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No. 0, XXXX, Pages 000-000

ON SPECTRAL THEORY OF RANDOM FIELDS IN THE BALL

NIKOLAI LEONENKO, ANATOLIY MALYARENKO, AND ANDRIY OLENKO

The paper is dedicated to the 90th birthday of Professor Myhailo Yosypovych Yadrenko (1932-2004).

ABsTracT. The paper investigates random fields in the ball. It studies three types
of such fields: restrictions of scalar random fields in the ball to the sphere, spin, and
vector random fields. The review of the existing results and new spectral theory for
each of these classes of random fields are given. Examples of applications to classical
and new models of these three types are presented. In particular, the Matérn model
is used for illustrative examples. The derived spectral representations can be utilised
to further study theoretical properties of such fields and to simulate their realisations.
The obtained results can also find various applications for modelling and investigating
ball data in cosmology, geosciences and embryology.

1. INTRODUCTION

Recent years have witnessed an enormous amount of attention to investigating spher-
ical random fields. The theoretical interest (see, for example, [20, 23, 38] and the ref-
erences therein) is strongly influenced by studies of random fields on manifolds, as the
sphere is one of the simplest manifolds. The empirical motivation comes from cosmo-
logy, earth science and embryology, just to name a few (see, for instance, [26, 30, 31, 36]).
The main approaches and tools in such investigations are based on the spectral theory
of spherical random fields. Professor Yadrenko was one of pioneering researchers and
leading figures in developing this theory. Later on, it was demonstrated that the beha-
viour of the power angular spectrum determines various properties of these fields and
evolutions of their spatio-temporal counterparts, see [2, 4, 5, 13]. However, the known
results about spherical fields are not directly translatable to the random fields defined in
the ball. Therefore, most of the spectral theory for different classes of such fields should
be developed independently.

One of main applied motivations for developing the spectral theory of random fields in
the ball comes from cosmological research. The future European Space Agency mission
Euclid and Cosmic Microwave Background Stage 4 (CMB-S4) project supported by the
US Department of Energy Office of Science and the National Science Foundation are
planned to collect and analyse cosmological data in a ball of radius about 10 billion light
years. From the mathematical point of view, these missions will sample values of several
scalar, spin and tensor random fields defined in the ball. It requires further development
of stochastic models and statistical tools for such fields.

Deterministic spin fields on the sphere were introduced by [10]. They became well
known to physicists after the seminal paper [27]. Random spin fields on the sphere
appeared in [39] as a technical tool for analysing a full-sky polarisation map of the
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cosmic microwave background. This problem was also independently studied in [12] by
using tensor random fields on the sphere. A comprehensive review of deterministic spin
and tensor fields on the sphere can be found in [33].

In stochastic settings, the rigorous mathematical theory of spin random fields on the
sphere was proposed by [3], [11], and [19] and developed in [17, 22]. This theory works
well for studies of the current cosmic microwave background radiation data collected
on the sphere. However, modelling and statistical analysis of data from the Euclid and
CMB-54 surveys requires a generalisation of the above theory to random fields in the
ball. First steps of such generalisation were proposed by [21]. One of main ideas, that
was originally suggested by M. Yadrenko in [37], is outlined in Section 2.

This paper studies three main classes of random fields in the ball: restrictions of
scalar random fields in the ball to the sphere, isotropic spin, and vector random fields. It
presents some existing in the literature results and develops new representations for those
cases that were not, covered before. It suggests a unified approach and notations in the
spectral theory of random fields in the ball. The results could be useful for further study-
ing and comparing the three classes mentioned above. Several examples of applications
to classical and new models provide explicit spectral representations, which can be used
in spatial statistics. To the best of our knowledge the explicit expressions for spectral
coefficients of the Matérn model are also new. All coefficients in the derived theoretical
representations are easily computable and can be utilised in numerical applications.

The structure of the paper is as follows. Section 2 presents main definitions and results
about isotropic random fields that are obtained via restrictions of random fields in the
ball to the sphere. Results about spin random field on the sphere are given in Section 3.
The spectral theory of spin random field in the ball is developed in Section 4. Section 5
studies spectral properties of vector p-stationary random fields. Finally, the conclusions
and some future research directions are presented in Section 6.

All numerical examples were produced by using the software Maple version 2021.0.
This software was also used to verify some theoretical computations. A reproducible
version of the code in this paper is available in the folder “Research materials” from the
website https://sites.google.com/site/olenkoandriy/.

2. THE RANDOM FIELDS IN THE BALL: ANALYSIS AND SYNTHESIS

Let us denote the centered ball of radius 7o > 0 by
B(ro) = {x € R®: [|x|| <mo },
where || - || denotes the Euclidean norm in R3.

Let T(x), x € R?® (or x € B(rg)), be a random field. In other words, there is a
probability space (Q,F,P) and a function 7: R3 x  — C such that for any fixed x € R?
the function T'(x,w) is a complex-valued random variable. Assume that the random field
T(x) is second-order, that is, E[|T(x)|?] < oo, and mean-square continuous, that is,

lim E[IT(y) - T(x)*] =0, forall xecR®
yER3:||ly—x|—0
Let (T'(x)) = E[T'(x)] be the one-point correlation function of the random field T'(x),

and let
(T'(x),T(y)) = E(T(x) = (TE)(T(y) = (T(y))]
be its two-point correlation function. Let G = SO(3) be the rotation group in R3, that
is, the group of orthogonal 3 x 3 matrices with a unit determinant.
Call the field T'(x) isotropic if its one-point correlation function is constant, while its
two-point correlation function is rotation-invariant:

(T(9x),T(g9y)) = (I'(x),T(y)), g €SO(3).
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Note that in many cases isotropy of a random field implies its mean-square continuity,
see [24].

