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The origin of a universal filament width in molecular clouds
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ABSTRACT
Filamentary structures identified in far-infrared observations of molecular clouds are typically found to have full widths at
half-maximum ∼ 0.1 pc. However, the physical explanation for this phenomenon is currently uncertain. We use hydrodynamic
simulations of cylindrically symmetric converging flows to show that the full width at half-maximum of the resulting filament’s
surface density profile, FWHM� , is closely related to the location of the accretion shock, where the inflow meets the boundary of
the filament. For inflow Mach number, M, between 1 and 5, filament FWHM�s fall in the range 0.03 pc � FWHM� � 0.3 pc, with
higher M resulting in narrower filaments. A large sample of filaments, seen at different evolutionary stages and with different
values of M, naturally results in a peaked distribution of FWHM�s similar in shape to that obtained from far-infrared observations
of molecular clouds. However, unless the converging flows are limited to M � 3, the peak of the distribution of FWHM�s is
below the observed ∼ 0.1 pc.
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1 IN T RO D U C T I O N

The internal structure of molecular clouds is highly filamentary
(André et al. 2010, 2014), and the densest filaments appear to play
a key role in star formation. Indeed, the majority of low-mass stars
appear to form in filaments (Könyves et al. 2015, 2020), and filaments
also act to channel material into regions forming high-mass stars
(Peretto et al. 2013, 2014; Hacar et al. 2018; Williams et al. 2018;
Watkins et al. 2019; Anderson et al. 2021). Understanding how
filaments form and evolve is therefore critical to understanding star
formation.

A remarkable property of filaments in molecular clouds is that
they seem to have a characteristic width of ∼ 0.1 pc (Arzoumanian
et al. 2011, 2019). Although concerns have been raised about the
methods used in deriving a ‘width’ from observational data, and
about the variance of the underlying distribution (Smith, Glover &
Klessen 2014; Panopoulou et al. 2017), this characteristic width
does seem to be a general property of filaments, and therefore
requires an explanation. Filament widths measured via molecular
line emission span a much larger range of values (Panopoulou et al.
2014; Hacar et al. 2018; Suri et al. 2019; Álvarez-Gutiérrez et al.
2021; Schmiedeke et al. 2021), but these are still consistent with
an underlying ∼ 0.1 pc width when chemical and radiative transfer
effects are taken into account (Priestley & Whitworth 2020).

There is a large body of theoretical and numerical work on
the structure and evolution of interstellar and prestellar filaments.
Much of this has been based on the assumption of infinitely long,
cylindrically symmetric filaments, and has explored – using variously
the Virial Theorem, similarity solutions, semi-analytic formulations,
and numerical simulations – their (magneto-)hydrostatic equilibria,
their stability against collapse and/or longitudinal fragmentation, and
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their dynamical formation and evolution. Non-magnetic treatments,
assuming an isothermal or polytropic equation of state, include
Stodólkiewicz (1963), Ostriker (1964), Larson (1985), Inutsuka &
Miyama (1992), Kawachi & Hanawa (1998), Holden et al. (2009),
Fischera & Martin (2012), Heitsch (2013a, b), Lou (2015), and
Toci & Galli (2015a). The effects of longitudinal, transverse,
and helical magnetic fields have been considered (in the ideal
limit) by Chandrasekhar & Fermi (1953), Stodólkiewicz (1963),
Larson (1985), Nagasawa (1987), Fiege & Pudritz (2000a, b),
Hennebelle (2003), Tilley & Pudritz (2003), Shadmehri (2005),
Tomisaka (2014), Toci & Galli (2015b), Lou & Xing (2016), and
Kashiwagi & Tomisaka (2021). In addition, Hansen, Aizenman &
Ross (1976) have explored the stability of spinning infinite filaments
against adiabatic perturbations, and Toalá, Vázquez-Semadeni &
Gómez (2012) have evaluated the freefall collapse of infinite fila-
ments.

There is also a body of work that treats filaments of finite
length, both with magnetic fields (e.g. Seifried & Walch 2015), and
without (e.g. Bastien 1983; Rouleau & Bastien 1990; Arcoragi et al.
1991; Bastien et al. 1991; Bonnell & Bastien 1991, 1992; Bonnell
et al. 1991, 1992; Burkert & Hartmann 2004; Pon, Johnstone &
Heitsch 2011; Pon et al. 2012; Clarke & Whitworth 2015; Clarke,
Whitworth & Hubber 2016; Clarke et al. 2017). Much of this
work has been concerned with evaluating the competition between
different longitudinal fragmentation modes, for example sausage
modes versus end-modes, and their potential for forming binary
systems.

