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Perimeter-based detection is no longer sufficient for mitigating the threat posed by malicious software. %is is evident as antivirus
(AV) products are replaced by endpoint detection and response (EDR) products, the latter allowing visibility into live machine
activity rather than relying on the AV to filter out malicious artefacts. %is paper argues that detecting malware in real-time on an
endpoint necessitates an automated response due to the rapid and destructive nature of some malware. %e proposed model uses
statistical filtering on top of a machine learning dynamic behavioural malware detection model in order to detect individual
malicious processes on the fly and kill those which are deemed malicious. In an experiment to measure the tangible impact of this
system, we find that fast-acting ransomware is prevented from corrupting 92% of files with a false positive rate of 14%. Whilst the
false-positive rate currently remains too high to adopt this approach as-is, these initial results demonstrate the need for a detection
model that is able to act within seconds of the malware execution beginning; a timescale that has not been addressed by
previous work.

1. Introduction

Our increasingly digitised world broadens both the op-
portunities andmotivations for cyberattacks, which can have
devastating social and financial consequences [1]. Malicious
software (malware) is one of the most commonly used
vectors to propagate malicious activity and exploit code
vulnerabilities.

Due to the huge numbers of new malware appearing
each day, the detection of malware samples needs to be
automated [2]. Signature-matchingmethods are not resilient
enough to handle obfuscation techniques or to catch unseen
malware types and as such, automated methods of gener-
ating detection rules, such as machine learning, have been
widely proposed [3–6]. %ese approaches typically analyse
samples when the file is first ingested, either using static
code-based methods or by observing dynamic behaviours in
a virtual environment.

%is paper argues that both of these approaches are
vulnerable to evasion from the attacker. Static methods may

be thwarted by simple code-obfuscation techniques whether
rules are hand-generated [7] or created using machine
learning [8]. Dynamic detection in a sandboxed environ-
ment cannot continue forever, either it is time-limited [9] or
ends after some period of inactivity [10]. %is fixed period
allows attackers to inject benign activity during analysis and
wait to carry out malicious activity once the sample has been
deemed harmless and passed on to the victim’s environment.
%e pre-execution filtering of malware is the model used by
antivirus but this is insufficient to keep up with the ever-
evolving malware landscape and has led to the creation of
endpoint detection and response (EDR) products which
allow security professionals to monitor and respond to
malicious activity on the victimmachine. Real-time malware
detection also monitors malware live on the machine thus
capturing any malicious activity on the victim machine even
if it was not evident during initial analysis. %is paper
proposes that once a threat is detected, due to the fast-acting
nature of some destructive malware, it is vital to have au-
tomated actions to support these detections. In this paper,
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we investigate automated detection and killing of malicious
processes for endpoint protection.

%ere are several key challenges to address in detecting
malware on-the-fly on a machine in use by comparison
with detecting malicious applications that are detonated
in isolation in a virtual machine. %ese are summarised
below:

(1) Signal Separation: Detection in real time requires
that the malicious and benign activities are separated
in order that automated actions can be taken on only
the malicious processes.

(2) Use of Partial Traces: In order to try and mitigate
damage, malware needs to be detected as early as
possible, but, as shown in previous work [11],
there is a trade-off between the amount of data
collected and classification accuracy in the first
few seconds of an application launching and the
same may be true for individual processes.

(3) Quick Classification: %e inference itself should be
as fast as possible in order to further limit the change
of malicious damage once the process is deemed
malicious.

(4) Impact of Automated Killing in Supervised
Learning: Supervised learning averages the error
rate across the entire training set but when the
classification results in an action, this smoothing
out of errors across the temporal dataset is not
possible.

%is paper seeks to address these key challenges and
provides preliminary results including a measure of
“damage prevented” in a live environment for fast-acting
destructiveware. As well as the results from these experi-
ments, this paper contributes an analysis of the compu-
tational resources against detection accuracy for many of
the most popular machine-learning algorithms used for
malware detection.

%e key contributions of this paper are as follows:

(i) %e first general malware detection model to
demonstrate damage mitigation in real-time using
process detection and killing

(ii) Benchmarking of commonly used ML algorithm
implementations with respect to computational
resource consumption

(iii) Presentation of real-time malware detection
against more user background applications than
have previously been investigated; increasing
from 5 to 36 (up to 95 simultaneous processes)

%e next section outlines related work, followed by a
report of the three methodologies that were tested to try and
address these challenges 3 in which the method for evalu-
ating these models is also explained (6.5). %e experimental
setup is described in Section 5.2.1, followed by results in
Section 6.

2. Related Work

2.1. Malware Detection with Static or Post-collection
Behavioural Traces

2.1.1. Static Sources. Machine learning models trained on
static data have shown good detection accuracy. Chen et al.
[5] achieved 96% detection accuracy using statically
extracted sequences of API calls to train a Random Forest
model. However, static data have been demonstrated to be
quite vulnerable to concept drift [12, 13]. Adversarial
samples present an additional emerging concern; Grosse
et al. [14] and Kolosnaji et al. [8] demonstrated that static
malware detection models achieving over 90% detection
accuracy could be thwarted by injecting code or simply
altering the padded code at the end of a compiled binary,
respectively.

2.1.2. Post-Collection Dynamic Data. Dynamic behavioural
data are generated by the malware carrying out its func-
tionality. Again machine learning models have been used to
draw out patterns between malicious and benign software
using dynamic data. Various dynamic data can be collected
to describe malware behaviour. %e most commonly used
data are API calls made to the operating system, typically
recorded in short sequences or by frequency of occurrence.
Huang and Stokes’s research [3] reports the highest ac-
curacy in recent malware detection literature with a very
large dataset of more than 6 million samples to achieve an
accurate detection rate of 99.64% using a neural network
trained on the input parameters passed to API calls, their
return values, and the co-occurrence of API calls. Other
dynamic data sources include dynamic opcode sequences
(e.g., Carlin et al. [9] achieved 99% using a Random Forest),
hardware performance counters (e.g., Sayadi [15] achieved
94% on Linux/Ubuntu malware using a decision tree),
network activity and file system activity (e.g., Usman et al.
[16] achieved 93% using a decision tree in combination
with threat intelligence feeds and these data sources), and
machine activity metrics (e.g., Burnap et al. [17] achieved
94% using a self-organising map). Previous work [18]
demonstrated the robustness of machine activity metrics
over API calls in detecting malware collected from different
sources.

Dynamic detection is more difficult to obfuscate but
typically the time taken to collect data is several minutes,
making it less attractive for endpoint detection systems.
Some progress has been made on early detection of mal-
ware. Previous work [11]) was able to detect malware with
94% accuracy within 5 seconds of execution beginning.
However, as a sandbox-based method, malware which is
inactive for the first 5 seconds is unlikely to be detected
with this approach. Moreover, the majority of dynamic
malware detection papers use virtualised environments to
collect data.
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2.2. Real-Time Malware Detection with Partial Behavioural
Traces. OS� operating system; HPCs�Hardware perfor-
mance counters; DT�Decision Tree; MLP�Multi-layer
perceptron; NN�Neural Network; RF�Random Forest.

Previous work has begun to address the four challenges
set out in the introduction. Table 1 summarises the related
literature and the problems considered by the researchers.

To the best of our knowledge, challenge (1) signal sep-
aration has only previously been addressed by Sun et al. [23]
using sequential API call data. %e authors execute up to 5
benign and malicious programs simultaneously achieving
87% detection accuracy after 5minutes of execution and 91%
accuracy after 10 minutes of execution.

Challenge (2) to detect malware using partial traces as
early as possible has not been directly addressed. Some work
has looked at early run-time detection; Das et al. [20] used an
FPGA as part of a hybrid hardware-software approach to
detect malicious Linux applications using system API calls
which are then classified using amultilayer perceptron.%eir
model was able to detect 46% of malware within the first 30%
of its execution with a false-positive rate of 2% in offline
testing. %ese findings however were not tested with mul-
tiple benign and malicious programs running simulta-
neously and do not explain the impact of detecting 46% of
malware within 30% of its execution trace in terms of
benefits to a user or the endpoint being protected. How long
does it take for 30% of the malware to execute? What has
occurred in that time?

Greater attention has been paid to challenge (3) quick
classification, insofar as this problem also encompasses the
need for lightweight detection. Some previous work has
proposed hardware based detection for lightweight moni-
toring. Syadi et al. [15] use high performance counters
(HPCs) as features to train ensemble learning algorithms
and scored 0.94 AUC using a dataset of 100 malicious and
100 benign Linux software samples. Ozsoy et al. [21] use low-
level architectural events to train a multilayer perceptron on
the more widely used [25] (and attacked) Windows oper-
ating system. %e model was able to detect 94% of malware
with a false-positive rate of 7% using partial execution traces
of 10,000 committed instructions. %e hardware-based de-
tection models, however, are less portable than software-
based systems due to the ability of the same operating system
to run on a variety of hardware configurations.

Both Sun et al. [23] and Yuan [22] propose two-stage
models to address the need for lightweight computation.%e
first stage comprises a lightweight ML model such as a
Random Forest to alert suspicious processes, the second
being a deep learning model which is more accurate but
more computationally intensive to run. Two-stage models,
as Sun et al. [23] note, can get stuck in an infinite loop of
analysis in which the first model flags a process as suspicious
but the secondmodel deems it benign and this labelling cycle
continues repeatedly. Furthermore, if the first model is
prone to false negatives, malware will never be passed to the
second model for deeper analysis.

Challenge (4) the impact of automated actions has been
discussed by Sun et al. [23]. %e authors also propose the
two-stage approach as a solution to this problem. %e

authors apply restrictions to the process whilst the deeper
NN analysis takes place followed by the killing of malicious-
labelled processes. %e authors found that the delaying
strategy impacted benignware more than malware and used
this two-stage process to account for the irreversibility of the
decision to kill a process. %e authors did not assess the
impact on the endpoint with respect to the time at which the
correctly classified malware was terminated.

3. Methodology-Three Approaches

As noted above, supervised learning models average errors
across the training set but in the case of real-time detection
and process killing, a single false positive on a benign process
amongst 300 true-negatives would cause disruption to the
user. %e time at which an malware is detected is also
important, the earlier the better. %erefore, the supervised
learning model needs to be adapted to take account of these
new requirements.

Tackling this issue was attempted in three different ways
and all three are reported here in the interests of reporting
negative results as well as the one which performed the best.
%ese were:

(1) Statistical methods to smooth the alert surface and
filter out single false-positives

(2) Reinforcement learning, which is capable of incor-
porating the consequences of model actions into
learning

(3) A regression model based on the feedback of a re-
inforcement learning model made possible by having
the ground-truth labels

Figure 1 gives a high-level depiction of the three ap-
proaches tested in this paper.

