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Summary: A solution technique using sequential sequential second-order cone programming to 

solve the optimum power flow problem in low voltage (LV) distribution networks with distributed 

generation is developed. A novel bound tightening method is suggested to get exact solutions with 

few iterations. A novel approximation method is suggested to increase exactness by approximating 

phase angle dependant components. The performance of the suggested solution method is 

compared with linear programming, semidefinite programming, genetic algorithm, particle swarm, 

sequential quadratic programming with multiple start points, and global search-based optimization 

methods. The exactness of the generated solutions is validated after comparison with a load flow. 

The proposed algorithm provides better performance in optimality, execution time, and exactness 

compared to other methods.  
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List of Symbols and Abbreviations:  

 

𝑼𝑨𝒎
, Complex voltage at node m of phase A; 𝑰𝑨𝒎𝒏

, Complex current of phase A of line m-n; 

𝑝𝐴𝑚𝑛
, Active powers flowing from node m to n in phase A; 𝑞𝐴𝑚𝑛

, Reactive powers flowing from 

node m to n in phase A; PAn

C , Real power consumption at phase A of node n; QAn

C , Reactive power 

consumption at phase A of node n; PAn

G , Real power generation from the PV inverters at phase A 

of node n; 𝑄𝐴𝑛

𝐺 , Reactive power generation from the PV inverters at phase A of node n; 𝑃𝐴
𝐶𝑢𝑟

𝑛
, Real 

power curtailment from the PV inverters at phase A of node n; 𝐼𝐴
𝑅

𝑚
, Real part of 𝑰𝑨𝒎𝒏

; 

𝐼𝐴
𝐼𝑚

𝑚
, Imaginary part of 𝑰𝑨𝒎𝒏

; 𝑈𝐴
𝑅

𝑚
, Real part of 𝑼𝑨𝒎

; UA
Im

m
, Imaginary part of 𝑼𝑨𝒎

; 

𝑊𝐴𝑚
, Squared magnitude of 𝑼𝑨𝒎

;  𝐿𝐴𝑚𝑛
, Squared magnitude of 𝑰𝑨𝒎𝒏

; LVDN, Low Voltage 

Distribution Networks; DG, distributed generation; PV, Photovoltaic; OLTC, On Load Tap 

Changing; OPF, Optimum Power Flow; SOCP, Second Order Cone Programming 

 

1. INTRODUCTION 

Optimum power flow (OPF) is used as a tool to optimally control controllable devices such as 

smart inverters, batteries, tap changing transformers, and static var compensators in LV networks. 

OPF for transmission networks is widely discussed in the literature, and they are used in day-to-

day operations in transmission system control centres.1,2 With the increased penetration of 

renewable energy in low voltage distribution systems, the use of OPF for controlling power flows 

in distribution systems is considered. There are several techniques to solve the optimum power 

flow problem in distribution systems. 

Some researchers use evolutionary computation techniques like genetic algorithms and particle 

swarm optimization in their centralized control schemes. Grey wolf optimizer is used by Mahmoud 

et al3 to prevent voltage violation in medium voltage distribution systems by minimizing PV power 

curtailments and tap movement rate. A genetic algorithm-based method is used by Senjyu et al4 



for the centralized cooperation control of sending voltage, and static voltage regulators (SVR), 

shunt capacitor (SC), and static var compensators (SVC). Evolutionary computation techniques 

could be time-consuming because of the extensive solution space available with different 

controllable devices.  

Local optimization methods are used to obtain a local solution to OPF. The predictor-corrector 

interior-point algorithm is used by Nguyen et al5 to obtain exact local solutions to OPF for an 

unbalanced MV distribution system with high PV penetration. There is a tendency of converging 

to the local optimum closer to the start point in local optimization methods.  

Considering the slow convergence and local optimality of the OPF techniques discussed above, 

the convex optimization techniques for solving OPF are introduced. This technique is widely used 

in 3 phase unbalanced OPF.6,7 Since the OPF problem is non-convex, convex relaxations or 

approximations are used in these studies to make the OPF problem convex. Linear programming 

(LP), second-order cone programming (SOCP), and semidefinite programming (SDP) are widely 

used convex optimization techniques for solving OPF. 

A linear program is used by Richardson et al8 to determine the optimal charging rate of electric 

vehicles connected to the LV distribution system. Voltage sensitivity to real power is used to 

linearize the power flow equations. A residential energy consumption scheduling algorithm for 

areas with high penetration of rooftop PV units is proposed by Yao et al.9 Equations with voltage 

sensitivities to the active and reactive powers are used instead of load flow equations. OPF for an 

unbalanced three-phase distribution network is represented as a convex quadratic program in 

Robbins et al.10 Due to the nonlinear nature of power flow equations, linearization assumptions 

considered in the above studies can generate inaccurate solutions.  

Semidefinite programming (SDP) model to minimize power loss and generation cost in 

unbalanced distribution systems is proposed by Dall’Anese et al6 based on the bus injection model 

(BIM). SDP model to minimize generation cost is proposed by Gan et al11 based on bus injection 

model (BIM) and branch flow model (BFM). However, obtaining exact solutions is impossible for 

some practical three-phase distribution systems due to the assumptions considered in relaxations 

and approximations.12,13 According to Louca et al,12 in practice, many instances of OPF yield 

semidefinite relaxations with optimal solutions of high rank, which are not exact. Limits of the 

SDP approach are highlighted by Lesieutre et al13 by providing transmission system test cases that 



fail to give a physically meaningful solution with a non-zero duality gap. To improve semidefinite 

relaxation, a rank minimization algorithm is suggested by Louca et al.12 The objective function is 

modified using a heuristic method to extract rank-1 solutions from low-rank solutions by Somayeh 

et al.14 The above methods represent OPF as an SDP and computing time of SDP increases rapidly 

with the number of variables compared to the second-order cone programming (SOCP) 

approach.15,16,17,18 Also, SDP solvers are still not numerically robust.7 

Global optimization techniques which rely on the iterative use of convex optimization are used to 

obtain the global optimality of OPF. Sequential quadratic programming (SQP) is used by Su et al19 

to solve OPF in unbalanced four-wire distribution systems for improving voltage profile while 

minimizing line losses and generation costs. A branch and bound-based global optimization 

method is suggested by Gopalakrishnan et al20 to solve OPF in unbalanced distribution systems. 