Without loss of generality, this paper assumes that (T'(x)) = 0.

How to describe the class of all possible two-point correlation functions of isotropic
random fields? Following [37], we first perform an analysis of such a field. Consider
the restriction of the field T'(x) to S?(r), which denotes the centred sphere of radius
r > 0 in R3. To avoid introducing new notations T'(r,6, ) will be used for (r,6, )
which are the spherical coordinates of x. The two-point correlation function of the above
restriction is rotation-invariant and depends only on the angle between two points. Thus,
the restriction is an isotropic field on the sphere. Such fields were completely described
by [23, 28] and have the form

(21) T 0)90 Z Z a@m erm )

=0 m=—4

where (r,0,¢), r > 0, 8 € [0,7], ¢ € [0,27) are the spherical coordinates of a point
x € S%(r), {Yem(0,0), € No,m = —/{,....,0} with Ny = N U {0}, are the spherical
harmonics, and ag,,(r) are finite variance random variables

2m
(2.2) o (T // T(r,0,0)Yem(0, ) sinfdf de

that satisfy the conditions
Elagm(r)] =0,
E[a’fm(r)af’m/(r)] = 5[@’5mm’ CZ(T)

forall 0,0/ e Ng, m = —4,...0,m' =—0,... 0.

The series (2.1) and the analogous series in the next sections of the paper converge
point-wise in the mean-square sense. For definition and properties of spherical harmonics,
we refer the readers to [9, 23].

For each r > 0, the sequence {Cy(r),¢ € Ny} of non-negative numbers satisfies the

condition
oo
Z (2¢+1 ) < 0.
£=0

Second, we perform a synthesis of a random field in the ball using its restrictions to
centred spheres as “building blocks”. As a function of the variable 7, ag, (r) is a stochastic
process. By the first equation in (2.3), it is centred. We calculate the correlation function
between agp, (1) and agprp, (r2). Equation (2.2) gives

(2.3)

™ 2m
E[aém (Tl)aé'm’ (7‘2)} = E |:/ / T(’I"l, 97 @)nﬂ% (07 SO) Sin 9 da ng
0 0

2T
x / / T (2,0, ) Yo (0, ') sin @' 40/

/ /%/ /Qﬂ (r1,0,9), T(r2,0', ") Yerm (0, ) Yorm: (0, &)

x sin @ sin @’ df dep dd’ dy’.

By the definition of the isotropic random field, the two-point correlation function under
the integral sign depends only on the angle between the points (6, ¢) and (6’,¢’) on the
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centred unit sphere. The Funck—Hecke Theorem [9] states that

™ 27
/ / <T(r1,6,QD),T(TQ,Q/,QO/»nlm/(G/,(p/) sin g’ d¢’ dSO/ = CZ/ (Tl,rQ)n’m’ (0790)7
0 0

where the exact value of the numerical constant Cy(rq,r2) is not relevant.
Thus, due to the orthonormality of spherical harmonics,

s 2
Elam (1 )agm (72)] = / / Vo (0 2)Co (71, 72) Yirm (6, ) sin 6 d6 dip
0 0
= 000/ Oy Cr (11, 72).

It follows from (2.1) and (2.3) that

) 4

ET(x)T(2)] =Y > Yom (01, 01)Yem (02, 02)Ci(r1,73).

=0 m=—¢

The addition theorem for spherical harmonics implies that

1

E[T(x)T(x2)] = > (204 1)Cy(r1,m2) Py(cos ),
=0

oo

where + is the angle between the vectors x; and x5 and {P(-),¢ € Ny} are the Legendre
polynomials.

If T(x),x € R?, is a homogeneous and isotropic random field, then its covariance
function has the following spectral representation, see [38, p.76],

“ sin(A [ly —x[) 3
T6. 7)) = | W), xyeR’,

o Ally—x|
where p is the finite measure.

Therefore, for the random field (2.1) on the sphere S?(r) it holds, see [38, p.76],

Co(r) =2m ——du()), LEN,
0 A7
where J, (z) is the Bessel function of the first kind of order v.
In this case

2

2r\sin (%)

*° sin (21")\ sin (1))

(T(x),T(y)) = B(lly - x]) = / du(N),

where the Euclidean distance |y — x||, called also the chordal distance, between two
points on a sphere x,y € S?(r) C R?, can be expressed in terms of the great circle (also
known as geodesic or spherical) distance as follows:

(7
N - 2 S (7) ’
Iy — il = 2rsin (2
where 7 = y(x,y) = arccos (x,y) and (x,y) denotes the usual inner product on R3.

