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a b s t r a c t 

In this note a one-dimensional nonlinear partial differential equation, which has been recently introduced by 
the author and co-workers, describing the response of viscoelastic solids showing limiting strain behaviour in 
strain and stress-rate cases is investigated. The model results from an implicit constitutive relation between the 
linearized strain and the stress. For this viscoelastic model, a specific form of the nonlinearity that has been 
investigated only in the elastic case in the literature is studied and it is shown that traveling wave solutions can 
be found analytically or numerically for various approximations of the nonlinearity, as well as the nonlinearity 
itself. Moreover, the analysis is carried out for both small and larger values of the stress, the latter being the first 
time in the literature within the current context. 
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. Introduction 

In the present work, our main aim is to investigate traveling wave
olutions for a one-dimensional nonlinear viscoelastic model introduced
y Erbay and Ş engül in Erbay and Ş engül (2015) and Erbay and Ş engül
2020) in the context of strain-limiting theory. Here, we analyze the
odel with a specially chosen nonlinearity that has been proposed very

ecently by Meneses, Orellana and Bustamante in Meneses et al. (2018) .
he novelty of the current work is to investigate this nonlinearity in the
iscoelastic setting within the context of strain-limiting theory. 

Rajagopal in Rajagopal (2003, 2007) introduced some models to
tudy response of elastic bodies where an implicit constitutive relation
s specified between the stress and the strain (or the gradient of the dis-
lacement). This was a consequence of the idea that there might exist
ore complicated relationships between the stress and the kinematical

ariables than just the fact that stress is an explicit function of them.
urthermore, if one considers the cases where the strain is small, then
t would be possible to obtain nonlinear relationships between the lin-
arized strain and the stress. This approach, which is called the strain-
imiting theory, has attracted a serious amount of attention in the recent
ears in various contexts (see e.g. Bulíček et al. (2014) ; Bustamante
2009) ; Bustamante and Rajagopal (2011) ; Erbay and Ş engül (2015) ;
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ajagopal (2014) ; Rajagopal and Saccomandi (2014) ) due to the fact
hat it is capable of explaining some phenomena such as what happens
t a crack tips (see e.g. Rajagopal and Walton (2011) ), and also that
t has been observed in some experiments (see e.g. Rajagopal (2014) ;
aito et al. (2003) ). One can also refer to Ş engül (2021) for a detailed
verview. 

Even though many studies exist in elastic setting, there are very
ew results exploring viscoelastic phenomena. In order to study the re-
ponse of viscoelastic materials, Muliana et al. Muliana et al. (2013) de-
eloped a quasi-linear viscoelastic model where the linearized strain
s expressed as an integral of a nonlinear measure of the stress (see
lso Rajagopal (2009) , Bulíček et al. (2012) ). Rajagopal and Sacco-
andi Rajagopal and Saccomandi (2014) , on the other hand, modelled

ate-type viscoelasticity by considering a special subclass of the gen-
ral implicit constitutive relations. Using these constitutive relations,
rbay and Ş engül Erbay and Ş engül (2015) derived a one-dimensional
onlinear strain-rate viscoelastic model and studied conditions on the
onlinearity for the existence of traveling wave solutions. Later, in
rbay and Ş engül (2020) , Erbay and Ş engül thermomechanically de-
ived the corresponding stress-rate type viscoelastic model and showed
hat the travelling wave solutions for this and the strain-rate type model
021 
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Very recently, Meneses et al. Meneses et al. (2018) obtained some
elf-similar solutions for a new type of nonlinear wave equation in the
ase of a one-dimensional elastic straight bar. In this article, we are
nterested in investigating traveling wave solutions for the viscoelastic
odel proposed by Erbay and Ş engül Erbay and Ş engül (2015) with a
onlinearity studied in Meneses et al. (2018) . Our results also apply to
he stress-rate type model studied in Erbay and Ş engül (2020) due to the
emark above. The novelty in this work is that the constitutive relation is
iven by an arctangent type nonlinear function which exhibits limiting
train behaviour as expected and has not been studied in the context of
iscoelasticity before. Additionally, traveling wave profiles are given for
arge values of the stress which is required in the strain-limiting context,
hich has not been done before. 

