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a b s t r a c t 

Studying changes in cortical oscillations can help elucidate the mechanistic link between receptor physiology and 

the clinical effects of anaesthetic drugs. Propofol, a GABA-ergic drug produces divergent effects on visual cortical 

activity: increasing induced gamma-band responses (GBR) while decreasing evoked responses. Dexmedetomidine, 

an 𝛼2- adrenergic agonist, differs from GABA-ergic sedatives both mechanistically and clinically as it allows easy 

arousability from deep sedation with less cognitive side-effects. Here we use magnetoencephalography (MEG) 

to characterize and compare the effects of GABA-ergic (propofol) and non-GABA-ergic (dexmedetomidine) seda- 

tion, on visual and motor cortical oscillations. Sixteen male participants received target-controlled infusions of 

propofol and dexmedetomidine, producing mild-sedation, in a placebo-controlled, cross-over study. MEG data 

was collected during a combined visuomotor task. The key findings were that propofol significantly enhanced 

visual stimulus induced GBR (44% increase in amplitude) while dexmedetomidine decreased it (40%). Propo- 

fol also decreased the amplitudes of the Mv100 (visual M100) (27%) and Mv150 (52%) visual evoked fields 

(VEF), whilst dexmedetomidine had no effect on these. During the motor task, neither drug had any significant 

effect on movement related gamma synchrony (MRGS), movement related beta de-synchronisation (MRBD) or 

Mm100 (movement-related M100) movement-related evoked fields (MEF), although dexmedetomidine slowed 

the Mm300. Dexmedetomidine increased (92%) post-movement beta synchronisation/rebound (PMBR) power 

while propofol reduced it (70%, statistically non- significant). Overall, dexmedetomidine and propofol, at equi- 

sedative doses, produce contrasting effects on visual induced GBR, VEF, PMBR and MEF. These findings provide a 

mechanistic link between the known receptor physiology of these sedative drugs with their known clinical effects 

and may be used to explore mechanisms of other anaesthetic drugs on human consciousness. 
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. Introduction 

Our understanding of the mechanisms of anaesthesia and the neu-

al correlates of anaesthesia-induced unconsciousness is incomplete. A

ange of theories of anaesthetic mechanism point towards a breakdown

f communication between key brain regions as a common endpoint in
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naesthesia related unconsciousness ( Mashour, 2013 ). Oscillatory syn-

hronisation in different frequency bands contributes to long-range neu-

al communication. Of these oscillations, those in the high frequency

and (gamma band (30–80 Hz)) are considered key for information

rocessing in the brain ( Buzsaki and Wang, 2012 ). Studying changes

n these neural oscillations, both task-related and at rest, provides an
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pportunity to explore the systems-level mechanistic underpinnings of

naesthetic drug effects and to link them with their known receptor-

evel effects. 

In response to a sustained simple visual contrast pattern, sustained

arrow band gamma band oscillations are generated in the visual cor-

ex. These patterns arise from the interactions between the excitatory

nd inhibitory neural networks, which shape both the amplitude and

eak frequency of these gamma oscillations. According to the pyramidal-

nterneuron gamma (PING) model, the local interaction of superficial

yramidal cells and inhibitory interneuron populations underlies os-

illations in the gamma-frequency band (30 + Hz) ( Whittington et al.,

997 ). The validity of the proposed PING model has been demonstrated

n human visual gamma responses. Applying dynamic causal modelling

t has been shown that the frequency and amplitude of visual gamma os-

illations is determined by the interactions between the pyramidal cells

nd inhibitory interneurons in the canonical PING circuit and is modu-

ated in humans after receiving the GABA reuptake inhibitor tiagabine

 Shaw et al., 2017 ). Similar to visual cortex oscillations, modelling for

he human motor cortex oscillations (M1) has shown the best fitting

odel to be one involving an interacting canonical micro-circuit includ-

ng pyramidal and inhibitory interneuron circuits ( Bhatt et al., 2016 ).

e have previously demonstrated that sedation with propofol (as a rep-

esentative drug with primarily GABA-ergic action) results in increased

amma band response/power (GBR), increased alpha power suppres-

ion, and a decrease in the amplitude of the stimulus- onset evoked

both transient gamma band and visual evoked fields (VEF)) response

 Saxena et al., 2013 ). This provided an insight into the possible sepa-

ation of the neural generators of visual gamma oscillations ( Castelo-

ranco et al., 1998 ) and the differential effects of propofol on those

enerating mechanisms. Propofol appeared to inhibit thalamo-cortical

athways resulting in decreased evoked visual responses while its intra-

ortical GABAergic inhibition resulted in an enhanced induced gamma

mplitude. This mechanistic discovery provides a potential biomarker to

tudy and refine different pharmacological compounds that have similar

linical actions. 

Dexmedetomidine produces sedation through mechanisms distinct

rom the commonly used GABAergic anaesthetic drugs (e.g., propofol

nd midazolam). Dexmedetomidine selectively acts on the 𝛼2- adren-

rgic receptors of the locus coeruleus, projecting to the preoptic area,

hich activates the inhibitory outputs to the arousal centres and results

n sedation ( Nelson et al., 2003 ). Dexmedetomidine’s neurophysiologi-

al mechanisms, replicating ‘restorative sleep’ through activity on brain-

tem and normal sleep pathways, instead of the cortical suppression seen

ith GABAergic sedatives, may make it clinically advantageous espe-

ially in critically ill patients requiring long-term sedation ( Riker et al.,

009 ). 

