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N-tert-Butyl-1,2-diaminoethane was shown to react rapidly with atmospheric carbon dioxide to generate the zwitterionic
ammonium carbamate salt CO

2
N(H)C

2
H
4
N(H)

2

𝑡Bu (1). Reaction of N-tert-butyl-1,2-diaminoethane with triethylorthoformate
gave 1-tert-butyl-2-imidazoline (2) in 24% yield after fractional distillation, and the hydroxyalkyl-tethered imidazolinium salt
[HOC(Me)

2
CH
2
NC
2
H
4
N(CH)tBu][Cl] (3) was synthesised from the sequential reaction of N-tert-butyl-1,2-diaminoethane with

isobutylene epoxide, HCl, and triethylorthoformate.

1. Introduction

1,2-Diamines, exemplified by ethylenediamine and its deriva-
tives, are produced on a large scale and are used for many
purposes including coordination chemistry [1] and CO

2

capture [2–6]. Chiral diamines are also well known and have
been utilised in the production of various chiral catalysts
[7–9]. N-substituted ethylenediamines can also function as
precursors to 1-substituted-2-imidazolines (dihydroimida-
zoles) [10, 11], with the synthesis of unsymmetrical saturated
N-heterocyclic carbenes (NHCs) one potential application
for these compounds [12, 13]. Examples of 2-imidazolines
that are widely used in the synthesis of unsymmetrical
saturated NHCs include those with mesityl (2,4,6-Me

3
C
6
H
2
)

and 2,6-diisopropylphenyl (Dipp: 2,6-𝑖Pr
2
C
6
H
3
) substituents

[12, 13]. 1-Ethyl-2-imidazoline and 1-benzyl-2-imidazoline are
known compounds [14], but the tert-butyl derivative, to the
best of our knowledge, has not been reported. If the N-
3 position is subsequently substituted with a hydrocarbon
linker terminating with a donor atom, then these compounds
represent useful precursors to tethered saturated NHCs
[15], which have been extensively explored by Arnold and
coworkers [16–20]. We have recently reported on the use of

N-substituted-1,2-diaminoethanes to form fluorenyl tethered
diamines [21], which then acted as useful precursors to a
tethered N-heterocyclic stannylene (NHSn) with a Dipp sub-
stituent [21]. During this research we noted the reactivity of
N-tert-butyl-1,2-diaminoethane [22] with air, which encour-
aged us to explore the reactivity of this diamine further.
In this publication, we characterise the reaction product
of N-tert-butyl-1,2-diaminoethane with carbon dioxide, the
synthesis of 1-tert-butyl-2-imidazoline, and the formation
of a hydroxyalkyl imidazolinium salt with an N-tert-butyl
substituent.

2. Results and Discussion

N-tert-Butyl-1,2-diaminoethane was synthesised as previ-
ously described [21, 22]; however, we noticed that it rapidly
reacts with atmospheric CO

2
forming a zwitterionic alky-

lammonium carbamate (1, Scheme 1). This was confirmed
by X-ray crystallographic analysis of a single crystal formed
by the reaction of the parent diamine and showed the
structure to be an intramolecular alkylammonium carbamate
salt resulting from nucleophilic attack of CO

2
followed by
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Scheme 1: Reactions of N-tert-butyl-1,2-diaminoethane.

the formal deprotonation of the NH
2
by the N(H)𝑡Bu unit

(Figure 1).
The solid-state structure of 1 shows dimeric units formed

from H-bonding between the two H atoms of the two differ-
ent N atoms towards O2 of the carbamate group. An 𝑅2

2
(8)

graph set ring motif is constructed fromH-bonding between
the remaining O atom of the carbamate group and the second
H atom on N2. The C-O bond lengths are almost identical
and C1 has a planar geometry. The molecular structure is
similar to that observed for MeN(H)

2
C
2
H
4
N(H)CO

2
, which

was observed to be H-bonding to additional water molecules
[5]. Long and coworkers have structurally characterised
several intramolecular ammonium carbamates based on N-
substituted ethylene diamines from in situ reactions of CO

2

with a Mg-based metal-organic framework containing the
bound diamine [6].

