [138]. Therefore, the
characterisation of individual highly proliferative/multipo-
tent and low proliferative/unipotent hDPSC subpopulations
with contrasting telomere length profiles conceivably lends
credence to the existence of a hierarchical arrangement
amongst hDPSCs residing within the dental pulp.

Differential gene expression profiles between highly pro-
liferative/multipotent hDPSC subpopulations and their low
proliferative, bipotent or unipotent counterparts may also
reflect these being different entities within the hierarchical
organisation, as these genes associated with key responses,
such as cell cycle progression, mitosis, and cell division;
DNA repair and replication; cell proliferation; stemness;
and differentiation, were commonly identified to be upregu-
lated in highly proliferative/multipotent hDPSCs, which
would expectedly contribute to the superior retention of
stemness, proliferative, and differentiation characteristics
versus their low proliferative, bipotent/unipotent counter-
parts (Tables 2 and 3) [80, 117]. Thus, hDPSC heterogeneity
can be determined via distinct gene expression and the func-
tionality and frequency of cell cycle transitions.

Nucleoside labelling and lineage tracing studies using the
mouse incisor stem cell model [32, 118, 122] have exploited
the differences between quiescent/slow-cycling (label-retain-
ing) cells and fast-cycling cells (TACs), to investigate the tis-
sue locations of rapidly cycling and slow-cycling cells. Using
this approach, TACs expressing genes associated with poly-
comb repressive complex 1 (Prc1), such as Ring1a (Ring1)
and Ring1b (Rnf2), have been confirmed as the most rapidly
cycling cells in the mouse incisor dental pulp, located imme-
diately distal to slow-cycling MSCs and crucial for mediating
the TAC phenotype via Wnt/β-catenin signalling [139]. Fur-
thermore, the Gli1+ cells located within neurovascular bun-
dles which provide the vast majority of odontoblasts and
pulp cells during incisor growth and repair have been
reported to colocalise with slow-cycling cells within the den-
tal pulp [124]. CD90+ slow-cycling cells have been eluci-
dated to be DPSCs which contribute to odontoblasts and
pulp cells throughout the life of the mouse incisor and
responsible for incisor growth [125]. However, CD90+

DPSCs only contribute to a small proportion of odontoblasts

and pulp cells, correlating with the proportion of CD90+

slow-cycling cells. Additional studies have found that
around half of pulp cells and odontoblasts in the mouse inci-
sor model were glial-derived, located within the population
of slow-cycling cells with nonglial-derived, pericyte popula-
tions possibly contributing to the remainder [125]. There-
fore, current evidence suggests that fast-cycling cells
account for cell replenishment to maintain tissue homeosta-
sis, whereas quiescent/slow-cycling cells act as a “reservoir”
to be initiated to supply TACs, upon tissue injury [127,
140]. However, in contrast to hDPSC biology as a whole,
much less emphasis has been directed towards understand-
ing their TACs, despite their integral roles in repair and
regenerative responses within the dentine-pulp complex.

4.4. Isolation, Purification, Characterisation, and Culture.
Protocols for the routine isolation, purification, characterisa-
tion, and culture of hDPSCs are well-documented [9, 11, 19,
120, 141–143]. However, although the diverse range of
methodologies reported for the harvesting of hDPSCs from
dental pulp tissue achieve such aims overall, these do not
overcome some of the current challenges which remain, in
terms of addressing issues surrounding the consistent isola-
tion and enrichment of hDPSCs with enhanced stemness,
proliferative, and multipotent differentiation characteristics;
in particular, as such hDPSCs are regarded as minor popula-
tions in the dental pulpal milieu [1, 6, 7, 52, 53, 137]. Thus,
the development of novel strategies to permit the standard
screening, collection, and expansion of particularly high-
potency hDPSC subpopulations from dental pulp tissues
would certainly be the key to meeting existing inadequacies
relating to hDPSC heterogeneity.