Example 2.1 (Matérn covariance function). Consider a covariance function of a scalar
random field T'(x),x € R3, of the form

1—v

2 v
(2.4) (T(x),T(y)) = o” (ally —x[)" Ky (ally —x|),
where 02 > 0, a > 0, v > 0, and K, (+) is the modified Bessel function of the second kind
of order v. Here, the parameter v controls the degree of differentiability of the random
field, o is field’s variance and the parameter a is a scale parameter.
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The corresponding isotropic spectral density is
2 3 2v
oc’I'(lv+35)a
A) = (v+5) =, A>0.
m3/20(v) (a2 + A2)" 2
The restriction of an homogeneous and isotropic Matérn random field to the sphere
S?(r) is an isotropic field on this sphere with the covariance structure

(100, T(y)) = B (2rsin (1)) = Z‘F(‘; (20rsin (1)) K, (2arsin (1)),

while the substitution of the above spectral density f () into the formula (12) from [38,

p.89] results in the angular spectrum of the form

r (1/ + %) a®
T(v)r

To calculate this integral, one can use [32, Equation 2.12.32.10] and obtain

Co(r) = 4r*/20* / Jo 1 (rA)X (0 + 22) 7T N e N,
0 2

Cy(r) = 2n%/ 252 (\/mlFQ(V + 1Ly =L+ 1, v+ 04 2;a%?) r?
F(V _ é) a2£—2u
2UFIT ()T (£ + 3/2)
where 1 F5 is the generalised hypergeometric function. For zero and negative integer
values of /—v or v—/ the above expression is interpreted as its limit when v approaches /.
The limit is finite due to the asymptotic behaviour of the generalised hypergeometric
function 1 F5(+).
For specific values of the parameters the expressions above can be simplified to the
forms that can be easily used in computations. For example, for a = 10, 02 = 1, and
v =1/2 one obtains

B (orin(3) = (2 (). 700=

™
02(7)25

— (20 + 1)1, 1 (107) KH%(IOT)) ,

where I; () is the modified Bessel function of the first kind of order .

The plot of the covariance function (2.4) is shown in Figure 1. To produce this plot
the values x = 0 and y = (y1,¥2,y3) € Bo(ro) with y3 = 0 were chosen. The horizontal
coordinates are (y1,y2), while the vertical one represents the values of (T°(0),T(y)) -

Plots of first few coefficients Cy(r) of the corresponding angular power spectrum on
the interval r € [0, 1] are given in Figure 2.

V(0 + 150 — v 41,20 + 2;a%7?) ’I“%) ,

(107@% (10r) K, 5 (10r) — 107K, (107) I, 5 (107)

3. SPIN RANDOM FIELDS ON THE SPHERE

To define spin and tensor random fields in the ball, the opposite direction is used. Let
T(x) be a random field defined in the centered ball B(r). Call the field T'(x) spin or
tensor, if for any r € (0, 7] the restriction of the field to the centred sphere of radius r
is a spin or tensor random field on this sphere S?(r). Starting from results about spin
or tensor random fields on the sphere, we will construct the spectral theory of spin or
tensor random fields in B(rg).

There are two different approaches to deterministic spin fields on a manifold, see [34].
The first one requires introducing the so-called principal bundles of orthogonal frames
and will not be introduced here. The second one is as follows.
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FIGURE 1. Matérn covariance function FIGURE 2. Cy(r) for a = 10, 02 = 1,
for a=10,0*=1,and v = 1/2. and v =1/2.

Let (E, 7, M) be a vector bundle over a manifold M. In particular, 7: F — M and
there is an open covering {U,} of M, a finite-dimensional linear space L, and the one-
to-one maps ¢, : 7 1 (Uy) — U, x L such that for all z € U, the set 7—1(x) is a copy of
L, and the overlaps ¢, o @El map a point (z,v) € (U, NUg) x L to a point (z, gapv) for
some suitable change-of-coordinates invertible linear operators gog(x).

Various conditions on M can be formulated in terms of the functions gns(z). For
example, M is orientable if and only if there is such an open covering {U,} of M, that
the above functions take values in the connected component of unity of the group GL(L)
of invertible linear operators on L. M is orientable and Riemannian if and only if L is a
real linear space and the functions g.s(x) take values in the group SO(L) of orthogonal
linear operators with unit determinant for a suitable covering. Finally, M is spin if the
space L carries a special representation of the so-called spin group that covers the group
SO(L) twice. For details, see [14]. Both the sphere and the ball are spin manifolds, and
spin random fields can be properly defined on them.

We remind the results of the general theory of spin random fields on the sphere, see [3],
[11] and [19]. Let s be an integer, and let K = SO(2) be the group of rotations of the
three-dimensional space around the z-axis. Each element of SO(2) can be represented in
the form

cosp sinp 0
ky,=|—sinp cose 0], 0<p<2m.
0 0 1

The correspondence that maps this element to the 1 x 1 unitary matrix e™'*¢ is an
irreducible unitary representation of the group SO(2). Consider the Cartesian product
SO(3) x C!. Call two elements (gq,21) and (ga,22) in SO(3) x C! equivalent if there
exists a ¢ such that (go,22) = (glk@, eisﬁ"zl). Call the set of equivalence classes Fj.

Let p: SO(3) x C! — E, be the correspondence that maps an element (g,z2) to its
equivalence class. Equip E4 with the quotient topology, that is, a set A C F, is open if
and only if its inverse image p~!(A) is open in SO(3) x C!. Consider the mapping 7 that
maps an element (g, z) to the left coset gK. All elements of the same equivalence class
have the same image under 7, so one can consider F; as the domain of w. The image
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of E, under 7 is the set G/K of all left cosets, which is the centred unit sphere S? C R3.
The triple (Es, ,S?) is a line bundle over S?. This means the following, see, e.g., [35]:

e E, and S? are smooth manifolds; 7 is a smooth map;

e for any x € S2, the inverse image 7~ !(x) is a copy of C!;

e for each x € S2, there is a neighbourhood U of x, a diffeomorphism F: 771 (U) —
U x C!, and, for each y € U, a linear map fy: 7 !(y) — C!, such that

Fv) = (r(v), (), ver'(y), yeU.