In this experiment we used MEG to characterise and compare the

ffects of propofol and dexmedetomidine on task-based (visual and mo-

or) cortical oscillations in a placebo-controlled, cross-over, single-blind

tudy. Comparing the system-level effects of these two drugs, with dis-

inct receptor-level mechanisms, will help understand the commonal-

ties and differences in the pathways resulting in similar behavioural

utcomes (i.e., mild sedation). Based on the current understanding of

exmedetomidine’s actions, i.e., primarily at the locus coeruleus, lead-

ng on to the suppression of the cortex, we expected it to suppress

halamocortical responses, with suppression of cortical activity. Unlike

exmedetomidine, propofol is likely to produce a marked suppression

f thalamocortical activity, and also a marked (direct) inhibition of cor-

ical activity due to its direct activity at widespread GABA receptors.

e, therefore, hypothesised that unlike propofol, dexmedetomidine will

ause a reduction in visual induced GBR, while propofol causes an in-

rease in induced GBR. We also hypothesised that the visual evoked

eld (VEF) changes will be greater with propofol than with dexmedeto-

idine. 

In addition, we aimed to characterise the effects of propofol

nd dexmedetomidine on motor cortical oscillatory activity during
2 
 simple finger abduction task and movement-related evoked fields

MEF). Previous work ( Campbell et al., 2014 ; Hall et al., 2011 ;

uthukumaraswamy et al., 2013 ) on GABA-ergic activity on motor os-

illations has been inconclusive. We were unable to find any study on

exmedetomidine’s effects on motor cortical oscillations. For this ex-

loratory work, we hypothesised that motor cortex gamma activity gen-

rators would behave similarly to those of the visual cortex and contrast-

ng effects of dexmedetomidine and propofol would be demonstrable

i.e., an increase in induced motor gamma with propofol but not with

exmedetomidine). 

. Materials and methods 

.1. Participants 

Sixteen right-handed healthy male participants (mean age 27.3 years

SD 5.2, range 21–40) were recruited following a detailed screening

rocedure. Due to the potential of variability in the cerebral GABA

evels/activity in females, dependant on the phase of their menstrual

ycle and its potential to confound the GABAergic activity being stud-

ed ( Harada et al., 2011 ; Sumner et al., 2018 ), we chose to limit our

tudy population to males (similar to our previous work ( Saxena et al.,

013 )). The study was approved by Cardiff University’s Research Ethics

ommittee and all participants gave informed written consent. Medical

creening was performed to ensure that all participants were in good

hysical and mental health and not on any regular medication (Ameri-

an Society of Anesthesiologists physical status 1). Any volunteer with

omplaints of regular heartburn or hiatus hernia, known or suspected

llergies to propofol or dexmedetomidine (or its constituents), regular

mokers, those who snored frequently or excessively, or who had a po-

entially difficult-to-manage airway were excluded. 

.2. Monitoring, drug administration and sedation assessment 

Throughout the experiments, all participants were monitored, as per

naesthetic standards, by two anaesthetists of which one was solely in-

olved in monitoring. Participants were instructed to follow standard

re-anaesthetic fasting guidelines. Participants received either placebo

normal saline infusion), propofol or dexmedetomidine infusion in a

seudo-randomised design ( Fig. 1 a). These sessions were conducted

ver three separate visits, with each session separated from the next

y a minimum of 72 h to ensure complete clearance of the drug. For

he control (normal saline) session, data were recorded starting 10 min

nto the infusion. Sedation level was assessed by the second anaesthetist

NS), using the modified Observer’s assessment of alertness/sedation

cale (OAA/S) ( Thomson et al., 2009 ). Sedation endpoint was an OAA/S

evel of 4 (slurred speech with lethargic response to verbal commands).

.3. Propofol administration 

Propofol (Propofol-Lipuro 1%, Braun Ltd., Germany) was adminis-

ered using an Asena® - PK infusion pump (Alaris Medical, UK) using

 target controlled infusion based on the Marsh-pharmacokinetic model

s described in our previous work ( Saxena et al., 2013 ). While partici-

ants lay supine in the magnetically shielded room, infusion was started

argeting an effect-site concentration of 0.6 mcg/ml. Once the target

as reached, two minutes were allowed to ensure reliable equilibra-

ion. Drug infusion was then increased in 0.2 mcg/ml increments until

he desired level of sedation was achieved. 

.4. Dexmedetomidine administration 

Dexmedetomidine (Dexdor®, Orion Corporation, Finland) was ad-

inistered using a Graseby 3500® infusion pump (Smiths Medical, UK)

ontrolled by a personal computer using the STANPUMP software us-

ng the Dyck pharmacokinetic model ( Dyck et al., 1993 ). Infusion was
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Fig. 1. (a) Schematic of the experimental design. ( b) Paradigm for visuomotor task. Each trial duration was about 6 s (total number of trials = 150 (75 at 100% 

visual contrast and 75 at 70% visual contrast). 
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tarted targeting an effect site plasma concentration of 0.1 nanograms/

l. Once the target was reached, five minutes were allowed to en-

ure further equilibration. Drug infusion was then increased in 0.1

anograms/ ml increments until the desired level of sedation (OAA/S

f 4) was achieved. 