However, few of these papers take account of how a filament
forms in the first place, and the interaction between the evolving
structure of a filament and the simultaneous accretion flows on to
it. In principle, similarity solutions can take this into account, but in
practice the flows derived at early times and on large scales seem
unlikely to represent what occurs in nature. The power of similarity
solutions is that more complicated numerical simulations seem often

C© 2021 The Author(s)
Published by Oxford University Press on behalf of Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/1/1494/6380529 by Acquisitions user on 01 D
ecem

ber 2021

mailto:priestleyf@cardiff.ac.uk


Filament widths 1495

to converge on similarity forms at late times and on small scales,
when gravitational acceleration becomes important; this is true in
both cylindrical and spherical symmetry. Moreover, by their nature,
similarity solutions do not in general select a particular physical scale.

Kirk et al. (2015) and Federrath (2016) both find that the
typical filament width of ∼ 0.1 pc is reproduced in simulations of
turbulent, self-gravitating clouds, with or without additions such
as magnetic fields. Federrath (2016) attributes this to the transition
between supersonic and subsonic turbulence, which gives roughly
the correct length-scale for typical molecular cloud properties. In
these cloud-scale simulations, filamentary structures form in regions
where the velocity field is convergent (Smith et al. 2016; Priestley &
Whitworth 2020).

In this paper, we consider an idealized model for filament for-
mation, involving a cylindrically symmetric convergent inflow at
Mach number M. Our hydrodynamical experiments suggest that for
supersonic flows (M ≥ 1), a key feature is the accretion shock at
radius WAS (i.e. distance from the axis of symmetry; subscript ‘AS’
for Accretion Shock) where the convergent flow impacts the central
filament. The full width at half-maximum of the surface density
profile (hereafter the FWHM� ; subscript ‘�’ for surface density) is
closely related to WAS, and for moderately supersonic flows we find
FWHM� ∼ 2WAS� 0.1 pc. A distribution of evolutionary stages and
M values produces a peaked distribution of FWHM�s similar to that
observed, although with a somewhat lower peak value unless M has
a maximum value ∼3.

We use both Cartesian coordinates, (x, y, z), and cylindrical polars,
i.e. w = [x2 + y2]1/2, φ = tan −1(y/x), z = z. The z axis is the spine of
the filament, and so w is radial distance from the spine. In addition, for
an observer outside the filament, we define the impact parameter, b,
which is the projected distance between the line of sight and the z axis.

2 MO D EL

We adopt the following simple initial conditions for the dynamical
formation of a filament: a uniform-density cylinder of gas, symmetric
about the z axis, with a uniform inward radial velocity converging
on the z axis, and an isothermal equation of state. For this model, we
need only specify two dimensionless configuration parameters, the
ratio, G, of the line density of the filament to the critical value, and
the Mach number, M, of the initial inflow velocity.

For the purpose of illustration, we can make the results dimensional
by specifying just two physical variables, for which we choose the
outer radius of the initial filament, WO = 1 pc, and the isothermal
sound speed in the filament, aO = 0.187 km s−1 (corresponding to
molecular gas, with solar elemental composition, at T � 10 K).

If the initial density in the filament is ρO, then the line density of
the filament is μ = πWO

2ρO. The critical line density for stability
against gravitational collapse is μCRIT = 2aO

2/G (Stodólkiewicz
1963; Ostriker 1964), and so

G = πGρOWO
2

2aO
2

. (1)

Hence, the initial density in the filament is

ρ(w ≤ WO) = ρO = 2aO
2 G

πGWO
2

. (2)

With our illustrative choice of WO and aO,

ρO → 5.18 M� pc−3 G , (3)

nH2:O → 73.0 H2 cm−3 G . (4)

If the initial inflow velocity is vO, then

M = vO/aO , (5)

and hence the initial velocity field is

v(w) = − vO êw = − aO M êw, (6)

where êw is a unit vector pointing radially away from the z axis. With
our illustrative choice of aO,

vO → 0.187 km s−1 M . (7)

The gas in the filament has sound speed

a(w ≤ WO) = aO . (8)

We must also specify three numerical parameters, but these are
chosen so that they have minimal effect on the results. First, our
model has a finite length, LO, rather than being infinitely long. LO

is chosen so that the central portions of the filament have time to
evolve, well before they are overrun by the inward motion of the
ends of the filament (Pon et al. 2012; Clarke & Whitworth 2015).
This is achieved by setting LO = 5WO. Secondly, the filament must
be contained within a larger computational domain, for which we
adopt a rectanguloid box with sides �xO = �yO = 3WO, �zO =
6WO. Finally, the regions of the computational domain outside the
filament must be filled with a rarefied, high-temperature ‘lagging’
gas, so that in the initial state there is approximate pressure balance
across the boundary of the filament. This requires the specification
of a contrast parameter, CO. The density in the lagging gas is then
set to ρO/CO and the sound speed to aOCO

1/2. We adopt CO = 10, so
with our illustrative choice of WO and aO,

ρ(w > WO) → 0.5185 M� pc−3 G , (9)

a(w > WO) → 0.591 km s−1 . (10)