3.1. Statistical Approach: Alert Filtering. It is expected that
transitioning from a supervised learning model to a real-
time model will see a rise in false-positives since one single
alert means benign processes (and all child processes) are
terminated, which effectively renders all future data points as
false positives. Filtering the output of the models, just as the
human brain filters out transient electrical impulses in order
to separate background noise from relevant data [26], may
be sufficient to make supervised models into suitable agents.
%is is attractive because supervised learning models are
already known to perform well for malware detection, as
confirmed by the previous paper and other related work
[11, 20, 27, 28]. A disadvantage of this approach is that it
introduces additional memory and computational require-
ments both in order to calculate the filtered results and to
track current and historic scores; therefore, a model which
integrates the expected consequences of an action into
learning is also tested: reinforcement learning.

3.2. Reinforcement Learning: Q-Learning with Deep Q
Networks. %e proposed automated killing model may be
better suited to a reinforcement learning strategy than to
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supervised learning. Reinforcement learning uses rewards
and penalties from the model’s environment. %e problem
that this paper is seeking to solve is essentially a supervised
learning problem, but one for which it is not possible to
average predictions. %ere are no opportunities to classify
the latter stages of a process if the agent kills the process, and
this can be reflected by the reward mechanism of the re-
inforcement learning model (see Figure 1). %erefore, re-
inforcement learning seems like a good candidate for this
problem space.

Two limitations of this approach are that (1) rein-
forcement learning models can struggle to converge on a
balanced solution, and the models must learn to balance the
exploration of new actions with the re-use of known high-
reward actions; commonly known as the exploration-ex-
ploitation trade-off [29] (2) in these experiments, the reward
is based on the malware/benignware label at the application
level rather than being linked to the actual damage being
caused; therefore, the signal is a proxy for what the model
should be learning. %is is used because, as discussed above,
the damage caused by different malware is subjective.

For reinforcement learning, loss functions are replaced by
reward functions which update the neural network weights to
reinforce actions (in context) that lead to higher rewards and
discourage actions (in context) that lead to lower rewards;
these contexts and actions are known as state-action pairs.
Typically, the reward is calculated from the perceived value of
the new state that the action leads to, e.g., points scored in a
game. Often this cannot be pre-labelled by a researcher since
there are so many (maybe infinite) state-action pairs. How-
ever, in this case, all possible state-action pairs can be enu-
merated, which is the third approach tested (regression
model, outlined in the next section).

%e reinforcement model was still tested. Here the re-
ward is +N for a correct prediction, −N for an incorrect
prediction where N is the total number of processes im-
pacted by the prediction. For e.g., if there is only one process
in a process tree but 5 more will appear over the course of

execution, a correct prediction gives a reward of +6, and
incorrect prediction gives a reward of −6.

%ere are a number of reinforcement learning algo-
rithms to choose from. %is paper explores q-learning
[30–33] to approximate the value or “quality” (q) of a given
action in a given situation. Q-learning approximates q-ta-
bles, which are look-up tables of every state-action pair and
their associated rewards. A state-action pair is a particular
state in the environment coupled with a particular action,
i.e., the machine metrics of the process at a given point in
time with the action to leave the process running. When the
number of state-action pairs becomes quite large, it is easier
to approximate the value using an algorithm. Deep Q net-
works (DQN) are neural networks that implement
q-learning and have been used in state-of-the-art rein-
forcement learning arcade game playing, seeMnih et al. [34].
A DQN was the reinforcement algorithm trialled here; al-
though it did not perform well by comparison with the other
methods, a different RL algorithm may perform better [35],
but the results are still included in the interests of future
work. %e following paragraphs will explain some of the key
features of the DQN.

%e DQN tries out some actions; stores the states, ac-
tions, resulting states, and rewards in memory; and uses
these to learn the expected rewards of each available action,
with the highest expected reward being the one that is
chosen. Neural networks are well-suited to this problem
since their parameters can easily be updated, tree-based
algorithms like random forests and decision trees can be
adapted to this end but not as easily. Future rewards can be
built into the reward function and are usually discounted
according to a tuned parameter usually signified by c.

In Mnih et al.’s [34] formulation, in order to address the
exploration-exploitation trade off, DQNs either exploit a
known action or explore a new one, with the chance of
choosing exploration falling over time.When retraining the
model based on new experiences, there is a risk that pre-
vious useful learned behaviours are lost; this problem is
known as catastrophic forgetting [36]. Mnih et al.’s [34]
DQNs use two tools to combat this problem. First, expe-
rience replay by which past state-action pairs are shuffled
before being used for retraining so that the model does not
catastrophically forget. Second, DQNs utilise a second
network, which updates at infrequent intervals in order to
stabilise the learning.

Q-learning may enable a model to learn when it is
confident enough to kill a process, using the discounted
future rewards. For example, choosing not to kill some
malware at time t may have some benefit as it allows the
model to see more behaviour at t+ 1 which gives the model
greater confidence that the process is in fact malicious.

Q-learning approximates rewards from experience, but
in this case, all rewards from state-action pairs can actually
be pre-calculated. Since one of the actions will kill the
process and thus end the “experience” of the DQN, it could
be difficult for this model to gain enough experience. %us
pre-calculation of rewards may improve the breadth of
experience of the model. For this reason, a regression model
is proposed to predict the Q-value of a given action.

Statistical approach
Trained supervised

model makes
predictions

Filter applied to
predictions

Observe
Estimate reward

Compare estimate
with real reward

Update model
parameters (training)

Train model to estimate
the rewards

Generate rewards for all
possible observations

and actions

Perform action

| = 1 alert

sample A

sample B

Reinforcement learning (Q-learning)

Regression model to estimate kill value

Figure 1: High-level depiction of three approaches taken.
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3.3. Regression Using Q-Values. Unlike classification prob-
lems, regression problems can predict a continuous value
rather than discrete (or probabilistic) values relating to a set
of output classes. Regression algorithms are proposed here
to predict the q-value of killing a process. If this value is
positive, the process is killed.

Q-values estimate the value of a particular action based
on the “experience” of the agent. Since the optimal action for
the agent is always known, it is possible to precompute the
“(q-) value” of killing a process and train various MLmodels
to learn this value. It would typically be quicker to train a
regression model which tries to learn the value of killing a
process than to train a DQN which explores the state-action
space and calculates rewards between learning, since the
interaction and calculation of rewards is no longer necessary.
%e regression approach can be used with any machine
learning algorithm capable of learning a regression problem,
regardless of whether it is capable of partial training.

%ere are two primary differences between this regres-
sion approach and the reinforcement learning DQN ap-
proach detailed in the previous section. Firstly, the datasets
are likely to be the difference. Since the DQN generates
training data through interacting with its environment, it
may never see certain parts of the state-action space, e.g., if a
particular process A is always killed during training before
time t∗ , the model is not able to learn from the process A

data after t∗ .
Secondly, only the expected value of killing is modelled

by the regressor, whereas the DQN tries to predict the value
of both killing and of not killing the process. %is means that
the equation used to model the value of process killing is
only an approximation of the reward function used by the
DQN.

%e equation used to calculate the value of killing is
positive for malware and negative for benignware; in both
cases, it is scaled by the number of child processes impacted
and in the case of malware, early detection increases the
value of process killing (with an exponential decay). Let y be
the true label of the process (0� benign, 1�malicious), N is
the number of child processes, and t is the time in seconds at
which the process is killed; then, the value of killing a process
is:

(y∗ 2 − 1)∗ (1 + N)∗ 1 + y∗ e
− t

􏼐 􏼑􏼐 􏼑􏼐 􏼑. (1)

%e equation above negatively scores the killing of
benignware in proportion to the number of subprocesses
and scores the killing of malware positively in proportion to
the number of subprocesses. A bonus reward is scored for
killing malware early, with an exponential decay over time.

4. Evaluation Methodology:
Ransomware Detection

Previous, research has not addressed the extent to which
damage is mitigated by process killing, since Sun et al. [23]
presented the only previous work to test process killing and
damage with and without process killing is not assessed. To
this end, this paper uses ransomware as a proxy to detect

malicious damage, inspired by Scaife et al.’s approach [24]. A
brief overview of Scaife et al.’s damage measurement is
outlined below:

Early detection is particularly useful for types of malware
fromwhich recovery is difficult and/or costly. Cryptographic
ransomware encrypts user files and withholds the decryption
key until a ransom is paid to the attackers.%is type of attack
is typically costly to remedy, even if the victim is able to carry
out data recovery [37]. Scaife et al.’s work [24] on ran-
somware detection uses features from file system data, such
as whether the contents appear to have been encrypted, and
number of changes made to the file type. %e authors were
able to detect and block all of the 492 ransomware samples
tested with less than 33% of user data being lost in each
instance. Continella et al. [38] propose a self-healing system,
which detects malware using file system machine activity
(such as read/write file counts); the authors were able to
detect all 305 ransomware samples tested, with a very low
false-positive rate. %ese two approaches use features se-
lected specifically for their ability to detect ransomware, but
this requires knowledge of how the malware operates,
whereas the approach taken here seeks to use features which
can be used to detect malware in general. %e key purpose of
this final experiment (Section 6.5) is to show that our general
model of malware detection is able to detect general types of
malware as well as time-critical samples such as
ransomware.

5. Experimental Setup

%is section outlines the data capture process and dataset
statistics.

5.1. Features. %e same features as were used in previous
work [11] are used here for process detection, with some
additional features to measure process-specific data. Despite
the popularity of API calls noted in Ref. [18], due to these
findings and Sun et al.’s [23] difficulties hooking this data in
real-time, these were not considered as features to train the
model.

At the process-level, 26 machine metric features are
collected; these were dictated by the attributes available
using the Psutil [39] python library. It is also possible to
include the “global” machine learning metrics that were used
in the previous papers. Although global metrics will not
provide process-level granularity, they may give muffled
indications of the activity of a wider process tree. %e 9
global metrics are: system-level CPU use, user-level CPU
use, memory use, swap memory use, number of packets
received and sent, number of bytes received and sent, and
the total number of processes running.

%e process-level machine activity metrics collected are:
CPU use at the user level, CPU use at the system level,
physical memory use, swap memory use, total memory use,
number of child process, number of threads, maximum
process ID from a child process, disk read, write and other I/
O count, bytes read, written and used in other I/O processes,
process priority, I/O process priority, number of command
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line arguments passed to process, number of handles being
used by process, time since the process began, TCP packet
count, UDP packet count, number of connections currently
open, and 4 port statuses of those opened by the process (see
Table 2).