The structure of the paper is as follows. In Section 2 we mention the
overning equations for one-dimensional strain-limiting viscoelasticity
nd state the model to be studied in this work. In Section 3 we construct
raveling wave solutions analytically or numerically for various Taylor
olynomials corresponding to the series expansion of the nonlinearity.
inally, a similar analysis is done for the arctangent type nonlinearity.
lso in Section 4 , we show that for large values of the stress travelling
ave solutions exist and the profiles for the nonlinearity and the stress
ehave as expected. Throughout the work, we use dimensionless vari-
bles and parameters. 

. Strain-limiting viscoelasticity 

.1. One-dimensional strain-limiting viscoelasticity 

In one space dimension, the implicit constitutive relation introduced
y Rajagopal Rajagopal (2003, 2007) takes the form 

( 𝝐, 𝐓 ) = 0 , (2.1)

here 𝝐( 𝑥, 𝑡 ) is the linearized strain given by 𝝐 = 

1 
2 (∇ 𝐮 + ∇ 𝐮 𝑇 ) for dis-

lacement 𝐮 ( 𝑥, 𝑡 ) , and 𝐓 ( 𝑥, 𝑡 ) is the Cauchy stress. In some cases we can
rite (2.1) as 

= 𝑔( 𝐓 ) , (2.2)

or a nonlinear function 𝑔 satisfying 𝑔(0) = 0 . Rajagopal and Saccomandi
ajagopal and Saccomandi (2014) extended this approach to viscoelas-

ic materials by considering the relation 𝜙( 𝝐, 𝝐𝑡 , 𝐓 ) = 0 , where 𝝐𝑡 stands
or the time derivative of the strain. Recently, Erbay and Ş engül Erbay
nd Ş engül (2015) considered the constitutive relation 

+ 𝜈𝝐𝑡 = 𝑔( 𝐓 ) , (2.3)

here 𝜈 > 0 is the viscosity constant, and 𝑔( ⋅) is a nonlinear function of
he stress. In Erbay and Ş engül (2015) , using the equation of motion for
he displacement, the constitutive relation (2.3) and the definition of the
inearized strain, Erbay and Ş engül obtained, in one space dimension,
he third-order semilinear equation for the stress 𝑇 = 𝑇 ( 𝑥, 𝑡 ) as 

 𝑥𝑥 + 𝜈 𝑇 𝑥𝑥𝑡 = 𝑔( 𝑇 ) 𝑡𝑡 , (2.4)

nd studied traveling wave solutions of this equation with some nonlin-
ar functions 𝑔 widely studied in the literature. Recently, in Erbay et al.
2020) , Erbay, Erkip and Ş engül proved local-in-time existence of so-
utions for (2.4) . Also, Meneses et al. Meneses et al. (2018) considered
he elastic case together with the relation (2.2) , which results in (see
ustamante and Sfyris (2015) ) 

rad 

( 

1 
𝜌

div 𝐓 

) 

+ 

[ 
grad 

( 

1 
𝜌

div 𝐓 

) ] 𝑇 
+ grad ( 𝐛 ) + [ grad ( 𝐛 )] 𝑇 = 2 𝜕 

2 

𝜕𝑡 2 
[ 𝐠 ( 𝐓 )] , 

(2.5) 

here 𝐛 is the body force and 𝜌 is the density of the body. In Meneses
t al. (2018) , (2.5) is studied in the particular case when 𝐛 = 𝟎 , and 𝜌
s a constant. In one space dimension with constant 𝜌, (2.5) reduces to
 𝑥𝑥 = 𝜌𝑔( 𝑇 ) 𝑡𝑡 . Note that (2.4) is equivalent to this equation in the elastic
etting (that is, when 𝜈 = 0 ) with all the quantities made dimensionless.
2 
Also, in Erbay and Ş engül (2020) , Erbay and Ş engül considered the
tress-rate type model given by 