For the dimensionless parameters, we investigate a fiducial value
ofG = 1.2 (so that the filament is marginally supercritical) andM =
1–5 (covering trans- to supersonic inflow velocities). We terminate
the simulations when the maximum density reaches a value of 1.5 ×
107 M� pc−3 (∼ 10−15 g cm−3). Beyond this time, tFRAG, the filament
starts to fragment into pre-stellar cores (Clarke et al. 2016), so there
is no longer a representative global filament profile to speak of. As
the contracting filament does not remain entirely uniform in the z

direction (as a consequence of both imminent fragmentation, and
longitudinal contraction due to its finite length), we construct radial
profiles by averaging over the central region, |z| ≤ 1 pc. We obtain
almost identical results if we instead consider the central z = 0
profiles only (Fig. 5). We use the smoothed particle hydrodynamics
code PHANTOM (Price et al. 2018), with resolution parameter η =
1.2, hence on average N̄ NEIB ∼ 56 neighbours. We use ∼5 × 106

particles, giving a particle mass of ∼ 2 × 10−5 M� and a notional
mass resolution ∼ 0.001 M� (i.e. one Jupiter mass).

3 R ESULTS

3.1 Filament profiles

Fig. 1 shows volume-density profiles for the models with M = 2
(left-hand panel) and M = 4 (right-hand panel) at various times,
up to and including the endpoints of the simulations (i.e. tFRAG).
Fig. 2 shows the corresponding surface-density profiles. Figs 3
and 4 show, respectively, the corresponding velocity and velocity-
divergence profiles.
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1496 F. D. Priestley and A. P. Whitworth

Figure 1. Left-hand panel: volume-density profiles for the model with M = 2 at times t = 0.75 Myr (full line), 1.12 Myr (dashed line), and 1.34 Myr (dotted
line; the end of the simulation). Right-hand panel: volume-density profiles for the model with M = 4 at times t = 0.37 Myr (full), 0.67 Myr (dashed), and
0.82 Myr (dotted; the end of the simulation).

Figure 2. As Fig. 1 but showing surface densities rather than volume densities.

Figure 3. Velocity profiles corresponding to the volume-density profiles in Fig. 1.

For the volume-density profiles in Fig. 1, we have added a uniform
background volume density equal to the volume density in the
initial filament, ρB = ρO = 6.21 M� pc−3, in order to represent –
notionally – the contribution from the larger cloud in which the
filament is embedded. Similarly, for the surface-density profiles in
Fig. 2, we have added a uniform background surface density of
�B = 80 M� pc−2. The volume- and surface-density profiles (Figs 1

and 2) show qualitatively that the width of the filament does not vary
much with time, especially for the higher Mach number case.

3.2 The accretion shock at the filament boundary

The velocity profiles in Fig. 3 show that the inflow at large
radii approximates to constant velocity. There is little net inward
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Filament widths 1497

Figure 4. Velocity divergence profiles corresponding to the volume-density profiles in Fig. 1.

acceleration of the inflow due to the combination of self-gravity
(acting inward) and pressure gradient (acting outward) until the gas
hits the accretion shock, marking the boundary of the dense central
filament. Most of the deceleration occurs at this accretion shock.
There is some further deceleration inside the accretion shock, due to
the pressure gradient that develops as the filament attempts to adjust
towards hydrostatic equilibrium.

We posit that the accretion shock should be seen as the natural
boundary of the filament. This separates objectively the more rarefied
super- or trans-sonically inflowing material (not filament) from the
much denser subsonic material (filament).

Because there is little acceleration at large radii, the density just
outside the accretion shock at radius WAS is approximately

ρpreS ∼ ρO[WAS/WO]−2. (11)

Equation (11) simply reflects cylindrically symmetric convergence at
constant velocity. The resolution in the gas just outside the accretion
shock, as a fraction of the shock radius, is therefore

4hpreS

WAS
∼ 4η

[
mSPH

ρOWO
2WAS

]1/3

(12)

→ 0.35

[
WAS

0.01 pc

]−1/3

, (13)

where we have obtained the final expression by substituting the
illustrative values of ρO and WO. It follows that the accretion shock
is less well resolved when the filament is very narrow, but for all
WAS � 0.01 pc the code should be returning a meaningful estimate
of the shock radius.

The velocity-divergence plots (Fig. 4) allow us to locate the
accretion shock quite accurately. We define the radius of the accretion
shock, WAS, as the radius of the outermost divergence minimum with
an absolute value at least five times the average.1 The left-hand panel
of Fig. 5 shows the variation of the diameter of the filament, 2WAS,
with time, for filaments with different inflow Mach numbers, M.
In the early stages, the filament’s self-gravity is weak, and it is
mainly contained by the ram pressure of the inflow; consequently,
the diameter grows with time as the line density increases. In the late

1This criterion is necessary because lower-M models develop rarefaction
waves propagating outward as incoming material ‘bounces’ at the centre,
and this results in additional minima in the divergence profiles inside that
associated with the accretion shock.

stages, self-gravity dominates over ram pressure, and the diameter
decreases with time.

