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Generalized Gaussian time series model for

increments of EEG data

Nikolai N. Leonenko✯, Željka Salinger, Alla Sikorskii, Nenad

Šuvak and Michael Boivin

We propose a new strictly stationary time series model
with marginal generalized Gaussian distribution and expo-
nentially decaying autocorrelation function for modeling of
increments of electroencephalogram (EEG) data collected
from Ugandan children during coma from cerebral malaria.
The model inherits its appealing properties from the strictly
stationary strong mixing Markovian diffusion with invari-
ant generalized Gaussian distribution (GGD). The GGD
parametrization used in this paper comprises some famous
light-tailed distributions (e.g., Laplace and Gaussian) and
some well known and widely applied heavy-tailed distribu-
tions (e.g., Student). Two versions of this model fit to the
data from each EEG channel. In the first model, marginal
distributions is from the light-tailed GGD sub-family, and
the distribution parameters were estimated using quasi-
likelihood approach. In the second model, marginal distri-
butions is heavy-tailed (Student), and the tail index was
estimated using the approach based on the empirical scal-
ing function. The estimated parameters from models across
EEG channels were explored as potential predictors of neu-
rocognitive outcomes of these children 6 months after recov-
ering from illness. Several of these parameters were shown to
be important predictors even after controlling for neurocog-
nitive scores immediately following cerebral malaria illness
and traditional blood and cerebrospinal fluid biomarkers col-
lected during hospitalization.

AMS 2000 subject classifications: Primary 37M10;
secondary 62M10, 62G07, 62J20, 62P10.

Keywords and phrases: Time series, Diffusion process,
Diffusion discretization, Generalized Gaussian distribution,
Heavy-tailed distribution, Tail index.

1. INTRODUCTION

Cerebral malaria is the most severe neurological compli-
cation of infection with a parasite Plasmodium falciparum.
Over 90% of all cerebral malaria cases occur in sub-Saharan
Africa, with over half a million children affected each year.
For the review of mathematical models for malaria epidemic

✯Corresponding author.

we refer to [27], while more recent results could be found in
[41].

Even with treatment, 10 − 20% of affected children die,
while survivors sustain brain injury, which may affect sub-
sequent neurodevelopment and cognitive functioning [18].
Identification of factors that can predict the extent of neu-
rocogntive impairment and other outcomes following cere-
bral malaria illness is an important problem [32, 3]. While
evidence-based rehabilitative interventions for survivors are
available, resources to administer them are limited across
sub-Saharan Africa. Therefore directing these interventions
to those in most need, as determined by predictors of sub-
sequent impairment, is key to the most efficient use of the
available resources.

Onset of coma is one of the diagnostic differences be-
tween cerebral and severe malaria, and electroencephalo-
gram (EEG) is used to monitor child’s brain during coma
by recording data on electrical neural activity of the brain.
Signals are captured by multiple electrodes called channels
located over the scalp. A number of models linking the
chemical processes within corresponding neurons generat-
ing the active potentials have been proposed since 1950s. An
overview of these models is given in [36]. Statistical analy-
ses of EEG data included classification and prediction using
arrays of EEG features, but few models for the underlying
stochastic processes have been proposed [33, 40]. In this pa-
per we build upon past work [40] in which it was determined
that the underlying stochastic processes across channels are
not stationary but have stationary increments. The distribu-
tions of these increments were symmetrical across channels;
in some channels the distributions were heavy-tailed whereas
in other channels, lighter tails were observed. In this paper
we provide a unifying stochastic model that captures differ-
ent types of tails across the range of model parameters. This
model is based on time series with marginal Generalized
Gaussian Distribution (GGD) and exponentially decaying
correlation function.

The paper is structured as follows. In Section 2 we intro-
duce the family of GGD, state its main properties and dis-
cuss important special cases. The time series of observations
from strictly stationary strong mixing Markovian diffusion
with marginal GGD is introduced in Section 3, where we
also discuss some alternative models and different schemes
for discretization of diffusions. Methods for parameter es-
timation, quasi-likelihood and a relatively new method for



tail-index estimation, are described in Section 4. Section 5
is dedicated to fitting of the proposed time series models
to the increments of real EEG recordings. The first set of
models is for non-heavy tailed distributions with parameter
estimated by the quasi-likelihood method based on the in-
variant distribution of the underlying Markovian diffusion.
In the second set of models (Section 5.3), marginal heavy-
tailed Student distribution of the time series is used, and its
tail index is estimated by the method based on the partition
function. In Section 6 the elastic net is used to determine
whether the parameters of from these two sets of models
are useful as predictors of children’s neurocognitive scores
6 months after surviving cerebral malaria. The results are
discussed in Section 7.