5.1.1. Preprocessing. Feature normalisation is necessary for
NNs to avoid over-weighting features with higher absolute
values. %e test, train, and validation sets (x) are all nor-
malised by subtracting the mean (μ) and dividing by the
standard deviation (σ) of each feature in the training set:
x − μ/σ. %is sets the range of input values largely between
−1 and 1 for all input features, avoiding the potential for
some features to be weighted more important than others
during training purely due to the scalar values of those
features. %is requires additional computational resources
but is not necessary for all ML algorithms; this is another
reason why the supervised RNN used in Ref. [11] may not be
well-suited for real-time detection.

5.2.DataCapture. During data capture, this research sought
to improve upon previous work and emulate real machine
use to a greater extent than has previously been trialled. %e
implementation details of the VM, simultaneous process
execution, and RL simulation are outlined below:

5.2.1. Environment: Machine Setup. %e following experi-
ments were conducted using a virtual machine (VM) run-
ning with Cuckoo Sandbox [40] for ease of collecting data
and restarting between experiments and because the Cuckoo
Sandbox emulates human interaction with programs to
some extent to promote software activity. In order to em-
ulate the capabilities of a typical machine, the modal
hardware attributes of the top 10 “best seller” laptops
according to a popular Internet vendor [41] were used, and
these attributes were the basis of the VM configuration. %is
resulted in a VM with 4GB RAM, 128GB storage, and dual-
core processing running Windows 7 64 bit. Windows 7 was
the most prevalent computer operating system (OS) globally
at the time of designing the experiment [25]. Although
Windows 10 is now the most popular OS, the findings in this
research should still be relevant.

5.2.2. Simultaneous Applications. In typical machine use,
multiple applications run simultaneously. %is is not re-
flected by behavioural malware analysis research in which
samples are injected individually to a virtual machine for
observation. %e environment used for the following ex-
periments launches multiple applications on the same
machine at slightly staggered intervals as if a user were
opening them. Each malware is launched with a small
number (1–3) and a larger number (3–35) of applications. It
was not possible to find up-to-date user data on the number
of simultaneous applications running on a typical desktop,
so here it was elected to launch up to 36 applications (35
benign + 1 malicious) at once, which is the largest number of
simultaneous apps for real-time data collection to date.

From the existing real-time analysis literature, only Sun et al.
[23] run multiple applications at the same time, with a
maximum of 5 running simultaneously.

Each application may in turn launch multiple processes,
causing more than 35 processes to run at once; 95 is the
largest number of simultaneous processes recorded; this
excludes background OS processes.

5.2.3. Reinforcement Learning Simulation. For reinforce-
ment learning, the DQN requires an observation of the
resulting state following an action. To train the model, a
simulated environment is created from the pre-collected
training data whereby the impact of killing or not killing a
process is returned as the next state. For process-level ele-
ments, this reduces all features to zero. A caveat here is that
in reality, killing the process may not occur immediately and
therefore memory, processing power, etc., may still be being
consumed at the next data observation. For global metrics,
the process-level values for the killed processes (includes
child processes of the killed process) are subtracted from the
global metrics. %ere is a risk again that this calculation may
not correlate perfectly with what would be observed in a live
machine environment.

In order to observe the model performance, a visual-
isation was developed to accompany the simulated envi-
ronment. Figures 2 and 3 show screenshots of the
environment visualisation for one malicious and one benign
process.

5.3.Dataset. %edataset comprises 3,604 benign executables
and 2,792 malicious applications (each containing at least
one executable), with 2,877 for training and validation and
3,519 for testing. %ese dataset sizes are consistent with
previous real-time detection dataset sizes (Das et al. [20] use
168 malicious, 370 benign; Sayadi et al. [15] use over 100
each benign and malicious; Ozsoy et al. [21] use 1,087
malicious and 467 benign; Sun et al. [23] use 9,115malicious,
877 benign). With multiple samples running concurrently to
simulate real endpoint use, there are 24K processes in the
training set and 34K in the test set. Overall, there are 58K
behavioural traces of processes in the training and testing
datasets. %e benign samples comprise files from VirusTotal
[42], from free software websites (later verified as benign
with VirusTotal), and from a fresh Microsoft Windows 7
installation. %e malicious samples were collected from two
different VirusShare [43] repositories.

In Pendelbury et al.’s analysis [13], the authors estimate
that in the wild between 6% and 22% of applications are
malicious, normalising to 10% for their experiments. Using
this estimation of Android malware, a similar ratio was used
in the test set in which 13.5% were malicious.

5.3.1. Malware Families. PUA� potentially unwanted ap-
plication, RAT�remote access trojan.

%is paper is not concerned with distinguishing par-
ticular malware families, but rather with identifyingmalware
in general. However, a dataset consisting of just onemalware
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family would present an unrealistic and easier problem than
is found in the real world. %e malware families included in
this dataset are reported in Table 3. %e malware family
labels are derived from the output of around 60 antivirus
engines used by VirusTotal [42].

Ascribing family labels to malware is nontrivial since
antivirus vendors do not follow standardised naming con-
ventions and many malware families have multiple aliases.
Sebastián et al. [44] have developed an open source tool,
AVClass, to extract meaningful labels and correlate aliases
between different antivirus outputs. AVClass was used to label
the malware in this dataset. Sometimes there is no consensus
amongst the antivirus’ output or the sample is not recognised
as a member of an existing family. AVClass also excludes
malware that belongs to very broad classes of malware (e.g.,
“agent,” “eldorado,” and “artemis”) as these are likely to
comprise a wide range of behaviours and somay be applied as
a default label in cases for which antivirus engines are unsure.
In the dataset established in this research, 2,121 of the 2,792
samples were assigned to a malware family. Table 3 gives the
number of samples in each family for which more than 10
instances were found in the dataset. 315 families were detected
overall, with 27 families being represented more than 10

times. %ese better-represented families persist in the train
and test sets, but the other families have little overlap. 104 of
the 154 other families seen in the test set are not identified by
AVClass as being in the training set.

5.3.2. Malicious Vs. Benign Behaviour. Statistical inspection
of the training set reveals that benign applications have fewer
sub-processes thanmalicious processes, with 1.17 processes in
the average benign process tree and 2.33 processes in the
average malicious process tree. Malware was also more likely
to spawn processes outside of the process tree of the root
process, often using the names of legitimate Windows pro-
cesses. In some cases, malware launches legitimate applica-
tions, such as Microsoft Excel in order to carry out a macro-
based exploit. Although Excel is not a malicious application in
itself, it is malicious in this context, which is why malicious
labels are assigned if amalware sample has caused that process
to come into being. It is therefore possible to argue that some
processes launched by malware are not malicious, because
they do not individually cause harm to the endpoint or user,
but without the malware they would not be running and so
can be considered at least undesirable even if only in the
interests of conserving computational resources.

Table 2: 26 process-level features: 22 features + 4 port status values.

Category
CPU use (%) System level User level
Memory use (bytes) Total Physical (nonswapped) Swap
Child processes Count Maximum process ID Number of threads
I/O operation bytes on disk
(bytes) Read Write Nonread-write I/O

operations

I/O operation count on disk Read Write Nonread-write I/O
operations

Priority Process priority I/O process priority
Network # packets TCP packet count UDP packet count
Network # bytes # Bytes sent # Bytes received

Network other Number of connections currently open Statuses of the ports opened by the
process (4 statuses)

Miscellaneous Number of command line arguments
passed to process

Number of handles being used by
process
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Figure 2: Benignware sample, normalised process-level metrics, 6
observations made without process being killed.
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Figure 3: Malware sample, normalised process-level metrics, no
observations made yet.
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5.3.3. Train-Test Split. %e dataset is split in half with the
malicious samples in the test set coming from the more recent
VirusShare repository, and those in the training set from the
earlier repository.%is is to increase the chances of simulating a
real deployment scenario in which the malware tested contains
new functionality by comparison with those in the training set.

Ideally, the benignware should also be split by date across
the training and test set; however, it is not a trivial task to
calculate the date at which benignware was compiled. It is
possible to extract the compile time from PE header, but it is
possible for the PE author to manually input this date which
had clearly happened in some instances where the compile date
was 1970-01-01 or in one instance 1970-01-16. In the latter case
(1970-01-16), the file is first mentioned online in 2016, perhaps
indicating a typographic error [45]. Using Internet sources
such as VirusTotal [42] can give an indication when software
was first seen, but if the file is not very suspicious, i.e., from a
reputable source, it may not have been uploaded until years
after it was first seen “in the wild.” Due to the difficulty in
dating benignware in the dataset collected for this research,
samples were assigned to the training or test set randomly.

For training, an equal number of benign and malicious
processes are selected, so that the model does not bias to-
wards one class. 10% of these are held out for validation. In

most ML model evaluations, the validation set would be
drawn from the same distribution as the test set. However,
because it is important not to leak any information about the
malware in the test set, since it is split by date, the validation
set here is drawn from the training distribution.

5.3.4. Implementation Tools. Data collection used the Psutil
[39] Python library to collect machine activity data for
running processes and to kill those processes deemed
malicious.%e RNN and Random Forests were implemented
using the Pytorch [46] and Scikit-Learn [47] Python li-
braries, respectively. %e model runs with high priority and
administrator rights to make sure the polling is maintained
when compute resources are scarce.

6. Experimental Results

6.1. Supervised Learning for Process Killing. First, we dem-
onstrate the unsuitability of a full-trace supervised learning
malware detection model, which achieved more than 96%
detection accuracy in Ref. [11]. %e model used is a gated-
recurrent unit recurrent neural network since this algorithm
is designed to process time-series data. %e hyperparameter
configuration of this model was conducted using a random

Table 3: Malware families with more than 10 samples in the dataset. 315 families were represented in the dataset, with 27 having being
represented more than 10 times. Basic description provided which does not cover the wide range of behaviours carried out by somemalware
families but is intended to indicate the range of behaviours in the top 27 families included in the dataset.