.5. Stimulation paradigm 

Once steady state sedation was achieved, participants were pre-

ented with a visual stimulus consisting of a vertical, stationary, max-

mum contrast, three cycles per degree, square-wave grating presented
3 
n a mean luminance background. Of a total 150 trials, 75 were dis-

layed at maximum contrast, while the remaining 75 were displayed

t 70% (‘low’) contrast. The radius of the grating was 8° of visual an-

le, with a continually displayed, small, central, red fixation square.

he grating patch was displayed for between 1.5 and 2 s with 3 s inter-

timulus interval (displaying a fixation square only). The stimulus was

resented on a projection screen controlled by Presentation®. Stimuli

ere displayed by a Sanyo XP41 LCD back-projection system display-

ng at 1024 × 768 at 60 Hz. Participants were instructed to fixate on

he red square throughout the trial and perform a finger abduction at

rating-offset. Activity of the first dorsal interosseous muscle during fin-
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er abduction was recorded by a bipolar EMG electrode placed either

nd of the muscle. Actual finger movement was recorded by an optical

isplacement metre ( Muthukumaraswamy, 2010 ). Each recording ses-

ion took approximately 15 min and was carried out before and during

edation ( Fig. 1 b). 

.6. MRI acquisition 

All participants had a structural MRI scan either as part of the study,

r as participants in previous studies in Cardiff University Brain Re-

earch Imaging Centre (CUBRIC). Scans were conducted on a GE HDx

T MR scanner with 8 channel head coil and followed a fast spoiled

radient echo (FSPGR) sequence with 1 mm isotropic voxel resolution.

o-registration with MEG data was achieved by matching fiducial coil

ositions recorded in MEG to the same location on MR images. 

.7. MEG acquisition and analysis 

Whole head MEG recordings were made using a CTF 275- channel ax-

al gradiometer system (VSM MedTech) sampled at 1200 Hz (0–300 Hz

andpass). An additional 29 reference channels were recorded for noise

ancellation purposes and the primary sensors analysed as synthetic

hird-order gradiometers ( Vrba and Robinson, 2001 ). Three of the 275

hannels were turned off due to excessive sensor noise. At the onset of

ach stimulus presentation a TTL pulse was sent to the MEG system.

articipants were fitted with three electromagnetic head coils (nasion

nd bilateral pre-auriculars), which were localised relative to the MEG

ystem immediately before and after the recording session. These were

sed for MRI/ MEG co-registration as described above. 

.8. MEG pre-processing 

Dataset markers were placed at the initiation of finger abduction,

ased on a shift in the amplitude of the optical displacement metre

y three standard deviations above mean noise ( Cheyne et al., 2008 ).

here noise masked a shift corresponding to a displacement, the EMG

race from the first dorsal interosseus was used and the same algorithm

pplied. For the visual response, data were epoched into 4 s trials (from

 s before to 2 s after the visual stimulus onset) to create a dataset con-

aining only visual grating trials. For the motor response, data were

poched into 4.5 s trials consisting of 1.5 s pre- and 3 s post- finger

bduction onset to create a dataset of only motor responses. Trials from

oth datasets were visually inspected for gross artifacts (head move-

ents and muscle artifacts affecting a large number of sensors) and these

rials were removed. 

.9. Visual response source localization 

Visual stimulation, as used in this experiment, produces a typ-

cal response morphology: there is an initial transient broadband

50 to 100 ms) amplitude increase in the gamma frequency (40 +
z) range followed by a longer- lasting elevation of gamma fre-

uency amplitude in a narrower frequency range (induced response)

 Muthukumaraswamy et al., 2010 ). 

Data analysis and statistical analysis were done using custom MAT-

AB scripts and toolboxes. Two source localisations were performed

n each dataset using synthetic aperture magnetometry; one for in-

uced responses (SAM ind ), and one for evoked responses (SAM erf )

 Robinson, 2004 ). Correspondingly, two global covariance matrices

ere calculated for each dataset, one for SAM ind (40–80 Hz) and one

or SAM erf (0–100 Hz). Based on these covariance matrices, using the

eamformer algorithm ( Robinson and Vrba, 1999 ), two sets of beam-

ormer weights were computed for the entire brain at 4 mm isotropic

oxel resolution. A local-spheres ( Huang et al., 1999 ) volume conductor

odel was derived by fitting spheres to the brain surface extracted by

SL’s Brain Extraction Tool ( Smith, 2002 ). 
4 
For gamma-band SAM ind imaging, virtual sensors were constructed

or each beamformer voxel and student’s -t images of source power

hanges computed using a baseline period of − 1.5 to 0 s and an active

eriod of 0 to 1.5 s. Within these images, the voxel with the strongest

ower increase (in the contralateral occipital lobe) was located. To re-

eal the time–frequency response at this peak location, the virtual sen-

or was repeatedly band-pass filtered between 1 and 150 Hz at 0.5 Hz

requency step intervals using an 8 Hz bandpass, 3rd order Butterworth

lter ( Le Van Quyen et al., 2001 ; Muthukumaraswamy et al., 2010 ). The

ilbert transform was used to obtain the amplitude envelope and spec-

ra were computed as a percentage change from the mean pre- stimulus

mplitude ( − 1.5 to 0 s) for each frequency band. From these spectra, the

ime courses of alpha (8–15 Hz) and gamma (40–80 Hz) were extracted

nd submitted to non-parametric permutation tests using 5000 permu-

ations and omnibus correction for multiple corrections ( Nichols and

olmes, 2002 ). To examine pre-stimulus amplitudes the time- frequency

pectra were recomputed with no baseline correction and the average

mplitudes of alpha (8–15 Hz), beta (15–40 Hz) and gamma (40–80 Hz)

n the pre-stimulus period ( − 1.5 to 0 s) were calculated. 