2. DISTRIBUTIONAL PROPERTIES OF EEG

INCREMENTS

Our approach in dealing with EEG signal is based on its
transformation into EEG increments, which have a symmet-
ric distribution with the maximum at zero. To reflect the di-
versity of the empirically observed distribution candidates,
we parametrize the probability density function (PDF) of
the distribution of increments as follows:
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where the value of parameter b is used as an indicator
for making a distinction between light-tailed (b = 0) and
heavy-tiled (b > 0) distributions within this family. We will
refer to the distributions from this family as GGD. The sub-
family characterized by b = 0 resembles the usual GGD
parametrization including, for s = 2, the zero-mean nor-
mal distribution with variance σ2. For more details on light-
tailed GGD subfamily we refer to [29] and [11]. For b > 0,
distributions in the GGD subfamily admit heavy tails, e.g.,
for s = 2 this distribution is of the Student type. For more
information on Student distribution and related processes
we refer to [14], whereas for parametrization similar to (1)
we refer to [25], where this distribution was studied in the
framework of affine moments to prove some sharp moment-
entropy inequalities. Namely, it is known that the GGD sat-
isfies the maximum entropy principle (see e.g. [26]), which
we state here in order to emphasize the importance of this
family of distributions to the entropy-based problems.

Theorem 2.1. Let X be a real random variable with the
PDF g such that for some s > 0

E [|X|s] < ∞,

and let Hq(g) be the corresponding Shanon (q = 1) or Rènyi
(1/(1 + s) < q < 1) entropy.

(i) If supp(g) = R and q = 1, then
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1

s
− log

(
1

2(sσ2)1/sΓ
(
1 + 1

s

)
)
,

where fs,0 is the PDF of GGD (1) for b = 0 and

H1(g) = −
∫

R

g(x) log (g(x)) dx,

is the corresponding Shannon entropy. The equality
holds if and only if g = fs,0 a.s.

(ii) If supp(g) = R and 1/(1 + s) < q < 1, then
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where fs,b is the PDF of GGD (1) for b > 0 and

Hq(g) =
1

1− q
log



∫

R

gq(x) dx


,

is the corresponding Rènyi entropy. The equality holds
if and only if g = fs,b a.s.

For more details on Rènyi and Shannon entropy and their
relations with GGD (1) and its special cases we refer to [25],
[16] and [19].

Further, we state some important properties related to
moments of the GGD (1). For b = 0, all moments of the
distribution (1) exist. In this case the absolute moment of
order ν > 0 is of the following form:

(2) E[|X|ν ] = (sσ2)ν/s
Γ
(
1+ν
s

)

Γ
(
1
s

) .

In particular, integer moments are given by
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For heavy-tailed GGD subfamily (b > 0), the tail of the

density decreases like |x|−1−s
(
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b
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)

. The absolute moment

of order ν > 0 exists for ν < s
(
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)
and is given by the

following expression:
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The integer moments are given by
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The first six moments are of the following form:
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Remark 2.1. Beside time series with light-tailed GGD dis-
tribution for modeling of the EEG increments, we will also
use the special case of the heavy-tailed part of (1), where
b > 0. As already stated, in that case for s = 2 we obtain
the Student-type distribution with the PDF
(6)
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and the first six moments are of the following form:

E[X] = E[X3] = E[X5] = 0,

E[X2] = 1,

E[X4] =
3σ2

σ2 − b
,

E[X6] =
15σ4

σ4 − 3bσ2 + 2b2
.

For example, the explicit expressions for moments enable
the straightforward statistical analysis of strictly station-
ary diffusion with Student marginals. For more details on
analysis of probabilistic properties, moment-based parame-
ter estimation and testing of statistical hypothesis regarding
such diffusion we refer to [24].

3. TIME SERIES REPRESENTATION OF

THE EEG INCREMENTS

In order to characterize important probabilistic proper-
ties of increments including their dependence structure, we
view the EEG increments as the time series (Xn, n ∈ N),
representing the model for discrete-time observations from
the diffusion process (Xt, t ≥ 0) with the stationary PDF
(1). Since the PDF (1) is continuous, bounded, and strictly
positive on the whole R, according to the [2][Theorem 2.1,
page 193] the stochastic differential equation (SDE)

(9) dXt = −θXt dt+
√

v(Xt) dBt, θ > 0, t ≥ 0,

driven by the standard Brownian motion (Bt, t ≥ 0), where
the drift reflects the mean reversion of the process to zero
and the diffusion coefficient v is obtained as

v(x) =
2θ

f(x)

x∫

−∞

(−y)f(y) dy,

admits the unique weak ergodic solution and defines the
diffusion with stationary distribution (1), which we call
the generalized Gaussian diffusion (GGDiff). The important
properties of GGDiff are:

❼ If X0 has pdf fs,b, the GGDiff is a strictly stationary
process;

❼ If E[X2
t ] < ∞, the autocorrelation function of the

GGDiff is given by Corr(Xs, Xt) = e−θ|t−s|;
❼ According to [10][Proposition 3, Page 115], GGDiff is
a strong mixing process with exponentially decaying
mixing coefficient αX(t) = sup

s≥0
α(Fs,Fs+t), where

α(Fs,Fs+t) = sup
A∈Fs,B∈Fs+t

|P (A ∩B)− P (A)P (B)|,

A ∈ Fs = σ{Xu, u ≤ s}, B ∈ Fs+t = σ{Xu, u ≥ s+t}.
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The time series (Xn, n ∈ N) inherits the strong sta-

tionarity, autocorrelation structure, and the strong mixing

property of the GGDiff (9), making it a reasonable model

for EEG increments and enabling statistical analysis of the

EEG data.