Malware family # Train set # Test set Total Description
Startsurf 66 273 339 Adware
Fareit 33 222 255 Spyware
Vigram 23 212 235 Adware
Winwrapper 78 8 86 PUA
Downloadguide 15 59 74 Adware
Gandcrab 5 54 59 Ransomware
Emotet 12 46 58 Credstealer
Chapak 4 37 41 Installer
Virut 30 2 32 Backdoor
Installmonster 12 18 30 Installer
Noon 8 22 30 Spyware
Gamarue 11 18 29 Backdoor
Razy 7 16 23 Crypto stealer
Zeroaccess 23 0 23 Rootkit
Soft32downloader 5 22 23 Installer
Appster 7 15 22 PUA
Prepscram 1 20 21 Installer
Zusy 2 19 21 Spyware
Darkkomet 17 1 18 RAT
Adposhel 4 14 16 Adware
Swrort 13 0 13 Backdoor
Slugin 13 0 13 Installer
Vobfus 11 2 13 Installer
Speedingupmypc 1 11 12 Adware
Relevantknowledge 5 6 11 Adware
Kuaizip 4 7 11 PUA
Bladabindi 7 4 11 Backdoor
Other (≤10 instances) 377 260 602 —
# Other families (≤10 instances) 184 154 288 —
Unknown 333 291 671 —
Total 1,137 1,655 2,792 —
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search of hyperparameters (see Table 4 in the Appendix for
details.)

It is expected that supervised malware detection models
will not adapt well to process-killing due to the averaging of
loss metrics as described earlier. Initially, this is verified by
using supervised learning models to kill processes that are
deemed malicious. For supervised classification, the model
makes a prediction every time a data measurement is taken
from a process. %is approach is compared with one taking
average predictions across all measurements for a process
and for a process tree as well as the result of process killing.
%e models with the highest validation accuracy for clas-
sification and killing are compared.

Figure 4 illustrates the difference in validation set and
test set F1-score, true-positive rate, and false-positive rate for
these 4 levels of classification: each measurement, each
process, each process tree, and finally showing process
killing; see Figure 5 for diagrammatic representation of these
first 3 levels. Table 5 reports the F1, TPR, and TNR for
classification (each measurement of each process) and for
process killing.

%e highest F1-score on the validation set is achieved by
an RNN using process data only. When process killing is
applied, there is a drop of less than 5 percentage points in the
F1-score, but more than 15 percentage points are lost from
the TNR.

On the unseen test set, the highest F1-score is achieved by
an RNN using process data + global metrics, but the im-
provement over the process data + total number of processes
is negligible. Overall, there is a reduction in F1-score from
(97.44, 94.61) to (74.91, 77.66), highlighting the initial chal-
lenge of learning to classifying individual processes rather
than entire applications, especially when accounting for
concept drift. Despite the low accuracy, these initial results
indicate that the model is discriminating some of the samples
correctly and may form a baseline from which to improve.

%e test set TNR and TPR for classification on the best-
performing model (process data only) are 79.70 and 82.91,
respectively, but when process killing is applied, although
the F1-score drops by 10 percentage points, the TNR and
TPR move in opposite directions with the TNR falling to
59.63 and TPR increasing to 90.24. %is is not surprising
since a single malicious classification results in a process
being classed as malicious. %is is true for the best-per-
forming models using either of the two feature sets (see
Figure 4).

6.2. Accuracy Vs. Resource Consumption. Previous work on
real-time detection has highlighted the requirement for a
lightweight model (speed and computational resources). In
the previous paper, RNNs were the best performing algo-
rithm in classifying malware/benignware, but RNNs have
many parameters and therefore may consume significant
RAM and/or CPU. %ey also require preprocessing of the
data to scale the values, which other ML algorithms such as
tree-based algorithms do not. Whilst RAM and CPU should
beminimised, takingmodel accuracy into account, inference
duration is also an important metric.

Although the models in this paper have not been coded
for performance and use common python libraries, com-
paring these metrics helps to decide whether certain models
are vastly preferable to others with respect to computational
resource consumption. %e PyRAPL library [49] is used
measure the CPU, RAM, and duration used by each model.
%is library uses Intel processor “Running Average Power
Limit” (RAPL) metrics. Only data preprocessing and in-
ference is measured as training may be conducted centrally
in a resource-rich environment. Batch sizes of 1, 10, 100, and
1000 samples are tested with 26 and 37 features, respectively,
since there are 26 process-level features and 37 when global
metrics are included. Eachmodel is run 100 times for each of
the different batch sizes.

For the RNN, a “large” and a “small” model are included.
%e large models have the highest number of parameters
tested in the random search (981 hidden neurons, 3 hidden
layers, sequence length of 17) and the smallest (41 neurons, 1
hidden layer, sequence length of 13). %ese two RNN
configurations are compared against other machine learning
models which have been used for malware detection: Multi-
Layer Perceptron (feed-forward neural network), Support
Vector Machine, Naive Bayes Classifier, Decision Tree
Classifier, Gradient Boosted Decision Tree Classifier
(GBDTs), Random Forest, and AdaBoost.

26 features� process-level only, 37 features�machine
and process level features

Table 6 reports the computational resource consumption
and accuracy metrics together. Decision tree with 38 features
is the lowest cost to run, RNN performs best at supervised
learning classification on the validation set but only just
outperforms the decision tree with 26 features, which is the
best performing model at process killing on the validation set
at 92.97 F1-score.%e highest F1-score for process killing uses
a Random Forest with 37 features, scoring 77.85 F1, which is 2
percentage points higher than the RF with 26 features (75.97).
%e models all perform at least 10 percentage points better on
the validation set, indicating the importance of taking concept
drift into account when validating models.

6.3. How to Solve a Problem like Process Killing? From the
results above, it is clear that supervised learning models see a
significant drop in classification accuracy when processes are
killed as the result of a malicious label. %is confirmation of
the initial hypothesis presented here justifies the need to
examine alternative methods. In the interests of future work
and negative result reporting, this paper reports all of the
methods attempted and finds that simple statistical ma-
nipulations on the supervised learning models perform
better than using alternative training methods. %is section
briefly describes the logic of each method and provides a
textual summary of the results with a formula where ap-
propriate. %is is followed by a table of the numerical results
for each method. In the following section, let P be a set of
processes p0, p1 · · · pP􏼈 􏼉 in a process tree, t∗ be the time at
which a prediction is made, let 􏽢yi be the prediction for
process i at time t∗ where a prediction equal to or greater
than 1 classifies malware.
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6.3.1. Mean Predictions. Reasoning: Taking the average
prediction across the whole process will smooth out those
process killing results.

Not tested. %is was not attempted for two reasons: (1)
Taking the mean at the end of the process means the
damage is done. (2) %is method can easily be manipulated
by an attacker: 50 seconds of injected benign activity re-
quired 50 seconds of malicious activity to achieve a true
positive

􏽢yi �
1

t∗
􏽘

t∗

t�0

􏽢
y

t
i . (2)

6.3.2. Rolling Mean Predictions. Reasoning: Taking the av-
erage over a few measurements will eliminate those false
positives that are caused by a single false positive over a
subset of the execution trace. Window sizes of 2 to 5 are
tested. Let w be the window size:

􏽢yi �
1
w

􏽘

t∗

t�t ∗−w

􏽢
y

t
i . (3)

Summary of results: A small but unilateral increase in
F1-Score using a rolling window over 2 measurements on
the validation set. Using a rolling window of size 2 on the test
set saw a 10 to 20 percentage point increase in true negative
rate (to a maximum of 80.77) with 3 percentage points lost
from the true-positive rate. %is was one of the most
promising approaches.

6.3.3. Alert <reshold. Reasoning: Like the rolling mean,
single false positives will be eliminated but unlike the rolling
mean, the alerts are cumulative over the entire trace such
that a single alert at the start and 30 seconds into the process
will cause the process to be killed rather than requiring that
both alerts are within a window of time. Between 2 and 5
minimum alerts are tested

􏽢yi � w − 􏽘
t∗

t�0

􏽢
y

t
i . (4)

Summary of results: Again, a small increase across all
models, with an optimal minimum number of alerts being 2
for maximum F1-score, competitive with the rolling mean
approach.

6.3.4. Process-Tree Averaging. Reasoning: %e data are la-
belled at the application level; therefore, the average pre-
dictions across the process tree should be considered for
classification

􏽢yi �
1
P

􏽘

P

p�0

􏽣
y

t∗
i . (5)

Summary of results: Negligible performance increase
on validation and test set data (less than 1 percentage point).
%is is likely because few samples have more than one
process executing simultaneously.

6.3.5. Process-Tree Training. Reasoning: %e data are la-
belled at the application level; therefore, the sum of resources
of each process tree should be classified at each measure-
ment, not the individual processes.

Summary of results: Somewhat surprisingly, there was a
slight reduction in classification accuracy when using pro-
cess tree data. One explanation for this may be that the
process tree creates noise around the differentiating char-
acteristics that are visible at the process level.

6.3.6. DQN. Reasoning: Reinforcement learning is designed
for state-action space learning. Both pre-training the model
with a supervised learning approach and not pre-training the
model were tested.

Summary of results: Poor performance, typically con-
verging to either kill or not kill everything, of the few models
that did not converge to a single dominant action; it does not
distinguish malware or benignware well, indicating that it
may not have learned anything. Reinforcement learning may
help the problem of real-timemalware detection and process
killing, but this initial implementation of a DQN did not
converge to a better or even competitive solution to su-
pervised learning. Perhaps, better formulation of rewards
(e.g., damage prevented) would help the agent learn.

Table 4: Hyperparameter search space and the hyperparameters of the model giving the lowest mean false-positive and false-negative rates.

Possible values Process-level data Process-level data + global metrics
Hyperparamter
Hidden neurons 8–1024 253 193
Depth [1–3] 2 2
Batch size [64, 128, 256] 128 256
Epochs 1–200 89 161
Dropout rate [0, 0.1, 0.2, 0.3, 0.4, 0.5] 0.1 0.1
Window size 2–30 16 6
Loss function Binary cross-entropy
Weight update rule Adam [48]
Recurrent unit GRU cell
Validation F1-score (∗100) — 97.43 94.61
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6.3.7. Regression on Predicted Kill Value. Reasoning:
%ough the DQN explores and exploits different state-action
pairs and their associated rewards, when the reward from
each action is known in the first place and the training set is
limited, as it is here, Q-learning can be framed as a re-
gression problem in which the model tries to learn the return
(rewards + future rewards), the training is faster and can be
used by any regression-capable algorithm. Let N be the
number of current and future child processes for pi at t∗

(y∗ 2 − 1)∗ (1 + N)∗ 1 + y∗ e
− t∗

􏼐 􏼑􏼐 􏼑􏼐 􏼑. (6)

Summary of results: Improved performance on true
negative rate, although not perceptible for the highest-
scoring F1 models since F1-scores reward true positives
more than true negatives, this metric can struggle to reflect a
balance between the true-positive and true-negative rates.
%e highest true-negative rate models are all regression
models.
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Figure 4: F1 scores, true positive rates (TPR), and true negative rates (TNR) for partial-trace detection (process measurements), full-trace
detection (whole process), whole application (process tree), and with process-level measurements + process killing (process killing) for
validation set (left column) and test set (right column).
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Figure 5: %ree levels of data collection: each measurement, each process, each process tree.