For SAM erf , the computed evoked response was passed through the

–100 Hz beamformer weights and SAM erf images ( Robinson, 2004 )

ere generated at 0.01 s intervals from 0.05 to 0.15 s. The image (usu-

lly 0.08 to 0.09 s or 0.09 to 0.1 s) with the maximal response in visual

ortex was identified and the maximal voxel selected as the peak loca-

ion for virtual sensor analysis. For time-domain analysis, the evoked

eld was computed for this virtual sensor ( − 0.2 to 0 s baseline, 40 Hz

ow-pass filter) and the peak amplitude and latency of the Mv100 (vi-

ual M100) and Mv150 responses were quantified. We also performed

 spectral analysis of the evoked field using the same time-frequency

echniques as above. The evoked frequency (gamma-band) response in

he 0 to 0.2 s period was obtained for each condition and analysed using

he same statistical methodology. 

.10. Motor response source localisation 

The motor paradigm elicits a narrow-band response between 60 and

0 Hz ( Muthukumaraswamy, 2010 ) termed movement- related gamma

ynchrony (MRGS). This paradigm also elicits a robust bilateral beta

e-synchronisation (movement related beta de-synchronisation: MRBD)

ollowed by a beta- rebound (post-movement beta synchronisation/ re-

ound; PMBR), more prominent in the contralateral hemisphere. Anal-

sis of motor responses was procedurally similar to visual responses,

xcept for the following differences. The beamforming and virtual sen-

or reconstruction procedure was repeated for each of these compo-

ents with the beta range defined as 15–30 Hz. Guided by previous

eports ( Muthukumaraswamy et al., 2013 ) the following times were

sed; baseline MRGS = − 1.3 to − 1 s, active MRGS = 0 to 0.3 s, base-

ine MRBD = − 1.25 s to − 0.5 s, active MRBD = − 0.25 s to 0.5 s, baseline

MBR = − 1.25 s to − 0.5 s, active PMBR = 1 to 2.5 s. Virtual sensors were

reated separately for each participant and each condition (pre and post,

or placebo, propofol and dexmedetomidine). As per the visual analysis,

ime frequency content was reconstructed at the virtual sensor location

ith the maximal relative response. The time–frequency content of the

irtual sensors was estimated by applying the Hilbert transform to esti-

ate the amplitude content in 0.5 Hz windows between 1 and 100 Hz. 

The analysis steps for MEF were similar to the VEF. Virtual sensor

ocation generated for the motor gamma analysis was band pass filtered

1:30 Hz). Baseline period ( − 0.5 s to 0 s) was subtracted from post-

ovement (0 s- movement onset) and the peak amplitude and latency

f the Mm100 (movement-related M100) were quantified and compared

etween groups. A window of 0.24 s to 0.40 s for Mm300 calculation. 

In the first instance, for both experimental paradigms, the time–

requency spectra were estimated on the whole trial (including baseline

eriod), with no baseline correction applied, to check for drug-induced

ifferences in the pre- stimulus period which might confound any stim-

lus induced changes in frequency or amplitude. Time–frequency anal-
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Fig. 2. (a) Grand-averaged source localisation of 

gamma oscillations (40–80 Hz) for awake and se- 

dated states. Units are t statistics. PLA = placebo, 

DEX = dexmedetomidine, PRO = propofol. Units 

are t-statistics (b): Grand-averaged time-frequency 

spectrograms showing source-level oscillatory am- 

plitude (evoked + induced) changes following vi- 

sual stimulation with a maximum contrast (100%) 

grating patch (stimulus onset at time = 0) dur- 

ing awake and sedated states. Spectrograms are 

displayed as percentage change from the pre- 

stimulus baseline and were computed for frequen- 

cies from 5 up to 150 Hz but truncated here 

to 100 Hz for visualisation purposes. (c): En- 

velopes of oscillatory amplitude for the gamma 

band (40–80 Hz). Time-periods with significant dif- 

ferences between the three conditions are indicated 

with a black bar ( ∗ p < 0.05, shaded areas repre- 

sent SEM). Colour: Blue- dexmedetomidine; Green- 

placebo; Red- propofol: Dotted bar- difference be- 

tween dexmedetomidine and placebo; Bold bar- dif- 

ference between propofol and placebo (For interpre- 

tation of the references to color in this figure legend, 

the reader is referred to the web version of this ar- 

ticle.). 
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sis revealed an effect of the drugs on the baseline amplitude of the vi-

ual gamma, MRGS, MRBD and PMBR sensors, hence subsequent time–

requency analysis of these sensors utilised a relative change (percentage

rom mean baseline) approach. 