Despite having the global optimum, branch and bound based methods are time-consuming.21 

Second-order cone programming (SOCP) is widely used to solve the balanced 3 phase OPF.22,15 

SOCP is used by Farivar22 for optimum inverter VAR control in balanced three-phase distribution 

systems. SOCP is used to solve the OPF problem to determine the optimal dispatch of deterministic 

inverter-interfaced energy storage in an unbalanced distribution feeder with significant solar PV 

penetration by Nazir et al.7 The solution of the SOCP is used to initialize a nonlinear program 

(NLP) to ensure a physically realizable solution. SOCP relaxation also provides infeasible 

solutions to OPF in some conditions.23,24 Proofs are provided by Low24 for balanced SOCP OPF 

relaxation to be exact when both constraints on real and reactive power injections are not binding 

at both ends of a line, upper bounds on voltage magnitudes are not binding, and voltage angles 

across each line are sufficiently close. However, these conditions cannot be satisfied in many 

practical networks. Increasingly tightening cutting planes are used in 15,25 to extract physically 

meaningful solutions to balanced OPF after applying second-order cone (SOC) relaxation. A 

higher computation time taken for several iterations can be considered as a drawback in these 

methods. A heuristic method is suggested by Yuan et al16 to extract feasible solutions from relaxed 

solutions.  SOCP is used in26 to provide a warm start to solve the OPF in unbalanced distribution 

systems using a non-linear program (NLP). Solving NLP is time-consuming for larger networks.  

 



In this paper, a sequential SOCP methodology is suggested by modifying the rectangular voltage-

current formulation of a three-phase branch flow model with approximations and relaxations, thus 

making the problem convex. The proposed methodology enables to achieve exact solutions by 

gradually limiting the solutions space to load flow solutions and solving load flow, including the 

previous SOCP outputs.  Currents from load flow with gradually decreasing constants are used as 

cutting planes for second-order cone relaxations. Sufficiently exact solutions are obtained under 

ten iterations of the optimization program resulting in lesser computation time.  

The performance of the proposed algorithm is compared with the methods suggested in10,11,19 

global search, particle swarm, and genetic algorithms.  

The contributions of the paper are: 

1. A sequential SOCP based optimization-based technique is introduced for obtaining accurate 

solutions for OPF problems in unbalanced low and medium voltage distribution systems with 

voltage rise above permissible limits. 

As discussed in the literature, solutions obtained from convex relaxations are not exact for 

practical unbalance distribution systems. Sequential convex optimization techniques are 

introduced in the litreture15,25 to address this issue in balanced three-phase systems. The 

Sequential SOCP technique proposed in this paper is designed to use in unbalanced 

distribution networks.  

Constraints on phase angle difference are missing on many unbalanced OPF solving 

methods.27 Requirement for a bound on voltage angles is mitigated due to the use of novel 

approximation technique to approximate angle-dependent components in power flow 

equations. Due to that sufficiently exact solutions are provided for both low (R/X<1) and 

medium voltage networks (R/X>1). Heuristic optimisation methods are used in previous 

studies to control voltage in distribution grids with DG.28,29 For the first time to our 

knowledge faster convex optimization based OPF solving method is tested for unbalanced 

distribution systems with voltage rise above permissible limits (PV penetration greater than 

500%) in this paper. 

 

 



2. Faster execution time due to fewer iterations of SOCP  

The operational cost of distribution systems is significantly lower than transmission systems. 

Also with high solar penetration and varying consumption,  operational status should be 

determined dynamically. Therefore achieving a feasible operating point quickly is more 

important than obtaining global optimum. SOC relaxation is tightened gradually using 

outputs from load-flow. SOC tightening constraints is simpler, and the computational burden 

is low in the proposed method compared to other cutting plane methods.  

3. Seven optimization techniques are used to solve the same OPF problem, and their 

performances are compared.  

Outputs of many convex optimization methods differ depending on loads and network 

conditions. Infeasibility is reported for some time instances when simulated over a time 

frame.30 Recently, several convex optimization techniques are tested for two balanced 

networks in 30. Several heuristic optimization techniques are compared in 31 without PV 

generation. For the first time to our knowledge, different optimization techniques are 

compared for a wide range of unbalanced networks with high PV penetration in this paper.  

Compared to convex optimization-based OPF solving methods, the suggested algorithm 

provides accurate (exact) solutions. As observed in the case studies, the inaccuracies of 

methods suggested in the previous literature increase with the size of the distribution network 

and the reverse power flow.  

Compared to heuristic (genetic and particle swarm) and global optimization methods, the 

execution time of the proposed algorithm is considerably shorter. The optimality of the 

proposed algorithm is close to the global optimum for some simulated test cases. Simulation 

of heuristic optimizations and global optimization provides the ability to compare the 

simulation results of convex optimization methods with possible global optimums. Optimum 

setpoints are generated randomly in heuristic optimization methods. Therefore, there is a 

chance to obtain global optimum or more optimum setpoints using heuristic optimization 

methods.  

 

 



2. METHODOLOGY 

2.1 Representative equations for the optimization problem 

Kron reduction technique was used to reduce the four-wire distribution system to a three-wire 

system.28 It was assumed that neutral was grounded at multiple points. The radial power flow 

equations were represented by DistFlow equations.29 

 

 

 

 

 

 

 

For the m-n line segment shown in Figure 1, from the power balance of the three-phase lines, 

equation (1) was derived.10,19 Power flown to node m equals the summation of power flown out of 

node n, line loss, and power generation/consumption at node n.  

[

𝒔𝑨𝒎𝒏
𝒔𝑩𝒎𝒏
𝒔𝑪𝒎𝒏

] = ∑ [

𝒔𝑨𝒏𝒌
𝒔𝑩𝒏𝒌
𝒔𝑪𝒏𝒌

]𝑘:(𝑗,𝑘)∈𝐸 + 𝑑𝑖𝑎𝑔 ([

𝑍smn
𝑍mmn

𝑍mmn

𝑍mmn
𝑍smn

𝑍mmn

𝑍mmn
𝑍mmn

𝑍smn

] [

𝑰𝑨𝒎𝒏

𝑰𝑩𝒎𝒏

𝑰𝑪𝒎𝒏

] [

𝑰𝑨𝒎𝒏

𝑰𝑩𝒎𝒏

𝑰𝑪𝒎𝒏

]

𝐻

) + [

𝑺𝑨𝒏

𝑺𝑩𝒏

𝑺𝑪𝒏

]  (1) 

where, 

𝒔𝑨𝒎𝒏 =  𝑝𝐴𝑚𝑛
+ 𝑗𝑞𝐴𝑚𝑛

 

𝑺𝑨𝒏 = PAn

C − PAn

G + 𝑃𝐴
𝐶𝑢𝑟

𝑛
+ j(QAn

C ± 𝑄𝐴𝑛

𝐺 ) 

𝐻 denotes the Hermitian transpose. 

The power flow equations of phases A, B, and C were obtained from expanding the first, second, 

and third rows. By considering the real parts of the first row to represent the active power flow of 

phase A, equation (2) was obtained. 