Table 5: F1-score, true positive rate (TPR), and true negative rates (TNR) (all ∗ 100) on test and validation sets for classification and process
killing.

Features Metric Classify Dataset Kill
Proc. Data F1 97.44 Validation set 91.20
Proc. Data tnr 94.72 Validation set 85.71
Proc. Data tpr 98.64 Validation set 95.80
Proc. Data + glob. F1 94.61 Validation set 87.69
Proc. Data + glob. tnr 90.57 Validation set 77.31
Proc. Data + glob. tpr 95.93 Validation set 95.80
Proc. Data F1 74.91 Test set 72.63
Proc. Data tnr 69.41 Test set 59.63
Proc. Data tpr 87.52 Test set 91.82
Proc. Data + glob. F1 77.66 Test set 71.83
Proc. Data + glob. tnr 79.70 Test set 59.63
Proc. Data + glob. tpr 82.91 Test set 90.24

Table 6: Average resource consumption over 100 iterations for a batch size of 100 vs. F1-scores on validation and test set for classification
and process killing across 14 models..

Model n features Avg. cpu (μJ) Avg. dram (W) Avg. Duration (μs) Val F1 Kill val F1 Test F1 Kill test F1
AdaBoost 26 127967.84 7981.51 6595.37 88.35 74.36 77.19 60.09
AdaBoost 37 125041.20 7142.93 6469.16 89.63 76.07 80.10 60.14
DT 26 3905.63 202.65 128.02 97.39 88.48 66.44 62.95
DT 37 2113.67 134.29 106.65 96.32 83.57 79.61 62.50
GBDT 26 8788.41 338.78 349.31 92.27 78.26 82.47 63.33
GBDT 37 11005.80 486.46 329.45 93.13 80.26 84.94 63.46
MLP 26 11044.88 645.14 461.04 82.84 70.18 41.62 57.65
MLP 37 12932.09 628.64 555.42 73.00 67.63 57.66 57.26
NB 26 6947.67 297.87 185.73 75.80 67.42 62.90 56.11
NB 37 5187.96 258.80 177.37 75.58 67.61 61.88 55.33
RF 26 238621.20 11052.84 8997.31 97.12 92.97 71.58 75.97
RF 37 236598.44 9967.63 8879.97 96.57 91.05 85.55 77.85
RNN 26 887664.31 48885.96 27869.30 97.44 90.70 74.91 73.08
RNN 37 312108.07 17120.90 10414.58 94.61 87.31 77.66 71.95
SVM 26 6630490.84 464082.07 282026.57 78.34 67.04 68.16 56.91
SVM 37 7792179.78 730786.06 429081.31 64.89 65.68 61.39 56.25
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Table 7 lists the F1, TPR, and TNR on the validation and
test set for each of the methods described above. %e best-
performing model on the test and validation sets is reported
and the full results can be found in Appendix Table 8–10.
Small improvements are made by some models on the
validation F1-score, but the test set F1-score improves by 4
percentage points in the best instance.

In most cases, the models with the highest F1-score on
the validation and test sets are not the same. %e highest F1-
score is 81.50 from an RF using aminimum alert threshold of
2 and both process-level and global process metrics.

6.4. Further Experiment: FavouringHigh TNR. Although the
proposed model is motivated by the desire to prevent
malware from executing, the best TNR reported amongst the
models above is 81.50%. 20% of benign processes being
killed would not be acceptable to a user. Whilst this research
is a novel attempt at very early-stage real-time malware
detection and process killing, one might consider the us-
ability and prefer a model with a very high TNR, even if this
is at the expense of the TPR.

Considering this, the AdaBoost regression algorithm
achieves a 100% TNR with a 39.50% TPR on the validation
set. %e high FNR is retained in the test set standing at
97.92%, but the TPR drops even further to just 8.40%. %e
GBDT also uses regression to estimate the value of process
killing and coupled with a minimum of 4 alerts performs
well on the test set but does not stand out in the validation
set, see Table 11.

Although less than 10% of the test set malicious pro-
cesses is killed by the AdaBoost regressor, this model may be
the most viable despite the low TPR. Future work may
examine the precise behaviour and harm caused by malware
that is/is not detected. To summarise results, the most-de-
tected families were Ekstak (180), Mikey (80), Prepscram (53
processes), and Zusy (49 processes) of the 745 total samples.

6.5. Measuring Damage Prevention in Real Time.
Although a high percentage of processes are correctly
identified as malicious by the best performing model (RF
with 2 alerts and 37 features), it may be that the model
detects the malware after it has already caused damage to the
endpoint. %erefore, instead of looking at the time at which
the malware is correctly detected, a live test was carried out
with ransomware to measure the percentage of files cor-
rupted with and without the process killing model working.
%is real-time test also assesses whether malware can indeed
be detected in the early stages of execution or whether the
data recording, model inference, and process killing is too
slow in practice to prevent damage.

Ransomware is the broad term given to malware that
prevents access to user data (often by encrypting files) and
holds the means for restoring the data (usually a decryption
key) from the user until a ransom is paid. It is possible to
quantify the damage caused by ransomware using the
proportion of modified files as Scaife et al. [24] have done in
developing a real-time ransomware (only) detection system.
%e damage of some malware types are more difficult to

quantify owing to their dependence on factors outside the
control of the malware. For example, the damage caused by
spyware will depend on what information it is able to obtain,
so it is difficult to quantify the benefit of killing spyware
5 seconds after execution compared with 5minutes into
execution. Ransomware offers a clear metric for the benefits
of early detection and process killing.

Although the RF with a minimum of 2 alerts using
both process and global data gave the highest F1-score on
the test set (81.50), earlier experiments showed that RFs
are not one of the most computationally efficient models
by comparison with those tested. %erefore, a decision
tree is trained on process-only data (26 features) in case
the time-to-classification is important for damage re-
duction despite the lower F1-score. For this reason, the
decision tree model is used in this test. %e DT also has a
very slightly higher TPR (see Table 12) so a higher damage
prevention rate may be partially due to the model itself
rather than just the fewer features being collected and
model classification speed.

22 fast-acting ransomware files were identified from a
separate VirusShare [43] repository which (i) do not require
Internet connection and (ii) begin encrypting files within the
first few seconds of execution. %e former condition is set
because the malicious server may no longer exist and for
safety, it is not desirable to connect to it if it does exist. Some
malware is able to cause significant damage in seconds, in
which the timeframes are impossible for a human to see,
process, react to, and alert in.

%e 22 samples were executed for 30 seconds each
without the process killing model and the number of files
modified was recorded. %e process was repeated with 4
process killing models: DTwith min. 2 alerts and 26 features,
RF with min. 2 alerts and 37 features, AdaBoost regressor
with 26 features, and GDBTregressor with min. 4 alerts and
26 features.

It was necessary to run the killing model with admin-
istrator privileges and to write an exception for the Cuckoo
sandbox agent process which enables the host machine to
read data from the guest machine since the models killed this
process. %e need for this exception highlights that there are
benign applications with malicious-like behaviours, perhaps
especially those used for networking and security.

Figure 6 and Table 13 give the total number of corrupted
files across the 22 samples.%e damage prevention column is
a proxy metric denoting how many files were not corrupted
using a given process killing model by comparison with no
model being in place. %e 22 samples on average each
corrupt 910 files within 30 seconds.

%e DT model almost entirely eliminates any file cor-
ruption with only three being corrupted. %e RF saves
92.68% of files. %e ordinal ranking of “damage prevention”
is the same as the TPR on the test set, but the relationship is
not proportional. %e same ordinal relationship indicates
that the simulated impact of process killing on the collected
test set was perhaps a reasonable approximation of mea-
suring at least fast-acting ransomware damage, despite the
TPR test set metrics being based on other malware families,
too.
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Table 7: Summary of the best process killing models by model training methodology. F1, TNR, and TPR for validation and test datasets (full
results in Appendix Tables 8–10).

Methodology Best dataset Model
Val Test

n features F1 tnr tpr F1 tnr tpr

Supervised learning Val RF 26 92.37 87.39 96.64 74.57 62.71 92.95
Test RF 37 89.68 83.19 94.96 76.43 67.19 92.52

Rolling mean Val RF (min: 2) 26 93.22 94.12 92.44 78.26 73.83 89.76
Test RF (min: 2) 37 92.70 94.96 90.76 80.77 78.88 89.38

Alert threshold Val DT (min: 2) 26 92.17 95.80 89.08 73.43 67.44 86.56
Test RF (min: 2) 37 91.30 94.96 88.24 81.50 81.53 87.97

Process tree averaging Val RF 26 92.74 88.24 96.64 74.79 64.04 92.20
Test RF 37 90.48 84.03 95.80 76.34 67.66 91.92

Process tree training Val RF 26 90.35 82.58 98.32 74.20 52.44 92.74
Test RF 26 90.35 82.58 98.32 74.20 52.44 92.74

Q-learning Val DQN 26 51.71 72.27 44.54 27.74 55.50 26.94
Test DQN 26 51.71 72.27 44.54 27.74 55.50 26.94

Regression Val RF 26 91.94 87.39 95.80 74.77 66.05 90.35
Test RF 26 91.94 87.39 95.80 74.77 66.05 90.35

Table 8: Summary of process killing models, validation and test set score metrics [Table 1 of 3].

