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MW-GAN: Multi-Warping GAN for Caricature
Generation with Multi-Style Geometric
Exaggeration

Haodi Hou, Jing Huo, Jing Wu, Yu-Kun Lai, and Yang Gao

Abstract—Given an input face photo, the goal of caricature have achieved appealing results on image style translation in
generation is to produce stylized, exaggerated caricatures that texture and color. However, these methods are not designed
share the same identity as the photo. It requires simultaneous v, qea| with geometric shape exaggeration in caricatures. The

style transfer and shape exaggeration with rich diversity, and . .
meanwhile preserving the identity of the input. To address this recent GAN-based caricature generation methods [15], [16],

challenging problem, we propose a novel framework called Multi- [17] can generate caricatures with reasonable exaggerations,
Warping GAN (MW-GAN), including a style network and a  but still lack variety in geometric exaggeration, leaving a gap
geometric network that are designed to conduct style transfer and petween computer generated and real caricatures. CariGAN
geometric exaggeration respectively. We bridge the gap betweenby Li et al. [15] translates both texture and shape in a

the style/landmark space and their corresponding latent code _: I twork d treats the t lati det inisti
spaces by a dual way design, so as to generate caricatures>'Ndl€ NEWOrK, and treats the transiation as a deterministic

with arbitrary styles and geometric exaggeration, which can be Mapping function, which restricts the diversity of the generated
speci ed either through random sampling of latent code or from caricatures. WarpGAN by Shi et al. [16] and CariGANs by

a given caricature sample. Besides, we apply identity preserving Cao et al. [17] separately render the images' texture and
loss to both image space and landmark space, leading to a greatgy a4 qerate face shapes. Though they can generate caricatures

improvement in quality of generated caricatures. Experiments . . . .
show that caricatures generated by MW-GAN have better quality with appealing texture styles and meaningful exaggerations,

than existing methods. their exaggeration is xed according to the input photo.
Index Terms—Caricature Generation, Generative Adversarial Totackle this |§sue, m. this paper, we propose Muly-Warpmg
Nets, Multiple Styles, Warping GAN for generating caricatures from face photos with a focus

on generating various geometric exaggerations. It is a GAN-
based framework to generate caricatures with multiple exag-
gerations by applying Multiple Warping styles to face images,
CARICATURES are artistic drawings of faces with exagzsn( is thus called Multi-Warping GAN (MW-GAN). To allow
geration of facial features to emphasize the impressiops the diversity of both texture and geometric exaggeration
of or intentions towards the subject. As an art form, caricaturggﬂes, MW-GAN is designed to have a style network and
have various depiction styles, such as sketching, pencil strokggeometric network. The style network is trained to render
and oil painting, and various exaggeration styles to expregsages with different texture and coloring styles, while the
different impressions and emphasize different aspects of Rﬁ‘@ometric network learns the exaggeration in the landmark
subject. Artists have their own subjectivity and different skillgpace and warps images accordingly. In both networks, we
which also contribute to the diversity of caricatures. As Sho"\ﬁ}opose to use latent codes to control the texture and exagger-
in Figure 1, caricatures drawn by artists can have varioggon styles respectively. The diversity is achieved by random
texture styles and different shape exaggerations even for §gnpling of the latent codes or extracting them from sample
same subject. These varieties in caricature generation M@kgicatures. To correlate the latent codes with meaningful
caricatures afascin_ating_ art form with Iong—Ia_sting popularityexture styles and shape exaggerations, we propose a dual
However, such diversity has not been achieved in compyzy architecture, which simultaneously translates photos into
erized generation of caricatures. Early works generate carigaricatures and caricatures into photos, with the aim to provide
tures through amplifying the difference from the mean face [1jyore supervision on the latent code. With the dual way design,
[2], [3] or automatically learning rules from paired photogycle consistency loss on latent code can be introduced. This
and caricatures. However, these methods can only genergigws us to not only get more meaningful latent codes, but
caricatures with a specic style. The recent style transfgfiso optain better generation results compared with using the
methods [4], [5], [6], [7] and image translation methods [8kjngle way design. Besides, compared with [16] and [17], our

[9], [10], [11], [12], [13] based on Convolutional Neural Netmethod supports multiple exaggeration styles for the same
works (CNNs) and Generative Adversarial Nets (GANS) [14}t photo.
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210025, angsu, China. E-mail: Rhd@smal.nju.edu.cn, huojing@nju.eduHawe proposed to use an identity preservation loss which is
gaoy@nju.edu.cn.

J. Wu and VY.-K. Lai are with the School of Computer Science & Informatd€ Ned _m the_ 'mage_ space to preserve 'dentl_ty' Observing
ics, Cardiff University, UK. E-mailf WuJ11,LaiY4@cardiff.ac.uk. that caricaturization involves both style translation and shape
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Fig. 1. Caricature diversity. The rst column shows input photos. The following three columns are caricatures drawn by artists. Caricatures in the last three

columns are generated by our MW-GAN with photos in the rst column as input. It shows that artists can draw caricatures with various texture styles and
exaggerations, and our MW-GAN is designed to model these diversities.

deformation, to preserve the identity of the subject in the inptd style transfer. The ground-breaking work of Gatys et al. [4]
photo, we deploy identity recognition loss in both image spapeesented a general neural style transfer method that can
and landmark space when training the networks. The losstiansfer the texture style from a style image to a content
both spaces leads to remarkable quality improvement of timage. Following this work, many improved methods [5],
generated caricatures. [6] have been proposed to speed up the transfer process by

We conducted ablation studies to verify the effectiveness lefarning a specic style with a feed-forward network and
the dual way architecture in comparison with the single wayansfer an arbitrary style in real time through adaptive instance
design, and the introduction of the landmark constraints in thermalization [7]. Despite the achievements in transferring
identity recognition loss. We compared our method with thenages with realistic artistic styles, these methods can only
state-of-the-art caricature generation methods in terms of #teange the texture rendering of images, but are not designed
quality of the generated caricatures. And we demonstrated tbemake the geometric exaggeration required in caricature
diversity of both the texture and exaggeration styles in thlygeneration. In our MW-GAN, a style network together with
generated caricatures using our method. Results showed ktheometric network are used to simultaneously render the
the effectiveness of our method and its superiority over tl@age's texture style and exaggerate its geometric shape, with
state-of-the-arts. the aim to generate caricatures with both realistic texture styles

In summary, the contributions of our work are as followsand meaningful shape exaggerations.