𝑝𝐴𝑚𝑛
= ∑ 𝑝𝐴𝑛𝑘𝑘:(𝑗,𝑘)∈𝐸 + PAn

C − PAn

G + 𝑃𝐴
𝐶𝑢𝑟

𝑛
+ Re{𝑰𝑨𝒎𝒏

∗ × (Rsmn
𝑰𝑨𝒎𝒏

+ Rmmn
𝑰𝑩𝒎𝒏

+

Rmmn
𝑰𝑪𝒎𝒏

)}           (2) 

Figure 1 - Diagram of m-n line segment 



By considering the imaginary parts of the first row to represent phase A's reactive power flow, 

equation (3) was obtained. 

𝑞𝐴𝑚𝑛
= ∑ 𝑞𝐴𝑛𝑘𝑘:(𝑗,𝑘)∈𝐸 + QAn

C ± 𝑄𝐴𝑛

𝐺 + Im{𝑰𝑨𝒎𝒏
∗ × (Rsmn

𝑰𝑨𝒎𝒏
+ Rmmn

𝑰𝑩𝒎𝒏
+ Rmmn

𝑰𝑪𝒎𝒏
)} 

            (3) 

where, 

𝑰𝑨𝒎𝒏
, 𝑝𝐴𝑚𝑛

, 𝑞𝐴𝑚𝑛
are the complex current, active and reactive powers flowing from node m to n 

in phase A. 

PAn

C  and QAn

C  are the real and reactive power consumption of phase A of node n. 

PAn

G , 𝑄𝐴𝑛

𝐺  and 𝑃𝐴
𝐶𝑢𝑟

𝑛
 are the real and reactive power generation and active power curtailment from 

the PVs and inverters in phase A of node n. 

Two new variables, 𝑊𝐴𝑚
= |𝑼𝑨𝒎

|
2
 and 𝐿𝐴𝑚𝑛

= |𝑰𝑨𝒎𝒏
|

2
, for every bus and every line were introduced. 

Then variables in non-convex terms (𝑈𝐴
𝑅

𝑛
, 𝐼𝐴

𝑅
𝑚𝑛

, 𝑈𝐴
𝐼𝑚

𝑛
, 𝐼𝐴

𝐼𝑚
𝑚𝑛

) of equations (1) and (2) were 

replaced by values obtained from load flow. The exact equations used are given in Appendix A as 

equations A1 and A2.  

Equations for apparent power flow at node m to n were derived from Equation (4).19  

[

𝒔𝑨𝒎𝒏
𝒔𝑩𝒎𝒏
𝒔𝑪𝒎𝒏

] = 𝑑𝑖𝑎𝑔 ([

𝑼𝑨𝒎

𝑼𝑩𝒎

𝑼𝑪𝒎

] [

𝑰𝑨𝒎𝒏

𝑰𝑩𝒎𝒏

𝑰𝑪𝒎𝒏

]

𝐻

)          (4) 

By expanding the first row,  

𝒔𝑨𝒎𝒏 =  𝑼𝑨𝒎𝑰𝑨𝒎𝒏
∗           (5) 

where 𝑼𝑨𝒎
 and 𝑼𝑨𝒏

 are the complex voltage at node m and n of phase A and are given by 

𝑼𝑨𝒎 =  𝑈𝐴
𝑅

𝑚
+ 𝑗𝑈𝐴

𝐼𝑚
𝑚

and 𝑼𝑨𝒏 =  𝑈𝐴
𝑅

𝑛
+ 𝑗𝑈𝐴

𝐼𝑚
𝑛

 

Similarly, current flown from m to n of phase A, 𝑰𝑨𝒎𝒏 =  𝐼𝐴
𝑅

𝑚
+ 𝑗𝐼𝐴

𝐼𝑚
𝑚

 

After the multiplication of both sides of (5) by 𝒔𝑨𝒎𝒏
∗, 

𝒔𝑨𝒎𝒏 × 𝒔𝑨𝒎𝒏
∗ =  𝑼𝑨𝒎𝑰𝑨𝒎𝒏

∗ × 𝒔𝑨𝒎𝒏
∗ 

𝒔𝑨𝒎𝒏 × 𝒔𝑨𝒎𝒏
∗ =  𝑼𝑨𝒎𝑰𝑨𝒎𝒏

∗ × 𝑼𝑨𝒎
∗𝑰𝑨𝒎𝒏 



(𝑝𝐴𝑚𝑛
+ 𝑗𝑞𝐴𝑚𝑛

) ×  (𝑝𝐴𝑚𝑛
+ 𝑗𝑞𝐴𝑚𝑛

)∗ = 𝑼𝑨𝒎𝑼𝑨𝒎
∗ × 𝑰𝑨𝒎𝒏

∗𝑰𝑨𝒎𝒏 

After simplifying the above equation, equation (6) was obtained. 

𝑝𝐴𝑚𝑛

2 + 𝑞𝐴𝑚𝑛

2 = |𝑼𝑨𝒎
|

2
|𝑰𝑨𝒎𝒏

|
2
         (6) 

Then with substitutions, equation (6) was rewritten as: 

𝑊𝑨𝒎𝒏
𝐿𝑨𝒎

= 𝑝𝐴𝑚𝑛

2 + 𝑞𝐴𝑚𝑛

2          (7) 

Using Ohm’s law, the equation for the relationship between phase A voltage magnitudes was 

expressed as in (8). 

𝑼𝑨𝒎
 = (𝑼𝑨𝒏

− 𝑰𝑨𝒎𝒏
ZS − 𝑰𝑩𝒎𝒏

Zm − 𝑰𝑪𝒎𝒏
Zm)       (8) 

To keep the variables in the optimization program independent of angle and to make equations 

linear, the square of equation (8) was used for optimization after some substitutions. Variables in 

non-convex terms (𝑈𝐴
𝑅

𝑛
, 𝐼𝐴

𝑅
𝑚𝑛

, 𝑈𝐴
𝐼𝑚

𝑛
, 𝐼𝐴

𝐼𝑚
𝑚𝑛

) of square equation (8) were replaced by values 

obtained from load flow. The exact equation used is given in Appendix A as equation (A4).  

 

2.2 Constraints 

2.2.1 Voltage constraints 

In Sri Lanka30 statutory limit for voltage variation is ±6%. Therefore, the L-N voltage was 

maintained within ±6% of the nominal value. These limits were maintained as constants in the 

optimization algorithm. 

2162 ≤ |𝑼𝑨𝒎
|

2
≤ 2442         (9) 

 

2.2.2 Inverter active power curtailment constraints 

Capability to curtail entire active power generation is provided to inverters. However, the 

curtailment of active power was minimized using the objective function.  

0 ≤ 𝑃𝐴𝑛

𝐶𝑢𝑟 ≤ PAn

G           (10) 

 

 



2.3 Cost functions 

The minimization of the line losses and the inverter active power curtailment were considered to 

minimize the overall cost incurred for maintaining the voltage within the permissible range. 

