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Abstract

Background: Pharmacovigilance and safety reporting, which involve processes for monitoring the use of medicines in clinical
trials, play a critical role in the identification of previously unrecognized adverse events or changes in the patterns of adverse
events.

Objective: This study aims to demonstrate the feasibility of automating the coding of adverse events described in the narrative
section of the serious adverse event report forms to enable statistical analysis of the aforementioned patterns.

Methods: We used the Unified Medical Language System (UMLS) as the coding scheme, which integrates 217 source
vocabularies, thus enabling coding against other relevant terminologies such as the International Classification of Diseases–10th
Revision, Medical Dictionary for Regulatory Activities, and Systematized Nomenclature of Medicine). We used MetaMap, a
highly configurable dictionary lookup software, to identify the mentions of the UMLS concepts. We trained a binary classifier
using Bidirectional Encoder Representations from Transformers (BERT), a transformer-based language model that captures
contextual relationships, to differentiate between mentions of the UMLS concepts that represented adverse events and those that
did not.

Results: The model achieved a high F1 score of 0.8080, despite the class imbalance. This is 10.15 percent points lower than
human-like performance but also 17.45 percent points higher than that of the baseline approach.

Conclusions: These results confirmed that automated coding of adverse events described in the narrative section of serious
adverse event reports is feasible. Once coded, adverse events can be statistically analyzed so that any correlations with the trialed
medicines can be estimated in a timely fashion.

(JMIR Med Inform 2021;9(12):e28632) doi: 10.2196/28632
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Introduction

Background
Modern health care is associated with increased costs and
broad-reaching variations in care and outcomes across the global
population. The provision of evidence-based health care is a

critical priority for users, providers, and policy makers alike.
The systematic and high-quality conduct of clinical trials is
critical for the development of clinical guidance to inform
evidence-based practice. Pharmacovigilance and safety reporting
are among the most important aspects of the conduct of clinical
trials. This is relevant to all clinical trials in which the benefit
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or harm must be fully established before any intervention or
medicinal product is adopted.

Pharmacovigilance and safety reporting provide the basis for
ensuring clinical trial participant safety and good research
practice. It involves processes for monitoring the use of
medicines or interventions in clinical trials. It has a critical role
in the identification of previously unrecognized adverse events
or changes in the patterns of adverse events. It is also relevant
to the assessment of the risks and benefits of medicines or
interventions to determine what action, if any, is needed to
improve their safe use.

An adverse event is any untoward medical occurrence in a
participant to whom a medicinal product has been administered,
including occurrences that are not necessarily caused by or
related to the administered product. A serious adverse event
(SAE) is any untoward medical occurrence that, at any dose,
results in death, is life-threatening, requires inpatient
hospitalization or causes prolongation of existing hospitalization,
results in persistent or significant disability or incapacity, or
comprises a congenital anomaly or birth defect. Early detection
of unknown adverse events, reactions, interactions, and an
increase in the frequency of (known) adverse events is a key
element of the pharmacovigilance and safety process. Provision
of up-to-date information on adverse events to health care
professionals, researchers, and regulatory bodies contributes to
the assessment of benefit, harm, effectiveness, and risk of the
intervention, thus advancing their safe, rational, and more
effective (including cost-effective) use.

In multicenter noncommercial clinical trials conducted in the
United Kingdom, the SAE reporting requirements are detailed
in the trial protocol, and the principal investigators at National
Health Service sites are responsible for reporting SAEs to the
coordinating clinical trial unit (CTU) for an assessment of the
seriousness, causality, and expectedness as delegated by the
clinical trial sponsor. An SAE report includes an event term
and additional signs and symptoms in a narrative. The narrative
is reported by a physician during their medical assessment of
the event. The report is then reviewed by a central CTU reviewer
to assess any potential causal relationship with the trial drug.
Each narrative is reviewed as a single report. The narratives are
typically received from sites as paper records. These are logged
electronically in the safety databases by the CTU
pharmacovigilance team for the relevant national competent
authorities (eg, the UK Medicines and Health Care Products
Regulatory Agency or European Medicines Agency). The
reports are searchable on request and subject to appropriate
regulatory permissions. There is now a clear recognition of the
potential for artificial intelligence in safety case management
to identify relationships and signals [1]. Although these
approaches may be implemented in commercial settings and
within competent authorities, such methods for classifying and
categorizing data are not yet standardized or explicit across
noncommercial pharmacovigilance settings.

It is possible that the narrative contains additional adverse events
or toxicities that are not coded as additional events and are
captured in the narrative only. However, there is no mechanism
for the detection of safety signals across individual reports or

individual trials and, thus, there is no possibility for early
detection of worrying trends. This is particularly the case for
toxicities for which reconciliation with the clinical database
would be advantageous. Such a tool would facilitate the
cross-checking of toxicities recorded in the narrative of the SAE
form with those recorded in the trial database, which is currently
only feasible if automated. Although these approaches may be
used in commercial trial settings, they would not always be used
in the public domain simply because of the nature of the drug
licensing pathway.

This study seeks to use text mining to automatically identify
and code adverse events from the narrative sections of SAE
reports in clinical trials of investigational medicinal products
coordinated by a noncommercial CTU, with the aim of
unlocking narrative evidence for further statistical analysis.
Although such an analysis is beyond the scope of this study, it
would serve to monitor the patterns of adverse events at the
cohort level rather than singular adverse events. Owing to their
narrative nature, such an analysis cannot be conducted directly
on the content of SAE reports.