The diameter of the filament, 2WAS, and the time-scale for the
filament to become gravitationally unstable against fragmentation,
tFRAG, both decrease with increasing Mach number of the inflow, due
– respectively – to the greater ram-pressure (i.e. greater momentum
flux) and the greater mass flux delivered to the accretion shock.

3.3 The full width at half-maximum

The right-hand panel of Fig. 5 shows the variation of the filament
FWHM� with time, for filaments with the same inflow Mach numbers
as those in the left-hand panel. We only show values when the
peak surface-density exceeds three times that of the original profile
(37 M� pc−2), in order to ensure that the measured FWHM� is that
of the central filament, rather than the FWHM� of the initial isolated
cylinder as a whole. Once this threshold has been passed, the variation
of the FWHM� echos closely the variation of the diameter, 2WAS.

Fig. 6 shows the ratio of the FWHM� to 2WAS, as a function of
time. The FWHM� is almost always smaller than 2WAS, in other
words the full width at half-maximum is almost always inside the
accretion shock. As the line density of the filament increases due to
accretion, the filament becomes more self-gravitating and therefore
more concentrated towards the spine. Consequently the ratio of the
FWHM� to 2WAS decreases with time, but FWHM� and 2WAS are
within a factor of two of each other for a significant fraction of the
model evolution.

3.4 The distribution of FWHM�s

Fig. 7 shows the probability distribution function (PDF) of the
FWHM�s for inflow Mach numbers M = 1, 2, 3, 4, and 5 – i.e.
for a given Mach number, the probability of observing the filament
when it has a given FWHM� , if the filament is observed at a random
time between when it first exceeds our surface-density threshold and
when it becomes unstable against fragmentation (tFRAG). These PDFs
are generated from the discrete values of FWHM� obtained from the
simulations, smoothed using the procedure described in Appendix A.
The higher the inflow Mach number, the smaller the median FWHM�

and the narrower the PDF about this median value, due to the greater
ram pressure of the inflow.

Using the FWHM� PDFs, we generate a large synthetic sample of
filament FWHM�s, assuming a uniform distribution of Mach numbers
over the interval 1 ≤ M ≤ 5, and accounting for the shorter duration
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1498 F. D. Priestley and A. P. Whitworth

Figure 5. Left-hand panel: evolution of 2WAS for filaments formed with different inflow Mach numbers, M = 1 (blue), 2 (orange), 3 (green), 4 (red), 5
(purple). Right-hand panel: evolution of FWHM� for the same filaments as in the left-hand panel. Solid lines show properties of the averaged filament profiles,
dashed lines those of the z = 0 profiles.

Figure 6. Evolution of the ratio of FWHM� to 2WAS, for filaments formed
with different inflow Mach numbers, M = 1 (blue), 2 (orange), 3 (green), 4
(red), 5 (purple).

Figure 7. The PDF for filament FWHM�s formed with different inflow Mach
numbers; M = 1 (blue), 2 (orange), 3 (green), 4 (red), 5 (purple).

of higher-M models and thus the lower probability of such a model
being observed. This is directly comparable to the observational data
from Panopoulou et al. (2017), assuming that real molecular clouds
also contain filaments formed from flows of different M and at a

range of evolutionary stages. Fig. 8 shows FWHM� histograms for
filaments withG = 0.8, 1.2, and 1.6. The overall shape of the FWHM�

distribution is not significantly affected by the gravitational stability
of the filaments, and is very similar to that found by Panopoulou et al.
(2017), with a peak at small FWHM� and a gradual decline in the
number of filaments with larger FWHM� . The formation of filaments
by converging flows thus naturally produces a peaked distribution of
filament widths, as observed.

The peak FWHM� in Fig. 8 is at ∼ 0.03 pc, rather than the 0.1 pc
observed. In Appendix B, we show that rather than a uniform
distribution of Mach number, there is likely to be a preference for low-
M flows in molecular clouds. Specifically, for a turbulent medium
obeying standard scaling laws, we demonstrate (a) that the structures
produced by converging flows tend to be filamentary, and (b) that the
probability distribution of the Mach numbers for filament-forming
flows takes the form

dP

dM ∝ M−γ , (14)

with γ in the range 0 � γ � 3. Fig. 9 shows the impact of an increas-
ingly bottom-heavy distribution of M on the FWHM� distribution.
While higher values of γ do shift the peak FWHM� to values closer
to those observed, this comes at the expense of significantly more
filaments with FWHM� � 0.2 pc, which are almost completely absent
from the Panopoulou et al. (2017) data. Obtaining a peak FWHM�

of ∼ 0.1 pc from our model, while remaining consistent with other
observational constraints, appears to require limiting the range of M
to values � 3, as shown in Fig. 10 for γ = 0. Higher velocity inflows
produce strongly peaked FWHM� PDFs at values � 0.05 pc that are
difficult to reconcile with the observed peak at higher values.