Remark 3.1. The diffusion (9) has the linear drift governed

by the autocorrelation parameter θ. The diffusion coefficient

defined as follows. For the light-tailed case (b = 0), the dif-

fusion coefficient is given by
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where

γ(a, x) =

x∫

0

ta−1e−t dt,

is the lower incomplete gamma function. For b > 0 the dif-

fusion coefficient takes the following form:
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where B(·, ·) is the standard beta function and

β (x; b, s, σ) =

bxs

sσ2∫

b

sσ2

t
1
s
−1(1 + t)−

σ2

b
− 1

s
−1 dt.

The existence of the strong solution of the SDE (9) for
b > 0 and s = 2 follows from the analysis of generally
parametrized Student diffusion in [24]. However, due to the
nature of the diffusion parameter for b = 0 and general
b > 0, in this case we verified the existence of a unique
strong solution of the GGDiff (9) just up to the explosion
time T (X0). In practical application to the EEG data, this
explosion time may correspond to the end of coma.

Remark 3.2. There are many schemes for diffusion dis-
cretization, see, for example, [17] or [22] for a detailed expo-
sition on Euler and Milstein schemes for numerical solutions
to SDEs. However, the main problem with the time series
obtained by these discretization schemes, comprising some
form of autoregressive structure, is the lack of the strict sta-
tionarity. The detailed exposition on this matter is given in
[31], where on pages 55 − 56 it is stated that the station-
ary time series can be obtained for diffusions with linear
drift and unit volatility. For general non-linear diffusions
the transformation of the diffusion to the diffusion with the
unit volatility and the local linearization of the drift is pro-
posed. Furthermore, it is shown that the discretization of
this transformed diffusion under some technical assumptions
(Theorems 3.1 and 3.2) yields the non-explosive and ergodic
time-series that converges to the unit-volatility diffusion. For
example regarding the diffusion with marginal Student dis-
tribution we refer to [31][Example 6, pages 69− 70].

Remark 3.3. According to [16][Theorem 3.2] there ex-
ists the strictly stationary Ornstein-Uhlenbeck type process
(Xt, t ∈ R)

Xt = e−λtX0 + e−λt

t∫

0

eλsdY (λs)

=

t∫

−∞

e−λ(t−s)dY (λs), λ > 0,

with marginal Student T (ν, δ, µ) distribution with the PDF

4 N.N. Leonenko et al.
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(
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ν > 0, δ > 0, µ ∈ R, x ∈ R,

governed by the background driving Levy process (Yt, t ∈
R). Due to the self-decomposability of the Student distribu-
tion, there also exists the strictly stationary solution of the
autoregressive equation

(12) Xn = cXn−1 + εn, n ∈ N,

where c ∈ (0, 1) and (εn, n ∈ N) is a sequence of IID ran-
dom variables (the innovation process) independent of the
process (Xn, n ∈ N). Also, we have

X0
d
= cX0 + ε1 ∼ T (ν, δ, µ),

and so, if the relation (12) holds for every c ∈ (0, 1), it follows
that T (ν, δ, µ) can be observed as a marginal distribution of
the autoregressive time series (Xn, n ∈ N0). Furthermore,
according to [16][Remark 3.1] and [20][Proposition 2],

ε1
d
=

− log (c)∫

0

e−s dY (s)
d
= Y (1),

with the distribution having the cumulant transform

κY (1)(0) = 0,

κY (1)(z) = logE
[
eizY (1)

]

= izµ− δ|z|Kν/2−1 (δ|z|)
Kν/2 (δ|z|)

, z ∈ R \ {0},

where

Kλ(x) =
1

2

∞∫

0

uλ−1 exp

{
1

2
x

(
u+

1

u

)}
du, x > 0,

is the modified Bessel function of the third kind with the
index λ ∈ R. For fixed λ > 0 this function is positive, de-
creasing and, as x → 0+,

Kλ(x) ∼ Γ(λ)2λ−1x−λ.

Furthermore, the autoregressive time series (Xn, n ∈ N0)
has the following important properties:

❼ Xn ∼ T (ν, δ, µ), ∀n ∈ N0

❼ E[Xn] = µ for ν > 1
❼ Corr (Xn, Xn+τ ) = c|τ | for ν > 2, c ∈ (0, 1) and τ =
0,±1,±2, . . ..

Since the heavy-tailed subfamily of GGD (1) for s = 2
comes down to the Student-type distribution, in this case
the AR(1) process constructed in such a way could be used

as a time-series model for EEG signals. This AR(1) time
series is used for modeling the EEG signals in [40].
Furthermore, in light-tailed (b = 0) case of the GGD (1)
for s ∈ (0, 1] ∪ {2} the strictly-stationary AR(1) time series
with GGD (1) marginals could be constructed since for these
values of parameter s this distribution is infinitely-divisible
and self-decomposable, see [11][Theorems 5 and 6]. How-
ever, due to lack of these properties for s ∈ (1, 2) in b = 0
case, strictly stationary AR(1) time-series with GGD (1)
marginals with arbitrary parameter values cannot be con-
structed. Therefore, model presented in this paper, based on
completely different type of underlying stochastic process, is
more general.