Model
Val Test

f1 tnr tpr f1 tnr tpr
AdaBoostModel_glo_pro 77.58 55.46 91.60 67.04 49.80 88.67
AdaBoostModel_glo_pro mean process tree 78.01 55.46 92.44 66.75 50.48 87.59
AdaBoostModel_glo_pro process tree min alerts: 1 78.87 55.46 94.12 62.29 34.03 90.35
AdaBoostModel_glo_pro process tree min alerts: 2 78.87 55.46 94.12 62.29 34.03 90.35
AdaBoostModel_glo_pro process tree min alerts: 3 78.87 55.46 94.12 62.29 34.03 90.35
AdaBoostModel_glo_pro process tree min alerts: 4 78.87 55.46 94.12 62.29 34.03 90.35
AdaBoostModel_glo_pro rolling mean window: 2 79.22 70.59 84.87 69.57 60.88 84.88
AdaBoostModel_glo_pro rolling mean window: 3 79.37 72.27 84.03 69.59 61.53 84.39
AdaBoostModel_glo_pro rolling mean window: 4 80.67 80.67 80.67 68.44 67.80 77.34
AdaBoostModel_glo_pro sum alerts min: 2 80.66 78.15 82.35 69.35 66.58 79.89
AdaBoostModel_glo_pro sum alerts min: 3 81.20 83.19 79.83 67.83 70.92 73.88
AdaBoostModel_glo_pro sum alerts min: 4 80.87 84.87 78.15 65.92 73.32 69.00
AdaBoostModel_pro 75.34 47.06 92.44 65.64 45.79 88.89
AdaBoostModel_pro mean process tree 75.86 48.74 92.44 65.74 47.83 87.59
AdaBoostModel_pro process tree min alerts: 1 75.68 45.38 94.12 60.31 26.46 91.17
AdaBoostModel_pro process tree min alerts: 2 75.68 45.38 94.12 60.31 26.46 91.17
AdaBoostModel_pro process tree min alerts: 3 75.68 45.38 94.12 60.31 26.46 91.17
AdaBoostModel_pro process tree min alerts: 4 75.68 45.38 94.12 60.31 26.46 91.17
AdaBoostModel_pro rolling mean window: 2 78.03 64.71 86.55 69.35 59.63 85.47
AdaBoostModel_pro rolling mean window: 3 77.99 67.23 84.87 68.91 59.20 84.99
AdaBoostModel_pro rolling mean window: 4 80.83 79.83 81.51 69.01 66.44 79.40
AdaBoostModel_pro sum alerts min: 2 81.12 75.63 84.87 67.91 61.06 81.68
AdaBoostModel_pro sum alerts min: 3 81.17 80.67 81.51 66.64 64.97 76.42
AdaBoostModel_pro sum alerts min: 4 79.66 80.67 78.99 64.25 68.12 70.14
AdaBoostModel_pro_tree 75.08 47.73 94.96 64.12 30.58 86.60
AdaBoostRegression_pro_process 56.63 100.00 39.50 15.06 97.92 8.40
DTModel_glo_pro 84.53 71.43 94.12 71.41 58.19 90.62
DTModel_glo_pro mean process tree 85.93 73.95 94.96 71.49 59.48 89.70
DTModel_glo_pro process tree min alerts: 1 84.64 70.59 94.96 65.59 42.42 91.27
DTModel_glo_pro process tree min alerts: 2 84.64 70.59 94.96 65.56 42.34 91.27
DTModel_glo_pro process tree min alerts: 3 84.64 70.59 94.96 65.56 42.34 91.27
DTModel_glo_pro process tree min alerts: 4 84.64 70.59 94.96 65.56 42.34 91.27
DTModel_glo_pro rolling mean window: 2 88.70 88.24 89.08 75.09 70.49 86.94
DTModel_glo_pro rolling mean window: 3 87.87 87.39 88.24 74.57 69.77 86.61
DTModel_glo_pro rolling mean window: 4 89.08 93.28 85.71 74.04 74.29 81.63
DTModel_glo_pro sum alerts min: 2 89.74 91.60 88.24 75.48 72.64 85.69
DTModel_glo_pro sum alerts min: 3 89.47 94.12 85.71 74.00 75.62 80.38
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%e DTdemonstrates that this architecture is capable of
preventing damage, but the TNR on the test set of the DT
model is so low (66.19) that this model cannot be preferred
to the RF (81.53 TNR), which still prevents over 90% of file
damage.

%e GBDT prevents some damage, and detects a com-
parable number of ransomware samples (1 in 5). %e
AdaBoost regressor detected 2 ransomware samples of the
22, and in these two cases more than 64% and 45% of files
were saved, respectively; perhaps, with more execution time,

Table 8: Continued.

Model
Val Test

f1 tnr tpr f1 tnr tpr
DTModel_glo_pro sum alerts min: 4 88.39 94.96 83.19 70.19 77.30 72.63
DTModel_pro 89.76 82.35 95.80 71.53 56.54 92.25
DTModel_pro mean process tree 90.91 84.03 96.64 72.13 59.38 91.06
DTModel_pro process tree min alerts: 1 90.20 82.35 96.64 64.45 37.04 92.79
DTModel_pro process tree min alerts: 2 90.20 82.35 96.64 64.42 36.97 92.79
DTModel_pro process tree min alerts: 3 90.20 82.35 96.64 64.42 36.97 92.79
DTModel_pro process tree min alerts: 4 90.20 82.35 96.64 64.42 36.97 92.79
DTModel_pro rolling mean window: 2 93.16 94.96 91.60 73.82 66.19 88.40
DTModel_pro rolling mean window: 3 91.77 94.96 89.08 73.49 66.15 87.80
DTModel_pro rolling mean window: 4 90.75 95.80 86.55 72.05 69.38 82.38
DTModel_pro sum alerts min: 2 92.17 95.80 89.08 73.43 67.44 86.56
DTModel_pro sum alerts min: 3 90.75 95.80 86.55 71.53 69.63 81.25
DTModel_pro sum alerts min: 4 89.29 95.80 84.03 67.58 70.81 73.55
DTModel_pro_tree 85.93 73.48 97.48 70.40 43.02 91.57
DTRegression_pro_process 89.06 80.67 95.80 71.62 57.98 91.22
GBDTModel_glo_pro 80.44 63.87 91.60 72.62 59.73 91.71
GBDTModel_glo_pro mean process tree 80.88 63.87 92.44 72.76 60.63 91.22
GBDTModel_glo_pro process tree min alerts: 1 81.75 63.87 94.12 66.32 43.28 92.14
GBDTModel_glo_pro process tree min alerts: 2 81.75 63.87 94.12 66.32 43.28 92.14
GBDTModel_glo_pro process tree min alerts: 3 81.75 63.87 94.12 66.32 43.28 92.14
GBDTModel_glo_pro process tree min alerts: 4 81.75 63.87 94.12 66.32 43.28 92.14
GBDTModel_glo_pro rolling mean window: 2 85.12 83.19 86.55 76.06 71.50 87.80
GBDTModel_glo_pro rolling mean window: 3 84.52 84.03 84.87 75.87 71.82 87.15
GBDTModel_glo_pro rolling mean window: 4 84.12 86.55 82.35 75.25 76.69 81.57
GBDTModel_glo_pro sum alerts min: 2 84.87 84.87 84.87 76.46 75.65 84.66
GBDTModel_glo_pro sum alerts min: 3 85.22 89.08 82.35 74.12 78.77 77.78
GBDTModel_glo_pro sum alerts min: 4 84.44 90.76 79.83 71.99 81.10 72.30
GBDTModel_pro 80.73 62.18 93.28 71.31 58.09 90.51
GBDTModel_pro mean process tree 82.05 64.71 94.12 71.76 59.59 90.14
GBDTModel_pro process tree min alerts: 1 80.71 59.66 94.96 64.88 40.34 91.33
GBDTModel_pro process tree min alerts: 2 80.71 59.66 94.96 64.87 40.30 91.33
GBDTModel_pro process tree min alerts: 3 80.71 59.66 94.96 64.87 40.30 91.33
GBDTModel_pro process tree min alerts: 4 80.71 59.66 94.96 64.87 40.30 91.33
GBDTModel_pro rolling mean window: 2 84.68 79.83 88.24 75.08 71.60 85.91
GBDTModel_pro rolling mean window: 3 84.08 80.67 86.55 74.99 71.71 85.64
GBDTModel_pro rolling mean window: 4 84.39 84.87 84.03 73.91 76.05 79.84
GBDTModel_pro sum alerts min: 2 85.48 84.03 86.55 74.50 74.40 82.33
GBDTModel_pro sum alerts min: 3 85.11 86.55 84.03 72.35 76.77 76.59
GBDTModel_pro sum alerts min: 4 83.84 88.24 80.67 70.17 78.38 71.71
GBDTModel_pro_tree 79.02 59.09 94.96 71.08 46.68 90.51
GBDTRegression_pro_process 89.71 87.39 91.60 71.84 80.57 72.52
MLPModel_glo_pro 66.67 13.45 93.28 57.92 19.00 90.68
MLPModel_glo_pro mean process tree 67.48 16.81 93.28 59.79 25.74 90.51
MLPModel_glo_pro process tree min alerts: 1 67.46 13.45 94.96 57.61 17.64 90.84
MLPModel_glo_pro process tree min alerts: 2 67.46 13.45 94.96 57.61 17.64 90.84
MLPModel_glo_pro process tree min alerts: 3 67.46 13.45 94.96 57.61 17.64 90.84
MLPModel_glo_pro process tree min alerts: 4 67.46 13.45 94.96 57.61 17.64 90.84
MLPModel_glo_pro rolling mean window: 2 67.96 28.57 88.24 58.73 32.20 84.17
MLPModel_glo_pro rolling mean window: 3 67.79 34.45 84.87 58.90 34.31 83.20
MLPModel_glo_pro rolling mean window: 4 68.75 41.18 83.19 58.32 40.55 78.16
MLPModel_glo_pro sum alerts min: 2 68.94 38.66 84.87 59.51 39.19 81.30
MLPModel_glo_pro sum alerts min: 3 69.04 45.38 81.51 58.47 43.17 76.80
MLPModel_glo_pro sum alerts min: 4 70.63 53.78 79.83 57.23 47.72 71.76
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Table 9: Summary of process killing models, validation, and test set score metrics [Table 2 of 3].