For statistical analyses, repeated-measures ANOVA was used (condi-

ion = dexmedetomidine, propofol or placebo) for condition of primary

nterest. Paired t-tests were used for post-hoc between-group analyses

placebo vs propofol and placebo vs dexmedetomidine). Results were

orrected for multiple comparisons using Bonferroni’s correction. These

re presented as ‘corrected’ in the subsequent text. 
5 
. Results 

.1. Sedation level/dose 

All participants were sedated to the desired level of mild sedation

OAA/S of 4). The mean plasma concentration of propofol required

as 0.83 mcg/ ml (SD 0.2 mcg/ml) and for dexmedetomidine was

.25 ng/ml (SD 0.12 ng/ml). Both drugs reduced systolic BP ( p < 0.005;

able 1 ) but had no effect on the heart rate. There was no difference in

ecorded head movement between the groups and there were a compa-
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Table 1 

Haemodynamic changes during infusions. There was a significant decrease in systolic blood pressure (SBP) in the propofol 

group ( ∗ p = 0.017; paired t -test, 2- tailed) but not in diastolic blood pressure (DBP) or heart rate (HR). SD = Standard 

deviation. 

Dexmedetomidine Placebo Propofol 

Pre-infusion During- infusion Pre-infusion During- infusion Pre-infusion During- infusion 

SBP: Mean (SD); mm Hg 126 ± 11 118 ± 13 123 ± 17 122 ± 11 125 ± 9 115 ± 13 ∗ 

DBP: Mean (SD); mm Hg 70 ± 9 66 ± 7 70 ± 8 69 ± 10 70 ± 7 64 ± 10 

HR: Mean (SD); bpm 62 ± 9 60 ± 6 63 ± 7 63 ± 7 66 ± 9 64 ± 5 
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Fig. 3. Visual responses: Source-level time-averaged evoked responses 

for placebo, propofol and dexmedetomidine. PLA = placebo (green), 

DEX = dexmedetomidine (blue), PRO = propofol (red). Significant differences 

were seen in Mv100 amplitudes: between propofol and placebo ( ∗ ∗ ∗ p < 0.001); 

Mv100 latencies: between propofol and placebo ( +++ p < 0.001) and between 

dexmedetomidine and placebo ( +++ p < 0.001); Mv150 amplitudes: between 

propofol and placebo ( ∗ p < 0.05). There were no significant changes between 

placebo and drugs on Mv150 latency. Two- tailed paired t -test, Bonferroni’s cor- 

rection applied. Bold line represents means, shaded areas represent SEM (For 

interpretation of the references to color in this figure legend, the reader is re- 

ferred to the web version of this article.). 
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able number of trials in each group (after rejecting ‘bad’ trials, for both

isual and motor analyses) (Supplementary content: Table S1). 

.2. Visual responses 

The visual grating stimulus utilised here robustly elicits induced GBR

n the primary visual cortex. The grand-averaged peak locations of the

esponses, in all, were located in neighbouring source reconstruction

oxels (4 mm voxel size) ( Fig. 2 a). This analysis found similar results

rom both ‘maximum’ (100%) and ‘low’ (70%) contrast grating patches

nd therefore only the results from the maximum contrast gratings are

resented here. Data from ‘low’ contrast gratings is presented in the

upplementary content (Fig. S1). 

Fig. 2 b shows the group visual responses. The virtual sensor recon-

truction demonstrated changes in pre-stimulus gamma power between

roups (F (2,30) = 3.17; p = 0.0035) (Supplementary content: Fig. S2)

nd therefore a ‘relative change’ approach was utilised for analysis.

n Fig. 2 c the extracted gamma (40–80 Hz) time-courses are plotted.

or the high contrast stimulus, propofol resulted in a 44% increase in

amma amplitude, as compared to placebo, between 0.3–0.8 s following

he stimulus ( t = 2.73, p = 0.027, corrected) while dexmedetomidine

esulted in a 40% decrease in amplitude between 0.1–1.5 s following

he stimulus ( t = − 4.59, p = 0.004, corrected) ( Fig. 2 c). There was no

hange in peak-induced gamma frequency (F (2,30) = 0.074; p = 0.93)

Supplementary content: Fig. S3). Propofol (with high contrast gratings)

esulted in an increased stimulus-induced alpha suppression by about

0% ( t = 2.95, p = 0.02, corrected), however there was no change in

lpha suppression by dexmedetomidine (Supplementary content: Fig.

4). There was no change in alpha suppression with either drug at low

ontrast settings (F (2,30) = 0.169, p = 0.173). 

The evoked/transient gamma-band amplitude was reduced by 53%

ith dexmedetomidine ( t = − 3.58, p = 0.004, corrected) but not with

ropofol ( t = 0.38, p = 0.7) (Supplementary content: Fig. S5a). There

ere no significant changes in the peak evoked/transient gamma-band

requency with the drugs (Supplementary content: Fig. S5b). 

Fig. 3 presents the time- averaged VEF. There were significant reduc-

ions in both the amplitude of the Mv100 (mean change 27%) ( t = 6.9, p

 0.001, corrected) and Mv150 (mean change 52%) ( t = − 3.0, p = 0.018,

orrected) components during propofol sedation. However, there were

o differences between placebo and dexmedetomidine (Mv100: t = 1.19,

 = 0.25; Mv150: t = − 0.89, p = 0.388). There was significant slowing

f the Mv100 component with both propofol ( t = − 4.2, p < 0.001, cor-

ected) and dexmedetomidine ( t = − 4.6, p < 0.001, corrected). There

as however no difference between the latencies of the Mv150 compo-

ent (Supplementary content: Fig. S6). 