1) Our method is the rst to focus on the diversity of

geometric exaggeration in caricature generation, and \Be Generative Models for Image Translation

propose a GAN-based framework that can generate carrhg gyccess of Generative Adversarial Nets (GANS) [14]
icatures with arbitrary texture and exaggeration styles, a5 jnspired a series of work on cross-domain image transla-
2) Our framework proposes a dual way design tQon The pix2pix network [18] is trained with a conditional
learn more meaningful relations between the imaggaN and needs supervision from paired images which are
style/shape exaggeration spaces and thelr_corr_esponqjll&gd to get. Triangle GAN [19] achieved semi-supervised
latent code spaces, and enables the speci cation of figaqe translation by combining a conditional GAN and a
styles and exaggerations of generated caricatures frgfRjirectional GAN [20] with a triangle framework. There have
caricature samples. o been efforts to achieve image translation in a totally unsuper-
3) To preserve thg |dent|ty of th_e_ subject_ln the _phOtQ,ised manner through shared weights and latent space [9],
we also deploy identity recognition loss in both imaggs) cycle consistency [10], and making use of semantic fea-
space and landmark space when training the netwogkys'12]. The above methods treat image translation as a one-
which leads to remarkable improvement in the qualifiy, one mapping. Recently more methods have been proposed
of generated caricatures. to deal with image translation with multiple styles. Augmented
We compare our results with those from the state-of-thgvde GAN [21] extends cycle GAN to multiple translations
art methods, and demonstrate the superiority of our methodbif,] adding a style code to model various styles. MUNIT [11]
terms of both quality and diversity of the generated caricaturgsq CDAAE [13] disentangle an image into a content code and
a style code, so that a single input image can be translated
to various output images by sampling different style codes.
A. Style Transfer These methods can successfully translate images between
Since CNNs have achieved great success in understandiifferent domains, and can render with various texture styles
the semantics in images, it is widely studied to apply CNNa one translation. However, these translations mostly keep

Il. RELATED WORK



the image's geometric shapes unchanged, which is not suitaBleNotations

for caricature generation. By contrast, we separately model thq g X, 2 X, denote an image in the photo domay,

two aspects, texture rendering and geometric exaggeration, apg Xc 2 X, denote an image in the caricature domig

achieve both translations in a multiple style manner. That i8;yen an input face phota, 2 X, the goal is to generate

our model can generate caricatures with various texture stylegaricature image in the spade, while sharing the same

and diverse geometric exaggerations for a given input. jgentity asx,. This process involves two types of transition,
texture style transfer and geometric shape exaggeration. Pre-
vious works [17], [16] can only generate caricatures with a

C. Caricature Generation xed geometric exaggeration style when an input is given. In
this paper, we focus on the problem of caricature generation

Ca.trllcature generation has been studied fo_r a long tm,W'rth multiple geometric exaggeration styles, and propose the
Traditional methods translate photos to caricatures using; framework to deal with it

computer graphics techniques. The rst interactive caricature-l-he notations used in this paper are as follows. We use
generator was presented by Bre_nnan etal. [22]'_ The ca_\ricat%g; I;y to denote image sample, latent code, landmark and
generator allows users to manipulate photos interactively 5Pentity label respectively. Subscripfsand ¢ refer to photo

create caricatures. Following their work, rule-based metho 8d caricature respectively, while superscriptand c repre-

were proposed [1], [3], [2] to automatically amplify theﬁnt style and content. Encoders, generators (a.k.a. decoders)