2.3.1 Cost of line losses 

Line losses include the cost of Ohmic losses incurred in three-phase cables and neutral. Here, with 

the available variables, only the losses in three-phase lines were considered for the objective as:  

∑ (Rsi
) ×∀𝑖∈𝐸 |𝑰𝑨𝒊

|
2

+ ∑ (Rsi
) × |𝑰𝑩𝒊

|
2

∀𝑖∈𝐸 + ∑ (Rsi
) × |𝑰𝑪𝒊

|
2

∀𝑖∈𝐸       

With 𝐿𝐴,𝐵,𝐶𝑖
= |𝑰𝑨,𝑩,𝑪𝒊

|
2
 

∑ (Rsi
) ×∀𝑖∈𝐸 𝐿𝐴𝑖

+ ∑ (Rsi
) × 𝐿𝐵𝑖∀𝑖∈𝐸 + ∑ (Rsi

) × 𝐿𝐶 𝑖∀𝑖∈𝐸      (11) 

 

2.3.2 Cost of power curtailment 

This term includes the power curtailment of every single-phase inverter, and it is expressed as in 

(12). 

∑ 𝑃𝐴
𝐶𝑢𝑟

𝑖∀𝑖∈𝑁𝐴
+ ∑ 𝑃𝐵

𝐶𝑢𝑟
𝑖∀𝑖∈𝑁𝐵

+ ∑ 𝑃𝐶
𝐶𝑢𝑟

𝑖∀𝑖∈𝑁𝐶
      (12) 

 

2.4 Convex optimization problem 

The nonlinear equality constraint in (7) is non-convex, and it is relaxed as in equation (13). 

𝐿𝐴𝑚𝑛
≥

𝑝𝐴𝑚𝑛
2

𝑊𝐴𝑚

+
𝑞𝐴𝑚𝑛

2

𝑊𝐴𝑚

          (13) 

Relaxed constraint (13) represents a second-order cone. Then additional linear inequality 

constraint as defined by equation (14) was used to add linear cuts to SOC relaxation from the 

second iteration onwards. Solutions are converged to a more optimum value in the first iteration, 

and the constants of equations in the second iteration were calculated from solutions generated in 

the first iteration. This upper bound was reduced in each iteration, gradually increasing the 

exactness of solutions. Squared current magnitude generated from a load flow using previous 

iteration’s data was used as a part of the upper bound. 

𝐿𝐴𝑚𝑛
≤ |𝑰𝑨𝒎𝒏 (𝑳𝒐𝒂𝒅 𝒇𝒍𝒐𝒘)

|
2

+
1000

10𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
       (14) 



Here, |𝑰𝑨𝒎𝒏 (𝑳𝒐𝒂𝒅 𝒇𝒍𝒐𝒘)
|

2

is the squared magnitude of the current value generated from load flow 

from the previous iteration using OpenDSS. The term 
1000

10𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 in (14) is a constant for a particular 

iteration. It reduces to 100 in the third iteration. This constant was chosen empirically to gradually 

reduce search space. Additional search space from 𝑰𝑨𝒎𝒏 (𝑳𝒐𝒂𝒅 𝒇𝒍𝒐𝒘)
 was reduced ten times for 

subsequent iteration using 
1000

10𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 term. This acts as an increasingly tightening cutting planes to 

SOC relaxations in each phase. Because of this upper bound, sufficiently exact solutions that can 

be used to control the voltage of distribution networks were obtained after the third iteration of the 

optimization program. Equations (13) and (14) were repeated for the other two phases. 

Then the optimization problem was represented by the sum of cost functions (11) and (12) as below 

subjected to the constraints given by (2), (3), (9), (10), (13), (14), A1, A2, and A4 for all 3 phases.  

minimize {∑ (Rsi
) ×∀𝑖∈𝐸 𝐿𝐴𝑖

+ ∑ (Rsi
) × 𝐿𝐵𝑖∀𝑖∈𝐸 + ∑ (Rsi

) × 𝐿𝐶𝑖∀𝑖∈𝐸 } + {∑ 𝑃𝐴
𝐶𝑢𝑟

𝑖∀𝑖∈𝑁𝐴
+

∑ 𝑃𝐵
𝐶𝑢𝑟

𝑖∀𝑖∈𝑁𝐵
+ ∑ 𝑃𝐶

𝐶𝑢𝑟
𝑖∀𝑖∈𝑁𝐶
}        (15) 

 

2.5 Solution method 

Three or fewer runs of the optimization program based on SOCP (equation (15)) were executed 

while reducing the upper bound of squared current (equation (14)). The optimization is performed 

for much larger convex terms with variables (𝑊𝐴𝑚
, 𝐿𝐴𝑚𝑛

, 𝑝𝐴𝑚𝑛
, 𝑞𝐴𝑚𝑛

, 𝑄𝐴𝑛

𝐺 , 𝑃𝐴
𝐶𝑢𝑟

𝑛
) while variables 

in non-convex terms (𝑈𝐴
𝑅

𝑛
, 𝐼𝐴

𝑅
𝑚𝑛

, 𝑈𝐴
𝐼𝑚

𝑛
, 𝐼𝐴

𝐼𝑚
𝑚𝑛

) acting as constants for the considered iteration of 

the optimization program. When the number of iterations increases, updating terms become closer 

to the solution generated by solving the optimization problem. The flow chart of the algorithm is 

provided in Figure 2. First, a load flow was performed using OpenDSS with zero active power 

curtailment. Then the optimization problem implemented using CVX31 was solved after updating 

𝑈𝐴
𝑅

𝑛
, 𝐼𝐴

𝑅
𝑚𝑛

, 𝑈𝐴
𝐼𝑚

𝑛
, 𝐼𝐴

𝐼𝑚
𝑚𝑛

 terms in equations A1, A2, and A4 from the values obtained from the 

previous load flow. Then, 𝑃𝐴
𝐶𝑢𝑟 , 𝑃𝐵

𝐶𝑢𝑟 , and 𝑃𝐶
𝐶𝑢𝑟 were updated with the optimum curtailment values 

generated by solving the optimization problem. Next, a new load flow was performed with updated 

curtailment values. Then after updating equation (14) and 𝑈𝐴
𝑅

𝑛
, 𝐼𝐴

𝑅
𝑚𝑛

, 𝑈𝐴
𝐼𝑚

𝑛
, 𝐼𝐴

𝐼𝑚
𝑚𝑛

 terms in 

equations A1, A2, and A4 and using the values obtained from the last load flow, the optimization 

problem was solved. The repetition of 3 iterations of this process was sufficient to obtain 



sufficiently exact solutions. This solution approach closely relates to the sequential convex 

programing.32 Three iterations were chosen to reduce the cutting plane to 100 A from the square 

of load flow current in the final iteration. The first iteration is performed without a cutting plane. 

The second iteration is performed with the |𝑰𝑨𝒎𝒏 (𝑳𝒐𝒂𝒅 𝒇𝒍𝒐𝒘)|
2
+1000 A cutting plane. Further increase 

of iterations increases the execution time without improving the exactness. Since the objective of 

this study is to obtain exact solutions faster, the proposed algorithm is designed to terminate with 

three iterations. Forward-backwards method based power flow iterations is used in load-flow to 

obtain required values for load currents that are used in the cutting plane.  