Technical advances are being made, with most exploiting
the molecular characteristics associated with hDPSCs with
enhanced stemness, proliferative, and multipotent differenti-
ation properties, as described above. Of these, the differential
mesenchymal, embryonic, and neural crest cell surface
marker profiles reported between hDPSC subpopulations
have been most widely exploited to date, particularly using
antibody- and molecular biology-based techniques, such as
fluorescence-activated cell sorting (FACS), magnetic-
activated cell sorting (MACS), or real-time quantitative
reverse transcription polymerase chain reaction (qRT-PCR)
[11, 51, 52, 55, 56]. However, despite the multitude of cell
surface markers identified, uncertainty remains whether
such markers are specifically associated with the undifferen-
tiated progenitor state of hDPSCs or even if these markers
are actually MSC specific, or whether particular markers
are more useful in identifying distinct hDPSC subpopula-
tions individually or with other coexpressed markers. That
said, even studies involving multiple stem cell markers have
proven challenging, as it is difficult to distinguish whether
hDPSC subpopulations are mutually exclusive of each other
and if the characteristics of subpopulations that express a
certain cell surface marker differ to other subpopulations
that coexpress the same marker with additional surface
markers. Furthermore, as most studies share a common lim-
itation of having a small sample size of donors from which
the hDPSCs were harvested, it remains to be established
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whether hDPSC molecular profiles are representative across
a wider population or a consequence of donor-donor varia-
tion. Alternative initiatives to address some of the concerns
regarding the use of cell surface markers have included the
identification of new cell surface proteome markers in
hDPSCs isolated from single donors, using label-free mass
spectrometry [56]. Of the 101 CD markers and 286 non-
CD cell surface markers, these included TNF receptor super-
family proteins (CD40, CD120a, CD261, CD262, CD264,
and CD266), integrins (α-4, α-6, and α-10), and IL receptors
(CD121a, CD130, CD213a1, CD217, and CDw210b), which
could be utilised for the more precise identification and iso-
lation of hDPSCs. Similarly, multiparametric flow cytometry
has recently been reported to permit the detection of several
cell surface molecules, with which to characterise and iden-
tify the phenotypes of heterogeneous hDPSC subpopula-
tions, both in vitro and in vivo [144]. The cell surface
plasma membrane of hDPSCs has further been the focus of
innovative studies aimed at enriching, separating, and iden-
tifying putative membrane protein markers by mass spec-
trometry, such as CD9, CD10 (neprilysin), and CD63, a
novel approach which may be utilised for the characterisa-
tion and profiling of hDPSC subpopulations in future [145].

Gene expression profile comparisons of highly prolifera-
tive/multipotent hDPSC versus low proliferative/lineage-
restricted hDPSCs have led to the discovery of potential
genotypic marker genes for the selective isolation and purifi-
cation of highly multipotent hDPSCs for regenerative medi-
cine applications (Tables 2 and 3) [80, 117]. In contrast to
these ground-breaking microarray studies, proteomic profil-
ing comparisons of highly proliferative/multipotent hDPSC
versus low proliferative/lineage-restricted hDPSCs have
been much less in comparison [146, 147]. However, in stud-
ies involving low numbers of clones obtained from multiple
donors, gene expression and proteomic differences amongst
clones isolated from multiple donors may not truly reflect
genotypic and phenotypic differences between highly prolif-
erative/multipotent and low proliferative/lineage-restricted
hDPSCs, but the genetic backgrounds of the donors instead
[80]. Consequently, gene expression and proteomic analyses
should be performed with patient-matched, highly prolifera-
tive/multipotent hDPSCs and low proliferative/lineage-
restricted hDPSCs isolated from individual donors, thereby
eliminating the influences of donor variation.

An alternative and greater understanding of hDPSC sub-
populations within the dental pulp may be obtained utilising
single-cell RNA sequencing (scRNA-seq), which allows the
transcriptomic profiling of thousands of individual cells
and is widely applied in stem cell biology for the analysis
of MSC heterogeneity and the provision of specific markers
by cell clustering, predicting cell fate by making trajectories,
understanding the difference or dysregulation between dif-
ferent cell types, stage, or status, and providing indications
for lineage tracing studies [148, 149]. Such sophisticated
approaches can be expanded further through the combina-
tion of DNA, RNA, protein, and/or the epigenomic analyses,
to permit the high-dimensional dissection of single cells,
which offers great potential for understanding the regulation
of molecular pathways. scRNA-seq, coupled with lineage