+ 𝛾𝐓 𝑡 = ℎ ( 𝐓 ) , (2.6)

nd instead of (2.4) they obtained the resulting equation as 

 𝑥𝑥 + 𝛾 𝑇 𝑡𝑡𝑡 = ℎ ( 𝑇 ) 𝑡𝑡 . (2.7)

s remarked in Erbay and Ş engül (2020) , the travelling wave solutions
or (2.4) and (2.7) coincide. Therefore, the travelling wave profiles we
rovide are valid for the latter case as well and hence we will not inves-
igate this case separately. 

.2. Traveling wave solutions 

In this section we define the form of the solution we seek and state
ts properties to obtain an equation corresponding to (2.4) . Traveling
aves are solutions of the form 

 = 𝑇 ( 𝜉) , 𝜉 = 𝑥 − 𝑐𝑡, (2.8)

here the wave propagation speed 𝑐 is a constant to be determined later.
ubstitution of (2.8) into (2.4) gives 

 

′′ − 𝜈 𝑐 𝑇 ′′′ = 𝑐 2 [ 𝑔( 𝑇 )] ′′, (2.9)

here the symbol ′ stands for differentiation with respect to 𝜉. We also
ssume that 

lim 

→−∞
𝑇 ( 𝜉) = 𝑇 − ∞, lim 

𝜉→+∞
𝑇 ( 𝜉) = 𝑇 + ∞, (2.10)

ith 𝑇 − ∞ ≠ 𝑇 + ∞, where 𝑇 − ∞ and 𝑇 + ∞ are the two constant states correspond-
ng to heteroclinic traveling waves which will be specified later. We can
ntegrate (2.9) using the fact that 𝑇 ′( 𝜉) , 𝑇 ′′( 𝜉) → 0 as 𝜉 → ±∞. Also using
2.10) , we obtain 

 

′ = 

1 
𝜈 𝑐 

{ 

𝑇 − 

𝑇 − ∞ + 𝑇 + ∞
2 

− 𝑐 2 
[ 
𝑔( 𝑇 ) − 

𝑔( 𝑇 − ∞) + 𝑔( 𝑇 + ∞) 
2 

] } 

, (2.11)

here 

 

2 = 

𝑇 − ∞ − 𝑇 + ∞

𝑔( 𝑇 − ∞) − 𝑔( 𝑇 + ∞) 
. (2.12)

rom (2.12) , since 𝑐 2 is always positive, one concludes that either
 

− 
∞ > 𝑇 + ∞ and 𝑔( 𝑇 − ∞) > 𝑔( 𝑇 + ∞) , or 𝑇 − ∞ < 𝑇 + ∞ and 𝑔( 𝑇 − ∞) < 𝑔( 𝑇 + ∞) must hold.
e will work with either of these conditions depending on the case we

onsider. 

. Traveling wave solutions for the arctangent model 

Our main aim in this section is to consider the nonlinearity proposed
y Meneses et al. Meneses et al. (2018) which, in general, can be written
s 

( 𝑇 ) = ℵ arctan ( 𝜗𝑇 ) , (3.1)

or positive constants ℵ and 𝜗 . In fact, as explained by Meneses et al.
eneses et al. (2018) , relation (3.1) is proposed as an approximation of

he expression 

( 𝑇 ) = 𝛼

[ ( 

−1 + 

1 
1 + 𝛽𝑇 

) 