difference from the mean face. Example-based methods [.2 d discriminators are represented by capital leer& and
[24] can automatically learn rules from photo-caricature pairg, respectively.
Although these methods can generate caricature automatically '
or semi-automatically, they suffer from some limitations, such
as the need of human interactive manipulation and pairBd Multi-Warping GAN
data collection. Moreover, caricatures generated by these earlfrhe network architecture of Multi-Warping GAN is shown
methods are often unrealistic and lack diversity. in Figure 2. It consists of a style network and a geometric
Since GANs have made great progress in image generatioatwork. The style network is designed to render images
many GAN-based methods for caricature generation wendth different texture and texture styles, while the geometric
presented recently. Some of these methods translate phatesvork aims to exaggerate the face shapes in the input
to caricatures with a straightforward network [12], [15], whilémages. The style network works in the image space, while
others translate the texture style and geometric shapes dbp-geometric network is built on landmarks and exaggerates
arately [16], [17]. For the straightforward methods, Domaigeometric shapes through warping. Both style and geometric
Transfer Network (DTN) [12] uses a pretrained neural networietworks are designed in a dual way, i.e., there is one way
to extract semantic features from input so that semantic contémttranslate photos to caricatures and also the other way to
can be preserved during translation. CariGAN by Li et al. [15fanslate caricatures to photos. In this paper, we are mainly
adopts facial landmarks as an additional condition to enforggerested in translating photos to caricatures. Although it can
reasonable exaggeration and facial deformation. As thealeo be achieved with a single way network, we claim that the
methods translate both texture and shape in a single networldiugl way design is essential for high-quality generation. For
is hard for them to achieve meaningful deformation or to bahe style network, using a single way is also reasonable and
ance identity preservation and shape exaggeration. By contrasy achieve competitive results. However, using a dual way
WarpGAN [16] and CariGANs by Cao et al. [17] separatelgesign has its superiority in constraining the content of the
render the image's texture and exaggerates its shape. Althoggimerated caricature, as the dual way model can encode the
they can generate caricatures with realistic texture styles atmhtent of the generated caricature backward and constrain it
meaningful exaggerations, WarpGAN and CariGANSs [17] stilliith the cycle loss. As for the geometric network, using an
suffer from lacking exaggeration variety. Speci cally, when thadditional encoder to map the generated caricature back to
input is speci ed, they can only generate caricatures withthe landmark latent code is necessary to enforce the network
xed exaggeration. However, in real world, it is common thato learn a bidirectional mapping, while a single way model
different artists draw caricatures with different exaggeratiaran easily ignore the landmark information. We experimen-
styles for the same photo. In this paper, we design a framewdaky veri ed that the dual way framework is more effective
that is able to model the variety of both texture styles armbmpared with the single way design.
geometric exaggerations and propose the rst model that cann our dual way design, the style and the shape exaggeration
generate caricatures with diverse styles in both texture aamk represented by latent codg'sand z' respectively. Both
exaggeration for one input photo. latent codes can be sampled from Gaussian distribution or ex-
tracted from sample caricature images to achieve the diversity
in both style and exaggeration. To train this network, we design
[1l. M ULTI-WARPING GAN a set of loss functions to tighten the corresponding relations
between the latent code space and the image space, and to
In this section, we describe the network architecture of tikeep identity consistency. In the following, we will explain
proposed Multi-Warping GAN and the loss functions used fdhe details of our style network and geometric network along
training. with the loss functions accordingly.
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Fig. 2. The network architecture of the proposed multi-warping GAN. The left part is the style network and the right part is the geometric network. The gray
dashed arrows denote the ow of two auto-encoders, with the upper one being the auto-encoder of photos and the lower one for caricature reconstruction.
The orange arrows denote the ow of photo-to-caricature generation and the blue arrows for caricature-to-photo generation. In our dual way framework, we
assume the caricature and the photo share the same content feature space but have separate s&@ apdeEsare two encoders to encode the content

of photos and caricatures respectively. Similarly de nqu, andE¢ are two encoders to encode the style of photos and caricatures. Gaussian distribution

is imposed on their outputg; andzZ, so that we can sample style codes from Gaussian when translating photos to caricatures or vice versa. As for the
geometric exaggeration, we assume that it depends on the content Iatengaﬂezg) and a landmark transformation latent codé br z'p), where the

former captures the characteristics of the input face, while the latter represents the artistic style. That is to say, a generat@'cnéfﬁlk()rls trained to

output a landmark displacement magc ( Ip) with zg (z8) and z'C (z},) as input. To get the nal translated caricatwg ¢ (translated photxc p),

we conduct geometric exaggeration on the stylized im@eC x4 p) through warping according to its original facial landmatks(l¢) and the learned

landmark displacementslc ( Ip). Here we only show the image translation ow of the geometric network, and more details are illustrated in Section 1I-B2.

1) Style Network:During the texture style transfer, the facecoloured arrows, and can be formulated as:
shape in the image should be preserved. We thus assume 0 srec e
that there is a joint shape space, referred to as “content” Xpr ¢ = Ge(Ep(Xp)i Zc):
space, shared by both photos and caricatures, while their style X% p = Gh(ES(Xc):iZp);
spaces are independent. Following MUNIT [11], the style s s .
network is composed of two autoencoders for content and styf8€re z2 and z; are style codes which can be sampled
respectively, and is trained to satisfy the constraints in both tﬁ@m Gaussian distributions for the two modalities;, . is
image reconstruction process and the style translation procésgenerated image with the content from the input photo and

R . .
The image reconstruction process is shown in Figure 2 withcaricature style, whilatg, , is a generated image with the

gray dashed arrows, and can be formulated as follows: content from the input caricature and a photo style.
’ The constraints in the style transfer process are based on

®)

Xg = G3(ES(Xp); ES(Xp)); three aspects. Firstly, after trans_fer, the_ style code of the
0 ~S/=Cro N, S . (1) transferred image should be consistent with the style code of
Xo = Ge(Ec(xc); Belxe)): input, i.e.

whereES andE$ are content and style encoders for photos. s s/ 0 s )
Lo P P _ L = kz; Ej(x ki + kz;  Ec(xp ok 4
Similarly, ES andE$ are content and style encoders for carica- ~—'° = p Eplxa kit kze Eclp ko (4)
tures.G_g andGg are two decoders fo_r photos_and caricaturgghere x9, , and Xg! . are dened in Eq. (3). Secondly, the
respectively. The image reconstruction loss is de ned as thfiage content should keep unchanged during the transfer. A
1 difference between the input and reconstructed images: cycle consistency loss on the content codes of the input and

0 0 the transferred images is used, as shown below:
Lrec_x = kXp kal + kXC Xckl. (2)

Leyec :kEg(Xp) ES(XS! ki 5
The style translation process is shown in Figure 2 with +KES(Xc) Eg(Xg o)k ®)



Thirdly, the transferred image should be able to convert baokiginal landmarks and the learned landmark displacements. In
when passing through the same encoder-decoder and usingotinepaper, landmarks from the WebCaricature dataset are used.
original style code. Again a cycle consistency loss on the inplt real-world applications, face landmarks can be detected with
and transferred images is used for this constraint: existing detectors.
Leyex =KXp GE(EE(XS! ) ES(xp) ke Fqllowing the_above assumptiqn, the design Qf our geo-
Fhxe  GS(ES(XY ):ES(xo)Ki: (6) metric network is as §hown in Figure 3. It C(_)nS|sts of one
¢ ci=pliet p/r=elfe//L generator G or G'p) in each way of translation and two
Please note, the second terms in Eq. (5) and Eq. (6) consti@iitoders &}, E.) whose functions will be explained later.
the style transfer from caricatures to photos. It is only possibfeiking the translation from photos to caricatures as an example
to impose this cycle consistency in our dual way desig(shown in Figure 3a), the generai®}, takes the content code
It is expected that the cycle consistency can help build the and the landmark transformation latent cageas input,
relation between the latent code space and the image spag®l outputs the landmark displacementk which are then
A single way network from photos to caricatures only isdded to the input landmarks to get the target caricature
also implemented as a baseline (see Section IlI-C) which|igdmarks';.
trained without these two terms. Experimental results, as inThe |andmark transformation latent codd encodes a