4. PARAMETER ESTIMATION

4.1 Quasi-likelihood estimation

In the light-tailed case (b = 0), the two-dimensional pa-
rameter ζ = (s, σ2) of the stationary distribution of the
GGDiff X = (Xt, t ≥ 0) is estimated by the quasi-likelihood
method.

For ∆ > 0 and Markovian diffusion X, let

pX (∆, x|x0; ζ) =
d

dx
P (Xt+∆ ∈ dx|Xt = x0)

be the conditional PDF of Xt+∆ given {Xt = x0}. Due to
the Markovian structure of GGDiff X, the corresponding
likelihood function based on the time series of observations
(X∆n, n ∈ N) is

Ln(ζ) =

n∏

i=1

pX
(
∆, Xi∆|X(i−1)∆; ζ

)
,

and the log-likelihood function is

ln(ζ) =
n∑

i=1

ln
(
pX
(
∆, Xi∆|X(i−1)∆; ζ

))
.

The transition density pX
(
∆, Xi∆|X(i−1)∆; ζ

)
is rarely

known in explicit form, which is also the case for the GGDiff.
However, it is known that the transition density converges to
the stationary density. Therefore, for the purpose of estima-
tion of parameter ζ we disregard the existing exponentially
decaying autocorrelation structure of the diffusion and de-
fine the quasi-likelihood function simply as

Ln(ζ) =

n∏

i=1

fs,b(X∆i),

where fs,b is the GGDiff stationary density given by (1) for
b = 0. Then the quasi log-likelihood function is

(13) ln(ζ) =

n∑

i

ln

(
1

2(sσ2)1/sΓ
(
1 + 1

s

)e−
|Xi|

s

sσ2

)
,
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with the obvious simplification ∆ = 1 in the construction of
the time-series of observations. The estimate ζ̂ = (ŝ, σ̂2) of
the parameter ζ = (s, σ2) is then obtained by maximising
(13), which can be performed using existing non-linear opti-
mization methods. For more details on maximum likelihood
estimation for diffusion processes we refer to [4] and [8].

4.2 Tail index estimation

Recall that for b > 0 the distribution (1) is heavy-tailed.

The tails of this distribution decay as |x|−1−s
(

σ2

b
+1

)

, so the

tail index is of the form α = s
(

σ2

b + 1
)
. There are many

methods for tail index estimation, see e.g., [12] for a concise
overview. In this paper we use the approach introduced in
[13] based on the empirical scaling function. The shape of
the scaling function is strongly influenced by the tail index,
and graphical inspection is used for estimation of the tail
index of the corresponding distribution.

Let X1, X2, . . . , Xn be a zero mean sample coming from
a stationary heavy-tailed sequence with strong mixing prop-
erty with an exponentially decaying rate. The partition func-
tion of this sample is defined by the following expression:

Sq(n, t) =
1

⌊n/t⌋

⌊n/t⌋∑

i=1

∣∣∣∣∣∣

⌊t⌋∑

j=1

X(i−1)⌊t⌋+j

∣∣∣∣∣∣

q

,

where q > 0 and 1 ≤ t ≤ n. For a fixed value of q, the scaling
function Sq can be estimated as follows using the empirical
scaling function based on a finite sample and chosen points
si ∈ (0, 1), i = 1, . . . , N :
(14)

τ̂N,n(q) =

∑N
i=1 si

lnSq(n,n
si )

lnn − 1
N

∑N
i=1 si

∑N
j=1

lnSq(n,n
sj )

lnn

∑N
i=1 (si)

2 − 1
N

(∑N
i=1 si

)2 .

By repeating this for different values of q, a plot of the em-
pirical scaling function τ̂N,n is obtained.

Then estimation of tail index is based on the asymptotic
behaviour of the empirical scaling function τ̂N,n as n,N →
∞. For each q > 0, the limit in probability is
(15)

τ∞α (q) =





q
α , if q ≤ α and α ≤ 2,

1, if q > α and α ≤ 2,
q
2 , if 0 < q ≤ α and α > 2,
q
2 + 2(α−q)2(2α+4q−3αq)

α3(2−q)2 , if q > α and α > 2,

where α is the tail index.
Clearly, the shape of the empirical scaling function

strongly depends on the value of the tail index, and the
sample-based empirical counterpart τ̂N,n(q) can be used to
estimate the index. The asymptotic shape of τ∞α is shown
in Figure 1. Heavy-tailed samples are characterized by the
(approximately) broken line shape of the empirical scaling
function, with the break occurring at α. The limiting case as

α → ∞ corresponds to the light-tailed distributions with the
straight line scaling function q/2 (dotted in Figure 1). Esti-
mation can be done by fitting the empirical scaling function
to its asymptotic form. For arbitrary points qi ∈ (0, qmax),
i = 1, . . . ,M , the tail index estimate is given by

(16) α̂ = argmin
α∈(0,∞)

M∑

i=1

(τ̂N,n(qi)− τ∞α (qi))
2.

Note that the advantage of this approach is that the esti-
mation does not depend on the particular form of the un-
derlying distribution.
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Figure 1: Asymptotic form of scaling function.