+ 

𝛾

(1 + 𝜄𝑇 2 ) 1∕2 
𝑇 

] 
, (3.2)

hich was introduced and studied by Bustamante and Rajagopal
ustamante and Rajagopal (2011) , where 𝛼, 𝛽, 𝛾 and 𝜄 are constants.
learly, as explained in Meneses et al. (2018) , equation (3.2) models the
esponse of an elastic body for which the strain remains small indepen-
ently of the magnitude of the stress. Moreover, it is relatively easier to
eal with the relation (3.1) rather than (3.2) in terms of the calculations
o as to study the qualitative properties of the implicit solutions. It would
e a great achievement to carry out a similar analysis for (3.2) . How-
ver, since (3.1) and (3.2) show similar qualitative properties in terms
f implicit constitutive modelling, it is more reasonable to start with the



Y. Ş engül Applications in Engineering Science 7 (2021) 100058 

-10 0

0

0.5

1

g

=0.1
=0.5
=1.0

-10 0

0

0.5

1

T

=0.1
=0.5
=1.0

Fig. 1. Second Taylor polynomial case. 
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nalysis of (3.1) . This type of relation, together with an exponential and
olynomial type nonlinearities, are discussed by Meneses et al. Meneses
t al. (2018) where the particular case of a one-dimensional bar is con-
idered and boundary-value problems are analyzed in an elastic setting.
n this work, we study (3.1) by taking the constants ℵ and 𝜗 as unity
or simplification, and show existence of traveling wave solutions for
quation (2.11) . 

To this end, we will investigate the sequence of Taylor polynomials
pproximating the arctangent function. Since this is valid only around
ero, we divide the analysis into two parts; firstly, we consider small
alues of 𝑇 and solve (2.11) directly, and secondly, we put 𝑇 = 1∕ 𝑧 and
olve a new equation corresponding to (2.11) so that the theory is valid
way from zero as well. 

.1. First Taylor polynomial 

Looking at the first Taylor polynomial of (3.1) , namely, 𝑔( 𝑇 ) = 𝑇 ,
quation (2.11) reduces to 𝑇 ′ = 0 giving the constant solution which
ontradicts 𝑇 − ∞ > 𝑇 + ∞. Therefore, we do not obtain a heteroclinic travel-
ing wave in this case. 

.2. Second Taylor polynomial 

In this section we will look at the approximation of (3.1) by its second

aylor polynomial, namely 𝑔( 𝑇 ) = 𝑇 − 

𝑇 3 

3 . Choosing 𝑇 − ∞ = 1 and 𝑇 + ∞ = 0 ,
nd using 𝑔(0) = 0 , from (2.11) we obtain 

 

′ + 𝑘𝑇 = 𝑘𝑇 3 , 𝑘 = 1∕(2 𝜈𝑐 ) . (3.3)

his is a Bernoulli type differential equation which can be solved ana-
ytically. In order to fix the travelling wave, we assume that 

 (0) = 1∕2 . (3.4)

s a result, we obtain 

 ( 𝜉) = 

1 √
1 + 3 𝑒 2 𝑘𝜉

, (3.5)

here (3.4) is used. Note that the equilibrium points are 𝑇 = 0 and
 = ±1 . Fig. 1 shows the variation of (3.5) with 𝑇 for three different
alues of the viscosity parameter 𝜈. We observe that, as it is expected,
he traveling wave profile becomes smoother as the viscosity increases.

e also deduce that the values of the profile for 𝑔( 𝑇 ) are reduced which
s due to the non-linear dependence. Moreover, since the effective width
f the wave does not decrease to zero, the denominator of 𝑇 ′ is never
ero, and consequently no shock can occur. 

It is worth mentioning that equation (3.3) was also studied by Jor-
an and Puri in Jordan and Puri (2005) as the mathematical analysis
f the experimental observation of a shock transverse wave propagating
n an elastic medium done by Catheline, et al. Catheline et al. (2003) .
n Catheline et al. (2003) , authors investigate a soft tissue model called
gar-gelatin phantom and they applied a sinusoidal driving signal at the
3 
oundary. They model their stress-strain relation by a cubic (which was
orrected in Catheline et al. (2005) ) that becomes (3.3) for the consider-
tion of travelling wave solutions as shown in Jordan and Puri (2005) .
his provides another motivation to study models (2.4) and (2.7) . Also,
he profile for traveling wave solutions agree with those in Jordan and
uri (2005) in terms of behaviour against changing viscosity. 