Section IV, demonstrate the superior generation results “S%pe exaggeration style. To make it correlate to meaning-

the dual way design with the cycle consistency loss. ful shape exaggerations, we follow the idea of Augmented
Egs. (2), (4), (5) and (6) give all the loss functions to tra'@:ycleGAN [21] and introduce two encodelEﬁp, E! into the

the style network. With the above network architecture, we Cometric network. Again, taking the translation from photos

generate caricatures with various texture styles by samplipgcaricatures for example, the encodirtakes the landmarks

different style codes. of the photol, and the landmarks of the corresponding

2) Geometric Network:Geometric exaggeration is an eSearicatyrey as input, extracts the difference between them and

sential feature of caricatures. There are two aspects 10 Coliongtrycts the landmark latent carfe. By introducing the
sider when modeling caricature exaggerations. One is thal,ger. it enables us 1) to enforce cycle consistency between

exaggerations usually emphasize the subject's characterist{ﬁ% randomly sampled latent cod and the encoded latent

The other Is that they a]so re.ect the skills ar_1d prgfgrence g dezdC to correlatez! to meaningful exaggerations; and 2) to
the artists. Therefore, in caricature generation, it is natur,

. ! . tractz. from example caricatures to perform sample guided
to model geometric exaggeration based on both the in N P b bed

ape exaggeration. The same applies for the end®ldesed
photo and an independent exaggeration style. By changing P gg PP gad

. AN _ ranslation from caricatures to photos (Figure 3b).
exaggeration style, we can mimic different artists to generate

caricatures that have different shape exaggerations for a gi e# asically, to train .the geometric_ network, we have. the
input photo. It is straightforward to use a random latent CO&ndmark transformation latent code reconstruction loss:

to model this independent exaggeration style. However, this

idea suffers from some problems: 1) a random latent code Lrec 21 = kz, Ep(lhilo)ki+ kze  Ei(Rilpke  (7)
may be ignored while training the model to generate realistic

caricatures and 2) it is hard to ensure that a random latgfitiere the rst term is the reconstruction |osszéf’ the land-
code leads to meaningful exaggeration. Thus, we design enark transformation latent code from photos to caricatures.

geometric network to learn a bidirectional mapping betweerhe second term is the reconstruction losg!oéind is de ned
an exaggeration latent code space and the face landmarksin a similar way.

In our design, we build a latent code space on landmarksgeagides the above loss, we use LSGAN [26] to match the
(landmark transformation latent code space) to represent %erated landmarks with real ones:
different exaggeration styles from artists, and use the content
code to represent the input photo. The geometric network is

G - | 2 [ 2,
designed and trained to learn mappings of two directions. The Lgan =K1 Dp(fp)k + k1 De(fe)k (8)
rst one is the mapping from a combination of a code in the L., =kl D:)(Ip)kz + kDL(r;J)kZ
landmark transformation latent space and a content code to - 2 2
i - i k1 DL(lg)k™ + kDL(I)K 9
a landmark displacement map, which de nes the geometric + c(le) (k™ )

deformation between the input photo and the caricature to

be generated. The landmark displacement map thus captwhere Eq. (8) is the loss for generators and Eq. (9) is the
both the input subject's characteristics and a speci ¢ geomettiss for discriminators. The objective of generators is to make
exaggeration style. In the second mapping, a pair of landmatks generated caricature landmatksor photo landmarks,

of photo and caricature is mapped back to the landmairdistinguishable from real landmarks, i.e., the output of the
transformation latent code space, so that points in the landmadi&criminator with the generated landmarks as input becomes
transformation latent code space are associated with mean-On the other hand, the objective of discriminators is to
ingful exaggeration styles. Geometric exaggeration is nallgiscriminate between the real photo landmatksand the
achieved by warping [25] the input photo according to thgenerated photo landmarky, as well as to discriminate
learned landmark displacements. More concretely, the stylizeetween the real caricature landmatksand the generated
input image is warped by deforming the image according to itaricature landmarkg.
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Fig. 3. Geometric Network. The left part is the network for learning a transformation from a photo's landmarks to a caricature's landmarks. The right part is the
network for the reverse transformation. For the left network, a gene@ltawith the content code of a photgy and a landmark transformation latent catfe

(which can be randomly sampled from a Gaussian distribution) as input will output landmark displacement viagct@ng adding the displacement vectors to

the photo's landmark positions, we get the transformed caricature landigafksmake the randomly samplefl correlate to meaningful shape transformation

styles, we introduce two encoders and force cycle consistency loss on the encoded latent code and sampled latent code. Fzﬁ‘ exdmple; Ip) is the

encoded latent code, and we forzoé to be as close as possible .

Similar to above loss for generated landmarks, we de nepresents the face identity no matter what style it is or whether
the loss for generated images: it is photo or caricature. As for the translated imaggs .