This algorithm was implemented in Matlab with CVX optimization toolbox31 and SDPT3 as the 

solver. OpenDSS was used to run the load flow and update variables in non-convex terms.  

 

 

Figure 2 - Flow chart of the OPF solving algorithm 
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3. COMPARISON 

The following optimization techniques are implemented and compared with the methodology 

suggested in this paper. The flow chart shown in Figure 3 was used for most of the methods 

described in subsequent sections.  

 

 

3.1 Linear programming-based technique 

The methodology suggested by Robbins et al10 was implemented and used for the comparison. In 

this method, the nonlinear terms in load flow equations have been replaced with first-order Taylor 

approximations, and it was assumed that voltage magnitudes of 3 phases of the same node are 

nearly similar. One load flow was performed using OpenDSS to provide operating points for 

linearization. The method was implemented using CVX in Matlab.  

 

3.2 Semidefinite programming-based technique 

The semidefinite programming-based method suggested by Gan et al19 using branch flow model 

(BFM) was also implemented for comparison. The rank constraint was removed to make the 

problem convex. In this study, Gan’s method was implemented using CVX in Matlab.  

Figure 3 - Flow chart of other optimization algorithms 
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3.3 Sequence quadratic programming with multiple starting points 

This method is used by Su et al25 to solve the OPF in a low voltage four-wire distribution system. 

OpenDSS based load flow solving and penalty functions for voltage constraint violation were 

implemented as a black-box function. Matlab Multi-Start gradient-based solver was used to 

implement this algorithm. Uniformly distributed 20 start points were used.  

 

3.4 Global Search 

OpenDSS based load flow solving and penalty functions for voltage constraint violation were 

implemented as a black-box function. Matlab global search gradient-based solver was used to 

implement this algorithm. Unlike the multiple start point method, a scatter-search mechanism was 

used for generating start points.33 Since gradient and hessian are not provided in both global search 

and SQP with multiple start points, and those are considerably slower than sequential SOCP and 

LP. However, the results of these two methods were used to compare the optimality of the proposed 

method.  

 

3.5 Genetic Algorithm Optimization 

Genetic algorithm-based OPFs were implemented using Matlab functions. Default values of 

Matlab built-in function were used for reproduction, mutation, cross-over, and migration options. 

Voltage constraints were added as penalty functions to the objective function. 30 generations were 

simulated for test case 1.  50 generations were simulated for test cases 2,3, and 4 

 

3.6 Particle Swarm Optimization 

Particle swarm optimization algorithm-based OPFs were implemented using Matlab functions. 

Default values of the Matlab built-in function were used. 30 iterations were simulated for test case 

1.  50 iterations were simulated for test cases 2,3, and 4. 

 

 

 



4. CASE STUDIES AND RESULTS 

4.1 Test case 1 

An underground European network given in34 was selected as the second test case. The network 

diagram is presented in Figure 4. The network is a low voltage network with transposed lines. R/X 

ratio is higher than one in all line segments. Nodes with loads at phases A, B, and C are marked 

with red, green, and blue colours, respectively, and the load profile at 12 a.m. was selected. 

Randomly selected single-phase inverter capacities from 1 kVA to 7 kVA were placed in randomly 

selected 45 consumers from available 55 single-phase consumers. The PV generation profile 

(Figure 5) resulting in a voltage rise was selected for the case study. Irrespective of the vector 

group of the transformer, the angle of phase A of the low voltage side transformer bus is considered 

as zero. Angles of other phases were derived with reference to the angle of phase A voltage.  

The details of the transformer are provided in Table 1.  

For modelling the transformer, the reactance 

and resistance of the distribution transformer 

were added to the positive sequence 

reactance and resistance values of the first 

line section from bus 1 to 2. An ideal voltage 

source was connected to bus 1. Details of the 

cables provided in34 were used for the 

simulation of two test cases. Simulations were performed in a PC with an Intel Core i7 @ 1.8 GHz 

processor and 8 GB RAM. Generation is 206.44 kW. The percentage of generation to load is 570%. 

Line loss without optimization is 9.15 kW. 

Primary voltage (L-L) 11 kV 

Secondary voltage (L-L) 416 V 

Capacity  0.8 MVA 

Vector group Δ/Y 

Reactance (%) 4   

Resistance (%) 0.4 

Figure 4 - Network diagram of test case 1 

Table 1 - Details of transformer for test case 1  

 



A comparison of the simulation results of test case 1 is provided in Table 2. The comparison of 

voltage profiles of each simulation is provided in Appendix B.  

The average voltage difference was calculated according to equation (16). This parameter is used 

as a measurement of the exactness of convex optimization-based methods. 

Average voltage difference (V) = 
∑|𝑉𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛−𝑉𝑙𝑜𝑎𝑑 𝑓𝑙𝑜𝑤|

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠
    (16) 

 

Table 2 - Simulation results comparison (test case 1) 

 Proposed 

method 

Linear 

program (LP) 

Genetic 

algorithm 

(GA) 

Particle swarm 

(PS) 

Execution time (s) 227.34 25.31 106,645.11 78,263.03 

Objective (W)  

Line losses + curtailment 

22,266.1 108,016 33879 27,969 

Line losses (W) 6,251.1 1,816.0   

Curtailment (W) 16,015 106,200 27791 21,610.8  

Average voltage difference (%) 0.0041 4.30 0 0 

 

As shown in Table 2, the execution time of the proposed method is the second-lowest and next to 

the linear program (LP)-based method.10 The value of the objective function is lesser in the 

proposed method compared to other accurate methods. The accuracy of the proposed method is 

significantly higher than the linear program-based method. As shown in Appendix B, voltage 

values of the linear programming-based method deviate from actual voltages by 14 V (6%) in 

some locations. This can lead to problems in voltage regulation. Therefore, the accuracy of the 

linear programming method is not sufficient for some practical applications. After 30 generations 

of GA and 30 iterations of PS, the proposed method is more optimum than GA and PS with 

acceptable average voltage difference for voltage control. The unique advantage of providing 

sufficiently exact solutions for voltage rise prevention in a shorter execution time using the 

proposed method is highlighted in this test case. Increase of accuracy with each iteration can be 

observed in Figure 6. SQP with multiple start points and global search algorithms were not 



converged within 8 hours for this test case. For other methods, a comparison of phase C (phase 

with highest voltage rise) voltage profile is shown in Figure 7.  