Remark 4.1. Within this paper we will use the special
Student case (s = 2) of the b > 0 GGD (1), introduced
in 2.1. For method of moments estimation of parameters of
Student distribution we refer to [24]. Using parametrization
of Student distribution (6), in order to estimate the tail
index, it is enough to estimate the parameter σ2/b. Here we
provide the method of moments estimator of the parameter
κ = σ2/b

κ̂ =
m4

m4 − 3
,

based on the forth empirical moment

m4 =
1

n

n∑

k=1

X4
k

of the set of discrete observations (X1, . . . , Xn).

5. ANALYSIS OF EEG DATA

Data used in this analysis were used previously in [40].
Data were collected during the observational study of the
pathogenesis of severe malaria (cerebral malaria and severe
malarial anemia) in surviving children. Data collection was
performed at Mulago National Referral and Teaching Hos-
pital in Kampala, Uganda between 2008 and 2015. The ob-
servational study was approved by the Institutional Review
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Boards of the Makerere University School of Medicine and
the University of Minnesota. Study also included commu-
nity control children who were recruited from household
compound area of children with cerebral malaria or severe
malarial anemia to control for socioeconomic variables that
affect neurodevelopment and cognition [1]. Children enrolled
in the study were between 18 months and 12 years of age.
As cerebral malaria results in a coma, EEG signals were
recorded during coma for the children who were diagnosed
with cerebral malaria.

5.1 Description of EEG data

EEG data for 78 children were recorded using the Inter-
national 10–20 system with the sampling rate of 500 Hz and
the average record duration of 30 minutes, which resulted
in approximately 1 million data points per channel. Since
the Cz electrode is placed at the centre of midline sagittal
plane, it was chosen as the reference electrode. Artefacts
due to breathing, muscle movement and heartbeat had al-
ready been removed from this dataset. EEG signal for every
child was the result of a recording from 19 channels. Data
from some channels for some children contained a substan-
tial number of zero observations, potentially due to a poor
connection between the electrode and the scalp. This con-
sideration was included in the interpretation of the results
as discussed below.

5.2 Fitting of light-tailed GGD to EEG

increments

Histograms of the increments of EEG signals were in-
vestigated for every child and every channel separately re-
sulting in a total of 1492 histograms. Histograms were ap-
proximately symmetrical with means close to zero but also
displayed higher peaks than the normal distribution, which
further justifies the choice of GGD (1) as the marginal distri-
bution for modeling. Estimation of parameter ζ = (s, σ2) of
light-tailed GGD(s, σ2) was obtained using quasi-likelihood
approach presented in 4.1. Non-linear optimization was per-
formed using maxLik package [15] in R version 4.0.4 for Win-
dows. Due to the fact that the shape parameter s appears in-
side the Γ-function in (1), constrains for the minimum value
of s were used in the optimization to prevent computational
problems. Optimization was performed on the entire dataset
of EEG increments values and no sampling was used.

Values of ŝ were in the range of [0.02, 8.23]. Extremely

low values of ŝ (close to 0.02) and σ̂2 (close to 0.1) appeared
on the channels containing very large number of zero obser-
vations and manifested in histograms of unusually high and
narrow peaks (2a). Values of ŝ near 2 result in a GGD fit
that resembles a zero-mean normal distribution, which can
be seen in Figure 2b. Figure 2c and Figure 2d show exam-
ples of histograms, where obtained estimates for the shape
parameter were ŝ < 2 and ŝ > 2, respectively. Dashed line
in the plots represents the fitted GGD.

5.3 Estimation of tail index on EEG

increments

Tail index estimation of EEG increments was performed
using the graphical method presented in Section 4.2. The
estimation was divided into two cases, α ≤ 2 and α > 2,
due to complexity of the expression τ∞α in (15). This means
that the corresponding part of τ∞α based on the true value
of α was used as a model function for the estimate α̂ in (16).
Hence, before obtaining the value of the estimate α̂, it was
necessary to visually inspect the plot of empirical scaling
function and determine where the break point happens.

To obtain the numerical value of α̂, the empirical scal-
ing function was fitted to the asymptotic form τ∞α using
ordinary least squares method. For the calculation of τ̂N,n

values for si ∈ (0, 1) were chosen to be equidistant points
(N = 23) in the interval [0.1, 0.9], while for qj a total of
40 equidistant points were taken from interval [0.11, 10]. A
random sample of EEG increments of size 10000 was chosen
for every channel, and the sampling was repeated 10 times.
Empirical scaling function was plotted for each of these 10
samples (shown by dot-dashed lines in Figure 3), obtaining
estimates α̂i, i = 1, . . . , 10. The final value of tail index esti-
mate α̂ was chosen to be the median of values α̂i, represented
by a solid line in Figure 3. Bilinear shape (i.e a broken line)
is clearly visible on both plots and identifies the breakpoint
which determines whether the data are from the distribu-
tion with infinite (Figure 3a) or finite (Figure3b) variance.
Analysis was performed using Mathematica version 11.3 for
Windows.