.3. Motor responses 

The finger abduction task robustly elicits 3 components: a contralat-

ral MRGS, bilateral MRBD followed by a bilateral PMBR ( Fig. 4 a, 4 b).

here were no significant changes with both drugs on the MRGS or the

RBD, either the ipsilateral (right (BD-R)) or contralateral (left (BD-

)) sides ( Fig. 4 c). However, PMBR revealed increased power (92%)

f ipsilateral (right (BR-R)) PMBR with dexmedetomidine (between 16–

8.5 Hz, t = 2.6, p = 0.044, corrected) ( Fig. 4 d) but not on the contralat-
6 
ral side (left (BR-L)). There was a non-significant reduction (70%) with

ropofol in the contralateral (left (BR-L)) PMBR (between 20–20.5 Hz)

 t = − 2.16, p = 0.1, corrected), but no change on the ipsilateral (right

BR-R)) side. There were no differences in either the amplitudes or la-

encies of Mm100 between the drugs against placebo ( Fig. 5 a–c). There

ere no differences in the amplitudes of Mm300 between the drugs.

owever, dexmedetomidine slowed the Mm300 ( t = 2.07, p = 0.049,

orrected) ( Fig. 5 a,c) compared to placebo. 

. Discussion 

This study reports the findings from a combined visuomotor MEG

aradigm recorded during a placebo-controlled, crossover, single-blind

tudy of the sedative effects of propofol (GABA-ergic drug) and

exmedetomidine (non-GABA-ergic drug), on human cortical oscilla-

ions. The key findings were a significant increase in the visual stimulus-

nduced GBR with propofol (44% increase in amplitude), while there

as a significant decrease with dexmedetomidine (40%). Dexmedeto-

idine reduced stimulus-onset-evoked GBR (53%), while propofol did

ot. While propofol also decreased the amplitudes of the Mv100 (27%)

nd Mv150 (52%) VEF, dexmedetomidine had no effect on these. Both

rugs slowed Mv100 (increased latency) but had no effect on the latency

f Mv150. During the motor task, neither drug had any significant effect

n MRGS, MRBD or Mm100 MEF, although dexmedetomidine slowed

m300. Dexmedetomidine also significantly increased (92%) PMBR,

hile propofol showed a tendency to reduce it (70%). 
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Fig. 4. ( a) Grand-averaged source localisation of movement related gamma and beta oscillations for awake and sedated states. Units are t statistics. (b) Grand 

averaged time–frequency spectrograms showing source-level oscillatory amplitude changes following movement. Spectrograms are displayed as percentage change 

from the pre-stimulus baseline, with amplitude depicted by heat-map colours. The rounded rectangles are only representative and not active window used for 

analysis (see text for active windows used). (c) Power spectra changes: Movement related beta desynchronization (MRBD): Right and left sensors. (d) Post movement 

beta rebound (PMBR): Right and left sensors. DEX = dexmedetomidine, PLA = placebo, PRO = propofol. PLA = placebo (green), DEX = dexmedetomidine (blue), 

PRO = propofol (red): Bold bar- difference between dexmedetomidine and placebo. ( ∗ p < 0.05) (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.). 
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.1. Visual oscillatory responses 

.1.1. Induced and evoked GBR 

Our previous results ( Saxena et al., 2013 ), demonstrating the in-vivo

odifiability of human GBR, were reproduced here using a more robust

ersion of the stimulation protocol ( Muthukumaraswamy et al., 2013 ).

he dissociation between the evoked and induced responses by propo-

ol were considered akin to the dissociation between evoked responses

nd induced GBR representing separate thalamocortical and intracorti-

al mechanisms, respectively, in the generation of high frequency os-

illations ( Castelo-Branco et al., 1998 ); a finding which has also been

emonstrated in human intra-cortical recordings ( Privman et al., 2010 ).

ccording to the PING model, GABA-ergic inhibition of interneuronal

ontrol may facilitate hypersynchronicity presenting as an increased

ower of the induced GBR. Suppression of both evoked responses and

nduced GBR by dexmedetomidine supports a depressive action on tha-

amocortical generators with no local intracortical facilitation, as hy-

othesised. 

Plourde and Arseneau (2017) , demonstrated that dexmedetomidine

roduced a dose-dependant attenuation of thalamic and cortical oscilla-

ions in the 30–200 Hz frequency bands. Dexmedetomidine attenuates
 s  

7 
oth thalamic and cortical oscillations to a similar degree while propo-

ol has a greater effect on the thalamic oscillations than cortical oscilla-

ions ( Reed and Plourde, 2015 ). During moderate sedation, dexmedeto-

idine decreases global alpha, beta and gamma power, whereas propo-

ol decreases alpha power in the occipital area and increases global beta

nd gamma power ( Akeju et al., 2014 ). Similarly, in our experiment

exmedetomidine, unlike propofol, reduced pre-stimulus gamma power

Supplementary content: Fig. S3). Our findings, in humans, provide fur-

her evidence of the differential roles of dexmedetomidine and propo-

ol on thalamic and cortical oscillations, supporting previous preclinical

ork ( Plourde and Arseneau, 2017 ; Reed and Plourde, 2015 ). The nov-

lty of our experiment lies in the demonstration of differences in the

ask-induced oscillatory changes, with visual-induced GBR being dis-

riminatory between these representative GABA-ergic and non-GABA-

rgic sedatives. 