G _ X 2 o 2. and Xc p, Yp andy. are labels of the corresponding input
Lgan x =K1 Dp(Xa pz)k tki DC();‘” ok (10) imagesx, andx. respectively, so that the translated images
Lgan x =KL Dx(Xp)k™ + KD§ (X p)K have the same identity as the input images. It is similar for

+k1  DX(xc)k® + KD X (Xp: QK (11) the translated landmarke andfy. To be clear, these two
discriminators are trained with the whole framework end-to-
The de nition of the above two losses are in the same washd, without pretraining.
as the losses in Egs. (8) and (9), except that the generated) Overall Loss:In summary, training the proposed MW-
landmarks are now changed to images. GAN is to minimize the following types of loss functions:
~We also use LSGAN [26] to match all the latent code) the reconstruction loss of the imadgec x, the style
(including both landmark transformation latent code and thgient codeL ec s, and the landmark transformation latent

style latent code, except content code) to Gaussian: codeL e ; |, and the cycle consistency loss of the content
LgGan_z =kl DK (12 code Lcy_c_C and of the |_mageLcyc_x; Zg the generative
o Skl DI + KD (2K 13 adversarial loss pairs on imagég,, x, Lgan x. landmarks
Lgan 2 = (@) @)k (3) LS 1+ LOan 1+ and latent codes §,, ,, LD, ,; and 3) the

Here,  is latent codes encoded by neural encoders, whileidentify loss on the imageéig x, and on the landmarkisig ;.
is latent codes sampled from Gaussian distribution. Eq. (12)Our framework is trained by optimizing the following
is the loss for the generator and Eq. (13) is the loss for tiwerall objective functions on encoders, generators, and dis-
discriminator. The objective of the generator is to make tHgIminators:
discriminator unable to tell whether the encoded latent codemin ;L ec x + 2(Lrec_s + Lrec_zi + Leyec + Leye x)
z is sampled from Gaussian or not. And the discriminator's ¢ o o .
objective is to try to discriminate between these two kinds of + 3sLia x + alia 1+ s5(Lgan x ¥ Lgan 1+ Lgan 2);
codes. (16)
3) Identity Preservation:ldentity preservation in the gen- . D D D ]
erated caricatures becomes more challenging with the explic'iﬁ%In sbidx*+ aliaa* s(Lgan x* Lgan_i* Lgan_2): (17)
geometric deformation introduced. As a result, in addition Qere, E and G denote the encoder and generator networks,

preserving identity in the image space as in [16], we aqghereasD denotes the discriminator networks;, o, s,

further constraints on identity in the landmark space. Two4 and s are weight parameters to balance the in uence of

discriminators are added to classify the identity from both thge ifferent loss terms in the overall objective function. The
image and the landmarks. whole framework is trained in an end-to-end manner. With
Lia x = 10g(Dig (Yp: Xp))  10g(Dig (Yp: Xp! c)) a r(;unC; b?'ichl ol;‘ tlr?ining daéat(includingtimaEgc];Z Ianéjgarks
X (v - X (v oy and identity labels), we update parameters an
log(D'ld (Yei X)) IOg(Dl'd (VeiXer p)) - (14) alternately. That is to say, in one step of iteration, we rst
Liar= 1og(Dig (Yp:lp)) 109(Dig (Yp:Tc)) optimize all the discriminators with Eq. (17) and then optimize
log(Dig (Yeile))  log(D (veiTp)): (15) all the encoders and generator with Eq. (16).

Here, the two discriminator®?, andD!; are both classi ers i i i

for face identity, except thadX, takes images as input whileC- Degradation to Single Way Baseline

D!, takes landmarks as inpyt, andy. are the identity labels  Notice for the caricature generation task, we can also
for the corresponding photos and caricatures. The label owlggrade the above framework to a single way network, i.e.



IV. EXPERIMENTS

(= ) —
l a ' I . .
| We conducted experiments on the WebCaricature
7 Ve dataset [27], [28]. We will rst describe the details of
L' &' f_ge the dataset and the training process, and then demonstrate the
effectiveness of the dual way design and the landmark based
identity loss through ablation studies. We will show the ability
— of our method to generate caricatures with a variety of both
1 )§\o| texture and exaggeration styles. And nally, we will compare
the caricatures generated using our method with the previous
state-of-the-art methods and show the superiority of our
b method in terms of the generation quality through qualitative
Ho ’;; and quantitative comparisons, as well as a perceptual study.

Tavo
A. Experimental Details

Fig. 4. Framework of baseline single way GAN. The upper two rows denote

the style network and the lower two rows denote the geometric network. Dataset preprocessing\We trained and tested our network

on a public dataset WebCaricature [27], [28]. There are 6,042
caricatures and 5,974 photographs from 252 persons in this
dataset. We rst pre-processed all the images by rotating the
_ o faces to make the line between eyes horizontal, and cropping
only from photos to caricatures as shown in Figure 4. HOwevghe face using a bounding box which covers hair and ears.
we found that without the cycle consistency loss, the singjg detail, an initial box is rst created by passing through the
way network for caricature generation performs not as good @nters of ears, the top of head and the chin. Then the bounding
the dual way design. Here, we give details of the single wayyy ysed is the initial box enlarged by a factor b6. All
network and this forms a baseline method in our eXperime”Eﬁocessed images are resize®& 256 We randomly split
As shown in Figure 4, the degraded single way neton?e dataset Into a training set of 202 |dent|t|e_s (4’8(.)4 photos
also consists of a style network and a geometric netwo nd 4,773 cancature;) and a test set of 50 |den_t|t|es (1,170
The style network is used to render an input photo withhotos and 1,269 caricatures). The generated caricatures have

a caricature style while preserving the geometric shapes.ﬂ]{3 same resolution as the inputs, which2s6 256 Al

consists of two encodefS3, ES and one generatagg. The the images presented in this paper are from identities in the

.. test set. The landmarks used in our experiments are the 17
content encodeE g extracts the feature mag§ that contains ) : .
P Eindmarks provided in the WebCaricature dataset [27], [28].