  

 

Figure 7 - Test case 1 phase C voltage comparison (pu) 
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Figure 5 - PV generation data of test case 1 Figure 6 - %average voltage difference change with 

iterations – test case 1 



4.4 Test case 2 

IEEE 123 bus network is selected as the second case study. This network is a medium voltage 

(4.16 kV L-L) network with untransposed lines. R/X ratio is lower than one in most of the line 

segments. All the loads are considered as PQ loads. Loads of 4.16:0.48 kV transformer is added 

to the high voltage side and transformer is neglected in the simulation. The details of the 

transformer are provided in Table 3. Network diagram is provided in Figure 8. 

 

 

 

Table 3 – Details of the transformer for test case 2  

Figure 8 - Network diagram of test case 2 

Primary voltage (L-L) 115 kV 

Secondary voltage (L-L) 4.16 kV 

Capacity  5 MVA 

Vector group Δ/Y 

Reactance (%) 8  

Resistance (%) 1 

 



Voltage regulators are neglected and voltage is kept within allowable range using distributed 

generators and active power curtailment. Generation is 18150 kW. The percentage of generation 

to load is 520%. Line loss without optimization is 1394.6kW. 

Generation profile can be observed in Figure 10. Increase of accuracy with each iteration can be 

observed in Figure 9. As shown in Table 4, even though the execution time is lowest in LP, the 

average voltage difference is significantly higher than the proposed method. Voltage profile 

comparison for proposed method and LP against voltage profile of load-flow is provided in 

appendix B. The solutions provided by GA is more optimum than the proposed method while 

having a significantly higher execution time. SQP with multiple start points and global search 

algorithms were not converged within 8 hours for this test case. For other methods, a comparison 

of phase C (phase with highest voltage rise) voltage profile is shown in Figure 11.  

  

Figure 10 - PV generation data of test case 2 
Figure 9  - %average voltage difference 

change with iterations – test case 2 



Table 4 - Simulation results comparison (test case 2) 
 

 Proposed 

method 

Linear program 

(LP) 

Genetic 

algorithm 

(Matlab built-in 

function) 

Particle swarm 

(Matlab built-in 

function) 

Execution time 

(s) 

66.67 10.38 21167.17 13968.27 

Objective (W)  

[Line losses + 

curtailment] 

1.75*106 1.45*106 1.51*106 1.90*106 

Line losses (W) 1.3216 *106 1.44617 *106 1.37*106 1.3199*106 

Curtailment (W) 4.2626*105 0 1.36*105 5.8397*105 

Average voltage 

difference (%) 

0.8195 4.02 0 0  
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4.5 Test case 3 

IEEE 33 bus network is selected as the fourth case study. This network is a balanced medium 

voltage (12.66 kV L-L) network with balanced three-phase loads. Test case 3 is used to analyze 

the performance of the optimization methods for balanced networks. R/X ratio is higher than one 

in all the line segments. All the loads are considered as PQ loads. Network diagram is shown in 

Figure 13. Generation is 16000kW. Four 4000 kW generators are placed as indicated in the 

network diagram. The percentage of generation to load is 430.68%. Line loss without optimization 

is 1670.8 kW. 

Increase of accuracy with each iteration can be observed in Figure 12. Even though the execution 

time is lowest in LP, the average voltage difference is significantly higher than the proposed 

method. The solutions provided by GA, PS, SQP with multiple start points and Global search 

methods are more optimum than the proposed method while having significantly higher execution 

time. A comparison of phase C (phase with highest voltage rise) voltage profile of different 

optimization methods is shown in Figure 14. 

 

  

Figure 12 - %average voltage difference 

change with iterations – test case 3 

Figure 13 - Network diagram of 

test case 3 



Table 5 - Simulation results comparison (test case 3) 
 

 Proposed 

method 

Linear 

program 

Genetic 

algorithm 

(Matlab 

built-in 

function) 

Particle 

swarm 

(Matlab 

built-in 

function) 

SQP with 

multiple 

start point 

(Matlab 

built-in 

function) 

Global 

Search 

(Matlab 

built-in 

function) 

Execution time 

(s) 

20.09 4.02 586.49 695.94 1414.67 6279.24 

Objective (W)  

[Line losses + 

curtailment] 

2.66*106 1.35*107 7.48*105 1.78*106 5.16*105 1.88*106 

Line losses (W) 1.7341*106 1.0104*106 5.4859*105 1.0273*106 5.1333*105 9.5337*105 

Curtailment (W) 9.2807*105 

 

1.3492*107 1.9938*105 7.567*105 3.0211*103 926.52*103 

Average voltage 

difference (%) 

0.90 670.70 0 0 0 0 
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5. CONCLUSION 

The convex optimization-based OPF solving methods provide a faster execution time while 

compromising the exactness. To overcome this limitation, an optimum power flow algorithm 

based on the sequential second-order cone programming is proposed in this paper. The algorithm 

is utilized to maintain the voltage profile of unbalanced low and medium voltage distribution 

networks with distributed generators. Line losses and PV curtailments are used as the objective 

function with voltage and inverter active power curtailment constraints. A performance 

comparison was carried out in terms of optimality, exactness, and execution time for three test 

cases; test case 1 is an unbalanced LV network, test case 2 is an unbalanced MV network, and test 

case 3 is a balanced three-phase network. 

The most optimum solution is provided by the proposed method for test case 1. It is 25% more 

optimum than the next best PS method while being 343% faster. For test case 2, the objective of 

the proposed method is within 15% of the most optimum solution provided by GA. However, the 

proposed method is 31 649% faster than the GA. For test case 3 most optimum solution is provided 

by the proposed method. It is 25% more optimum than the next best Global search while being 

4.73 _ 105% faster. The proposed method is 343% to 31 649% faster than the best performing 

evolutionary computation techniques depending on the complexity of the test case. In terms of 

execution time, the proposed method is only second to the linear programming method while being 

3.1 _ 102% to 1.05 _ 105% more accurate. 
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APPENDIX A 

The equations (A1) and (A2) were obtained by expanding equations (2) and (3). Variables in non-

convex terms (𝑈𝐴
𝑅

𝑛
, 𝐼𝐴

𝑅
𝑚𝑛

, 𝑈𝐴
𝐼𝑚

𝑛
, 𝐼𝐴

𝐼𝑚
𝑚𝑛

) were replaced from respective values obtained from the 

load flow. Then, 𝑊𝐴𝑚 = |𝑼𝑨𝒎|
2
 and 𝐿𝐴𝑚𝑛 = |𝑰𝑨𝒎𝒏|

2
 substitutions were made to make the equations 

linear. 