6. PREDICTION OF

NEURODEVELOPMENTAL AND

COGNITIVE SCORES

6.1 Measures included in the study

Age-appropriate assessments of neurodevelopment and
cognition were performed using the Mullen Scales of Early
Learning [28] for children 5 years of age or younger. For
children over the age of five, cognitive assessments was per-
formed using Kaufman Assessment Battery for Children,
second edition [21]. In the absence of Ugandan norms,
all measures were standardized using the available United
States norms. A single measure of neurodevelopment and
cognition regardless of age was then obtained by comput-
ing the z-scores using the mean and standard deviation of
the community control children, as discussed in [40]. For all
children, assessment was performed at three points in time
- after the discharge from the hospital (for community con-
trol children, this was the point of enrolment), 6 months
after the discharge (or enrolment) and 12 months after the
discharge (or enrolment).

Other non-EEG data that were collected in the study
included demographic and anthropometric characteristics
(age, sex, height-for-age and weight-for-age-z-score using the
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Figure 2: Fitting of light-tailed GGD to EEG increments.

The World Health Organization reference norms [42]). So-

cioeconomic status was measured using a checklist of ma-

terial possessions, housing quality, cooking resources and

water accessibility. Quality and quantity of stimulation to

which the child is exposed in the home environment was

assessed using Home Observation for the Measurement of

the Environment (HOME) measure [5], where higher HOME

scores indicate higher quality of home environment. Sever-

ity of coma caused by cerebral malaria was assessed using

the Blantyre coma scale [38]. At the point of hospitalization
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Figure 3: Tail index estimates of EEG increments.

of children with cerebral malaria, biomarker panels from

plasma and cerebrospinal fluid were collected. Preprocess-

ing of the data included location and scale transformation

for all potential predictors included in feature matrices.

6.2 Methods and models used

To identify important predictors of neurodevelopment

and cognition 6 months after coma from cerebral malaria,

elastic net regression was used. The method was introduced

by [44] as a way of controlling for correlations among predic-

tors and dealing with the case where the number of predic-

tors is much bigger than the number of observations. Elastic

net regression can be viewed as a penalized least squares

method which minimizes the loss function defined by

(17) L(α, λ,β) = |y −Xβ|2 + λ

(
1− α

2
|β|2 + α|β|1

)
,

where

|β|2 =

p∑

j=1

β2
j , |β|1 =

p∑

j=1

|βj |

y = (y1, . . . , yn)
τ is the response, X = (x1| . . . |x)p is the

model matrix and xj = (x1j , . . . , xnj)
τ , j = 1, . . . , p are the

predictors [44].
Hyperparameter α can be seen as a mixing parameter

between ridge (α = 0) and LASSO (α = 1) regression. Tun-
ing of hyperparameters α and λ was performed using caret

package [23] with leave-one-out cross validation. Tuning grid
was constructed from values of λ ∈ {10−5, 10−4, . . . , 103}
and 7 equidistant points from interval [0.0001, 1] for α. Pair
which had the lowest root mean squared error (RMSE) was
chosen for the final model.

Since the caret package doesn’t provide standard errors
of the coefficients in the elastic net regression model, stan-
dard errors of predictors’ coefficients were obtained by boot-
strapping. For this purpose R package boot[7] was used with
the number of bootstrap replicates set to 1000.

The response variable was the standardized neurodevel-
opment or cognitive score taken 6 months after the dis-
charge from the hospital, and the scores were in the range of
[−1.99, 1.5]. Predictor variables were taken from three sets
of features. First feature matrix included just the non-EEG
features described in Section 6.1, while the other two feature
matrices included a combination of non-EEG features and
EEG features obtained from analysis of increments. In all
three feature matrices, we included socio-demographic char-
acteristics and the neurodevelopmental or cognitive score
immediately after discharge from the hospital. We refer to
this score as baseline ND in reporting of the results. The
rationale for the inclusion of this score was that it can be
obtained relatively easily compared to the estimation of the
EEG parameters for stochastic models. Fitting of stochas-
tic models would be warranted if the EEG parameters were
shown to be important over and above other measures that
can be obtained easily or as part of routine clinical care for
cerebral malaria.

Some features contained missing values, especially in the
non-EEG dataset. Since the dataset comprised both con-
tinuous and categorical data, imputation methods suitable
to mixed-type data were used. Based on the comparison of
different imputation methods presented in [35], missForest
package for R was selected. The algorithm is based on it-
erative imputation scheme by training a random forest on
observed values in a first step, followed by predicting the
missing values and then proceeding iteratively [37].

6.2.1 Non-EEG features model

Feature matrix for this model included a total of 54 non-
EEG features with 78 observations. Maximum number of
missing values per feature was 23, and most of the empty
entires occured in biomarker panels from cerebrospinal fluid.
Categorical variables such as sex (2 levels) and bcs (Blantyre
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coma score, 6 levels) were coded into dummy variables for
the inclusion in the elastic net regression. For variable bcs,
a score of 0 (poor results) was chosen as the reference level.

6.2.2 Combined non-EEG and GGD features model

Feature matrix for this model was a combination of afore-
mentioned 54 non-EEG features and additional 38 features
(for 19 channels) which were estimates of s and σ2 parame-
ters obtained by fitting light-tailed GGD to EEG increments
(see Section 5.2). There were no missing values in the GGD
features subset.