The synthesis of 1-tert-butyl-2-imidazoline (2) was
achieved by the acid-catalysed reaction of the diamine
with triethylorthoformate (Scheme 1). Careful fractional
distillation yielded the product in low yield (24%). The H
atom at the 2-position was observed at 𝛿 7.03 ppm by 1H
NMR spectroscopy as a triplet due to 4𝐽H-H coupling to one
of the backbone CH

2
groups via coupling through the C=N

bond. The 13C{1H} NMR spectroscopic resonance for C-2
was also observed at high frequency (154.6 ppm). Accurate
mass spectrometry observed the parent molecular ion at
126.11510 Da. 2 reacts with moisture in the air so should
be stored and handled under N

2
. The attempted reaction

with isobutylene epoxide (70∘C, 5 days) did not yield the
desired hydroalkyl-functionalised carbene (or the related
zwitterionic alkoxy-imidazolinium tautomer that was seen
with imidazoles) [23–27], so a different synthetic route to

a substituted imidazolinium salt was attempted based on
literature precedent (Scheme 1) [16]. In consecutive steps,
isobutylene epoxide, HCl, and triethylorthoformate were
reacted with N-tert-butyl-1,2-diaminoethane to yield an
oil that was purified by crystallisation from acetone in low
yield (12%). Unfortunately, changing the anion to [I]− or
[BF
4
]− did not aid crystallisation and did not result in an

improved synthesis. The product was characterised by X-ray
crystallography (Figure 2), multinuclear NMR spectroscopy,
and elemental analysis. The molecular structure of 3
showed a 5-membered imidazolinium ring with a tert-butyl
substituent and a hydroxyalkyl chain. The Cl counter anion
is H-bonded to the imidazolinium C-H as well as the O-H,
and there are several close contacts to other C-H atoms as
well. The C-N bond lengths in the ring are similar (C1-N1
= 1.311(3) Å and C1-N2 = 1.323(3) Å) and C2-C3 is a single
bond (1.530(4) Å). 1H NMR spectroscopic analysis revealed
the expected signals based on the X-ray structure, with
the imidazolinium CH as a singlet at 9.54 ppm. The C-2
resonance was observed at 𝛿 158.0 ppm by 13C{1H} NMR
spectroscopy.

3. Conclusions

N-tert-Butyl-1,2-diaminoethane was found to be a conve-
nient starting material for the synthesis of 1-tert-butyl-2-
imidazoline (2) as well as the hydroxyalkyl-tethered imi-
dazolinium salt 3. However, N-tert-butyl-1,2-diaminoethane
was found to react with atmospheric CO

2
to give the

alkylammonium carbamate 1, and 1-tert-butyl-2-imidazoline
was also found to be unstable in the presence of atmospheric
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Figure 1: Molecular structure of tBuN(H)
2
C
2
H
4
N(H)CO

2
(1, left) forming dimeric units and an extended structure through H-bonding

(right).Thermal ellipsoids set at 50% probability. Hydrogen atoms except for those attached to N atoms are omitted for clarity. Selected bond
lengths (Å) and angles (∘): O1-C1 1.267(1), O2-C1 1.277(1), N1-C1 1.400(1), N1-C2 1.464(1), O1-C1 O2 123.98(8), C1-N1-C2 120.32(7).
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Figure 2: Molecular structure of 3. Thermal ellipsoids set at 50% probability. Hydrogen atoms except for those attached to C1 – C3 and O1
are omitted for clarity. Selected bond lengths (Å) and angles (∘): C1-N1 1.311(3), N2-C1 1.323(3), C2-C3 1.530(4), N1-C1-N2 114.1(2).

moisture, highlighting the greater reactivity of these com-
pounds compared to related literature examples with N-aryl
groups.