tracing studies, has now been performed using mouse
models, which have further highlighted the diverse nature
of DPSCs within the developing tooth [150]. Additional
reports utilising scRNA-seq have confirmed the high level
of MSC heterogeneity within the dental pulp complex, with
the existence of an active pool of DPSCs responsible for
the formation of the principle mesenchymal-derived cell
types, odontoblasts and distal/apical dental pulp cells, which
produce a continuum of transient cell states [151]. The api-
cal region of the dental pulp also contains active progenitor-
like cell and precursor stromal-like cell subpopulations. Such
findings were further validated in human wisdom teeth,
which continue to grow until later in life. In comparison of
molar hDPSC subpopulations to DPSCs within the mouse
incisor dental pulp, the hDPSCs within the nongrowing
human tooth preferentially exhibited a transcriptional state
of more mature cells associated with the distal pulp, whilst
those in the growing human tooth possessed a more
apical-like transcriptomic profile [151]. Thus, it appears that
nongrowing teeth are particularly characterised by a default
distal pulp-like state, whilst an apical-like state is a signature
of growing dental tissues. The presence of DPSC subpopula-
tions and quiescent/active cell populations within the apical
tooth region are supported by analogous scRNA-seq studies
involving the mouse incisor model, which have identified a
subpopulation of Runx2+/Gli1+ cells within the heteroge-
neous Gli1+ population [152]. These Runx2+/Gli1+ cells are
not MSCs in nature but are located in close proximity to
MSCs and TACs, where they maintain the MSC niche and
regulate TAC functions, via IGF signalling. These studies
have further confirmed the occurrence of a novel Foxd1+

DPSC subpopulation in the apical region near the epithelial
labial cervical loop, where these are capable of differentiating
towards odontogenic or pulpal lineages [150, 151].

As highly proliferative/multipotent hDPSCs are minority
subpopulations within dental pulp tissues, the development
of noninvasive strategies capable of successfully discriminat-
ing between hDPSC subpopulations with contrasting prolif-
erative and differentiation capabilities in situ would be
immensely beneficial for the selective screening and isolation
of more desirable hDPSCs for in vitro assessment and ther-
apy development. Consequently, single-cell Raman spectros-
copy signatures obtained for highly proliferative/multipotent
and low proliferative/lineage-restricted hDPSCs have been
proven to be a viable noninvasive tool for the rapid screen-
ing and isolation of superior quality hDPSCs from dental
pulp tissues in situ, thereby overcoming issues surrounding
hDPSC heterogeneity [103].

5. Implications of Advances in Our
Understanding of hDPSC Heterogeneity

It is undeniable that our understanding of the molecular
basis underlying hDPSC heterogeneity has improved signif-
icantly in recent years. Although hDPSC heterogeneity has
hindered their development for clinical application, the need
for a greater understanding of their molecular characteristics
has led to the identification of a wide variety of novel cell
surface, gene, protein, and metabolic markers, purported to
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reliably discriminate between hDPSC subpopulations with
contrasting stemness, proliferative, multipotency, immuno-
modulatory, anti-inflammatory, and other relevant regener-
ative properties. Importantly, considering that hDPSCs only
constitute a minor fraction of the total cell content within
dental pulp overall, the identification and subsequent isola-
tion and enrichment of highly proliferative, multipotent
hDPSCs as even smaller minority subpopulations within
the dental pulp become a much greater challenge. In light
of the extensive ex vivo expansion required to obtain sufficient
cell numbers for successful MSC-based therapy development
[22, 23], highly proliferative hDPSC subpopulations with
extended proliferative lifespans that retain stemness and mul-
tipotency capabilities could be regarded as ideal candidates to
progress towards ex vivo laboratory evaluation and transla-
tional development as regenerative medicine-based therapies
for broad clinical applications. That said, it has been suggested
that lesser proliferative hDPSC subpopulations may be better
suited in the development of more specialised tissues, in line
with their restricted differentiation potentials down certain
lineages, thereby expediting their possible tailoring towards
more specific regenerative purposes.

Through the identification of new potential markers
which distinguish hDPSC subpopulations with specific or
superior characteristics, these will undoubtedly lead to
advancements in the development of novel screening, isola-
tion, and purification strategies, permitting the routine and
effective identification, enrichment, and expansion of spe-
cific hDPSC subpopulations from whole dental pulp tissues
for regenerative medicine applications. However, despite
these recent advancements, many important aspects of
hDPSC biology remain unanswered, which significantly
impacts on their development as cellular therapeutics. For
instance, despite cell surface proteins being extensively
regarded as viable markers to distinguish hDPSC subpopula-
tions, limitations in their specificity highlight the require-
ment for the identification of further markers, especially
those capable of differentiating between highly prolifera-
tive/multipotent and low proliferative/lineage-restricted
hDPSCs. As numerous markers were identified during gene
expression profiling studies [80, 117], more extensive studies
into the profiles of highly proliferative/multipotent and low
proliferative/lineage-restricted hDPSC subpopulations using
various genomic and proteomic technologies warrant fur-
ther investigation. However, such studies would benefit
from the inclusion of larger cohorts of patient donors, to
confirm the most reliable gene, protein, or metabolic
markers identified and discount the influences of donor
genetic variations.