In other words, locally, in a neighbourhood U of a point x € S2, the inverse image
77 1(U) is just the Cartesian product U x C!, and 7 is the projection to the first co-
ordinate. If s = 0, then this is true globally, we may put U = S2, and Ey = S? x C!.
Otherwise, if s # 0, than E, # S? x C!. However, a neighbourhood U can be big
enough. We choose the following one: Uy = 52\ {(0,0,1)7,(0,0,—1)T}, the sphere S?
with deleted poles.

A mapping f: S? — E, is called a cross-section of the line bundle (E;, 7, S?) if f(x) €
77 1(x) for all x € S2. In particular, the cross-sections of the line bundle (Ey, w,S?) are
functions on the sphere. The cross-sections of the line bundle (E,,S?) with s # 0 are
not functions on the sphere. However, the restriction of such a cross-section to Uy is a
function on Uj.

Let i be the Lebesque measure on S?. Let L2(E,) be the set of u-equivalence classes
of all cross-sections f with

[ 16 dnt) < o
Equation

(3.1) Ulg)f(x) = flg7'x),  g€SO(3),

defines a unitary representation of the group SO(3) in the complex Hilbert space L?(E,).

The irreducible unitary representations of the group SO(3) are enumerated by non-
negative integers ¢ (this is the traditional notation of the angular momentum in quantum
mechanics). Let («, 8,7) be the Euler angles of a rotation g € SO(3). There are many
different conventions in the literature, see [19] for a survey. Here and in what follows
we adopt conventions from [8]. In particular, the first rotation is by angle v around the
z-axis, then a rotation by angle § around the y-axis and finally a rotation by angle «
around the new z-axis.

Let D%?n(a, B,7) be the Wigner D functions, the matrix entries of the ¢th irreducible
unitary representation in the basis described in [8, p. 344]. The sections of the line bundle
(E,,m,S?) defined by

Snm(eﬂw) = V 2€47—7’;1 D%?,S(@,G,O), ¢ Z 8, M= _‘€7 "'7&

are called the spin weighted spherical harmonics. Locally, their restrictions to Uy are
functions on Uy. They are defined for ¢ > s and |m| < ¢ and form an orthonormal basis
in the space L?(E;):

T 21
/ Yo (0, 0) Yo (8, 2) 5100 A0 dp = S0 6,
0 0

A random section ,T(x) of the line bundle (E,7,S?) is called an isotropic spin s
random field if for all x, y € S?, and for all g € SO(3) it holds

(sT(9x)) = (T (%)),

(3:2) (T(g%), T(gy)} = (T, T(¥)).
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The field ;7(x) has the form

0o 4
(3.3) ST(0,0) = Z Z s@em sYem(0,0),

l=s m=—/

where say, are finite variance random variables, that for all £,¢' > s, m = —¢, ..., ¢, and
m' = —{, ... U satisfy

E[sagm] =0 and E[saémsaé’m’] = 6@@’61%771’50@7

with ;Cy > 0 and

oo

D (204 1),C < oo

l=s
Note that the series (3.3) converges in mean-square in the Hilbert space of square-
integrable random sections of the line bundle (E,, m,S?), in contrast to the series (2.1)
which converges in the Hilbert space of square-integrable random functions on the sphere.

4. SPIN RANDOM FIELDS IN THE BALL

Let us consider a mean-square continuous random field in the ball B(rg). It will be
called a spin random field if all its restrictions to centred spheres of radius r € (0, (]
are isotropic spin random fields. In the following the notation (7'(r, 8, ) will be used to
denote such fields. Then one obtains

T 97()0 Z Z saém vam(e )

l=s m=—/{

where sapm,(r), € [0,7¢], are finite variance stochastic processes.
We show that the coefficients sag, () are not correlated for different ! and m, i.e. for
all 6,0 > s, m=—4,...0,m' ==, .. 0 and r,r1,7r9 € [0,70], it holds

(4-1) E[saém(r)] =0 and E[saém(rl)saé’m/(T2)] = 6@05mm’scé(rla 7’2),
with
(4.2) D (204 1),Co(r,r) < oo, 1€ [0,79).

l=s

The method which we used in Section 2 does not work because the Funck—Hecke Theorem
for the cross-sections of a nontrivial vector bundle over the sphere is not known to the
authors. We use a different method.

Equation (3.1) defines the representation of the group SO(3) induced by the irreducible
representation k., — e~'*% of the subgroup SO(2). The irreducible components of this
representation are determined with the help of the Frobenius Reciprocity Theorem. For
these notions, see, e.g., [6]. It turns out that the 2¢+ 1 spin-weighted spherical harmonics
Yo (0,0), = < m < ¢, constitute the orthonormal basis of the space, where the (th
irreducible unitary representation of SO(3) acts. Under this action, we have

mm’

Yom(g71x) = Z DY (g) Ve (x),  g€SO(3), xe 52

m/=—¢

The first equation in (3.2) becomes

AD) (g) = D) (g) A,



ON SPECTRAL THEORY OF RANDOM FIELDS IN THE BALL 9

where A is the (2 + 1) x (2¢' + 1) matrix with entries E[agm, (r1)aem (r2)], and where
DW(g) (resp. D) (g)) is the matrix of the fth (resp. ¢'th) irreducible unitary repres-
entation of SO(3). Schur’s Lemma, see 6], states that A is zero matrix if £ # ¢, and a
multiple of the identity matrix otherwise. Equation (4.1) follows.