6.2.3 Combined non-EEG and tail index features model

Feature matrix for this model was a combination of the
same 54 non-EEG features and additional 19 features (for 19
channels) which were median values of estimates α̂ of tail
index (described in Section 5.3). Missing values occurred
for two cases and were imputed using missForest package.
Median values of tail index estimates in the feature matrix
were in the range of [0.01, 8.76]. To reduce the noise of this
variable within the model, tail index for every channel was
classified into 3 levels based on distributional tertiles. Thus,
values of 3.1 and 4.5 were chosen as cut-offs. Since this re-
sulted in creating categorical variables, they were recoded
into dummy variables with values below 3.1 acting as ref-
erence level. Both versions of the model (with continuous
values of tail index and categorized tail index values) were
examined in the analysis.

6.3 Results and comparison

After running over a grid of different combinations of tun-
ing parameters, best tuning parameters across all models
were α = 0.833 and λ = 0.1. These values produced the
lowest RMSE. Comparison of models based on the leave-
one-out cross validation RMSE is given in Table 1.

Models displayed similar RMSE values but generally, the
addition of EEG features resulted in the RMSE reduction.
The lowest RMSE of 0.5549 was obtained for the model
containing non EEG features and categorical tail index fea-
tures. This model also had the smallest number of non-zero
coefficients. The list of predictors selected by each model
is shown in Table 2. The table shows the values of predic-
tors’ coefficients along with their standard errors obtained
by bootstrapping. Predictors that weren’t included as fea-
tures in models are marked by N/A and those that weren’t
selected by a certain model are marked by “–”.

7. CONCLUSION

The EEG findings on admission to the hospital have
been used to predict mortality and morbidity following ill-
ness [34]. Separately, selected plasma biomarkers have been
shown to be associated with cognitive impairment in pedi-
atric severe malaria [30]. In this analysis, we combined data
on plasma and cerebrospinal fluid biomarkers together with

parameters of stochastic models for the EEG data to de-
termine their usefulness for prediction of neurodevelopment
and cognition 6 month following cerebral malaria illness.
Previous analysis of these data showed that stochastic mod-
elling of EEG features can better explain the variation in
neurodevelopmental and cognitive outcomes of children who
were affected by cerebral malaria [40]. That previous anal-
ysis was based on EEG signals split into frequency bands
and employed a different stochastic model. In this paper we
used the entire EEG signal to further investigate the effect
of EEG features on neurodevelopment and cognition using
a strictly stationary time series model with marginal gen-
eralized Gaussian distribution and exponentially decaying
autocorrelation function. The GGD parametrization used in
this paper was chosen because it comprised both light and
heavy-tailed distributions and can address the case of peaks
higher than the normal distribution. In the first stochastic
model, light-tailed GGD subfamily was fitted to EEG incre-
ments to create the features for prediction. Second stochas-
tic model was based on a heavy-tailed distribution with tail
index estimated using the empirical scaling function. Addi-
tionally, model containing non-EEG features (such as socio-
demographic and anthropometric data and biomarker pan-
els) was examined to see whether including the information
from EEG signals can help in explaining of variation in neu-
rodevelopmental and cognitive scores 6 months post-coma.

Our results show that the baseline neurodevelopmental
score (taken right after coma) was the most important pre-
dictor of neurodevelopment at point 6 months after coma,
which was expected. The rationale behind this comes from
the fact that the baseline neurodevelopmental score is a di-
rect measure of the outcome variable, i.e., neurodevelop-
mental score 6 months after coma, and thus measures the
same attribute but at a different time point. Other non-EEG
features retained in our model generally overlap with the
non-EEG features found to be important predictors in the
analysis of [40] and mostly contain biomarker panels from
cerebrospinal fluid and/or plasma. Also, negative model co-
efficient value of some features such as white blood cell
count and IL-1α receptor level in plasma are in accordance
with the intuitive assumption of increased inflammatory re-
sponse negatively affecting child’s development. However,
this model performed the worst in terms of RMSE and was
improved by the addition of EEG features.

The addition of EEG features from fitting of GGD and
estimation of tail index resulted in an improved RMSE for
both light-tailed and heavy-tailed stochastic models. Fea-
tures from the non-EEG dataset which were retained in the
elastic net as the important predictors for the neurodevel-
opment and cognition were also kept in the combined non-
EEG and GGD features model. Additional feature that was
selected in this case was the GGD parameter estimate σ2

for channel T3 (temporal electrode placed on the left side
of the head). The model also had a slightly lower RMSE
compared to the pure non-EEG model, meaning that the
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Table 1. Model comparison based on elastic net regression results

Model features included
(number of features)

RMSE Number of non-zero
coefficients

Number of non-zero coef-
ficients from EEG features
subset

Non-EEG features (54) 0.5670 12 N/A

Non-EEG (54) and GGD (38) features 0.5655 13 1

Non-EEG (54) and continuous tail index features
(19)

0.5670 12 0

Non-EEG (54) and categorical tail index features (38
dummy variables)

0.5499 10 1

Table 2. Predictors selected by elastic net models

Model coefficient (SE)