Model
Val Test

f1 tnr tpr f1 tnr tpr
MLPModel_pro 71.43 56.30 79.83 57.54 52.53 69.38
MLPModel_pro mean process tree 72.18 57.14 80.67 57.06 53.53 67.97
MLPModel_pro process tree min alerts: 1 72.32 54.62 82.35 57.41 49.41 71.06
MLPModel_pro process tree min alerts: 2 72.32 54.62 82.35 57.41 49.41 71.06
MLPModel_pro process tree min alerts: 3 72.32 54.62 82.35 57.41 49.41 71.06
MLPModel_pro process tree min alerts: 4 72.32 54.62 82.35 57.41 49.41 71.06
MLPModel_pro rolling mean window: 2 71.77 66.39 74.79 48.88 63.18 50.35
MLPModel_pro rolling mean window: 3 72.65 68.91 74.79 49.23 63.71 50.57
MLPModel_pro rolling mean window: 4 72.34 73.95 71.43 46.40 67.05 45.26
MLPModel_pro sum alerts min: 2 73.86 72.27 74.79 47.14 66.40 46.50
MLPModel_pro sum alerts min: 3 73.68 78.99 70.59 45.27 68.12 43.36
MLPModel_pro sum alerts min: 4 73.30 82.35 68.07 44.48 69.63 41.73
MLPModel_pro_tree 71.38 31.82 97.48 64.36 21.07 92.52
MLPRegression_pro_process 38.89 53.78 35.29 54.83 48.73 67.05
MLPRegression_pro_process mean process tree 37.32 57.14 32.77 56.75 57.37 65.15
NBModel_glo_pro 67.25 9.24 96.64 55.07 10.36 89.49
NBModel_glo_pro mean process tree 67.25 9.24 96.64 55.62 12.69 89.38
NBModel_glo_pro process tree min alerts: 1 67.25 9.24 96.64 55.00 10.18 89.43
NBModel_glo_pro process tree min alerts: 2 67.25 9.24 96.64 55.00 10.18 89.43
NBModel_glo_pro process tree min alerts: 3 67.25 9.24 96.64 55.00 10.18 89.43
NBModel_glo_pro process tree min alerts: 4 67.25 9.24 96.64 55.00 10.18 89.43
NBModel_glo_pro rolling mean window: 2 67.69 19.33 92.44 55.20 15.10 87.05
NBModel_glo_pro rolling mean window: 3 67.73 26.05 89.08 55.32 17.32 86.02
NBModel_glo_pro rolling mean window: 4 67.76 31.09 86.55 54.28 21.08 81.68
NBModel_glo_pro sum alerts min: 2 68.17 27.73 89.08 55.70 19.40 85.64
NBModel_glo_pro sum alerts min: 3 67.99 31.93 86.55 54.42 22.27 81.30
NBModel_glo_pro sum alerts min: 4 68.03 36.97 84.03 51.32 25.39 73.44
NBModel_pro 67.06 8.40 96.64 55.60 7.03 92.63
NBModel_pro mean process tree 67.06 8.40 96.64 56.17 9.61 92.41
NBModel_pro process tree min alerts: 1 67.06 8.40 96.64 55.56 6.78 92.68
NBModel_pro process tree min alerts: 2 67.06 8.40 96.64 55.56 6.78 92.68
NBModel_pro process tree min alerts: 3 67.06 8.40 96.64 55.56 6.78 92.68
NBModel_pro process tree min alerts: 4 67.06 8.40 96.64 55.56 6.78 92.68
NBModel_pro rolling mean window: 2 67.69 19.33 92.44 56.01 13.41 89.81
NBModel_pro rolling mean window: 3 67.52 25.21 89.08 56.18 15.81 88.78
NBModel_pro rolling mean window: 4 67.99 31.93 86.55 54.94 19.61 83.90
NBModel_pro sum alerts min: 2 68.61 29.41 89.08 56.52 18.14 88.13
NBModel_pro sum alerts min: 3 68.21 32.77 86.55 55.27 21.30 83.63
NBModel_pro sum alerts min: 4 67.81 37.82 83.19 52.25 24.42 75.77
NBModel_pro_tree 66.10 10.61 98.32 61.25 8.63 92.69
NBModel_pro_tree mean process tree 66.10 10.61 98.32 61.25 8.63 92.69
RFModel_glo_pro 89.68 83.19 94.96 76.43 67.19 92.52
RFModel_glo_pro mean process tree 90.48 84.03 95.80 76.34 67.66 91.92
RFModel_glo_pro process tree min alerts: 1 90.91 84.03 96.64 69.45 50.56 92.95
RFModel_glo_pro process tree min alerts: 2 90.91 84.03 96.64 69.45 50.56 92.95
RFModel_glo_pro process tree min alerts: 3 90.91 84.03 96.64 69.45 50.56 92.95
RFModel_glo_pro process tree min alerts: 4 90.91 84.03 96.64 69.45 50.56 92.95
RFModel_glo_pro rolling mean window: 2 92.70 94.96 90.76 80.77 78.88 89.38
RFModel_glo_pro rolling mean window: 3 91.30 94.96 88.24 80.19 78.67 88.51
RFModel_glo_pro rolling mean window: 4 90.27 95.80 85.71 79.86 82.86 83.69
RFModel_glo_pro sum alerts min: 2 91.30 94.96 88.24 81.50 81.53 87.97
RFModel_glo_pro sum alerts min: 3 90.27 95.80 85.71 79.99 84.01 82.76
RFModel_glo_pro sum alerts min: 4 88.79 95.80 83.19 76.11 85.37 75.01
RFModel_pro 92.37 87.39 96.64 74.57 62.71 92.95
RFModel_pro mean process tree 92.74 88.24 96.64 74.79 64.04 92.20
RFModel_pro process tree min alerts: 1 92.74 88.24 96.64 68.75 48.23 93.39
RFModel_pro process tree min alerts: 2 92.74 88.24 96.64 68.75 48.23 93.39
RFModel_pro process tree min alerts: 3 92.74 88.24 96.64 68.75 48.23 93.39
RFModel_pro process tree min alerts: 4 92.74 88.24 96.64 68.75 48.23 93.39
RFModel_pro rolling mean window: 2 93.22 94.12 92.44 78.28 73.83 89.76
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the files would be detected but the key benefit of process
killing is to stop damaging software like these ransomware
samples and this algorithm actually saw more files encrypted
than when no killing model was used; this is because there

will be a slight variance in the ransomware behaviour and
execution time each time it runs. %e Random Forest is the
most plausible model, balancing damage prevention and
TNR; however, the delay in classification may be a result of

Table 9: Continued.

Model
Val Test

f1 tnr tpr f1 tnr tpr
RFModel_pro rolling mean window: 3 91.38 94.12 89.08 77.47 73.25 88.78
RFModel_pro rolling mean window: 4 89.96 94.12 86.55 77.08 77.70 83.85
RFModel_pro sum alerts min: 2 91.38 94.12 89.08 77.98 74.65 88.40
RFModel_pro sum alerts min: 3 89.96 94.12 86.55 77.05 77.52 83.96
RFModel_pro sum alerts min: 4 88.50 94.12 84.03 73.11 79.35 75.61
RFModel_pro_tree 90.35 82.58 98.32 74.20 52.44 92.74
RFRegression_pro_process 91.94 87.39 95.80 74.77 66.05 90.35
SVMModel_glo_pro 65.23 15.97 89.08 57.34 24.24 86.23
SVMModel_glo_pro mean process tree 65.23 15.97 89.08 58.11 27.39 85.91
SVMModel_glo_pro process tree min alerts: 1 65.23 15.97 89.08 57.32 23.81 86.45
SVMModel_glo_pro process tree min alerts: 2 65.23 15.97 89.08 57.32 23.81 86.45
SVMModel_glo_pro process tree min alerts: 3 65.23 15.97 89.08 57.32 23.81 86.45
SVMModel_glo_pro process tree min alerts: 4 65.23 15.97 89.08 57.32 23.81 86.45
SVMModel_glo_pro rolling mean window: 2 65.15 26.05 84.03 57.98 33.52 81.84
SVMModel_glo_pro rolling mean window: 3 64.65 31.09 80.67 58.14 35.46 80.98
SVMModel_glo_pro rolling mean window: 4 64.31 38.66 76.47 56.76 40.37 75.34
SVMModel_glo_pro sum alerts min: 2 65.05 36.13 78.99 58.35 39.08 79.13
SVMModel_glo_pro sum alerts min: 3 64.75 42.02 75.63 57.05 43.24 74.15
SVMModel_glo_pro sum alerts min: 4 64.89 51.26 71.43 54.70 47.40 67.59
SVMModel_pro 66.47 5.88 96.64 56.92 10.33 93.71

Table 10: Summary of process killing models, validation, and test set score metrics [Table 3 of 3].

Val Test
SVMModel_pro mean process tree 67.25 9.24 96.64 57.55 13.34 93.33
SVMModel_pro process tree min alerts: 1 66.47 5.88 96.64 56.21 7.28 93.88
SVMModel_pro process tree min alerts: 2 66.47 5.88 96.64 56.21 7.28 93.88
SVMModel_pro process tree min alerts: 3 66.47 5.88 96.64 56.21 7.28 93.88
SVMModel_pro process tree min alerts: 4 66.47 5.88 96.64 56.21 7.28 93.88
SVMModel_pro rolling mean window: 2 66.87 15.97 92.44 58.60 22.02 90.30
SVMModel_pro rolling mean window: 3 67.30 24.37 89.08 58.82 24.42 89.27
SVMModel_pro rolling mean window: 4 67.99 31.93 86.55 57.98 28.97 84.66
SVMModel_pro sum alerts min: 2 67.96 28.57 88.24 59.52 27.61 88.73
SVMModel_pro sum alerts min: 3 68.90 35.29 86.55 59.06 33.35 84.12
SVMModel_pro sum alerts min: 4 68.75 41.18 83.19 56.68 38.87 76.10
SVMModel_pro_tree 65.73 9.09 98.32 61.79 9.88 93.19
Dqn 51.71 72.27 44.54 27.74 55.50 26.94
random_search_glo_pro_RNN 87.69 77.31 95.80 71.83 59.63 90.24
random_search_glo_pro_RNN mean process tree 88.03 78.15 95.80 72.50 61.67 89.81
random_search_glo_pro_RNN_Regression 85.71 72.27 95.80 72.44 61.78 89.59
random_search_pro_RNN 91.20 85.71 95.80 72.63 59.63 91.82
random_search_pro_RNN mean process tree 91.20 85.71 95.80 73.03 60.92 91.49
random_search_pro_RNN_Regression 88.37 78.99 95.80 72.71 60.70 91.06
random_search_pro_RNN_tree 88.19 80.67 94.12 73.72 65.79 88.56

Table 11: Two models’ F1-score, TNR, TPR for the validation and test set scoring the highest TNR on the validation and test sets.

Methodology Model n features
Val Test

F1 tnr tpr F1 tnr tpr
Regression AdaBoost 26 56.63 100.00 39.50 15.06 97.92 8.40
Regression + 4 alerts GBDT 26 85.91 95.80 77.31 68.50 94.98 56.04
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the requirement to collect more features and/or the real-time
of the model itself.

7. Discussion: Measuring Execution Time in a
Live Environment

Although algorithm execution duration was measured
above, due to batch processing used by the models, the
number of processes being classified can be increased by an
order of magnitude with a negligible impact on execution
time. %e data collection and process killing both have
linear, O(n), complexity; where n is the number of processes;
therefore it is expected that the number of processes impacts
classification time. %e RF with statistical filters has com-
plexity O(nps) where p is the number of trees in the forest
and s is the number of alerts considered by the filter; efficient
library implementations of matrix operations means that the
execution time does not scale linearly with n for the RF
inference. Given this, a further experiment was carried out
with the RF to measure in a live environment how long the
data collection, model inference, and process killing takes as
the number of processes increases. %is was tested by

executing more than 1000 processes in the virtual machine
whilst the process killing RF runs.