𝑝𝐴𝑚𝑛
= ∑ 𝑝𝐴𝑛𝑘𝑘:(𝑗,𝑘)∈𝐸 + PAn

C − PAn

G + Rsmn
𝐿𝐴𝑚𝑛

+ Rmmn
(𝐼𝐴

𝑅
𝑚𝑛

 𝐼𝐵
𝑅

𝑚𝑛
+  𝐼𝐴

𝐼𝑚
𝑚𝑛

 𝐼𝐵
𝐼𝑚

𝑚𝑛
) −

Xmmn
(𝐼𝐴

𝑅
𝑚𝑛

 𝐼𝐵
𝐼𝑚

𝑚𝑛
−  𝐼𝐴

𝐼𝑚
𝑚

 𝐼𝐵
𝑅

𝑚
) + Rmmn

(𝐼𝐴
𝑅

𝑚𝑛
 𝐼𝐶

𝑅
𝑚𝑛

+  𝐼𝐴
𝐼𝑚

𝑚𝑛
 𝐼𝐶

𝐼𝑚
𝑚𝑛

) −

Xmmn
(𝐼𝐴

𝑅
𝑚𝑛

 𝐼𝐶
𝐼𝑚

𝑚𝑛
−  𝐼𝐴

𝐼𝑚
𝑚

 𝐼𝐶
𝑅

𝑚
)         (A1) 

 

𝑞𝐴𝑚𝑛
= ∑ 𝑞𝐴𝑛𝑘𝑘:(𝑗,𝑘)∈𝐸 + QAn

C + 𝑄𝐴𝑛

𝐺 + Xsmn
𝐿𝐴𝑚𝑛

+ Xmmn
(𝐼𝐴

𝑅
𝑚𝑛

 𝐼𝐵
𝑅

𝑚𝑛
+  𝐼𝐴

𝐼𝑚
𝑚𝑛

 𝐼𝐵
𝐼𝑚

𝑚𝑛
) +

Rmmn
(𝐼𝐴

𝑅
𝑚𝑛

 𝐼𝐵
𝐼𝑚

𝑚𝑛
−  𝐼𝐴

𝐼𝑚
𝑚

 𝐼𝐵
𝑅

𝑚
) + Xmmn

(𝐼𝐴
𝑅

𝑚𝑛
 𝐼𝐶

𝑅
𝑚𝑛

+  𝐼𝐴
𝐼𝑚

𝑚𝑛
 𝐼𝐶

𝐼𝑚
𝑚𝑛

) +

Rmmn
(𝐼𝐴

𝑅
𝑚𝑛

 𝐼𝐶
𝐼𝑚

𝑚𝑛
−  𝐼𝐴

𝐼𝑚
𝑚

 𝐼𝐶
𝑅

𝑚
)        (A2) 

 

Derivation of equation A4: 

𝐔𝐀𝐦
 = (𝐔𝐀𝐧

  − 𝐈𝐀𝐦𝐧
𝐙𝐒 − 𝐈𝐁𝐦𝐧

𝐙𝐦 − 𝐈𝐂𝐦𝐧
𝐙𝐦)         (8) 

After separating real and imaginary parts equation (8) was expressed as follows. 

𝐔𝐀𝐦
 = 𝑈𝐴

𝑅
𝑛

+ 𝑈𝐴
𝐼𝑚

𝑛
𝑗 − (𝐼𝐴

𝑅
𝑚𝑛

+ 𝑗𝐼𝐴
𝐼𝑚

𝑚𝑛
)(𝑅𝑆𝑚𝑛

+ 𝑗𝑋𝑆𝑚𝑛
) − (𝐼𝐵

𝑅
𝑚𝑛

+ 𝑗𝐼𝐵
𝐼𝑚

𝑚𝑛
)(𝑅𝑚𝑚𝑛

+ 𝑗𝑋𝑚𝑚𝑛
)

− (𝐼𝐶
𝑅

𝑚𝑛
+ 𝑗𝐼𝐶

𝐼𝑚
𝑚𝑛

)(𝑅𝑚𝑚𝑛
+ 𝑗𝑋𝑚𝑚𝑛

) 

After multiplications between current and resistance terms following equation was obtained. 

𝑈𝐴
𝑅

𝑚
+ 𝑈𝐴

𝐼𝑚
𝑚

𝑗 = 𝑈𝐴
𝑅

𝑛
+ 𝑗𝑈𝐴

𝐼𝑚
𝑛

− {𝑅𝑆𝑚𝑛
𝐼𝐴

𝑅
𝑚𝑛

+ 𝑗𝑋𝑆𝑚𝑛
𝐼𝐴

𝑅
𝑚𝑛

+ 𝑗𝑅𝑆𝑚𝑛
𝐼𝐴

𝐼𝑚
𝑚𝑛

− 𝑋𝑆𝑚𝑛
𝐼𝐴

𝐼𝑚
𝑚𝑛

}

− {𝑅𝑚𝑚𝑛
𝐼𝐵

𝑅
𝑚𝑛

+ 𝑗𝑋𝑚𝑚𝑛
𝐼𝐵

𝑅
𝑚𝑛

+ 𝑗𝑅𝑚𝑚𝑛
𝐼𝐵

𝐼𝑚
𝑚𝑛

− 𝑋𝑚𝑚𝑛
𝐼𝐵

𝐼𝑚
𝑚𝑛

}

− {𝑅𝑚𝑚𝑛
𝐼𝐶

𝑅
𝑚𝑛

+ 𝑗𝑋𝑚𝑚𝑛
𝐼𝐶

𝑅
𝑚𝑛

+ 𝑗𝑅𝑚𝑚𝑛
𝐼𝐶

𝐼𝑚
𝑚𝑛

− 𝑋𝑚𝑚𝑛
𝐼𝐶

𝐼𝑚
𝑚𝑛

} 

Squared magnitude of complex number is obtained after summation of squares of real and 

imaginary parts. 

|𝑼𝑨𝒎
|
2

= (𝑈𝐴
𝑅

𝑛
− 𝑅𝑆𝑚𝑛

𝐼𝐴
𝑅

𝑚𝑛
+ 𝑋𝑆𝑚𝑛

𝐼𝐴
𝐼𝑚

𝑚𝑛
− 𝑅𝑚𝑚𝑛

𝐼𝐵
𝑅

𝑚𝑛
+ 𝑋𝑚𝑚𝑛

𝐼𝐵
𝐼𝑚

𝑚𝑛
− 𝑅𝑚𝑚𝑛

𝐼𝐶
𝑅

𝑚𝑛
+

𝑋𝑚𝑚𝑛
𝐼𝐶

𝐼𝑚
𝑚𝑛

)
2

+ (𝑈𝐴
𝐼𝑚

𝑛
− 𝑋𝑆𝑚𝑛

𝐼𝐴
𝑅

𝑚𝑛
− 𝑅𝑆𝑚𝑛

𝐼𝐴
𝐼𝑚

𝑚𝑛
− 𝑋𝑚𝑚𝑛

𝐼𝐵
𝑅

𝑚𝑛
− 𝑅𝑚𝑚𝑛

𝐼𝐵
𝐼𝑚

𝑚𝑛
− 𝑋𝑚𝑚𝑛

𝐼𝐶
𝑅

𝑚𝑛
−

𝑅𝑚𝑚𝑛
𝐼𝐶

𝐼𝑚
𝑚𝑛

)²                 (A3) 

After expanding above A3, simplification and substituting from equation (7), equation A4 was 

obtained. 