4 D ISCUSSION

4.1 The peak of the FWHM� PDF

While our model of filament formation naturally explains the exis-
tence of a peak FWHM� and the general shape of the distribution,
the tendency to place this peak at too-low values FWHM� unless
high-M flows are excluded is concerning. In Appendix C, we show
that the Larson (1981) molecular cloud scaling relations result in a
cut-off in the maximum Mach number flow that can be present in a
cloud of a given mass. For the Pon et al. (2012) numerical values
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Filament widths 1499

Figure 8. Histograms of filament FWHM�s for a uniform distribution of Mach number 1 ≤ M ≤ 5, and G = 0.8 (left), 1.2 (middle), and 1.6 (right).

Figure 9. Histograms of filament FWHM�s for a distribution of Mach number dP
dM ∝ M−γ between 1 ≤ M ≤ 5, with γ = 0 (left), 1 (centre), and 3 (fight).

Figure 10. Histogram of filament FWHM�s for a uniform distribution of
Mach number 1 ≤ M ≤ 3 and G = 1.2.

for the relations, the M � 3 required by our model corresponds to
molecular cloud masses � 103 M�.

Hydrodynamical simulations of turbulent clouds produce both
the correct average filament width (Federrath 2016) and similar
distributions of unaveraged widths (Priestley & Whitworth 2020)
to those observed, despite the initial presence of Mach 5 (and higher)
motions. Additionally, the distribution of the velocity difference
across filaments in Priestley & Whitworth (2020), which corresponds
approximately to 2vO, drops off sharply above 1.0 km s−1, i.e.
M ∼ 3 for sound speed aO = 0.187 km s−1. This suggests that, at
least in simulations, high-M flows are not involved in forming the
filamentary structures observed.

Filaments may also include dynamically important magnetic
fields, and we will explore this possibility in detail in a subsequent
paper. If the field is initially uniform, BO, it is likely to have two

effects on the filament width. The component parallel to the filament
spine, B‖ = [BO · êz] êz, will give the filament extra support against
collapse, resulting in a broader surface-density profile than the non-
magnetized case. If there is also a component perpendicular to the
filament spine, B⊥ = BO − B‖, it will provide additional support in
directions perpendicular to B⊥ and êz, thereby causing the filament to
develop a flattened cross-section (e.g. Kashiwagi & Tomisaka 2021);
this in turn will increase the variance of FWHM� values, since they
will depend on the viewing angle, in addition to the Mach number
and evolutionary stage. We thus expect the introduction of a magnetic
field to result in a broader distribution of FWHM�s peaked at higher
values, which might bring our results in Fig. 8 into closer agreement
with the Panopoulou et al. (2017) data. On the other hand, if the
field has a toroidal component, this will probably act to compress the
filament (e.g. Fiege & Pudritz 2000a).

Finally, filaments may have additional support from turbulence,
and – all other things being equal – this will increase their widths by
supplying an extra internal pressure. Indeed, observed filaments are
typically observed to have trans-sonic internal turbulence, i.e. non-
thermal velocity dispersion between one and two times the isothermal
sound speed, cS � σ NT � 2cS (e.g. Hacar & Tafalla 2011; Hacar
et al. 2013, 2018; Hacar, Tafalla & Alves 2017). When this level of
turbulence is taken into account, a given inflow velocity, vO, translates
into a Mach number that is between ∼√

2 and ∼√
3 times smaller,

and a filament width that is therefore between ∼2 and ∼3 times
larger.

4.2 The Plummer exponent

It is standard practice to fit the observed surface-density profiles of
filaments with Plummer profiles, i.e.

�(w) = �B + �O

{
1 +

[
w

wO

]2
}−[p−1]/2

. (15)
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1500 F. D. Priestley and A. P. Whitworth

Figure 11. As Fig. 2, but with a logarithmic scale for the abscissa. The red dashed lines indicate a � ∝ b−2 profile.

Figure 12. Filament FWHM� versus central surface density, for filaments
formed with different inflow Mach numbers, M = 1 (blue), 2 (orange), 3
(green), 4 (red), 5 (purple). The black dashed line indicates the central Jeans
length, λJ = aO

2/(G�), as a function of surface density.