.1.2. Alpha-band responses 

Alpha band activity is closely related to the gamma band activity,

specially in the occipital cortex ( Jensen et al., 2014 ). While alpha ac-

ivity is associated with an inhibitory function, in response to a task, it is

uppressed to allow high frequency oscillations to transmit information.
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Fig. 5. (a) Motor responses: Source-level time-averaged evoked responses for placebo, propofol and dexmedetomidine. PLA = placebo (green), DEX = dexmedeto- 

midine (blue), PRO = propofol (red). Bold line represents means, shaded areas represent SEM. b ) There were no significant differences between drugs, in Mm100 

amplitudes or latencies. c ) There were no significant differences between drugs, in Mm300 amplitudes. However, dexmedetomidine increased the latency as compared 

to placebo ( ∗ p < 0.05) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 

T  

m  

M  

n  

p  

2  

p  

t  

v  

c  

l  

w  

b  

b  

c  

t  

i  

d  

t  

i  

a

4

 

b

4

 

i  

M  

a  

(  

c  

b  

i  

t  

m  

m  

g  

e  

o

4

 

f  

e  

p  

i  

(  

p  

f  

c  

i  
halamo-cortical neurons may be responsible for the generation and

aintenance of the alpha-band oscillations ( Suffczynski et al., 2001 ).

odelling studies have suggested that the action of propofol, on these

eurones, at unconsciousness producing doses, causes a suppression of

osterior alpha and emergence of frontal alpha rhythms ( Vijayan et al.,

013 ). Neural modelling of the changes in the resting EEG spectra during

ropofol anaesthesia suggest that these are caused by increased inhibi-

ion within local interneuron circuits ( Ching et al., 2010 ; Hindriks and

an Putten, 2012 ). An increase in alpha suppression with propofol repli-

ates our previous findings ( Saxena et al., 2013 ), reflecting increased

ocal GABA-ergic inhibitory effects. This increased alpha suppression

as not seen with our low contrast visual task. Luminance contrast has

een shown to linearly increase the gamma band response and leave

eta (13–30 Hz) band response unaffected ( Perry et al., 2015 ). It is un-

lear if alpha suppression is inversely related to luminance contrast, al-

hough there were no differences found between high and low contrast

n the placebo group. Our results, however, suggest that propofol in-

uced alpha suppression enhancement may be related to the contrast of

he visual stimulus. Dexemdetomidine, does not alter local excitatory-

nhibitory balance and therefore demonstrated no effect on task-induced

lpha suppression. 

.2. Motor oscillatory responses 

The results of the motor task related oscillations revealed differences

etween the two sedatives only in PMBR activity. 
8 
.2.1. MRGS 

We had predicted an increase in MRGS with propofol, similar to the

ncrease seen with visual GBR. However, there were no changes in the

RGS activity with either propofol or dexmedetomidine. Interestingly,

 similar lack of changes in MRGS with GABA modulators (diazepam

 Hall et al., 2011 ) and tiagabine (GABA transporter inhibitor, which in-

reases synaptic GABA levels) ( Muthukumaraswamy et al., 2013 )) has

een reported. MRGS was enhanced by ketamine (glutamatergic activ-

ty) ( Shaw et al., 2015 ) and alcohol (both GABA and glutamatergic ac-

ivity) ( Campbell et al., 2014 ) suggesting that glutamatergic influence

ay dominate these oscillations. While we did not directly study gluta-

atergic drug effects, our findings tend to support previous findings that

lutamatergic rather than GABA-ergic effects, may be of greater influ-

nce within the excitation-inhibition model influencing the modulation

f motor cortical gamma oscillations. 

.2.2. Motor beta-band responses 

As a non-specific state of movement preparation, MRBD starts be-

ore movement, from the contralateral M1 and then becomes bilat-

ral ( Neuper and Pfurtscheller, 2001 ). Neither dexmedetomidine nor

ropofol altered contralateral or ipsilateral MRBD. Previously reported

ncreases in MRBD with diazepam ( Hall et al., 2011 ), and tiagabine

 Muthukumaraswamy et al., 2013 ) but not with propofol, suggests that

ropofol doesoesoes not increase GABA-A activity to the extent required

or this effect to be detectable. Unlike, MRBD, the proposed signifi-

ance of PMBR includes a sensory re-afference to motor cortex follow-

ng movement ( Cassim et al., 2000 ), stabilising current motor output
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nd, therefore, in preventing initiation of new movements ( van Wijk

t al., 2012 ) and reflecting neural processes that evaluate motor er-

or in the context of the prior history of errors ( Tan et al., 2014 ).