Related Work
Text mining has been used to identify adverse events from a
variety of data sources, including spontaneous reporting systems,
medical literature, electronic health records, and user-generated
content on the internet [2]. The problem of mining adverse
events in text has been approached from different angles. Most
commonly, it has been defined as a text classification problem,
where a piece of text, either an entire document or its part (eg,
an individual sentence), is mapped to ≥1 predefined class that
correspond to a type of adverse event or its property. Some
approaches target a specific adverse event such as anaphylaxis
and perform simple binary classification with respect to the
presence of the event considered [3]. Other examples target a
range of drugs and use documents that mention them to train a
binary classifier with respect to their safety, using an existing
watch list of drugs that have an active safety alert posted on the
US Food and Drug Administration website [4].

In terms of semantics, adverse events are compatible with signs
and symptoms. When a dictionary-based method is used to
extract such instances, a binary classifier is needed to
differentiate between the signs and symptoms that correspond
to adverse events and those associated with the underlying
diagnosis [5]. Along similar lines, when an adverse event is
associated with medication, a system is needed to support safety
evaluators in identifying reports that may demonstrate causal
relationships with the suspect medications. To this end, it has
been shown that a binary classifier can be trained to successfully
differentiate between 2 causality categories: certain, probable,
or possible versus unlikely or unassessable [6]. Multifaceted
classification can be performed to identify additional properties
of an adverse event, for example, temporal (historical or
present), categorical (assertive, hypothetical, retrospective, or
a general discussion), and contextual (deduced or explicitly
stated) [7].

Alternatively, the problem of identifying adverse events can be
defined as that of information extraction [8]. More specifically,
we can differentiate between entity and relationship extraction.
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Here, the goal of entity extraction is to identify a text sequence
that describes an adverse event. Therefore, it can also be viewed
as a sequence labeling problem [9-11]. In addition, the text
sequence can be mapped to a relevant dictionary such as the
Medical Dictionary for Regulatory Activities [12,13] or the
Unified Medical Language System (UMLS) [9,14]. Such
normalization of named entities to standardized identifiers is
especially relevant when processing text originating from social
media, whose language tends to be highly colloquial
[4,9,10,13-17].

When multiple medicines are considered, 2 types of named
entities need to be extracted—medicines and adverse
events—and additional reasoning needs to be performed to
extract a relationship between the two [7,17,18]. Further
statistical analysis can be applied to such pairs to measure the
strength of such associations [18]. Information of interest can
be extracted using pattern-matching approaches, where patterns
are typically modeled using regular expressions [7,12,19].
Alternatively, frequent patterns of language for expressing
opinions about medications can be learned automatically using
association rule mining by considering sentences as transactions
and the words in a sentence as items in the transactions [15].

Specific methods chosen to mine adverse events from text
depend on the way the text mining problem is posed. Typical
approaches chosen for text classification include rule-based
methods [3,7,14,20] and supervised machine learning
[3-6,16,21]. A range of machine learning methods has been
used, including naive Bayes, support vector machines, random
forests, maximum entropy, and logistic regression. On occasion,
ensemble learning has been used to improve classification
performance by integrating multiple models using methods such
as bagging, majority voting, weighted averaging, and stacked
generalization [4,17,21]. The different types of lexical, syntactic,
and semantic features have been used by the classification
algorithms. Lexical features include n-grams [4,16], context
windows [17], and lexicon matches [16]. Typically, syntactic
features include part-of-speech tags, negation, syntactic
dependencies, and syntactic functions [16,17,21]. Semantic
features are either based on external sources such as the UMLS,
PubChem, or DrugBank [16,17,20,22] or manually engineered
[4-7]. Other used features were based on sentiment polarities
[4,16] and topic modeling [16]. A few examples of using feature
selection methods include binormal separation [4] and
information gain [17].

Finally, approaches chosen to address adverse event mining as
a sequence labeling problem include conditional random fields
(CRFs) [9,23] and, more recently, neural networks (NNs)
[21,22], including recurrent NNs [10] and long short-term
memory (LSTM) [24], which outperformed CRFs. For best
results, bidirectional LSTM is combined with CRF [11,25-29].
Most approaches used word embeddings, which represent words
as meaningful real-valued vectors of configurable dimensions
learned automatically from a large corpus based on their
co-occurrence using methods such as word2vec [22,27], fastText
[24], and GloVe [30]). Traditional bag-of-words (BOW)
approaches tend to struggle with unseen or rare words. Word
embeddings that are pretrained on a large corpus remedy this
problem and, consequently, boost recall (R).

The aforementioned word-embedding models generate a single
embedding for each word, thus conflating homonyms in the
corresponding vector space. Bidirectional Encoder
Representations from Transformers (BERT) [31] captures
contextual relationships in a bidirectional way to contextualize
the embedding of any given word based on the surrounding
words. BERT is based on an encoder–decoder NN architecture,
which can not only be used to generate word embeddings but
can also be fine-tuned and further trained for various text mining
tasks. For example, it has been used to model adverse event
extraction as a named entity recognition (NER) task [11,32].
The topics of word embedding and BERT, in particular, will
be revisited later in this paper in the context of motivating and
describing our own approach to this problem.

The after-the-fact nature of text data collected from sources
such as spontaneous reporting systems, medical literature,
electronic health records, and social media naturally gives rise
to postmarketing surveillance applications [2,33]. However,
pharmacovigilance starts by collecting safety information
derived from randomized controlled trials. Our review of text
mining applications related to the identification of adverse
events revealed that this source of data was underrepresented.
This study addresses this gap by using SAE report forms
collected during clinical trials as the primary source of data.
Given that each trial focuses on a specific medicinal product,
the problem is somewhat simplified as the need to extract
information about the product itself is obviated. This also makes
it more natural to define it as a multi-label text classification
problem rather than an information extraction problem. Using
the UMLS as our classification scheme, the main aim is to map
each document to a set of coded adverse events. The main
difficulty of the problem lies in differentiating between signs
and symptoms associated with the underlying condition and
those that represent adverse events. The fact that both types of
references to signs and symptoms can be found within a single
SAE report, often within the same sentence, renders a BOW
approach unsuitable. Instead, we opt for a deep learning
approach. Instead of LSTM approaches, which seem to dominate
in our review of the related work, we opt for transformers, which
tend to outperform recurrent NNs on a variety of natural
language processing tasks.