the geometric information of the input photo, while the styl ) . . e
Details of implementation. Our framework is implemented

encodelE$ extracts texture styled from the input. The style X ,
s i LR th Tensorow. The style network is modied based on
codez; is adapted to a Gaussian distribution and affects i '

image’s style through adaptive instance normalization [7]. THAUNIT [11]. We removed the discriminator on the stylized
geometric network exaggerates the face in the rendered imd§@9es and added a discriminator on the warped images at the

by warping it according to the landmark displacements. end. We also added a discriminator on thg style latent che
To achieve multi-style exaggerations, we assume thht generated by the style encoder to match it with a Gaussian

. . . . |
is controlled by not only the photo's conteag but also a distribution. In the geometric network, we tai& and Ep as

i i |
landmark transformation latent codethat follows a Gaussian 27 €xample to explain the detailed structure, @jdand Ec
distribution. are implemented in the same way. F®lr, the content code is

rstly down-sampled by max pooling with kernel siZand

This straightforward framework can increase the variety stride2, and then is fed into three blocks 8f 3 convolution
exaggeration styles through various landmark transformatiwith stride 1 followed by leaky ReLU with = 0:01 and
latent codes. However, it suffers from some limitations. Firstli3 3 max pooling with stride 2. After that, there is a fully
as it is a one-way framework without cycle consistencgonnected layer mapping this to a 32-dimensional vector. The
there lacks supervision to relate the generated caricatul@sdmark latent code is also mapped to a 32-dimensional
with the landmark transformation latent code. Then with theector by a fully connected layer. Then the two vectors are
use of discriminator, the model may ignore the landmadoncatenated and fed into a fully connected layer to output
transformation latent code in training which actually restricts|.. For E,'J, the two sets of input landmarks (landmarks for
the geometric deformation. Secondly, this one-way framewopkioto and landmarks for caricature) are rstly concatenated
lacks supervision to bridge the gap between the latent spacel then fed into four fully connected layers to give the
of zl and the landmark space. Thus the learned landmasktimated landmark latent code. All the fully connected layers
latent code may have no reference to real landmarks. imG. and E;, are activated with leaky RelLU, except the last
experiments, we compare the generation results using dayer. Discriminators for images are composed of 6 blocks
dual way network with using the single way network, andf 4 4 convolution with stride 2 and a last layer with full
demonstrate the advantages of our dual-way design. connection, while discriminators for latent codes consist of six



I"#$%

PHS 1 ag PHS v

& (*+

Fig. 5. Ablation study. For MW-GAN variants, we generate one caricature for each input. For MW-GAN, we generate three caricatures for each input by
sampling different style latent codes and landmark transformation latent codes.

TABLE |
ABLATION STUDY. COMPARISON OF THE THREE VARIANTS OFMW-GAN, THE SINGLE WAY BASELINE AND MW-GAN. “ACC” IS SHORT FOR THE
RANK-1 ACCURACY.

Method w=0Llijg; Ww=0Lljg x W=0Lgan_ baseline MW-GAN
FID 47.53 56.44 41.09 57.38 36.29
ACC 73.68% 37.95% 59.49% 43.59% 74.87%

layers with full connection. Leaky ReLU is used as activatiomW-GAN with its three variants and the one-way base-
for all discriminators. line method. For quantitative evaluation,&Ehet Inception
We empirically set 1 =10, , = 5 =1:0, 3 =0:05 Distance (FID) [30] is used to evaluate the quality of the
4 = 0:01L We used ADAM optimizers with ; = 0:5 and generated caricatures and rank-1 identi cation accuracy is used
» = 0:999to train the whole network. The network is trainedo evaluate the identity preservation ability. For the calculation
for 500,000 steps with batch size of 1. The learning rate i rank-1 accuracy, the ArcFace [31] model is adopted. The
started with 0.0001 and decreased by half every 100,000 stégenti cation experiment was conducted where photos were
The model is trained on a computer with an NVIDIA GeForckept in the gallery and the generated caricatures were used as
RTX 2080 Ti GPU, and the training takes about three daysprobes. The rank-1 identi cation accuracy is then calculated
accordingly.
. Study on different losses. Figure 5 shows the caricatures
B. Ablation Study generated using MW-GAN and its three variants with different
To analyze our dual way design, geometric network traimdentity losses. From an overall view, it is obvious that
ing and identity recognition loss, we conducted experimentaricatures generated by MW-GAN have much better visual
using the baseline method and three MW-GAN variants lmuality than its other variants. At a closer look, the caricatures
respectively removing the GAN loss on generated landmargenerated using the variant omitting the loss on imagés (
(Lgan_1), the identity recognition loss in the image spackiy x) suffer from bad visual quality, as it lacks adversarial
(Lig_x) and landmark spacé (; ;). Other losses are either ba-supervision from the image view. As for the variant omitting
sic (reconstruction losses) or their effectiveness (GAN losséise loss on landmarksmo Liq |), the generated caricatures
cycle-consistency loss) have been demonstrated in other imhgee better visual quality, but their exaggerations are not in
translation or caricature generation methods [29], [10], [11the direction to emphasize the subjects' characteristics. As for
[17], [16]. They are therefore not included in this ablatiothe variant omitting the GAN loss on generated landmarks
study to avoid repetitive evaluations. For all these experimenfg/o L4an 1), the exaggeration direction may break the facial
we have both qualitatively and quantitatively compared owomponents, since it lacks the supervision from adversarial



Fig. 6. Diversity in texture style and exaggeration of the proposed MW-GAN. The 1st column shows input images. The 2nd-4th columns are corresponding
generated caricatures with different texture styles with a xed exaggeration. The last three columns are generated caricatures with a xed texture style but
different exaggerations.