Here, �B is the background surface density, �B + �O is the surface
density on the spine of the filament, w is the projected distance of
the line of sight from the spine, wO is the Plummer scale length
(related to the FWHM� by FWHM� = wO{41/[p−1] − 1}1/2), and p is
the Plummer exponent. For an isothermal cylinder in equilibrium,
p = 4 (Stodólkiewicz 1963; Ostriker 1964), whereas observed
filaments are typically best fitted with p ∼ 2 (Arzoumanian et al.
2011; Palmeirim et al. 2013; André et al. 2014; Arzoumanian et al.
2019). This difference is often put down to effects such as magnetic
fields or a non-isothermal equation of state (e.g. Palmeirim et al.
2013).

Fig. 11 shows the surface density profiles from Fig. 2 on a
log–log scale, along with a � ∝ b−2 profile (corresponding to
p = 3; Casali 1986). As the central filament forms, the sur-
face density profile in the outskirts gradually approaches p = 3
from lower values. The averaging procedure used to estimate p
from observed filament profiles actually underestimates p signif-
icantly (Whitworth, Priestley & Arzoumanian 2021). Therefore,
the observed p ∼ 2 may be explained, without recourse to ad-
ditional physical processes, by a combination of filaments not
being equilibrium objects and the averaging procedure used to
estimate p.

4.3 The scaling of FWHM� with �

Arzoumanian et al. (2019) find no significant trend when comparing
their observed filament widths with the filament central column den-
sities. They argue that this is inconsistent with isothermal, hydrostatic
cylinders, which should have a width scaling approximately with the
local Jeans length, λJ = aO

2/(G�). Fig. 12 shows that our model
filaments do have a declining FWHM�-� trend, with denser filaments
tending to be narrower, although this trend is much shallower than
the �−1 dependence of λJ. However, the Arzoumanian et al. (2019)
data extend only up to central column densities of ∼ 2 × 1022 cm−2,
corresponding to ∼ 400 M� pc−2. For surface densities below this
value, the trend in our model FWHM�s is mild, and hardly noticeable
for the higher-M models. The lack of scaling of filament width with
central density is understandable if filaments are not in hydrostatic
equilibrium, but are in fact dynamically forming structures.

5 C O N C L U S I O N S

We have shown, using hydrodynamical simulations, that a cylindri-
cally symmetric, converging flow produces a central filament with a
boundary set by the location of the accretion shock on to the filament.
Because this accretion shock has a width 0.03 pc � 2WAS � 0.3 pc
for moderately supersonic flows, the full width at half-maximum
of the filament surface-density profile also falls within this range
of values. For a sample of filaments seen at different evolutionary
stages and formed by flows with a range of Mach numbers, the
FWHM� distribution naturally has a prominent peak value, and a
similar shape to the observed distribution in molecular clouds. In
order to reproduce the observed peak at ∼ 0.1 pc, our model requires
that the range of Mach numbers is limited to M � 3, although the
inclusion of magnetic fields and/or trans-sonic turbulence is likely to
relax this requirement.
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APPENDI X A : SMOOTHED PRO BA BI LI TY
DI STRI BU TI ONS

With our models typically having ∼20 FWHM� values each, the
appearance of a histogram of values can be strongly affected by
the number and width of bins chosen. We thus instead present our
results as smoothed PDFs, with the value at any point determined by
a weighted sum over the discrete filament FWHM�s. This requires the
choice of one parameter, a smoothing parameter Q determining the
range of influence of each discrete value. As a compromise between
resolution and uncertainty, we use Q(N ) = ceiling

(√
N + ε

)
with

ε = 0.1.
We first sort all N FWHM� values V in ascending order, and

calculate the smoothing length σ for each. This is given by

σ (i) = (V (i + Q) − V (i − Q)) /2 , (A1)

except for the first and last Q values, for which

σ (i; i ≤ Q) = Q (V (i + Q) − V (1)) / (Q + i − 1) (A2)

and

σ (i; i > N − Q) = Q (V (N ) − V (i − Q)) / (Q + N − i) , (A3)

respectively. To avoid issues when neighbouring points have nearly
identical values, we then modify the smoothing length to σ (i) =√

σ (i)2 + 〈σ 〉2, where 〈σ 〉 is the mean value for all points.
With σ determined, the PDF is given by

P (x) = 1

N

∑
i

W

( |x − V (i)|
σ (i)

)
/σ (i), (A4)

where W is the smoothing kernel given by

W (s) =

⎧⎪⎨
⎪⎩

2
3 − s2

(
1 − s

2

)
, s ≤ 1;

1
6 (2 − s)3 , 1 < s ≤ 2;

0, s > 2.