.3. Third Taylor polynomial 

in this case we take 𝑔( 𝑇 ) = 𝑇 − 

𝑇 3 

3 + 

𝑇 5 

5 . Choosing the constant stated

s 𝑇 − ∞ = 

√
2∕3 and 𝑇 + ∞ = 0 , from (2.11) we obtain the differential equa-

ion 

 

′ = − 

1 
13 𝜈𝑐 

𝑇 (1 − 𝑇 2 ) (2 − 3 𝑇 2 ) . (3.6)

It is clear that this equation admits five equilibrium solutions, namely
 = 0 , 𝑇 = ±1 and 𝑇 = ± 

√
2∕3 . In fact, this is the reason to initially

hoose 𝑇 − ∞ to be equal to 
√
2∕3 . Equation (3.6) is a nonlinear, first order

ifferential equation with a polynomial type nonlinearity, and hence
t must have an analytic solution. Solving (3.6) gives the closed form
olution 

𝑇 1∕2 (1 − 𝑇 2 ) 1∕2 

(2 − 3 𝑇 2 ) 3∕4 
= 𝐶𝑒 

− 𝜉

13 𝜈𝑐 , (3.7)

here the constant 𝐶 = 

√
3 ∕5 3∕4 can be found using (3.4) . The profiles

or the traveling wave 𝑇 and the nonlinearity 𝑔 can be seen in Fig. 2 for
ifferent values of 𝜈. As in the previous case, the traveling wave profile
ecomes smoother as the viscosity increases. Moreover, as expected, the
tress converges to the preset constant states as 𝜉 → ±∞. 

.4. Fourth Taylor polynomial 

Here we take 𝑔( 𝑇 ) = 𝑇 − 

𝑇 3 

3 + 

𝑇 5 

5 − 

𝑇 7 

7 together with 𝑇 − ∞ = 1 , 𝑇 + ∞ = 0 .
n this case, equation (2.11) gives 

 

′ = 

1 
76 𝜈𝑐 

(
−29 𝑇 + 35 𝑇 3 − 21 𝑇 5 + 15 𝑇 7 

)
. (3.8)

s in the third Taylor polynomial case, this is a first order differen-
ial equation with a polynomial type nonlinearity. Simplifying the right-
and side gives 

 

′ = 

1 
76 𝜈𝑐 

𝑇 ( 𝑇 2 − 1) (15 𝑇 4 − 6 𝑇 2 + 29) . 

rom this from of the equation, it is clear that there are seven equilib-
ium points where three of them are real, namely 𝑇 = 0 and 𝑇 = ±1 , and
our of them are complex. It can be calculated that the analytic solution
xist in a closed form similar to the third approximation case as in (3.7) ,
nd since the coefficients involved are very big and have no significant
ffect on the form of the solution we prefer to give the numerical solu-
ion in Fig. 3 . 
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Fig. 2. Third Taylor polynomial case. 
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Fig. 4. Numerical solution for the arctangent 
function. 
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.5. Higher order Taylor polynomials 

One can do similar calculations for approximations of (3.1) with
igher order Taylor polynomials. Since they are all polynomials, the dif-
erential equation obtained would be a first order ordinary differential
quation with a polynomial type nonlinearity. Therefore, they all must
ave an analytic solution, explicit or implicit. However, these solutions
ill not be significantly different from what we obtain in the third and

ourth Taylor polynomial cases. Therefore, we prefer to skip them here
nd look for a solution with (3.1) as the nonlinearity. Nonetheless, it is
ossible to plot the profiles for each Taylor approximation correspond-
ng to the arctangent function. 