observations are consistent with the qualitative analysis above.
Comparison with the single way baselineFigure 7 shows
the comparison of caricatures generated using our MW-GAN
and using the baseline method described in Section 1lI-C.
For each input we randomly sample one style code and
two landmark codes and generate two caricatures. From the
results, we can see that with different landmark transforma-
tion codes, MW-GAN can generate caricatures with different
exaggeration styles, while the single-way baseline method
generates caricatures with almost the same exaggeration for
each input. Moreover, it is also obvious that the exaggerations
from the single-way method are sometimes out of control
with unrealistic distortions, while our MW-GAN can generate
much more meaningful exaggerations with the added cycle
Fig. 7. Comparison with the single way baseline method. consistency supervision.
Besides, from the FID and rank-1 recognition accuracy of
) ) ) ) ) the baseline and MW-GAN in Table I, it is obvious that the
learning, which helps with learning reasonable facial landy, ity and identity preservation ability of MW-GAN are much
marks. By contrast, MW-GAN with botfLiq x and Lia1 petter than the baseline. This veri es our opinion in Section
can exaggerate facial shapes to enlarge the characteristic§ |98 that the dual way model can encode the content of
the subjects, and meanwhile can render the caricatures Wit generated caricature backward and constrain it with the

appealing texture styles. o _cycle loss. This makes the MW-GAN better in constraining
Additionally, as shown from the quantitative results ifne content of the generated caricature.

Table I, our GAN loss on generated facial landmarks, identity

recognition loss in both landmark space and image space can_ o )

greatly improve the quality of the generated caricatures (wiffr Diversity in Texture Style and Exaggeration

lower FID scores). Besides, these losses also contribute tdn our MW-GAN network, the generated caricatures have
the identity preservation (with higher rank-1 accuracy). Theseeir texture styles and shape exaggerations controlled by the
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Fig. 8. Interpolation experiment results. The top two rows are caricatures generated by interpolating the landmark transformation latent codes, while the
bottom two rows are caricatures generated by interpolating the style latent codes.

TABLE I
COMPARISON OFFID AND RANK-1 ACCURACY (ACC) WITH
STATE-OF-THE-ART METHODS.

CycleGAN  MUNIT  WarpGAN CariGANs MW-GAN

FID 49.82 52.33 40.69 36.46 36.29
ACC - - 78.55% 57.95% 74.87%

generate caricatures with a guide sample by applying its
style and landmark transformation codes to generators in the
network. To do this, we rstly feed the guiding caricature
into the style encoder and landmark encodef @ndE\) to

get its style and landmark transformation codes. Then we use
these codes as the style and landmark transformation codes
in caricature generation. Figure 9 shows example caricatures
generated with different guide samples. We can see that the
generated caricatures not only have similar texture styles as
the guide caricatures, but also try to mimic the exaggeration
styles of the guide caricatures. From left to right, the generated
caricatures have similar exaggeration styles of wide cheeks
and narrow forehead, high cheekbones and squeezed facial
features (eyes, nose and mouth), long face and pointed chin,
and laughing with the mouth wide open.

Fig. 9. Sample-guided caricature generation of the proposed method.

style latent code and the landmark transformation latent code _ _
respectively. To achieve the diversity in generated caricatur&s, Interpolation Experiments

we can Samp|e diﬁerent Style COdeS and Iandmark transformaAS the texture Sty'e and exaggeration Sty'e are respective'y
tion codes, and apply them to the input photo. Figure 6 showsntrolled by style code and landmark transformation code
generated caricatures with different texture and exaggeratignMw-GAN, we can achieve a “morphing’ effect from one
styles. For each input, we generate three caricatures with Xefricature to another by interpolating their codes (either color,
exaggeration but different texture styles and another thrggaggeration, or both). For exaggeration interpolation, we
caricatures with xed texture style but different exaggerationgandomly sample two landmark transformation latent codes
The results meet our expectation that different style codgs andz.,, and generate caricatures with their interpolation
lead to different texture and coloring, while different Iandmar{ﬂ,z(ljl +(1 W)Zt|:2* wherew ranges from 0 to 1 with step
codes lead to different shape exaggerations. of 0.1. The texture style interpolation experiment is similarly
Our dual-way design of MW-GAN enables unsuperviseconducted. Results are shown in Figure 8. We can see that the
learning of the bidirectional mapping between image stylolor and exaggeration style of caricatures change smoothly
and style latent space, geometric exaggeration and landmaith different w. From left to right, the caricature face in
transformation latent space. Therefore, MW-GAN can alghe rst row changes from thinner face with bigger nose to
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Fig. 10. Comparison with state-of-the-art methods. CycleGAN and MUNIT can only generate images with style changed. Compared with WarpGAN and
CariGANSs, the proposed MW-GAN can generate caricatures with better visual quality and more exible exaggeration. Besides, MW-GAN can generate
caricatures with various styles and shape exaggerations.

wider face with smaller nose. The face in the second rowigure 10, CycleGAN can only generate caricatures with
changes from bigger mouth to smaller ones. In the thitomited changes in texture. Some results even look almost
row, the caricature color changes from orange face with rélie same as the input. Caricatures generated by MUNIT have
hair to purple face with black hair. In the last row, thesome changes in shape, but some results show clear artifacts,
caricature changes from a more colorful style to a graysuch as the speckles around the nose (2nd row) and the
style. The smooth changes further demonstrate that the styégk and patchy appearance (3rd row). As MUNIT is not
and landmark latent codes are meaningfully learned in M\Wlesigned for shape deformation, we speculate these artifacts
GAN, and well represent the color and exaggeration styles afise from its attempt to achieve the appearance of shape

caricatures. deformation by some texture disguise. Results from WarpGAN
and CariGANs can generate caricatures with more reasonable
E. Comparison with State-of-the-Art Methods texture changes and shape exaggerations. However, given the

N’nput photo, their exaggeration style is deterministic, which
HOes not re ect the diverse skills and preferences among

CycleGAN [10], Multimodal UNsupervised Image-to-imagegrt'StS' In comparison, our MW-GAN is designed to achieve

Translation (MUNIT) [11], and in caricature generation: Warp-'verSIty n bc_)th 'Fexture sty[es and shape exaggerations. As
GAN [16], CariGANSs [17]. Since CariGANs are not Opencan be seen in Figure 10, different style codes and landmark

source and the data used in the paper is not publicly availab‘ff—?fjeS lead to d|ffere_nt texture styles and shape exaggerations
n the generated caricatures.