Methods

Data Provenance
Data were provided by the Center for Trials Research (CTR),
the largest group of academic (noncommercial) clinical trial
staff in Wales. Their portfolio of work includes drug trials and
complex interventions, mechanisms of disease and treatments,
cohort studies, and informing policy and practice in partnerships
with researchers across the United Kingdom and worldwide.
Across all these trials, standard procedures are put in place to
monitor and manage safety reporting and SAE in line with the
regulatory requirements for research.

Clinical trials SAE report forms (Figure 1) are completed by
research nurses and physicians at hospital or clinical trial sites
and submitted as PDF documents to the CTR central safety
team for management and processing. They contain data on the

JMIR Med Inform 2021 | vol. 9 | iss. 12 | e28632 | p. 3https://medinform.jmir.org/2021/12/e28632
(page number not for citation purposes)

Chopard et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


SAE and a narrative description of the event. The narrative is
used by the reviewer to help assess causal relationships with
the trial drug but is not entered into the trial database and is not
used in any analysis of the events. Completed SAE reports are

then sent for review by a physician and, depending on the
outcome of the review, are logged in the safety databases for
the regulatory authorities, ethics committees, and drug
companies.

Figure 1. A serious adverse event (SAE) reporting form. CTCAE: Common Terminology Criteria for Adverse Events; N/A: Not Applicable.

Although narratives in noncommercial settings, such as CTR,
can be digitized, this does not currently take place at the point
of initial SAE reporting, as electronic data capture for the SAE
report is associated with additional regulatory challenges,
primarily because of the requirement for signature verification
by a physician and a contemporaneous changelog. Clinical trial
staff reviewing SAE reports are, thus, unable to systematically
analyze the information provided in the narrative, missing an
opportunity to identify the trends and potential safety signals.
If the text mining approach were to identify additional safety
events and signals not detected through standard reporting,
processes could be altered to improve work practices at the level
of a noncommercial CTU pharmacovigilance team.

This study aims to assess the feasibility of text mining in the
context of such an analysis. The findings could affect the way
regulatory narratives are reviewed and analyzed, for example,
noncompliances or audit findings.

Data Collection
Data were collected from 6 ongoing clinical trials, as described
in Table 1.

Ethical review and approval were waived for this study as this
study involved the use of secondary SAE data that were fully
deidentified. All involved trials were conducted according to
the guidelines of the Declaration of Helsinki and approved by
the relevant research ethics committees. All chief investigators
from these trials were consulted, and sponsor agreement was
obtained for the use of the data in this secondary research study.
Participant consent was also waived for the reasons stated above.

A subset of SAE reports was sampled randomly from each trial,
giving a total of 286 reports. Phases 1 and 2 were early phases
with a smaller number of participants and were not powered.
The fewer numbers of reported SAEs were a function of the
smaller numbers of participants compared with phase 3; hence,
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there were variations in the number of documents across the 6
trials.

The original SAE reports were pseudoanonymized at the point
of extraction from the system by obscuring any links between
the patient and their individual records. The narrative sections
of the SAE reports were then transcribed and saved as Microsoft

Word documents. The transcription process was extended to
include deidentification by obscuring any personally identifiable
information in a way that minimizes the risk of unintended
disclosure of the identity of individuals and information about
them. The transcribed documents were an average of 37 (SD
24) tokens long.

Table 1. Clinical trials from which data were collected.

Documents, nDescriptionID

5A phase 2 study of neoadjuvant chemotherapy given before short-course preoperative radiotherapy as treatment for patients

with MRIa-staged operable rectal cancer at high risk of metastatic relapse

Trial-1

7A phase 1b/2 randomized placebo-controlled trial in postmenopausal women with advanced breast cancer previously
treated with drug A

Trial-2

131A randomized phase 3 clinical trial investigating the effect of drug B added to standard therapy in patients with lung
cancer

Trial-3

34Study of chemoradiotherapy in esophageal cancer, plus or minus drug CTrial-4

3A phase 1/2 single-arm trial to evaluate combination drugs for the treatment of advanced cancers, including first-line
treatment of patients with advanced transitional cell carcinoma of the urothelium

Trial-5

106A randomized phase 3, open-label, multicenter, parallel group clinical trial to evaluate and compare the efficacy, safety
profile, and tolerability of oral drug X versus intravenous drug Y in the treatment of patients with breast cancer and bone
metastases

Trial-6

aMRI: magnetic resonance imaging.

Data Annotation
The aim of this task was to annotate adverse events in the
transcribed versions of the SAE report forms. For the purpose
of this task, an adverse event was defined as any unfavorable
or unintended disease, sign, or symptom (including an abnormal
laboratory finding) that is temporally associated with the use
of a medical treatment or procedure, which may or may not be
considered related to the medical treatment or procedure. Such
an event could be related to the intervention, dose, route of
administration, or patient or caused by an interaction with
another drug or procedure.

The annotation guidelines prescribed the scope of the annotation
task as follows: (1) focus only on adverse events that have
occurred in the present or past, that is, ignore hypothetical or
future events; (2) annotate the entire phrase that describes an
adverse event; and (3) if the same adverse event were mentioned
multiple times, then annotate every mention. The annotation
process was based on the following instructions: (1) identify an
adverse event that is mentioned in the narrative, (2) select the

text that describes the adverse event, and (3) highlight the
selected text.