ropofol showed a non-significant reduction in PMBR (contralateral)

hile dexmedetomidine increased PMBR (ipsilateral) activity. Interest-

ngly, contrary to other motor beta findings, it has been suggested that

MBR may be a non-GABA-A mediated effect, as evident by absence

f effect with diazepam ( Hall et al., 2011 ). Indeed a decrease with

iagabine ( Muthukumaraswamy et al., 2013 ) and propofol (in this ex-

eriment)(which has some GABA-B agonist activities ( Schwieler et al.,

003 )), suggests that this may be a marker of enhanced GABA-B ac-

ivity. PMBR activity tends to be localised to the contralateral side

nd the significance on the ipsilateral rebound is less clear. Motor-

elated tasks which do not involve actual movement such as motor im-

gery ( Pfurtscheller and Neuper, 1997 ) have shown preferential ipsi-

ateral beta synchrony, while reading ( Pfurtscheller, 1992 ) and move-

ent planning ( Pfurtscheller and Neuper, 1994 ) have shown beta syn-

hrony over both ipsilateral and contralateral M1 areas. Such ipsi-

ateral synchrony may be interpreted as a correlate of a deactivated

r actively inhibited motor area neurons wherein enhanced inhibition

f the ipsilateral motor area occurs via the transcollosal fibre system

 Netz et al., 1995 ). An increased ipsilateral PMBR with dexmedeto-

idine, may reflect a more rapid re-afferentation process, which in

urn may be a factor in the rapid arousal, as seen clinically, with

exmedetomidine. 

.3. Evoked fields (visual and movement-related) 

Most anaesthetic drugs affect the amplitudes and latencies of evoked

esponses in a dose-dependant manner ( Kumar et al., 2000 ). However,

t low, equi-sedative doses, dexmedetomdine and propofol had dis-

imilar effects on the evoked fields. Propofol, but not dexmedetomi-

ine decreased the VEF amplitudes. Both drugs slowed Mv100 but not

v150. Neither drug had any effect on MF MEF amplitudes, although

exmedetomidine slowed the Mm300. 

Visual evoked MEG activity between 80 and 170 ms has been mod-

lled to originate from three sources; one in the calcarine area and

wo extrastriate sources in dorsal occipito-parietal and ventral occipito-

emporal areas, respectively ( Supek et al., 1999 ). The early MEG field

esponse (similar to Mv100 described here) is unaltered by spatial atten-

ion, while the later response (similar to Mv150 described here) is modu-

ated by attention. Mv150 VEF have been shown to be localised to the V1

nd likely influenced by feedback mechanisms, from higher extrastriate

reas ( Noesselt et al., 2002 ). Propofol related suppression of Mv100 and

v150 amplitudes, similar to Saxena et al. (2013) , represents reduced

ctivity of the primary visual cortex and extrastriate cortices, commonly

een in cerebral metabolism /perfusion studies with propofol ( Alkire and

aier, 2001 ; Alkire et al., 1995 ; Sun et al., 2008 ). Dexmedetomidine

as been shown not to affect evoked responses (including visual); al-

hough most studies have been performed during intra-operative use

under anaesthesia with other drugs) ( Rozet et al., 2015 ). We were un-

ble to find any data on dexmedetomidine’s independent effects on vi-

ual evoked responses. An increased latency of Mv100 with both propo-

ol and dexmedetomidine suggest a comparable degree of thalamocor-

ical delay with both drugs. Our results suggest that at the doses stud-

ed in this experiment, dexmedetomdine’s cortical effects on VEF are

ubstantially less than that of propofol although effects on thalamo-

ortical conduction may be similar to that of propofol. MEF represent

roprioceptive input from the moving digit to the post-central gyrus

 Kristeva et al., 1991 ). While Mm100 likley represents the initial in-

ut, Mm300 likely represents a renewed re-afferent input. We can only

peculate that the slowing of Mm300 by dexmedetomidine indictates a

egree of slowed thalamocortical conduction of this re-afferent input,

ot seen with propofol. 
9 
.3.1. Limitations 

There are some limitations of this study. The visuomotor task em-

loyed here is optimised to study the visual oscillations and therefore,

he interstimulus interval may not be long enough to capture the entire

ynamics of the motor responses, especially the PMBR. While the visuo-

otor task was designed based on known motor beta band dynamics

 Muthukumaraswamy, 2010 ) and to maintain participant comfort and

ompliance, especially during sedation, future studies focusing on motor

esponses to sedative drugs could consider using longer inter-stimulus

ntervals. Propofol was used as the representative GABA-ergic drug in

his study, but due to its additional, albeit minor, effects on other recep-

ors this may have confounded some responses. Future study designs

ith alternative GABA-ergic sedatives (such as midazolam, which acts

nly on GABA-A receptors) will further help understand task related

otor and visual cortical oscillatory, during sedation. 

We conclude that the systems-level effects of GABA-ergic (propo-

ol) and non-GABA-ergic (dexmedetomidine) sedatives are quite dis-

inct, but explainable by their known receptor physiology, and may ac-

ount for some of the clinical differences observed in their sedative ef-

ects. We have shown that at equi-sedative doses, propofol increases

isual stimulus-induced GBR while dexmedetomidine decreases it.

exmedetomidine reduces stimulus-onset-evoked gamma band power,

hile propofol does not. Propofol reduces VEF (Mv100 and Mv150) am-

litudes while dexmedetomidine has no effect on these. Both drugs in-

reased the latency of Mv100 but not the Mv150 VEF. PMBR power

s increased by dexmedetomidine while propofol tended to reduce it.

exmedetomidine also slowed the Mm300 MEF. Better understanding

f the neurophysiologic correlates of sedation, based on receptor physi-

logy is likely to help understand the different components of conscious-

ess better, help develop more reliable monitoring tools and help de-

elop anaesthetic drugs with a better safety profile. 
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