 



𝑊𝐴𝑚
= 𝑊𝐴𝑛

+ RSmn
2𝐿𝐴𝑚𝑛

+ XSmn
2𝐿𝐴𝑚𝑛

+ Rmmn
2𝐿𝐵𝑚𝑛

+ Xmmn
2𝐿𝐵𝑚𝑛

+ Rmmn
2𝐿𝐶𝑚𝑛

+

Xmmn
2𝐿𝐶𝑚𝑛

 − 2 𝑝𝑚𝑛𝐴
− 2 𝑞𝑚𝑛𝐴

− 2𝑉𝐴
𝑅

𝑛
Rmmn

𝐼𝐵
𝑅

𝑚𝑛
+ 2𝑉𝐴

𝑅
𝑛

Xmmn
𝐼𝐵

𝐼𝑚
𝑚𝑛

−

2𝑉𝐴
𝑅

𝑛
Rmmn

𝐼𝐶
𝑅

𝑚𝑛
+ 2𝑉𝐴

𝑅
𝑛

Xmmn
𝐼𝐶

𝐼𝑚
𝑚𝑛

 − 2𝑉𝐴
𝐼𝑚

𝑛
Xmmn

𝐼𝐵
𝑅

𝑚𝑛
− 2𝑉𝐴

𝐼𝑚
𝑛

Rmmn
𝐼𝐵

𝐼𝑚
𝑚𝑛

−

2𝑉𝐴
𝐼𝑚

𝑛
Xmmn

𝐼𝐶
𝑅

𝑚𝑛
− 2𝑉𝐴

𝐼𝑚
𝑛

Rmmn
𝐼𝐶

𝐼𝑚
𝑚𝑛

+ 2RSmn
𝐼𝐴

𝑅
𝑚𝑛

Rmmn
𝐼𝐵

𝑅
𝑚𝑛

−

2RSmn
𝐼𝐴

𝑅
𝑚𝑛

Xmmn
𝐼𝐵

𝐼𝑚
𝑚𝑛

+ 2RSmn
𝐼𝐴

𝑅
𝑚𝑛

Rmmn
𝐼𝐶

𝑅
𝑚𝑛

− 2RSmn
𝐼𝐴

𝑅
𝑚𝑛

Xmmn
𝐼𝐶

𝐼𝑚
𝑚𝑛

−

2XSmn
𝐼𝐴

𝐼𝑚
𝑚𝑛

Rmmn
𝐼𝐵

𝑅
𝑚𝑛

+ 2XSmn
𝐼𝐴

𝐼𝑚
𝑚𝑛

Xmmn
𝐼𝐵

𝐼𝑚
𝑚𝑛

− 2XSmn
𝐼𝐴

𝐼𝑚
𝑚𝑛

Rmmn
𝐼𝐶

𝑅
𝑚𝑛

−

2XSmn
𝐼𝐴

𝐼𝑚
𝑚𝑛

Xmmn
𝐼𝐶

𝐼𝑚
𝑚𝑛

+ 2Rmmn
𝐼𝐵

𝑅
𝑚𝑛

Rmmn
𝐼𝐶

𝑅
𝑚𝑛

− 2Rmmn
𝐼𝐵

𝑅
𝑚𝑛

Xmmn
𝐼𝐶

𝐼𝑚
𝑚𝑛

+

2Xmmn
𝐼𝐵

𝐼𝑚
𝑚𝑛

Xmmn
𝐼𝐶

𝐼𝑚
𝑚𝑛

+ 2XSmn
𝐼𝐴

𝑅
𝑚𝑛

Xmmn
𝐼𝐵

𝑅
𝑚𝑛

+ 2XSmn
𝐼𝐴

𝑅
𝑚𝑛

Rmmn
𝐼𝐵

𝐼𝑚
𝑚𝑛

+

2XSmn
𝐼𝐴

𝑅
𝑚𝑛

Xmmn
𝐼𝐶

𝑅
𝑚𝑛

+ 2XSmn
𝐼𝐴

𝑅
𝑚𝑛

Rmmn
𝐼𝐶

𝐼𝑚
𝑚𝑛

+ 2RSmn
𝐼𝐴

𝐼𝑚
𝑚𝑛

Xmmn
𝐼𝐵

𝑅
𝑚𝑛

+

2RSmn
𝐼𝐴

𝐼𝑚
𝑚𝑛

Rmmn
𝐼𝐵

𝐼𝑚
𝑚𝑛

+ 2𝐼𝐴
𝐼𝑚

𝑚𝑛
Xmmn

𝐼𝐶
𝑅

𝑚𝑛
+ 2RSmn

𝐼𝐴
𝐼𝑚

𝑚𝑛
Rmmn

𝐼𝐶
𝐼𝑚

𝑚𝑛
+

2Xmmn
𝐼𝐵

𝑅
𝑚𝑛

Xmmn
𝐼𝐶

𝑅
𝑚𝑛

+ 2Xmmn
𝐼𝐵

𝑅
𝑚𝑛

Rmmn
𝐼𝐶

𝐼𝑚
𝑚𝑛

+ 2Rmmn
𝐼𝐵

𝐼𝑚
𝑚𝑛

Rmmn
𝐼𝐶

𝐼𝑚
𝑚𝑛

  (A4) 

APPENDIX B 

Figure B1 and B2 shows the voltage profile of the linear programming and the proposed method 

for test case 1. The voltage difference between linear program and load flow executed using 

curtailment values obtained from the linear program is highlighted using curly brackets in figure 

B2. Voltage differences around 14 V were observed in some nodes. These types of deviations can 

generate voltage variations above or below the permissible ±6% voltage margin. Compared to the 

linear program, average voltage deviations are lower by 1.048*105% in the proposed method. 

𝑉𝐴, 𝑉𝐵, 𝑉𝐶 are voltage values generated from the optimization program (linear program or proposed 

Deviation



method) when determining optimum curtailment. 𝑂𝐴, 𝑂𝐵, 𝑂𝐶 are voltage values generated from the 

load flow executed using curtailment values generated from the optimization program. 

 

 

Figure B3 and B4 shows the voltage profile of the proposed method and the linear programming 

for test case 3. The voltage difference between linear program and load flow executed using 

curtailment values obtained from the linear program is highlighted using curly brackets in figure 

B4. Voltage differences around 200 V were observed in some nodes. These types of deviations 

can generate voltage variations above or below the permissible ±10% voltage margin. Compared 

to the linear program, average voltage deviations are lower by 7.45*104% in the proposed method. 

  

 

Figure B1 – Voltage profile test case 1 (Proposed 

method) 
Figure B2 – Voltage profile test case 1 (Linear 

program) 

Figure B3 - Figure B3 - Voltage profile test 

case 2 (Proposed method) 

Figure B4 - Voltage profile test case 2 (Linear 

Program) 