The text editing operations were performed using Microsoft
Word, which was preferred over a specifically designed
annotation tool such as BRAT or Bionotate [34] because of zero
installation and training overhead. Microsoft Word supports the
bulk selection of text based on its formatting. This functionality
was used to export highlighted text as standoff annotations,
which were later used to calculate the interannotator agreement.

A total of 2 annotators independently annotated all the
documents. Figure 2 provides an example. Here, both annotators
annotated 2 mentions of tremor but did not annotate the
historical mention of tremor as it was not temporally associated
with the use of the medical treatment that was the subject of the
given clinical trial. Further, 1 reviewer failed to annotate
vomiting, leading to disagreement, which was later resolved
through discussion. To identify all such cases, we compared all
annotations automatically and measured the interannotator
agreement.

Figure 2. A serious adverse event report annotated independently by 2 annotators. The annotations are highlighted in yellow.
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The 2 annotators labeled SAEs as phrases, which were
sequences of words whose total number, together with their
start and end positions, were not prefixed. Comparing the
interannotator agreement at the token level, as suggested by
Tomanek et al [35], was not entirely appropriate for 2 reasons.
First, the annotators labeled phrases as sequences of tokens
instead of labeling the tokens individually. Therefore, such an
approach approximated the original annotation task. More
importantly, the number of negative cases (ie, the tokens that
had not been annotated) would inevitably be much larger than
the number of positive cases, thus skewing the data. The lack
of a well-defined number of negative cases prevented the use

of traditional interannotator agreement measures such as Cohen
κ statistic [36]. A common way of quantifying interannotator
agreement in such circumstances is to use information retrieval
performance measures instead [37]. By treating one annotator’s
annotations as the gold standard and the other one’s as
predictions, we calculated the numbers of true positives (TPs),
false positives (FPs), and true negatives, as shown in the
confusion matrix (Table 2). When these values were combined
to calculate the F1 score, it no longer mattered which annotator
was considered the gold standard as this measure was
symmetrical.

Table 2. Agreement between 2 annotators.

Gold negativeGold positivePositive or negative

FPb=50TPa=744Predicted positive

N/AdFNc=98Predicted negative

aTP: true positive.
bFP: false positive.
cFN: false negative.
dN/A: not applicable.

These values can then be used to calculate the precision (P), R,
and F1-score as follows (where FN denotes false negative):

P=TP/(TP+FP)=744/(744+50)=0.9370

R=TP/(TP+FN)=744/(744+98)=0.8836

F1=(2×P×R)/(P+R)=0.9095

An advantage of using information retrieval performance
measures to estimate interannotator agreement is that their
values can later be used to gauge a system against human-like
performance. At F1=0.9095, the interannotator agreement was
found to be relatively high. A total of 148 disagreements were
resolved through discussions to establish the ground truth. As
part of the discussions, the agreed annotations of adverse events
were coded manually against the UMLS, which integrates

multiple terminologies, classifications, and coding standards in
an attempt to support the interoperability between biomedical
information systems, including electronic health records [38].
The MetaThesaurus Browser, a web-based search interface, was
used to query the UMLS for each annotation to identify the
corresponding concept (Figure 3). This searching procedure
involved checking concept definitions to make sure that the
chosen concept matched the sense of the adverse event
annotation. Each concept in the UMLS is assigned a concept
unique identifier (CUI), which was used to code the
corresponding annotation (see Figure 4 for examples).
Subsequently, the CUI codes were extracted, duplicates were
removed, and the remaining CUIs were used as class labels for
each document. Table 3 provides a statistical summary of the
annotated data set, which contains a total of 995 class labels.
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Figure 3. Metathesaurus browser search results.

Figure 4. Coding of documents against the Unified Medical Language System.

Table 3. Statistical properties of the annotated data set.

Class labelsAnnotationsDocument length (in tokens)Statistical properties

112Values, minimum

1920223Values, maximum

3331Values, median

3.48 (2.18)3.76 (2.46)36.71 (23.77)Values, mean (SD)

Problem Representation
The aim of this study was to automate the identification of
adverse events described in the narrative section of the SAE
reports. This goal was cast as a text classification problem.
Given a document and classification scheme, the system should
label the document with the relevant classes from the given
scheme. In our case, the document was an SAE report, a
classification scheme was the set of concepts encompassed by

the UMLS, and their CUIs were used as class labels. The second
column in Figure 4 provides an example of the expected output.

To identify the possible adverse events mentioned in a
document, the first step involved looking for concepts of the
relevant semantic types. In our approach, the UMLS dictionary
lookup was restricted to 6 manually selected semantic types:
disease or syndrome, finding, injury or poisoning, neoplastic
process, pathological function, and sign or symptom. Some of
their mentions could be in the context of medical history and,
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therefore, not necessarily constitute an adverse event. To
differentiate between the 2 types of mentions, we formulated a
binary classification task at the concept level: given a context,
does a specific UMLS concept constitute an adverse event?
Figure 5 provides different references to the concept of pleural
effusion. For example, the first 3 references do not constitute
adverse events. The first and third mentions of pleural effusion
refer to medical history, whereas the second mention is negated.
The remaining 3 mentions of pleural effusion refer to the cause
of hospital admissions that prompted SAE reporting.

The practical implementation of such problem representations
started with linguistic preprocessing, which was originally
developed to support cohort selection from hospital discharge
summaries, adapted for this study [39]. This module involved
text segmentation and basic string operations such as
lowercasing, fully expanding enclitics and special characters,
replacing a selected subset of words and phrases with their

representatives, and, in particular, replacing acronyms and
abbreviations with their full forms. Finally, the preprocessed
documents were analyzed using MetaMap [40], a highly
configurable dictionary lookup software, to find mentions of
UMLS concepts from the 6 semantic types listed above. Figure
6 illustrates a portion of the UMLS dictionary and how it was
matched against the input text. As the figure illustrates, a single
document might contain multiple adverse events. To support
the classification of one adverse event candidate at a time, a
separate copy of the given document was saved for each
candidate. Each copy anchored a single concept, which may
have had multiple occurrences, by marking them up in line. In
addition, the text was further regularized by replacing all the
concepts with their preferred names. Concept anchoring
provided a simple, uniform representation of the potential
adverse events, which enabled us to train a single binary
classifier based on the context surrounding the anchors.