Some processes demand more computational resources
than others, and somemalware in our test set locked pages in
memory [50], which prevented the model from having
sufficient resources to collect data, leading to tens of seconds
during which no data were captured and many processes
were launched. With better software engineering practices,
the model may be more robust against this kind of malicious
activity.

%ese differences in behaviour can cause the evaluation
time to lag as demonstrated by the outlier points visible in
Figure 7. %e data show a broadly linear positive correlation
between the number of processes (being monitored or
killed) and the time taken for the data collection and process
killing; this confirms the hypothesis that more processes
equates to slower processing time. %e slowest total pro-
cessing time was 0.81 seconds (seen with both 17 and 40
simultaneous processes running), but the mean processing
time is just under 0.3 seconds with 65 simultaneous pro-
cesses, fitting comfortably within the 1-second goal time.
Additional code optimisation could greatly improve on these

Table 12: Random Forest and Decision Tree each with a minimum requirement of two alerts (“malicious classifications”) to kill a process.
F1, TNR, and TPR reported on validation and test set.

Model n features
Val Test

F1 Tnr tpr F1 tnr tpr
RF (alerts: 2) 37 91.30 94.96 88.24 81.50 81.53 87.97
DT (rolling mean: 2) 26 93.16 94.96 91.60 73.82 66.19 88.40

AdaBoost Regressor

DT pro rolling mean 2

GBDT Regressor + min 4 alerts

RF glo + pro min alerts 2

no killing
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Figure 6: Total number of files corrupted by ransomware with no process killing and with three process killing models within the first 30
seconds of execution.

Table 13: Total number of files corrupted by ransomware with no process killing and with three process killing models within the first
30 seconds of execution. Damage reduction is the percentage of files spared when no killing is implemented.

Model Files damaged Damage reduction Detection rate (ransomware TPR) Test set TPR
No killing 19,997 — — —
DT pro rolling mean 2 3 99.98% 100.00 88.40
RF glo + pro min alerts 2 1,464 92.68% 100.00 87.97
GBDT regressor +min 4 alerts 15,432 22.83% 22.07 56.04
AdaBoost regressor 20,578 0.00% 9.09 8.83
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initial results which indicate that the processing, even using
standard libraries and a high-level programming language,
can execute reasonably quickly.

8. Implications and Analysis

%e experiments in this paper address a largely unexplored
area of malware detection, by comparison with post-trace
classification. Real-time processing and response has a
number of benefits outlined above and the results presented
here give tentative indications of the advantages and chal-
lenges of such an approach.

%e initial experiments (Section 6.1) demonstrate that a
high-accuracy RNN (as used in [11]) does not maintain
high-accuracy when used in real-time with an automated
response to classify individual processes rather than full
application traces, since a single false positive classification
of sequential data cannot be outweighed by later correct
predictions.

%e next set of experiments (Section 6.1) showed that
whilst the RNN achieves one of the highest classification
accuracies of a set of algorithms tested, it is not one of the
best in terms of computational resource consumption or
latency. However, a clear best-algorithm was not evident
either since the low-resource consuming algorithms (like
decision tree) did not always achieve high accuracy. Fur-
thermore, all of the supervised learning algorithms were
clearly unsuited to process killing with the highest F1 score
from any algorithm being 77.85 on the test set compared
with 85.55 for process-level classification alone. %is 85.55
F1 score is lower than is seen in many dynamic malware
detection research publications that use full-application
behavioural traces, indicating the challenges of classification

at the process level, where malware and benignware may
share functionality.

Attempting to improve detection accuracy, three ap-
proaches were tested: statistical filtering, reinforcement
learning, and a regression model estimating the utility (q-
value) of killing a process. Statistical filters using rolling
mean or alert thresholds were the only approach to improve
on the supervised learning model F1 score. Reinforcement
learning tended to kill processes too early and therefore not
explore enough scenarios (and thus receive the requisite
reinforcement) to allow benign processes to continue; this
does not mean that future models could not improve upon
this result. %is may be supported by the success of the
regression models in maintaining a high true-negative rate,
given that these models ascribed a similar utility to killing
processes as the reinforcement learning models.

%e accuracy metrics tested thus far simply indicate
whether a process was ever killed, but do not address
whether damage was actually prevented by process killing. If
damage was not prevented, there is little point to process
killing and a database of alerts for analysis would be a better
solution since the risk of killing benignware is eliminated.
%is is why the final set of experiments in Section 6.5 were
conducted to test the detection models in real time and see if
damage could be prevented by looking at the number file
corrupted by ransomware before and after infection. Here,
we found that it is possible to prevent 92% of files from being
encrypted whilst maintaining a true negative rate of 82%.
%is result does not indicate that the system is ready for real-
world deployment but that perhaps further model analysis
probably including anomaly detection could raise the true
negative rate to a usable point. %is work also demonstrates
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Figure 7: Mean time to collect data, analyse data with Random Forest, and kill varying numbers of processes.
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the damage that certain malware can carry out in a short
space of time and reinforces the need for further research in
this area, since previous work has either focused solely on
ransomware [24] or waited minutes to being classification
[23], by which time it is too late.

9. Future Work

Real-time attack detection has wider applications than end-
point detection, as Alazab et al. [51] argue that Internet of
%ings networks in particular could benefit from real-time
attack detection using heterogeneous data feed from different
sensors combined using federated learning approaches.

However, some challenges remain to be solved; behav-
ioural malware analysis research using machine learning
regularly reports > 95% classification accuracy. Although
useful for analysts, behavioural detection should be deployed
as part of endpoint defensive systems to leverage the full
benefits of a detection model. Dynamic analysis is not
typically used for endpoint protection, perhaps because it
takes too long in data collection to deliver the quick verdicts
required for good user experience. Real-time detection on
the endpoint allows for observation of the full trace without
the user having to wait. However, real-time detection also
introduces the risk that malware will cause damage to the
endpoint. %is risk requires that processes detected as
malicious are automatically killed as early as possible to
avoid harm.

%ere are some key challenges to implementation, which
have been outlined in this paper:

(i) %e need for signal separation drives the use of
individual processes and only partial traces can be
used.

(ii) %e significant drop in accuracy on the unseen test
set, even without process killing demonstrates that
additional features may be necessary to improve
detection accuracy.

(iii) With the introduction of process killing, the poor
performance of the models on either benignware
classification (RF min 2 alerts: TNR 81% with an
88% TPR on the test set) or on malware classifi-
cation (GBDTregressor min 4 alerts: 56% TPR with
a 94% TNR on the test set) means that considerable
further work is needed before very early stage real-
time detection can be considered for real-world use.

(iv) Real-time detection using full execution traces of
processes, however, may be viable. %is is useful to
handle VM-aware malware, which may only reveal
its true behaviour in the target environment. Al-
though the more complex approach using DQNs
algorithms did not outperform the supervised
models with some additional statistical thresholds,
the regression models had better performance in
correctly classifying benignware. Reinforcement
learning could still be useful for real-time detection
and automated cyber defense models, but the DQN
in these experiments did not perform well.

(v) Despite the theoretical unsuitability of supervised
learning models to state-action problems, these
experiments demonstrate how powerful supervised
learning can be for classification problems, even if
the problem is not quite the one that the model is
attempting to solve.

(vi) Future work may require a more comprehensive
manual labelling effort at the process level and
perhaps labelling sub-sections of processes as
malicious or benign.

An additional consideration for real-time detection with
automated actions is whether this introduces an additional
denial-of-service vector using process injection for example
to trigger process killing.%ismay also however indicate that
an attacker is present and therefore aid the user.

10. Conclusions

%is paper has built on previous work in real-time detection
to address some of the key challenges: signal separation,
detection with partial execution traces, and computational
resource consumption with a focus on preventing harm to
the user, since real-time detection introduces this risk.

Behavioural malware detection using virtual machines is
a well-established research field yielding high detection
accuracy in recent literature [3, 6, 11, 20]. However, as is
shown here, fixed-time execution in a sandbox may not
reveal malicious functionality. Real-time malware analysis
addresses this issue but risks executing malware on the
endpoint and requires detection to take place at the process
level, which is more challenging as the definition of a
malicious process can be unclear. %ese two reasons may
account for the limited literature on real-time detection.
Looking forward, real-time detection may become more
popular if static data manipulation and VM-evasion con-
tinue to be used and the costs of malicious execution
continue to rise. Real-time detection does not need to be an
alternative to these approaches, but could hold comple-
mentary value as part of a defense-in-depth endpoint
security.

To the best of our knowledge, previous real-time de-
tection work has used up to 5 simultaneous applications,
whereas other users may use far more. %is paper has
demonstrated that up to 35 simultaneous applications (and
nearly 100 simultaneous processes) can be constantly
monitored, where previous work [23] had tested amaximum
of 5. Moreover, these results demonstrated that data col-
lection presented a greater limiting factor than machine-
learning algorithms, which can easily process 1000 samples
with negligible impact on performance. %is result is not too
surprising since batch processing allows algorithms to
achieve O(1) complexity by comparison with O(n) for data
collection.

Automatic actions are necessary in response to detection
if the goal is to prevent harm. Otherwise, this is equivalent to
letting the malware fully execute and simply monitor its
behaviour since human response times are unlikely to be
quick enough for fast-acting malware. From a user
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perspective, the question is not “What percentage of mal-
ware was executed?” or “Was the malware detected in 5 or
10minutes?” but “How much damage has been done?”.

%is paper found that by using simple statistical filters on
top of supervised learning models, it was possible to prevent
92% of files from being corrupted by fast-acting ransomware
thus reducing the requirements on the user or organisation
to remediate the damage, since it was prevented in the first
instance (the rest of the attack vector would remain a
concern).

%is approach does not achieve the detection accuracies
of state-of-the art offline behavioural analysis models but, as
stated in the introduction, these models typically use the full
post-execution trace of malicious behaviour. Delaying
classification until post-execution negates the principal
advantages of real-time detection. However, the proposed
model presents an initial step towards a fully automated
endpoint protection model, which becomes increasingly
necessary as adversaries become more and more motivated
to evade offline automated detection tools.

Data Availability

Information on the data underpinning the results presented
here, including how to access them, can be found in
the Cardiff University data catalogue at 10.17035/
d.2021.0148229014.
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