(A5)

A P P E N D I X B: TH E F O R M AT I O N O F
FI LAMENTS, AND OTHER STRUCTURES , BY
C O N V E R G I N G FL OW S

In this appendix, we consider the distribution of Mach numbers for
the turbulent flows creating filaments.
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There are two distinct potential explanations for the predominance
of filamentary structures in dense interstellar gas, and therefore in
star formation regions. First, given a static, dense layer of gas, the
dominant fragmentation mode involves elongated perturbations that
evolve into filaments, as shown on the basis of non-linear perturbation
analysis by Miyama, Narita & Hayashi (1987a), and using numerical
simulations by Miyama, Narita & Hayashi (1987b) and Balfour et al.
(2015). Secondly, even in regions where gravity is unimportant,
shock-compression due to random isotropic turbulence produces
filaments. This appendix is concerned with this second explanation.
We demonstrate why the filamentary mode is ubiquitous, even
in relatively low-density gas, and derive an expression for the
differential probability, dP/dM, that a randomly chosen element
of gas is being compressed by a convergent flow at a given Mach
number, ∼ M.

B1 Scaling laws for interstellar turbulence

We adopt a turbulent power spectrum of the form

dP

dk
∝ k−β . (B1)

Typically β ∼ 2. The density of modes in 3D k-space then goes as
k−[β + 2] – and hence, with β = 2, as k−4.

If we now switch to length-scale, L as the independent variable,
with k = L−1, dk/dL = −L−2, we have

dP

dL
= dP

dk

∣∣∣∣ dk

dL

∣∣∣∣ ∝ L[β−2]. (B2)

To obtain the probability that an element of gas has Mach number
M, we invoke a scaling law of the form

M ∝ σ ∝ Lα, (B3)

where σ is the velocity dispersion, and the first proportionality
presumes that the gas is isothermal and therefore has uniform sound
speed. For the original scaling laws proposed by Larson (1981), α �
0.38. For the modified scaling laws proposed by Pon et al. (2012),
α = 1/2, as found by Myers (1983).

It follows that

dP

dM = dP

dL

∣∣∣∣ dL

dM

∣∣∣∣ ∝ M[β−1−α]/α. (B4)

We also define the time-scale between compression events for such
a gas element,

t(M) ∝ L(M)

σ (M)
∝ M[1−α]/α. (B5)

B2 Shock-compressed sheets

We define a ‘shock-compressed sheet’ as a sheet whose containment
is initially dominated on both sides by the ram pressure of material
accreting on to the sheet; only later, if at all, does containment become
dominated by self-gravity. In the absence of stellar feedback – in
particular expanding HII regions, stellar-wind bubbles and supernova
remnants – this would appear to be the only way in which sheets can
form in the interstellar medium.

A single converging mode is required to form a shock-compressed
sheet, and therefore the frequency with which an element of the
interstellar medium becomes part of a shock-compressed sheet is
given by

dF
dM

∣∣∣∣ SHEET ∝ 1

t(M)

dP

dM ∝ M[β−2]/α. (B6)

However, an isolated extended sheet with an isothermal equation
of state does not collapse, no matter how fast it is converging or how
high the external pressure. In fact, this is true for any polytropic
equation of state, provided the polytropic exponent is positive,
i.e. dln (P)/dln (ρ)|LAGRANGIAN > 0. Consequently shock-compressed
sheets are necessarily transient (they form and then bounce) unless
they are sufficiently massive and there is a sufficient external pressure
(in which case they relax towards hydrostatic equilibrium). Collapse,
and hence star formation, can only occur in a shock-compressed sheet
if it interferes constructively with another converging mode.

B3 Shock-compressed filaments

We define a ‘shock-compressed filament’ as one in which contain-
ment of the embryonic filament is initially dominated by the ram-
pressure of material accreting on to the filament; only later, if at
all, does it become dominated by self-gravity. (This is not the only
way to form a filament. As mentioned at the start of this appendix,
filaments can also form by gravitational fragmentation of sheets, but
in that case they are not ‘shock-compressed’.)

To form a shock-compressed filament requires two approximately
orthogonal converging modes to interact more-or-less simultane-
ously, and hence to combine constructively. Consequently the fre-
quency with which an element of the interstellar medium becomes
part of a shock-compressed filament is given by

dF
dM

∣∣∣∣ FILAMENT ∝ 1

t2(M)

dP

dM ∝ M[β−3+α]/α. (B7)

There is a geometric factor buried in the constant of proportionality,
which reflects how approximately orthogonal the two converging
modes (with independent wavevectors k1 and k2) have to be to
avoid the increased density and pressure delivered by the first
converging mode being able to squeeze out sideways before the
second converging mode arrives. This factor is presumed to be
independent of the Mach numbers of the converging modes.

B4 Shock-compressed cores

Finally, we define a ‘shock-compressed core’ as one in which
containment of the core is initially dominated by the ram-pressure
of the material accreting on to the core; only later, if at all, does it
become dominated by self-gravity (and hence become a pre-stellar
core).