Figure 5. Adverse event identification as a binary classification task. CT: computed tomography.
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Figure 6. Identification of potential adverse event mentions. CUI: concept unique identifier.

Classification Rationale
The binary task formulation itself—given a context, does a
specific UMLS concept constitute an adverse event?—indicates
2 main types of involved features: extrinsic (context) and
intrinsic (concept). Extrinsic features may include the number
of mentions within a document, the position within a document,
and other words within a fixed-size window. When combined
with gold standard annotations, machine learning can be used
to discover how to differentiate between positive and negative
contexts without having to manually describe the patterns of
positive and negative use. For example, by considering the
co-occurring words (see Figure 7 for examples) and the
corresponding annotations, a simple NN can learn to use words
such as previous and have as negative and positive modifiers,
respectively. By considering a wider context, more complex
patterns such as admitted to hospital with and known to have
(see Figure 8 for examples) would start to emerge as positive
and negative contexts, respectively. Traditionally, such patterns
were observed using corpus linguistics methods, which were
engineered manually and encoded formally as regular

expressions [41]. In recent times, NNs are used to automatically
capture both short- and long-range dependencies.

Similarly, lexical morphology could be explored in an NN
approach to learn the patterns of subwords within a concept’s
name, which were positively or negatively correlated with
adverse events. For example, it is reasonable to expect that any
concept identified as a potential adverse event that contains the
word chronic (eg, chronic obstructive airway disease or chronic
infection) is more likely to refer to a process than a single event.
Similarly, any concept whose name contains a word loss (eg,
loss of appetite or hair loss) is more likely to be an adverse
event. The words themselves can be analyzed for affixes. For
example, the prefix hypo- (low or below normal) can be used
to increase the likelihood of concepts such as hypocalcemia or
orthostatic hypotension corresponding to adverse events.
Similarly, the suffix -emia (presence in the blood) can be used
to identify concepts such as cerebrovascular ischemia or
hyperkalemia as strong candidates for adverse events. Again,
no prior medical knowledge is required to embed such features
into NNs, which consider inputs and outputs simultaneously to
support end-to-end learning and, hence, bypasses manual feature
engineering.
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Figure 7. Observing the patterns of positive and negative modifiers. CRTI: common respiratory tract infection; GI: gastrointestinal; OGD:
oesophagogastroduodenoscopy; PR: per rectum; SAE: serious adverse event.

Figure 8. Observing more complex patterns of positive and negative use. Hb: hemoglobin.

Text Representation
The first choice en route to implementing a binary adverse event
classifier is text representation. Traditionally, the BOW
representation, which is based on the frequency of occurrence
of individual words, has been used to support text classification.
Given that multiple signs and symptoms, some of which can be
adverse events, are commonly discussed in an SAE report, the
BOW representation would make it difficult to distinguish
adverse events from other signs and symptoms discussed within
the same document as it does not preserve local context. In
addition, the BOW representation is not robust with respect to
the out-of-dictionary problem; that is, any classifier trained
using this representation will not be able to use words that were
previously not encountered in the training data.

Word embedding can alleviate this problem. Word embedding
is a mapping from the lexicosemantic space of words to the
n-dimensional real-valued vector space. Methods such as
word2vec [42] and GloVe [43] for learning word embeddings
from large corpora rely on the hypothesis of distributional
semantics, which claims that words occurring in similar contexts
tend to convey similar meanings [44]. In other words, these
methods assume that the meaning of a word depends on its

context, that is, the frequency of co-occurrence with other words
within a text window. Consequently, word embeddings tend to
arrange semantically related words in similar spatial patterns.
Therefore, by mapping a word to its embedding, it becomes
possible to model its semantics numerically and thus use
arithmetic operations to reason about it. This property is
effectively used by NNs in which text is passed through a series
of layers that each combines and transforms embeddings to
eventually derive an output such as a class label in text
classification or an answer in question answering.

Context-free word-embedding models such as word2vec [42]
and GloVe [43] generate a single embedding for each word,
making it impossible to differentiate between homonyms in the
corresponding vector space. For example, the word mole would
have a single embedding regardless of its many different
meanings. Context-sensitive word-embedding models such as
BERT [31] generate an embedding for each word based on the
surrounding words. For example, the word mole used as a unit
of measurement and a disorder that affects the soft tissue will
have different representations in the word-embedding space.

BERT [31] is a transformer-based language model that captures
contextual relationships in a bidirectional way. A transformer
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[45] is an encoder–decoder NN architecture that uses attention
mechanisms to forward a holistic interpretation of a sequence
to the decoder simultaneously rather than sequentially, as is the
case in recurrent NNs such as LSTM and gated recurrent units.
For each word, which is represented by its embedding, the
self-attention layer considers other words, including their
positions, in the same sentence to improve its encoding. As a
workaround for the self-attention issue, BERT uses masked
language modeling, that is, hides a certain percentage of the
words using a special token [MASK] and uses their position to
infer these words. The context-sensitive nature of BERT
embeddings makes this language model perfectly suited for
practical implementation of the classification rationale described
earlier. In addition, BERT uses WordPiece tokenization to obtain
subword units by applying a greedy segmentation algorithm to
minimize the number of WordPieces in the training corpus [46].
This implies that the downstream classification model may be
able to use the word morphology.