The reasons behind hDPSC heterogeneity remain to be
fully established, although the developmental origins, hierar-
chical organisation, and stem cell niche locations of hDPSC
subpopulations are strong contributory factors to the ulti-
mate question as to what extent heterogeneous hDPSC pop-
ulations within the dental pulp are derived from true
multipotent hDPSCs or many different committed cell sub-
populations exhibiting more specialised lineage-restricted
differentiation capabilities [9, 80]. Nonetheless, existence of
the hierarchical model is supported by recent reports that

small minority subpopulations within the human dental
pulp are highly proliferative, multipotent hDPSCs, whilst
the majority are low proliferative, more lineage-restricted
bipotent or unipotent hDPSCs [6, 7, 52, 53, 137, 138], fur-
ther supported by the discovery of rapidly cycling TACs
and slow-cycling cells relevant to the hierarchical structure,
within the mouse incisor stem cell model [32, 44, 118,
122–129, 139, 140]. Such studies have further confirmed
the prominent presence of DPSC subpopulations within
both perivascular and neural niche locations associated with
the neurovascular bundles of mouse incisor dental pulp,
with contrasting roles in tissue homeostasis and repair [32,
44, 118, 122–129, 139, 140], helping to corroborate the pres-
ence of pericyte-derived hDPSC subpopulations within the
perivascular niche of human dental pulp [37–44].

It is unquestionable that the development of transgenic
mouse models to study stem cell incisor repair, coupled with
technological advances in lineage tracing and scRNA-seq
[32, 44, 118, 122–129, 139, 140, 148–152], has aided insights
into DPSC subpopulation heterogeneity within the mouse
incisor model, through the identification of specific cell
types, status, and functions. An existing drawback of these
techniques is the broad expression levels of currently used
gene markers between neural crest cell and DPSC subpopu-
lations. Additionally, as most lineage tracing experiments of
dental pulp cells have solely been performed using the
mouse incisor repair model, a key question remains over
the relative applicability of such studies to nongrowing
molar teeth in mouse models, in addition to whether com-
parative findings would be evident within human incisors
and molars. Indeed, species variations in the cell subtypes
and transcriptional profiles involved in tooth self-renewal
have recently been highlighted between continuously erupt-
ing mouse incisor and nonerupting molars, in addition to
growing and mature teeth in humans [151]. However, other
recent reports have utilised scRNA-seq technologies to map
the transcriptional landscape of the various cell populations
that comprise human teeth, including the hDPSCs and other
cell types within the dental pulp and their niche microenvi-
ronments [153]. By utilising such approaches, hDPSCs were
characterised by their higher expression of Frizzled-related
protein (FRZB), Notch receptor 3 (NOTCH3), CD90
(THY1), and smooth muscle myosin heavy chain 11
(MYH11), in line with their MSC and perivascular nature.
Additionally, despite previous ethical concerns surrounding
the possible use of lineage tracing experimentation in
humans, recent developments have also demonstrated that
it is now possible to trace human cell lineages using natural
variations in nuclear/mitochondrial DNA and in DNA
methylation status [154, 155]. Thus, although further charac-
terisation studies into the diversity of neural crest cell and
mouse DPSC subpopulations in vivo are warranted, such
combined lineage tracing and scRNA-seq analyses of hDPSCs
in human dental pulp tissues could allow us to finally address
the remaining issues restricting the translational develop-
ment of hDPSCs for future clinical use, through a better
understanding of the cellular andmolecular mechanisms reg-
ulating tooth development, homeostasis, and tissue repair,
relevant to improved regenerative therapies in the future.
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6. Final Conclusions

It is inevitable that hDPSC heterogeneity has posed major
hurdles to their translational development and evaluations
in clinical trials. Indeed, it is recognised that only a limited
number of hDPSC-based clinical trials have occurred to
date, due to concerns regarding the optimisation of isolation
and culture expansion protocols, safety, mechanisms of
action, good manufacturing practice (GMP), and quality
control procedures and regulations [16, 19, 120, 156, 157].
Therefore, by addressing these remaining issues and harnes-
sing their specific properties overall, the utilisation of spe-
cific markers for the discrimination of more desirable
highly proliferative/multipotent hDPSC subpopulations
could become a routine strategy for their selective isolation
and purification in the future. Such innovative measures
would ultimately aid their overall expansion, assessment
and efficient hDPSC manufacture, cryopreservation, and
banking [9, 12, 16, 18, 156, 158], thereby supporting the suc-
cessful translational development of more effective hDPSC-
based regenerative therapies for a wide range of potential
dental and nondental clinical applications.
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