Predictor Non-EEG features model Non-EEG and GGD
features model

Non-EEG and continuous
tail index features model

Non-EEG and categorical
tail index features model

Baseline ND
4.9848 × 10−1 5.0301 × 10−1 4.9848 × 10−1 4.9860 × 10−1

(

8.3221 × 10−2
) (

8.2076 × 10−2
) (

8.0763 × 10−2
) (

8.3407 × 10−2
)

Blantyre coma score
−1.1657 × 10−1 −1.0944 × 10−1 −1.1657 × 10−1 −1.2040 × 10−1

(

8.3327 × 10−2
) (

8.4044 × 10−2
) (

8.1889 × 10−2
) (

8.1088 × 10−2
)

Hemoglobin level
2.1215 × 10−2 2.3149 × 10−2 2.1215 × 10−2 2.3891 × 10−2

(

1.6438 × 10−2
) (

1.7477 × 10−2
) (

1.7165 × 10−2
) (

1.7051 × 10−2
)

White blood cell count
−7.2054 × 10−3 −7.1759 × 10−3 −7.2054 × 10−3 −8.2922 × 10−3

(

6.3639 × 10−3
) (

5.7969 × 10−3
) (

6.1838 × 10−3
) (

6.2979 × 10−3
)

Interleukin (IL)-10 csf1

level
6.9793 × 10−3 7.2020 × 10−3 6.9793 × 10−3 7.9912 × 10−3

(

5.0404 × 10−3
) (

4.7077 × 10−3
) (

4.7335 × 10−3
) (

4.8946 × 10−3
)

Age
1.4945 × 10−3 7.2271 × 10−4 1.4945 × 10−3

–(

1.5223 × 10−2
) (

1.2848 × 10−2
) (

1.4590 × 10−2
)

IL-1α receptor level in
csf

8.9480 × 10−4 9.6438 × 10−4 8.9480 × 10−4 7.6489 × 10−4

(

6.0332 × 10−4
) (

6.3683 × 10−4
) (

6.1714 × 10−4
) (

5.4993 × 10−4
)

HOME score
7.1907 × 10−4 1.5538 × 10−4 7.4088 × 10−3

–(

7.5640 × 10−3
) (

7.9678 × 10−3
) (

1.4590 × 10−2
)

IL-6 csf level
4.4212 × 10−4 5.0712 × 10−4 4.4212 × 10−4 5.8932 × 10−4

(

8.5593 × 10−4
) (

8.4274 × 10−4
) (

8.2988 × 10−4
) (

7.4943 × 10−4
)

Von Willebrand factor
3.9401 × 10−5 4.5009 × 10−5 3.9401 × 10−5

–(

3.1056 × 10−4
) (

3.1598 × 10−4
) (

3.0665 × 10−4
)

IL-8 csf level
3.0274 × 10−5 2.7567 × 10−5 3.0274 × 10−5 1.9938 × 10−5

(

3.4552 × 10−5
) (

3.2663 × 10−5
) (

3.3118 × 10−5
) (

3.1701 × 10−5
)

IL-1α receptor level in
plasma

−6.1415 × 10−6 −5.5330 × 10−6 −6.1415 × 10−6 −6.9700 × 10−7

(

6.6809 × 10−6
) (

6.1356 × 10−6
) (

6.1917 × 10−6
) (

4.9735 × 10−6
)

T3 CZ σ2 estimate N/A
2.5271 × 10−8

N/A N/A
1.3371 × 10−8

T6 CZ2 N/A N/A N/A
−1.6478 × 10−1

1.0155 × 10−1

1 cerebrospinal fluid

addition of stochastic features can improve the prediction
of neurodevelopment and cognition.

Further improvement in the explanation of variation in
neurodevelopment and cognition was achieved by introduc-
ing tail index estimates as features into the elastic net model.
Tail index treated as continuous failed to improve the model,
and none of the EEG features were chosen by the model to
be significant. However, categorization of tail index based on
distributional tertiles brought improvements and resulted in
the model with the lowest RMSE. This means there is a
threshold for the effect of the tail index value on neurode-
velopmental or cognitive score. EEG feature retained in the
predictive model was the tail index estimate on channel T6

(temporal electrode placed on the right side of the head)
as the dummy variable with level 2. Since level 1 (values of
tail index lower than 3.1) was chosen as the reference level,
the interpretation behind it is that tail index value above
3.1 and below 4.5 on channel T6 has an increased negative
influence on neurodevelopment and cognition compared to
the tail index values of less than 3.1 on the same channel.
The feature manifested in the 2nd highest ranked value of
the coefficient in the final model which could indicate it’s
importance over majority of other non-EEG features.

In summary, the addition of stochastic EEG modelling
improved the prediction of children’s brain function 6
months following coma. Further improvement can be made
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by investigating other marginal distributions appropriate for
modelling of EEG signal increments (e.g., the family of gen-
eralized Pearson distributions considered in [9] and, for a
moderate fraction of channels, the multimodal distribution
considered in [6]). Time series models similar to the one in-
troduced in this paper can be investigated in other diseases
that affect the brain and in electrical activity of other types
of cells such as cells impacted by cancer and its treatment.
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