Classification Model
The masked language modeling was 1 of the 2 tasks on which
BERT was trained simultaneously. The second task was the
next sentence prediction. In addition to [MASK], BERT uses
2 other special tokens for fine-tuning and specific task training:
(1) a classification token [CLS], which indicates the beginning
of a sequence and is commonly used for classification tasks (the
output associated with this token is used for the next sentence
prediction task); and (2) a sequence delimiter token [SEP],
which indicates the end of a segment.

The embedding layer shown in Figure 9 illustrates the input
format that BERT expects. Each token’s vocabulary identifier
is mapped to a token embedding that is learned during training.
Next, a binary vector is used to differentiate between 2 text
segments, typically sentences. The type of segment depends on
a specific task, for example, in question answering both
question, and the reference text could be appended and separated
by a special delimiter token [SEP]. In our model, we chose the
anchored concept as one segment and its context (ie, the whole
document) as another. The binary vector was mapped to a
segment embedding using a lookup table, which was learned
during training. Finally, local token positions were mapped to

positional embeddings using a lookup table, which was updated
during training.

The 3 types of embeddings were added and fed into the
pretrained BERTBASE model, which comprises 12 layers of
transformer encoders, each having a hidden size of 768 and 12
attention heads. Each layer produces a token-specific output,
which can be used as its (contextualized) embedding. Similar
to binary classification tasks described in [31], the final
transformer output corresponding to the special [CLS] token
was taken as an aggregate problem representation, that is, pooled
output, and passed on to the classification layer after a 0.1
dropout, which was used to reduce overfitting.

The classification layer reduced the size of the pooled output
from 768 to 2, which corresponds to the log-odds (or logits) of
the classification output with respect to the question of whether
the given concept was an adverse event or not. In contrast to
the network up to that point, the classification layer was not
pretrained. Instead, the corresponding weights were learned
during BERT fine-tuning. As suggested in the study by Devlin
[31], the weights were initialized using a truncated normal
distribution with mean 0 (SD 0.02). A softmax function was
then applied to obtain the probability distribution of the 2
classes. The loss function (softmax cross entropy between the
logits and the class labels) was optimized using the Adam

optimizer with an initial learning rate of 2×10–5, which was
chosen without any fine-tuning, based on the values suggested
in the study by Devlin [31].

The classification model was trained for 8 epochs. This
hyperparameter was preselected without any tuning. In each
epoch, the training data were looped over in batches of 8
samples. The batch size was limited by memory. All other
parameters were kept identical to those in the original BERTBASE

uncased model, including the clip norm of 1.0, and linear
warmup (100 warmup steps with linear decay of learning rate).
The system was implemented in TensorFlow [47], an
open-source software library for machine learning, with a
particular focus on training and inference of deep NNs, using
the GeForce RTX 2080 (Nvidia Corp) graphics processing unit
to accelerate deep learning.
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Figure 9. Architecture based on Bidirectional Encoder Representations from Transformer (BERT) for classification of adverse events. CLS: classification
token; SEP: sequence delimiter token.

Results

During preprocessing, MetaMap was used to extract adverse
event candidates. MetaMap failed to extract a total of 118
adverse events from the ground truth. Therefore, these instances
automatically constituted FNs. The remaining 1021 adverse
event candidates extracted by MetaMap were passed on to the
BERT-based classification model shown in Figure 9. To
understand the performance of the BERT classifier, we first
focused only on these 995 adverse event candidates before
amalgamating them with 118 FNs. Of the 995 candidates, 659
(66.2%) were positive instances (ie, regarded as adverse events

in the ground truth), and 336 (33.8%) were negative instances
(ie, not regarded as adverse events in the ground truth).

We performed 10 independent 5-fold cross-validations to
evaluate the performance of the classification model. In other
words, during each cross-validation, 20% of the documents
were held out for evaluation, whereas the remaining 80% were
used for training, and this was done 5 times in a row, each time
using a different fold for evaluation. More specifically, for each
of the 10 independent runs, we did the following:

The 286 unique document identifiers were first shuffled
randomly and then split into 5 folds. Remember that each
document may have contained multiple adverse event
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candidates, and a separate copy was created for each candidate
during preprocessing. All copies of the same document shared
the same document identifier; hence, there was no overlap of
data across the folds. As the splitting was done by document
irrespective of the number of events they contained, the actual
number of samples (ie, potential adverse events identified by
MetaMap) in each fold may vary. We looped over the folds,
each time using a different fold for evaluation and the remaining
4 folds for training. Each time, we measured P, R, and F1 scores.
Once each of the 5 folds was used for evaluation, we calculated
the mean values obtained for each evaluation measure. Finally,
these values were averaged over 10 independent runs.

The same cross-validation process was applied to the baseline
approach. Remember that the goal of our system was to code
adverse events against the UMLS; therefore, a UMLS lookup
was inevitable. The lookup itself could be performed as the first
step to identify an adverse event candidate (and code it at the
same time) and then classify it. Alternatively, it could be
performed as the last step to code an adverse event, which was
first extracted from free text. In the former approach, we were
dealing with a binary classification problem where it needed to
be determined whether a given UMLS concept was an adverse
event or not. In the latter approach, we were dealing with a
sequence labeling problem where the boundaries of a token

sequence that referred to an adverse event needed to be
determined. This is how Du et al [32] approached the extraction
of adverse events from safety reports by framing it as the NER
problem and fine-tuning BERT for this task. We reimplemented
and cross-validated their approach on our data set to establish
the baseline. Although the authors originally used BERT for
biomedical text mining (BioBERT) [48], we replaced it with
BERT in our experiments to make their approach directly
comparable with ours. The results achieved by the 2 contrasting
approaches are presented in Table 4. Despite the similarities in
the underlying technologies, we can observe a notable difference
in the performance of the 2 approaches, most prominently in
terms of P, where we can see an improvement of approximately
30 percent points over the baseline. A detailed analysis of this
phenomenon is provided in the Discussion section. In this
section, we proceed to describe the results achieved using our
own approach.