4. Experimental

All reactions were performed under an oxygen-free (H
2
O,

O
2
< 0.5 ppm) nitrogen atmosphere using standard Schlenk

line techniques or by using an MBRAUN UNIlab Plus
glovebox unless otherwise stated. Anhydrous toluene was
obtained from an MBRAUN SPS-800 and diethyl ether was
distilled from sodium/benzophenone; CDCl

3
was dried over

molecular sieves (4 Å). All anhydrous solvents were degassed
before use and stored over activated molecular sieves. N-
tert-Butyl-1,2-diaminoethane was synthesised as previously

described [21]. NMR spectrawere recorded on Bruker AV300
or AVIII400 spectrometers at 25∘C, and the chemical shifts 𝛿
are noted in parts permillion (ppm) calibrated to the residual
proton resonances of the deuterated solvent (CDCl

3
𝛿 = 7.27

ppm). X-ray diffraction experiments were performed using a
Bruker X8 APEXII diffractometer at 100 K on single crystals
of the samples covered in inert oil and placed under the cold
stream of the diffractometer, with exposures collected using
Mo K𝛼 radiation (𝜆 = 0.71073 Å). Indexing, data collection,
and absorption corrections were performed and structures
were solved using direct methods (SHELXT) [28] and refined
by full-matrix least-squares (SHELXL) [28] interfaced with
the programme OLEX2 [29] (Table 1). H atoms were placed
using a riding model except for those attached to N or O
atoms, which were located in the electron density map and
freely refined with a fixed isotropic parameter of 1.2x that of
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Table 1: Crystallographic data for 1 and 3.

1 3
Empirical formula C

7
H
16
N
2
O
2

C
11
H
23
ClN
2
O

Formula weight 160.22 234.76
T/K 100 100
Crystal system monoclinic tetragonal
Space group P2

1
/n I-4

a/Å 8.3778(12) 14.6891(14)
b/Å 9.2202(12) 14.6891(14)
c/Å 11.8067(18) 13.2031(14)
𝛼/∘ 90 90
𝛽/∘ 104.385(8) 90
𝛾/∘ 90 90
Volume/Å3 883.4(2) 2848.8(6)
Z 4 8
𝜌calcg/cm

3 1.205 1.095
𝜇/mm−1 0.088 0.250
F(000) 352.0 1024.0
Crystal size/mm3 0.65 × 0.6 × 0.15 0.3 × 0.2 × 0.2
Radiation MoK𝛼 (𝜆 = 0.71073) MoK𝛼 (𝜆 = 0.71073)
2Θ range for data collection/∘ 5.386 to 60.266 5.546 to 56.668
Index ranges -11 ≤ h ≤ 11, -13 ≤ k ≤ 12, -16 ≤ l ≤ 16 -16 ≤ h ≤ 19, -19 ≤ k ≤ 19, -17 ≤ l ≤ 16
Reflections collected 18629 8173
Independent reflections 2583 [Rint = 0.0278, Rsigma = 0.0208] 3525 [Rint = 0.0337, Rsigma = 0.0481]
Data/restraints/parameters 2583/0/112 3525/0/144
Goodness-of-fit on F2 1.049 1.030
Final R indexes [I>=2𝜎 (I)] R

1
= 0.0351, wR

2
= 0.0891 R

1
= 0.0382, wR

2
= 0.0840

Final R indexes [all data] R
1
= 0.0426, wR

2
= 0.0935 R

1
= 0.0454, wR

2
= 0.0880

Largest diff. peak/hole (e Å−3) 0.40/-0.20 0.45/-0.21
Flack parameter N/A 0.48(3)

the atom they are attached to. CCDC deposition numbers
were 1871407 (1) and 1871406 (3). Elemental analyses were
conducted using an Exeter CE-440 elemental analyser at
Heriot-Watt University by Dr. Koenraad Collart or by Mr.
Stephen Boyer at London Metropolitan University. Electron
ionization mass spectrometry (EIMS) was performed using a
Finnigan (Thermo) LCQ Classic ion trap mass spectrometer
at the University of Edinburgh.

4.1. Synthesis of 1. Freshly distilled N-tert-butyl-1,2-diami-
noethane was exposed to air and a white solid formed rapidly.
1HNMR (300MHz, 25∘C, D

2
O): 𝛿(ppm) 3.28 (2H, m, CH

2
),

3.08 (m, 2H, CH
2
), 1.31 (s, 9H, 𝑡Bu). 13C{1H} NMR (75.5

MHz, 25∘C,D
2
O): 𝛿(ppm) 164.86 (NCO

2
), 56.53 (CH

2
), 43.07

(CH
2
), 38.46 (CMe

3
) and 24.83 (CH

3
).