To compute the two-point correlation function of the random field (T'(r,0, ), one
can use the addition theorem for spin weighted spherical harmonics. Consider x; € R3,
i=1,2,and e, = (0,0,1)". Let g; be the rotation with Euler angles (¢;,6;,0) which
transforms e, into x;/||x;||, ¢ = 1,2. Let («,3,7) be the Euler angles of the rotation
g 'go. Then

—_—— 2041 s
Z Yzm’ 9274,02) Yzm'(el,sﬁl): 47r Yem(ﬁa) ke

m/=—¢

Using this equation, we obtain
(43) <ST(T1a017901)aS (T2792,302 Q\FZ vV2(+1 CZ(TMTQ) Yvé( @)(67 )

Remark 4.1. Note that the random field ;T'(x) is mean-square continuous if and only if its

two-point correlation function (;T'(x), sT(y)) is continuous at all points of the “diagonal”
set {(x,y) € B(ro) x B(ro) : x = y}. Then, as |sYy(—(B,a)] < /(204 1)/(4n), it

follows from (4.1), (4.2), and (4.3) that to guarantee mean-square continuity each function
sCi(r1,72), £ > s, must be continuous on the diagonal set {(r1,72) € [0,70]% : r1 = r2}.

The stochastic processes sagm (1), 7 € [0,7¢], are defined as

2T
s (7 // T(r,0,0)sYem (0, ¢)sinf df de.

Let us consider the case when the processes sagn, () are Gaussian and have continuous
sample paths almost surely. For each ¢ > s, let sup be the Gaussian probabilistic measure
on the Banach space C(]0,7]) of continuous functions on the interval [0, o] that corres-
ponds to the processes sapm, (r). By the definition of sag, () the measure suy is same for
all m = —¢,..., L. Let ;Hy be the reproducing kernel Hilbert space of the measure ;.
Finally, let the set {sfz(") (r): m € N} be a Parseval frame in the space sHy, that is,
the set , N is at most countable, and for any f € ¢Hy it holds

ST P = 1511

ne Ne
see [7].
By the result of [18], the Gaussian process sagm (r) can be expanded into the series
(4.4) saem(r) = Y XA,

nes Ny

where ;X lf:j} are independent standard normal random variables. Moreover, the series
(4.4) converges uniformly a.s.
In this case

(4.5) Colrr) = > of 7 (r1)s f (r2).
TLESN[

Conversely, if a stochastic process sag,(r) can be represented in the form of the

uniformly a.s. convergent series (4.4), then the set {f (”)( ):n € (N} is a Parseval
frame in the space ;Hy.
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Finally, by combining the above results, one can see that the random field ;7'(r, 6, )
has the following representation

(4.6) T(r,0,¢) = Z > Z X ) Y (0, 0).

l=s nesNym=—L
See also related wavelet expansions in [15] and [16].

Example 4.2. Zernike polynomials in the two-dimensional disk were introduced by [40]
to describe aberrations of a lens from the ideal spherical shape.
The 3D Zernike radial polynomials are defined by

n—t
V2”+3Zkio(_1) ( 129
0, if n — £ is odd.

)(n k— 1+3/2) n—2k

ot , if n — /£ is even;

ng(r) =

Note that R,.(r) are polynomials of degree n defined for such n > ¢ that n— ¢ is even.
Thus, for a fixed n > 0, the index ¢ takes values n, n—2, ..., n—2[%] (where [-] denotes
the integer part), i.e. values from n to either s or s + 1.

In this example we consider the functions

sZ(r,0,0) = Rue(r) sYem(0,¢), r€[0,70], 6 €[0,7], € [0,27).

First, let us show how to construct {;Z7, n > £, 0 > s, m = —{,...,¢,} to get
a complete orthonormal basis in the space of spin-s functions on the ball B(ry). Be-
cause the spin spherical harmonics are orthonormal on the unit sphere, the polynomials
{Rne(r), n > £} must be orthonormal with the weight function 72 on the interval [0, o).
The weight function appears due to the Jacobian of the conversion to the spherical co-
ordinates in R3.

By the identity (39) in [25] any power r“t2* k € N, can be represented as a linear
combination of {R(y12:)¢(r),i =0, ...,k}. Noting that

o0

> 042k +1/2
< ((+2k+1/2)° +1

by the Miintz theorem, see [29], one obtains that, for each ¢, the sequence {R,¢(r), n > (}
is a basis in L]0, 1].
It is known that, see [25],

1
(4.7) / 72 Rpe (1) Rpyrg(r) dr = 8
0

and

= —"—OO,

Rue(r) = V20 +3r P00 1D (202 — 1),

where P}go,m)(.) are the Jacobi polynomials [1, Chapter 22].
By the change of variables 7 = ror in (4.7), it follows that in the ball B(r) it holds

1 T0 ~ ~
= | 7R (”) Ryt (’") dF = b,
To Jo 7o To

> V2n+3 g 50.641/2) ( _ 1)
12

and one can chose
Bie(r) = z+3/2 (n—0)/2
Thus, for all £ > s the set { Rne(r),n € N}, Ne = {n:n>£ n—Liseven}, forms

a basis in the space of square integrable radial functions on B(rp). Note that in this case
sN¢ does not depend on s and will be denoted by N.
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If the Hilbert—Schmidt integral operator associated to the kernal ;Cy(r1,72) has the

eigenfunctions R¢(r) and eigenvalues A?L), then by Mercer’s theorem the equation (4.5)
can be rewritten as