we implemented the CariGeoGAN using 17 landmarks wit
34 dimension. The landmarks' dimension was reduced to 21,We also calculated FID to quantitatively measure the quality
with 99.04% of total variants preserved. of generated caricatures (shown in Table Il). Lower FID
Figure 10 shows the generated caricatures using differesgbres indicate the generated caricatures are more similar
methods. When using MUNIT, WarpGAN and CariGANSs, wevith real ones. Since CycleGAN and MUNIT are designed
randomly sample two style codes to generate two caricatuady for texture transformation but not geometric exagger-
with different texture style for each input. When using ouation as required in caricature generation, their FIDs are
MW-GAN, we randomly sample style codes and landmankuch higher than WarpGAN and MW-GAN, indicating lower
transformation codes and generate three caricatures for eqahlity. When it comes to WarpGAN, CariGANs and MW-
input. CycleGAN is a deterministic method, and can onlAN, it is shown that MW-GAN and CariGANs have a much
generate a xed caricature for each input. As shown ilwer FID than WarpGAN. MW-GAN and CariGANs have

We qualitatively and quantitatively compare our MW-GA
with previous state-of-the-art methods in image translatio
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TABLE Il
PERCEPTUAL STUDY ON EXAGGERATION QUALITY(EQ) AND VISUAL
QUALITY (VQ).

Method CycleGAN  MUNIT WarpGAN CariGANs MW-GAN

EQ-best 71 21 290 464 454
EQ-worst 625 407 91 91 86
EQ-score -0.426 -0.297 0.153 0.287 0.283
VQ-best 176 9 305 396 414
VQ-worst 40 956 113 122 69
VQ-score 0.105 -0.728 0.148 0.211 0.265

whether the generated caricatures are visually appealing; and
2) exaggeration quality, i.e., whether the exaggerated face is
recognizable. For each photo in the test detcaricatures
were generated using the ve methods: CycleGAN, MUNIT,
Warp-GAN, CariGANs, and our MW-GAN. In each study of
visual quality and exaggeration quality, volunteers are shown
an input photo and the corresponding caricatures generated by
the ve methods and were asked to vote for the best and worst
ones from the ve caricatures. We randomly select€d test
photos and their generated caricatures, and presented them to

Fig. 11. Translation of caricatures back to photos. The inputs are caricatuile% volunteers for V(?tlng. That i8300votes in total. One best

drawn by artists. The outputs are photos generated by MW-GAN witote counts +1, while one worst vote counts -1. The nal score

randomly sampled style latent codes and landmark latent codes. for each method is the average of counts. Results are shown
in Table 111,

very similar FID scores, with the FID of MW-GAN slightly It is obvious that WarpGAN, CariQANs and MW-GAN
lower. We believe this is due to three reasons. Firstly, MWAave much better exaggeration quality than CycleGAN and

GAN speci cally considers the exaggeration diversity, whict!UNIT, @s these caricature generation methods explicitly

is a closer assumption to the real distribution of caricaturéx@d9erate geometric shapes through warping. Among the

Secondly, the identity recognition loss in both image space amee’ CariGA!\Is and MW'GAN are the best with compara-
exaggeration quality. However, MW-GAN can generate

landmark space enables the learning of more meaningful shgb‘:é

exaggerations using MW-GAN. Finally, our dual-way desigﬁarlcatures with various exaggeration styles from the same

enables the learning of a bidirectional translation betwediPut Photo, while CariGANs can only exaggerate the face
a certain way. When it comes to the visual quality, we

caricatures and photos, and bridges the two with style latét

codes and landmark latent codes. This design helps to trf! Se€ that MW-GAN has a higher score than others. We
the model as a whole. reason that it is because the explicit encoding of the variety of

In order to quantify identity preservation accuracy fopolor and exaggeration styles better captures the distribution

generated caricatures, we evaluated automatic face recogniffbi€@! caricatures. MUNIT has the worst visual quality, as

performance for the three methods with geometric exagg e content code reconstruction in MUNIT is contradictory to

ation (WarpGAN, CariGANs and our MW-GAN) using athe fact that caricatures have different shape structures from

state-of-the-art face recognition model, the ArcFace [31]. THEOLOS. In summary, the exaggerations generated by MW-GAN
identi cation experiment was conducted where photos weple both reasonable and diverse, and the caricatures generated
kept in the gallery while the generated caricatures were ug®y MW-GAN are the most visually appealing among the ve

as probes. We calculated the rank-1 identi cation accura&}ethOdS’ according to the perceptual study.

and the results are shown in Table Il. From the results, we

can see that CariGANs has the lowest identity preservation Translation of Caricatures Back to Photos

accuracy, while WarpGAN and MW-GAN both have accuracy Although not our main goal, there is also a path in our

over 7.0%.'Though the identity preservation accuracy of MWiatwork architecture to translate caricatures back to photos
GAN is a little lower than that of WarpGAN, we consider thahe .5 se of the dual way design. We conducted experiments by
exaggerations without diversity are easier to achieve a higli,g caricatures and their landmarks as input, and randomly
identity preservation accuracy, and the followmg perceptug&mmed style latent codz$ and landmark latent codz{) for

study also conrms that the diverse exaggerations generaigthios from the corresponding distributions. The generated

by MW-GAN are reasonable. photos are shown in Figure 11. The results show that MW-
GAN can restore photos from caricatures by reversely deform-
F. Perceptual Study ing the exaggerated faces back to normal. As can be seen in

We conducted a perceptual study to evaluate the gdhe 2nd and 4th rows, the shapes of the cheek, chin and mouth
erated caricatures in terms of their 1) visual quality, i.ein the generated photos look realistic. It shows the capability
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