4.2. Synthesis of 1-tert-butyl-2-Imidazoline (2). N-tert-Butyl-
1,2-diaminoethane (3.439 g, 29.6 mmol, 1 equiv.) was com-
bined with triethylorthoformate (19.7 cm3, 118.4 mmol, 4
equiv.) and para-toluenesulfonic acid (281 mg, 1.48 mmol,
0.05 equiv.) and then heated under reflux for 16 h. NaOH
(10 cm3 of a 5% solution in H

2
O) was added and the

mixture extracted with CHCl
3
(3 x 50 cm3). The organic

layer was dried over MgSO
4
and CHCl

3
and EtOH were

removed under reduced pressure. A short path distillation
apparatus was used to fractionally distil the resulting liquid.
Triethylorthoformate distilled at 50∘C, 20 mbar (diaphragm
pump) as the first fraction then 1-tert-butyl-2-imidazoline at
26 – 30∘C at 5 x10 −1 mbar (rotary vane pump) as the second
fraction yielding a moisture sensitive colourless liquid (960
mg, 7.6 mmol, 26%). 1H NMR (300 MHz, 25∘C, CDCl

3
):

𝛿(ppm) 7.00 (t, 4𝐽H-H = 1.8 Hz, 1H, CH), 3.75 (td, 3𝐽H-H
= 9.9 Hz, 4𝐽H-H = 1.8 Hz, 2H, CH

2
N=CH), 3.23 (t, 3𝐽H-H

= 9.9 Hz, 2H, CH
2
N𝑡Bu), 1.23 (s, 9H, 𝑡Bu). 13C{1H} NMR

(75.5 MHz, 25∘C, CDCl
3
): 𝛿(ppm) 154.57 (CH), 54.41 (CH

2
),

51.91 (CMe
3
), 44.32 (CH

2
), 28.47 (CH

3
). HRMS (EI-MS)m/z:

[M]+ Calcd for C
7
H
14
N
2
126.11515; Found 126.11510.

4.3. Synthesis of 3. N-tert-Butyl-1,2-diaminoethane (2.018 g,
17.4 mmol, 1 equiv.) was combined with isobutylene oxide
(1.252g, 1.54 mL, 17.4mmol, 1 equiv.) in an ampoule equipped
with a Young’s tap and heated to 60∘C for 16 h. Dry Et

2
O

(30 cm3) was then added to the resultant colourless oil and
the solution transferred to a Schlenk vessel equipped with
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a large stirrer bar. 1 M HCl in Et
2
O (17.2 cm3, 1 equiv.) was

added at 0∘C forming a white solid which was then stirred
for 16 h at room temperature. The supernatant solution was
removed by cannula filtration and the white solid dried under
vacuum. Toluene (30 cm3) and triethylorthoformate (10 cm3)
were added and the mixture was heated to 90∘C for 7 h. Et

2
O

(50cm3) was added which caused a yellow oil to separate and
the supernatant solution was removed by cannula. Acetone
(ca. 10 cm3) was added to dissolve the oil, and storage at -25∘C
gave colourless crystals of the product (488 mg, 2.08 mmol,
12%).
1H NMR (400 MHz, 25∘C, CDCl

3
): 𝛿(ppm) 9.54 (s,

1H, C-H), 5.10 (s, 1H, OH), 4.18 (m, 2H, tBuNCH
2
CH
2
N),

3.96 (m, 2H, tBuNCH
2
CH
2
N), 3.69 (s, 2H, CH

2
C(CH

3
)
2
),

1.44 (s, 9 H, tBu), 1.27 (s, 6 H, CH
2
C(CH

3
)
2
). 13C{1H}

NMR (75.5 MHz, 25∘C, CDCl
3
): 𝛿(ppm) 158.0 (C-H), 69.8

(4∘C), 57.5 (CH
2
C(CH

3
)
2
), 56.7 (4∘C), 51.3 (tBuNCH

2
CH
2
N),

45.2 (tBuNCH
2
CH
2
N), 28.3 (𝑡Bu), 27.4 (C(CH

3
)
2
). Elemental

analysis calculated for C11H23ClN2O (%): C 56.28, H 9.88 N
11.93. Found (%): C 56.18, H 9.95, N 11.86.

Data Availability
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additional research data supporting this publication are avail-
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