(4.8) o(r1,72) Z A( )Rng (r1) Rne(ra).
nENg

Then, for each ¢ > s, the set { Agn)éng(r),n € N} forms a Parseval frame in the

space s Hy. Thus, the representations (4.6) of the corresponding spin random fields in the
ball B(rp) has the form

T(r,0,p) = ZZ Z X(" A(" (1,0, 0)

{=s TLGNz m=—/{

? n—2k

- ZZ Z X(n 2k)m\/‘4(7)Rn(n 2k)( ) 'Yr(n72k)m(9a<p)-

n=s k=0 m=2k—n

5. VECTOR pP-STATIONARY RANDOM FIELDS IN THE BALL

This section presents some results on the spectral theory of general p-stationary vector
random fields in the ball. It provides an example of the Matérn random field for a non-
Euclidean distance p(-). The considered approach is opposite to the one in Sections 2 as
a projection of the ball to a sphere in a higher dimensional space is used.

Let p(x,y) denote a distance between points x,y € Bg(rg), where By(rg) = {x €
R?: ||x|| < 70} is an open ball in R3. Let us consider an isometry 1 : Bo(ro) — Sg(1)
between the metric spaces (Bo(r), p) and (S3(1),cos(v)), where S3(1) is a unit sphere
in R* with the north pole (0,0,0,1) removed and cos(y) is a geodesic distance. Let
(=1 1 SE(1) — By(ro) denote the inverse mapping for 1(-).

Remark 5.1. As (S3(1), cos(v)) is a metric space, then any bijection between (S3(1), cos(v))
and Bg(rg) induces a distance in Bg(rg) that can be used as p(x,y). In applications, it
is common to consider homeomorphic mappings between these spaces.

Note that there are infinitely many such bijections/homeomorphisms and correspond-
ing distances p(-). One of the well-known examples is a composition of the stereographic
projection and a mapping of R3 onto an open ball.

Let us consider a vector random field T : Bo(r) — R¥.
A zero-mean vector random field T(x) = (T1(x)), ..., Tx(x)), x € Bo(ro), is called
p-stationary if its covariance matrix B(x,y) = E[T(x) T(y)] depends only on the

p-distance between points, i.e.

B(p(x,y)) = E[T(x) @ T(y)] = E[T(x1) © T(y1)] = B(p(x1,¥1)),
for all x,x1,y,y1 € Bo(ro) such that p(x,y) = p(x1,y1).

Remark 5.2. If p(-) is the Euclidean distance, then a p-stationary field is homogeneous
and isotropic, see Section 2. Therefore, in some publications homogeneous and isotropic
fields are called stationary. However, for other p-distances the classes of p-stationary
fields are different from the homogeneous and isotropic one.

Let us define a spherical random field T(s), s € S3(1), as T(s) = T(x(~1(s)).
If T(x) is p-stationary, then, due to the isometry of (Bo(ro), p) and (S3(1), cos(v)),
the random field T(s) is isotropic on (S3(1),cos(7)). Therefore, by [38, Chapter 1, §6],
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the field T(s), s € S}(1), can be represented as

(e+1)?

“Y Y anSins

=0 m=1

where Sy, (), £ € Ng, m = 1,..., (£ + 1)2, are spherical harmonics in R%.
The random coefficients ay,, in this spectral representation are defined by

Apm = T(S)Sem (S) dO’(S),
S3(1)

where o(-) denotes the Lebesgue measure on S3(1).
Thus, a p-stationary random field T'(x) can be represented as

i 0o (£+1)2
T(x)=TWx) =Y > amSm(¥(x)),
(=0 m=1
Apm = T (1 (5))Sem(s) do(s).

S5

If the isometry «(-) is also a diffeomorphism with the Jacobian J(-), then the coeffi-
cients ay,, can be also computed as

A = / TSl T () dx

These random vector coefficients ay,, satisfy the conditions
E[agm] = 0,
E[aém & aé/m’] = 5€€/6mm’b€7

with such symmetric nonnegative-definite matrices by, £ € Ny, that

o0

> (£+1)*by < co.
{=0

Hence, by [38, Chapter 1, §6] and using the relations between Gegenbauer and Cheby-
shev polynomials, see [1], the two-point correlation function of the vector field T(x) can
be represented as

B(p(x,y)) = (T(x), T(y)) = (T(¢(x)), T Z Z by Sem (1(%))Sem (V(y))
and the coefficients by, £ € Ny, can be computed as

by = 23 /_11B (QSin (;)) Ue(t) V1 — 12 dt,

+1

where wq = 27%2/T'(d/2) and Uy(-) are the Chebyshev polynomials of the second kind.
By the addition theorem for spherical harmonics the two-point correlation function
B(+) also admits the representation

1 oo
B(p(x ;Zul Ur(p(x,y)) by.
=0
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Example 5.3. To illustrate this general approach, let us consider #(-) which is a super-
position of the stereographic projection and a mapping of R? into an open ball.

The stereographic projection from the north pole (0,0,0,1) acts on spherical points
s = (s1, 52, 83,54) € S3(1) as

S1 52 53
(51752553754) — .

1—84’1—84’1—84

Its inverse mapping is

211 27 273 [|x||? — 1)

X:<.'IJ]_,J)2,$3)—>( ) ) )
L |x[[27 1+ x| 14 {271+ ||x]]?