.6. The arctan function 

Here we take 𝑔( 𝑇 ) as in (3.1) together with 𝑇 − ∞ = 1 , 𝑇 + ∞ = 0 and 𝑇 (0) =
∕2 . In this case (2.11) becomes 

 

′ = 

4 
𝜋𝜈𝑐 

(
𝜋

4 
𝑇 − arctan ( 𝑇 ) 

)
, 

hich is a separable equation whose solution involves a nontrivial in-
egral. Therefore, we focus on the numerical solution instead. Using
4 
ATLAB function ode45 to solve this differential equation, which is
he standard solver of MATLAB for ordinary differential equations, we
resent in Fig. 4 the numerical solutions for three different values of the
iscosity parameter 𝜈. 

. Approximating the arctangent for large values of 𝑻 

As mentioned before, Taylor series approximation for the arctangent
unction is only valid for small values of 𝑇 . However, in strain-limiting
heory we would like to have large 𝑇 values. In order to look for a travel-
ing wave solutions when 𝑇 gets large, we would put 𝑇 = 1∕ 𝑧 in (2.11) .
his requires 𝑔(1∕ 𝑧 ) on the right-hand side. Since we would like to in-
estigate large values of 𝑇 , 𝑧 must be small. Hence we use the equality 

rctan (1∕ 𝑧 ) + arctan ( 𝑧 ) = 𝜋∕2 , 

o that we take 𝑔(1∕ 𝑧 ) = 𝜋∕2 − 𝑧 + 𝑧 3 ∕3 − … . Considering the first Tay-
or polynomial, we will take 𝑔(1∕ 𝑧 ) = 𝜋∕2 − 𝑧 so that from (2.12) we
btain 𝑐 2 = 𝑇 − ∞ 𝑇 + ∞. 

 

′ = − 

1 (
𝑧 + 𝑇 − ∞𝑇 + ∞𝑧 3 − ( 𝑇 − ∞ + 𝑇 + ∞) 𝑧 2 

)
, 
𝜈 𝑐 
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hich can be written as 

 

′ = − 

1 
𝜈 𝑐 

𝑧 (1 − 𝑇 − ∞𝑧 )(1 − 𝑇 + ∞𝑧 ) . (4.1)

learly, the equilibrium points for this first order ordinary differential
quation are 𝑧 = 0 , 𝑧 = 1∕ 𝑇 − ∞ and 𝑧 = 1∕ 𝑇 + ∞. Solving (4.1) gives 

 

1 
𝜈𝑐 

𝜉 + 𝐶 = 

𝑇 − ∞

𝑇 + ∞ − 𝑇 − ∞
log (1 − 𝑇 − ∞𝑧 ) − 

𝑇 + ∞

𝑇 + ∞ − 𝑇 − ∞
log (1 − 𝑇 + ∞𝑧 ) + log ( 𝑧 ) . 

(4.2) 

here 𝐶 is the integration constant which can be found using 𝑧 (0) = 1∕2
which corresponds to 𝑇 (0) = 2 ). Going back to variable 𝑇 by substi-
uting 𝑧 = 1∕ 𝑇 , we can look at the profiles for 𝑔 and 𝑇 changing with
iscosity 𝜈 in Fig. 5 , where we choose 𝑇 − ∞ = 10 and 𝑇 + ∞ = 1 . 

. Conclusions 

We have investigated heteroclinic traveling wave solutions corre-
ponding to a viscoelastic model within the context of strain-limiting
heory. Our aim was to study a nonlinearity of arctangent type which
as been studied in the elastic setting recently, and see how the wave
rofiles change by the viscosity. With this respect, we analyzed travel-
ng waves corresponding to Taylor polynomial approximations of the
onlinearity as well as the nonlinearity itself, and obtained solutions
nalytically or numerically both for small and large values of the stress.
his is the first time in the literature that a traveling wave solution in
he context of strain-limiting theory is illustrated for large values of the
tress which is believed to be a further step in the understanding of re-
ponse of different types of materials in nature. 
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