To form a shock-compressed core requires (at least) three ap-
proximately orthogonal converging modes to interact more-or-less
simultaneously, and hence to combine constructively. Consequently
the frequency with which an element of the interstellar medium
becomes part of a shock-compressed core is given by

dF
dMCORE ∝ 1

t3(M)

dP

dM ∝ M[β−4+2α]/α. (B8)

Again, there is a geometric factor buried in the constant of propor-
tionality, which reflects how approximately orthogonal to the first
two converging modes the third converging mode has to be to avoid
the increased pressure delivered by the first two converging modes
being able to squeeze out sideways before the third converging mode
arrives (Lomax, Whitworth & Hubber 2016). Again, we presume
that this factor is independent of the Mach numbers of the converging
modes.

Since the formation of a shock-compressed core requires (at
least) three approximately orthogonal converging modes to interact
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more-or-less simultaneously, the formation of an isolated shock-
compressed core is rather unlikely, since this would require all
three converging modes to have very narrow fronts.2 If two of the
converging modes are broad, the core will de facto be embedded in a
filament. If all three (or more) of the converging modes are broad, the
core will de facto be at the confluence of three (or more) filaments.

B5 The distribution of Mach numbers for cylindrical
convergent flows

From equation (B7), the probability of a given piece of gas being
currently involved in a convergent cylindrical flow can be written in
the form

dF
dM

∣∣∣∣ FILAMENT ∝ M−γ , (B9)

where

γ = 3 − α − β

α
. (B10)

If we adopt β = 2.0 ± 0.5, the Larson (1981) scaling laws give

γ LARSON � 1.63 ± 1.32, (B11)

and the Pon et al. (2012) scaling laws give

γ PON � 1.00 ± 1.00. (B12)

Thus γ could lie anywhere between ∼0 and ∼3, with the higher γ

values corresponding to the Larson (1981) scaling laws. This means
that there is probably a preference for filaments to be formed by
low-Mach number flows.

A P P E N D I X C : TH E R A N G E O F MAC H
N U M B E R S IN TU R BU L E N T C L O U D S

In this appendix, we consider constraints on the range of Mach
numbers for the turbulent flows creating filaments.

The scaling relations derived by Larson (1981) give, after some
trivial algebra, the mean volume density and the mean one-
dimensional velocity dispersion3 in a cloud of mass M:

ρ̄(M) ∼ 3.85 × 103 M� pc−3 [M/M�]−0.58, (C1)

σ̄ (M) ∼ 0.635 km s−1 [M/M�]0.20. (C2)

In addition, Larson (1985) has suggested that the mean temperature in
the interstellar medium can be approximated by a polytropic equation
of state, T ∼ 17 K [ρ/10−20 g cm−3]−0.28, and so the mean isothermal

2By the ‘front’ of a converging mode we mean the extent of the mode
perpendicular to its wavevector.
3Note that Larson gives the three-dimensional velocity dispersion, which is
larger by a factor of 31/2.

sound speed in a cloud of mass M is

ā(M) ∼ 0.170 km s−1 [M/M�]0.081. (C3)

It follows that the initial radius and line density of the cylinder
forming a filament should be scaled according to the cloud mass,

WO(M) ∼
[

2G
πGρ̄(M)

]1/2

ā(M) (C4)

∼ 0.059 pc G1/2 [M/M�]0.34, (C5)

μO(M) ∼ 2ā2(M)

G
(C6)

∼ 13.5 M� pc−1 G [M/M�]0.16. (C7)

Moreover, the inflow Mach numbers should be capped at, or at least
must decline rapidly above,

MMAX(M) ∼ σ̄ (M)

21/2ā(M)
(C8)

∼ 2.64 [M/M�]0.12. (C9)

Thus, inflows with high Mach numbers are only common in relatively
massive clouds.

If we repeat this analysis using the scaling relations proposed
by Pon et al. (2012) and a very slightly cooler equation of state,
T ∼ 12.5 K [ρ/10−20 g cm−3]−1/4, we obtain

ρ̄(M) ∼ 3.17 × 103 M� pc−3 [M/M�]−1/2, (C10)

σ̄ (M) ∼ 0.148 km s−1 [M/M�]1/4, (C11)

ā(M) ∼ 0.139 km s−1 [M/M�]1/16, (C12)

WO(M) ∼ 0.030 pc G1/2 [M/M�]5/16, (C13)

μO(M) ∼ 9.1 M� pc−1 G [M/M�]1/8, (C14)

MMAX(M) ∼ 0.752 [M/M�]3/16. (C15)

Despite our adopting a slightly cooler equation of state, the Pon
et al. (2012) scaling relations leads to even lower MMAX values.
Specifically,MMAX � 3 requires M � 1.6 × 103 M�, andMMAX �
5 requires M � 2.4 × 104 M�. These results suggest that the upper
limits on M invoked in Section 3.4 might be attributable to the
relatively low masses of the star-forming clouds in which most
filament widths have been measured.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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