The following homeomorphic mapping from x = (1,22, 23) € R3 to Bo(rg) will be used
2 2 2
(21,29, 23) = (TO tan™! (1), 10 tan—! (22), 210 tan~! (x3)> .
s ™ s

The superposition of these transformations results in the homeomorphism ¢ (-) acting as

2 2 2
w(*l)(s) — (2o tan™! 51 , o tan~! 52 , o tan™! 53
s 1-— Sa T 1-— S4 ™ 1-— Sa

() < 2 25 275 ||5<|21>
X) = po B = 5 = 5 ~ )
L [R[PTT X271+ (%[ 1+ %]
where #; = tan (wa;/(2rg)), i =1,2,3.
Then, the induced distance p(-) on By(r) is

4xTy + (1 |Ix[1*) (1 - ||5'||2)>
L+ (=P A+ [Iyl?) ’

where C' is a positive constant and g; = tan (7wy;/(2r9)), i = 1,2, 3.

Let us continue Example 2.1 and consider the p-stationary Matérn random field T'(x),
x € Bo(ro), with respect to the above distance p(-). For simplicity and to be able to
visualise numerical results the following computations are presented only for the scalar
case, i.e. k=1.

The covariance function has the form

21—1/0.2
(5.) (M6, () = 5

p(x,y) = Carccos (

(ap(x,¥))" K, (ap(x,y))

with 02 >0, a > 0 and v > 0.

The plot of this function is similar to the one in Figure 1 and is not given here. More
informative is Figure 3 which compares this function and the corresponding covariance
function from Example 2.1, which used the Euclidean distance. To produce the 3D plot
the values x = 0 and y = (y1,¥2,y3) € Bo(ro) with y3 = 0 were chosen. The horizontal
coordinates in Figure 3 are (yi1,y2), while the vertical one represents the values of the
differences between (7°(0),T(y)) in (2.4) and (5.1). Figure 3 demonstrates substantial
deviations of these two-point correlation functions for distances close to zero.

Because of the isometric mapping, the corresponding covariance function on the sphere
S3(1) is a restriction of the Matérn stationary covariance function on R* to this unit
sphere. Its isotropic spectral density for the 4-dimensional space is

1 2v
— g2 virtla

f(>‘) (a2 + )\2)u+2 .
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FiGURE 3. Differences between covari- FIGURE 4. b, for a = 10, 02 = 1, and
ance functions in (2.4) and (5.1). various v.

The coefficients b, can be computed by using the formula (22) in [38, §5] and the
result in Example 2.1 as
b, = 27r4/ AZ LN FN A = o2 (2m)* (v + 1 a2”/ —EL
p=m)* [ AR ot [t
_ 2 8ria® (T(¢—v)['(v+3/2)
I(v) Val(l+v +3)
(v — Z)a%*Q”
22427 (0 + 2)
For specific values of the parameters this expressions can be simplified and easily used
in computations. For example, for a = 10, 02 = 1 and v = 1 one obtains

by = % (( (12 + 31+ 52) K41 (10) + 5K, (10) (1 + 2) )Il+1 (10)

—5( (1 +2) Ki41 (10) + 10K, (10) )Il (10)) .

1F(v+3/250 — 0+ 1, v+ £+ 3;a%)

1F(6+3/2;6 — v+ 1,2€—|—3;a2)) .

For the parameter values v = 1/2,1,2,3,5 plots of such first spectral coefficients by
are given in Figure 4. The plots suggest very fast decay of these coefficients. Thus, in
simulations, only few first coeflicients can be used to obtain reliable realisations of this
p-stationary Matérn field.

6. CONCLUSION

This paper developed the spectral theory for three classes of random fields in the
ball. Applications to specific scenarios and the Matérn correlation model were provided.
The derived spectral representations can be useful for studying theoretical properties
and simulating realisations of random fields. Potential areas of applications include
cosmology, geosciences and embryology.

In future studies, it would be also interesting to:

- Study rates of convergence in these spectral series representations;
- Extend the developed spectral theory to spatio-temporal fields;
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- Apply the obtained series expansions to investigate evolutions of random fields

in the ball driven by SPDEs , see the corresponding results for spherical random
fields in [2, 4, 5, 13];

- Apply the developed methodology to real data, in particular, to new high-

resolution cosmological data from future CMB-S4 and Euclid mission surveys.

ACKNOWLEDGMENTS

N. Leonenko and A. Olenko were partially supported under the Australian Research
Council’s Discovery Projects funding scheme (project number DP160101366). We would
like to thank Professors Domenico Marinucci and Ian Sloan for various discussions about
mathematical modelling of CMB data. We are also grateful for the referee’ comments,
which helped to improve the style of the paper.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

REFERENCES

M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with formulas, graphs,
and mathematical tables. National Bureau of Standards Applied Mathematics Series, No. 55.
U. S. Government Printing Office, Washington, D. C., 1964.

. V. V. Anh, A. Olenko, and Y. G. Wang. Fractional Stochastic Partial Differential Equation for

Random Tangent Fields on the Sphere. Theor. Probability and Math. Statist., 104:3-22, 2021.

. P. Baldi and M. Rossi. Representation of Gaussian isotropic spin random fields. Stochastic

Process. Appl., 124(5):1910-1941, 2014.

. P. Broadbridge, A. D. Kolesnik, N. Leonenko, and A. Olenko. Random spherical hyperbolic

diffusion. J. Stat. Phys., 177(5):889-916, 2019.

. P. Broadbridge, A. D. Kolesnik, N. Leonenko, A. Olenko, and D. Omari. Spherically restricted

random hyperbolic diffusion. Entropy, 22(2):Paper No. 217, 31, 2020.