Figure 10 displays the distribution of the prediction probabilities.
The histogram combines the predictions from all folds used for
cross-validation. We can observe that most prediction
probabilities are concentrated around the 2 extremes, 0 and 1,
which suggests that the classification model is able to make
clear-cut decisions, as it does not depend on a specific threshold.

Table 4. Evaluation results.

Our approach: concept extraction (MetaMap)+classification
(BERT), mean (SD)

Baseline approach: named entity recognition (BERTa)+concept ex-
traction (MetaMap), mean (SD)

Parameters

0.8638 (0.0057)0.5715 (0.0076)Precision

0.7604 (0.0121)0.7116 (0.0096)Recall

0.8080 (0.0071)0.6335 (0.0072)F1 score

aBERT: Bidirectional Encoder Representations from Transformers.
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Figure 10. Distribution of prediction probabilities for all folds in a cross-validation experiment.

In Figure 11, we used receiver operating characteristic curves
to illustrate the diagnostic ability of the classification model. A
separate curve was provided for each of the 5 folds used for
cross-validation. The plot shows the TP rate versus the FP rate
at each classification threshold. The solid-colored lines
correspond to the model’s performance, whereas the gray dashed
line represents the performance of a classifier with no skill, that
is, the one that always predicts the majority class. An ideal
model would result in a curve that bows toward the coordinate
(1,0). With its curve consistently lying close to the top-left
corner, our model demonstrated very good classification
performance. We summarized the receiver operating
characteristic results by calculating the area under the curve to
measure the ability of our model to distinguish between the 2
classes, with higher values indicating better performance. With
an overall mean score of 0.8789 (SD 0.0101) and a range

between 0 and 1, our model was clearly able to distinguish
between adverse events and underlying conditions 87.79% of
the time on average.

Finally, to account for the class imbalance, we also looked at
the precision-recall (PR) curve shown in Figure 12. Again, the
solid-colored lines correspond to our model’s performance,
whereas the gray dashed horizontal line corresponds to a model
with no skill, that is, a model whose P is equal to the proportion
of positive samples. The PR curve of our model was relatively
close to that of an ideal model, whose curve would bow toward
the coordinate (1,1). In comparison to a no skill model, which
would achieve a PR area under the curve score of 0.6533, our
model reached a high score of 0.9108 (SD 0.0103),
demonstrating its ability to correctly classify adverse events
despite the class imbalance.

JMIR Med Inform 2021 | vol. 9 | iss. 12 | e28632 | p. 14https://medinform.jmir.org/2021/12/e28632
(page number not for citation purposes)

Chopard et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 11. Receiver operating characteristic curve for each fold in a cross-validation experiment.

Figure 12. Precision-recall curve for each fold in a cross-validation experiment.
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Discussion

Principal Findings
Previously, we provided details on calculating the interannotator
agreement using P, R, and F1 score. When a system is evaluated
against the ground truth, the corresponding values establish the
human performance baseline, which in this case were P=0.9370,
R=0.8836, and F1=0.9095. If we compare these values against
the results provided in Table 4, we can observe a 10.15 percent
points difference in the F1 score. In particular, we notice that
the system’s R is 10.34 percent points lower than its P. There
are 2 potential sources of type 2 errors in the system. Remember
that the system first uses MetaMap to identify potential adverse
events, which are then classified by BERT as positive or
negative. Both components can give rise to FN results. First,
any adverse event that MetaMap failed to forward to BERT

would have been automatically counted as an FN. Second, any
adverse event that MetaMap did supply to BERT for further
classification could have still ended in an FN. MetaMap is a
predefined rule-based system, and as such, its performance
within our system is limited by external factors. BERT, on the
other hand, has been trained for a specific task using the data
set described here. Therefore, it is worth focusing specifically
on its classification performance.

To evaluate how well BERT learned to classify adverse events,
we removed those FNs from the ground truth that were never
actually classified by BERT because of MetaMap failing to
identify them in the first place. Table 5 provides the
cross-validation results for BERT’s performance alone. We
observe that the classification performance alone is much closer
to the human performance baseline, lagging behind the F1 score
by only 2.93 percent points.

Table 5. Bidirectional Encoder Representations from Transformers’ (BERT) performance.

Classification (BERT), mean (SD)Named entity recognition (BERT), mean (SD)Parameters

0.8651 (0.0053)0.7484 (0.0066)Precision

0.8974 (0.0104)0.8237 (0.0086)Recall

0.8802 (0.0044)0.7835 (0.0053)F1 score

If we now compare BERT’s classification performance given
in Table 5 with the overall system performance given in Table
4, we can see that the P is virtually identical (0.8638 vs 0.8651),
whereas R differs by 13.70 percent points (0.7604 vs 0.8974).
Hence, we can conclude that the R of the overall system is
primarily limited by MetaMap’s performance, which naturally
raises the question of whether its use as a preprocessing step
within our system was appropriate. The baseline method uses
MetaMap as the postprocessing step; therefore, we investigated
the extent of its effect on the overall performance by singling
out BERT’s performance on the NER task, which was evaluated
using the exact matching of phrases annotated in the ground
truth. If we compare the first column of Table 5 with the second
column of Table 4, we can observe that without MetaMap,
BERT can certainly achieve higher R (0.8237 vs 0.7604) when
it is allowed to determine the phrase boundaries on its own
rather than having them prescribed by MetaMap.

Although such an approach is unarguably more flexible, it can
also have a negative impact when the goal of the system is to
code adverse events rather than only recognize their mentions
in the text. If the phrase boundaries are not correctly detected
as part of the NER task, then searching the UMLS using an
incorrectly extracted phrase may provide an incorrect code.
Consider, for example, 2 adverse events, respiratory tract
infection (whose code in the UMLS is C0035243) and urinary
tract infection (whose code is C0042029). Suppose that a system
failed to correctly identify their boundaries, for example, by
suggesting tract infection in both cases. The UMLS has no
concept referring to tract infection; therefore, MetaMap would
at best suggest infection (whose code is C3714514) as the closest
concept matching the given search term, thus incorrectly coding
both respiratory tract infection and urinary tract infection,
resulting in 2 FNs (labeled C0035243 and C0042029 in the
ground truth) and 2 FPs (both labeled C3714514 by the system).

On the other hand, MetaMap can be configured to recognize
the longest phrases from relevant semantic types and, in that
way, impose tighter control of the process, reducing the number
of both FPs and FNs. Although MetaMap may limit R, it does
play an important role in controlling the P in our proposed
approach, as the results in Table 4 clearly depict. Nonetheless,
MetaMap could benefit from revising its rule-based dictionary
lookup approach in light of the new advances in text mining
and, in particular, deep learning approaches to bring its
performance in line with the state of the art.

Focusing on BERT’s performance alone in Table 5, we can see
that it performs better on the binary classification task than the
NER task. This is not surprising, as the sequence labeling task
is inherently more complex than binary classification. This is
because of the number of possible sequences growing
exponentially with the length of a document. In particular, the
performance gap is bound to widen when training the
corresponding models on a relatively small data set, as is the
case in this study. Having <300 annotated documents available,
we can see from Table 5 that BERT’s performance on the
classification task is in the high 80s across all metrics, whereas
its performance on the NER task is in the high 70s overall. This
again justifies our choice to run BERT after MetaMap rather
than the other way around.

Going back to the BERT’s classification performance provided
in Table 5, while examining the misclassified examples, we
noticed some patterns. Some simple negation patterns were not
captured by the classifier. For example, in the document
containing the sentence “Chest X-ray showed no new lesion,
no pleural effusion disorder or pneumothorax and history of
smoking,” both pleural effusion disorder and pneumothorax
were misclassified as adverse events. Similarly, in the document
with the sentence “admitted with right scaptula/back pain, no
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chest pain or dyspnea,” both chest pain and dyspnea were
misclassified as adverse events.

This finding is in line with the current evidence that neural
models struggle to generalize negation to out-of-sample data
sets, even within the same domain [49]. The generalizability of
negation remains a challenge, as none of the factors considered,
including the annotation guidelines, the amount of data
available, and their lexical and syntactic properties, fully
explained the poor performance [50]. Empirical evidence
suggests that the use of domain-specific embeddings such as
BioBERT [48] may improve negation detection [51]. BERT
can also be fine-tuned to support the negation detection task in
clinical text [51,52]; however, this requires data to be annotated
specifically for this task. Nonetheless, manual adaptation, be it
rule modification or in-domain data annotation, remains a
recommended strategy for optimizing performance in clinical
natural language processing [50]. Rule-based systems for
negation detection such as ConText [53] seem to transfer well
within a domain [54]. Therefore, the simplest and most effective
way of addressing negation as the source of errors in our
proposed framework would be to use the ConText algorithm
[53] to detect negated contexts and automatically exclude them
from further consideration.

Some words, such as the word decreasing, can have the opposite
effect depending on the context in which it is used. For example,
decreased mobility implies a negative effect, whereas decreased
pain implies a positive effect and not an adverse event. The
system was not able to differentiate between such contexts. This
could be remedied by incorporating domain knowledge about
candidate adverse events. Alternatively, with a larger training
data set, these properties could be learned directly from the data.

Finally, the classification model struggled when a given concept
was used in multiple contexts. For example, for the concept
infection in the document extract “admitted to hospital with
lower respiratory tract infection [...] not commenced
chemotherapy related infection,” the model misinterpreted the
latter mention as a negated one and, consequently, misclassified
this adverse event.

Conclusions
This study established the feasibility of automated coding of
adverse events described in the narrative section of the SAE
reports. This, in turn, enables statistical analysis of adverse
events and the patterns of such events so that any correlations
with the use of medicines can be estimated in a timely fashion.
An easy adaptation of an existing deep learning architecture
trained on a relatively small data set demonstrates that similar
tools can be built rapidly. In addition, the evaluation results
show that such tools also perform with high accuracy. This
performance can be attributed to the choice of the method.
BERT is already pretrained on a large unlabeled corpus, which
allows it to be fine-tuned on a small, labeled corpus for a
specialized task. This is particularly relevant for clinical text
mining applications, where the data annotation bottleneck has
been identified as one of the key obstacles to machine learning
approaches for clinical text mining [55].

Unfortunately, the relevant data are still mainly handwritten,
which means that they cannot be immediately processed in the
way proposed in this study. There are 2 ways in which this issue
can be addressed. We can work with the stakeholders to change
the policy on the means of collecting information on SAEs, for
example, by transcribing the notes when they reach the safety
and pharmacovigilance teams in the central trial unit, by
requiring them to be typed, or by using some combination of
these 2 approaches.

Alternatively, we can propose to develop methods to digitize
handwritten notes automatically using tools such as Transkribus
[56], which have been designed to digitize historical documents
and allow the training of specific text recognition models. This
would have a great potential for impact on safety by digitizing
and mining legacy data from previous trials, where some
medicinal products may have already reached the market, thus
exposing the population to previously overlooked safety
concerns. Currently, these issues prevent a systematic analysis
of the information provided in the narrative of SAE reports,
hence missing an opportunity to identify potential safety signals.
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