. T. Brocker and T. tom Dieck. Representations of compact Lie groups, volume 98 of Graduate

Texts in Mathematics. Springer-Verlag, New York, 1995.

. O. Christensen. An introduction to frames and Riesz bases. Applied and Numerical Harmonic

Analysis. Birkhduser/Springer, Cham, second edition, 2016.

. R. Durrer. The Cosmic Microwave Background. Cambridge University Press, second edition,

2020.

. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi. Higher transcendental functions.

Vol. I. Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981.

I. M. Gel’fand and Z. Y. Sapiro. Representations of the group of rotations in three-dimensional
space and their applications. Uspehi Matem. Nauk (N.S.), 7(1(47)):3-117, 1952.

D. Geller and D. Marinucci. Spin wavelets on the sphere. J. Fourier Anal. Appl., 16(6):840-884,
2010.

M. Kamionkowski, A. Kosowsky, and A. Stebbins. Statistics of cosmic microwave background
polarization. Phys. Rev. D, 55:7368-7388, Jun 1997.

A. Lang and C. Schwab. Isotropic Gaussian random fields on the sphere: regularity, fast simu-
lation and stochastic partial differential equations. Ann. Appl. Probab., 25(6):3047-3094, 2015.
H. B. Lawson, Jr. and M.-L. Michelsohn. Spin geometry, volume 38 of Princeton Mathematical
Series. Princeton University Press, Princeton, NJ, 1989.

B. Leistedt, J. D. McEwen, M. Biittner, and H. V. Peiris. Wavelet reconstruction of E
and B modes for CMB polarization and cosmic shear analyses. Mon. Not. R. Astron. Soc.,
466(3):3728-3740, 12 2016.

B. Leistedt, J. D. McEwen, T. D. Kitching, and H. V. Peiris. 3D weak lensing with spin wavelets
on the ball. Phys. Rev. D, 92:123010, Dec 2015.

N. N. Leonenko and L. M. Sakhno. On spectral representations of tensor random fields on the
sphere. Stoch. Anal. Appl., 30(1):44-66, 2012.

H. Luschgy and G. Pageés. Expansions for Gaussian processes and Parseval frames. Electron. J.
Probab., 14(42):1198-1221, 2009.

A. A. Malyarenko. Invariant random fields in vector bundles and application to cosmology. Ann.
Inst. Henri Poincaré Probab. Stat., 47(4):1068-1095, 2011.

A. A. Malyarenko. Invariant random fields on spaces with a group action. Springer, Heidelberg,
2013.



16

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

NIKOLAI LEONENKO, ANATOLIY MALYARENKO, AND ANDRIY OLENKO

A. A. Malyarenko. Spectral expansions of cosmological fields. J. Stat. Sei. Appl., 3(11-12):175—
193, 2015.

A. A. Malyarenko. Spectral expansions of random sections of homogeneous vector bundles.
Theor. Probability and Math. Statist., (97):151-165, 2018.

D. Marinucci and G. Peccati. Random fields on the sphere. Representation, limit theorems and
cosmological applications, volume 389 of London Mathematical Society Lecture Note Series.
Cambridge University Press, Cambridge, 2011.

D. Marinucci and G. Peccati. Mean-square continuity on homogeneous spaces of compact
groups. Electron. Commun. Probab., 18:1-10, 2013.

R. J. Mathar. Zernike basis to Cartesian transformations. Serb. Astron. J., 179:107-120, 2009.
V. Michel and K. Seibert. A mathematical view on spin-weighted spherical harmonics and their
applications in geodesy. In W. Freeden and R. Rummel, editors, Handbuch der Geoddisie: 6
Binde, pages 1-113. Springer, Berlin, Heidelberg, 2019.

E. T. Newman and R. Penrose. Note on the Bondi-Metzner—Sachs group. J. Mathematical
Phys., 7:863-870, 1966.

A. M. Obukhov. Statistically homogeneous random fields on a sphere. Uspehi Mat. Nauk,
2(2):196-198, 1947.

V. Operstein. Full Miintz theorem in L, [0, 1]. J. Approz. Theory, 85(2):233-235, 1996.

T. W. Pike. Modelling eggshell maculation. Avian Biology Research, 8(4):237-243, 2015.

E. Porcu, M. Bevilacqua, and M. G. Genton. Spatio-temporal covariance and cross-covariance
functions of the great circle distance on a sphere. J. Amer. Statist. Assoc., 111(514):888—-898,
2016.

A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev. Integrals and series. Vol. 2. Special
functions. Gordon & Breach Science Publishers, New York, second edition, 1988.

K. S. Thorne. Multipole expansions of gravitational radiation. Rev. Modern Phys., 52(2,
part 1):299-339, 1980.

A. Trautman. Connections and the Dirac operator on spinor bundles. J. Geom. Phys.,
58(2):238-252, 2008.

N. R. Wallach. Harmonic analysis on homogeneous spaces. Pure and Applied Mathematics, No.
19. Marcel Dekker, Inc., New York, 1973.

S. Weinberg. Cosmology. Oxford University Press, Oxford, 2008.

M. I. Yadrenko. Isotropic random fields of Markov type in Euclidean space. Dopovidi Akad.
Nauk Ukrain. RSR, 1963:304-306, 1963.

M. I. Yadrenko. Spectral theory of random fields. Translation Series in Mathematics and En-
gineering. Optimization Software, Inc., Publications Division, New York, 1983.

M. Zaldarriaga and U. Seljak. All-sky analysis of polarization in the microwave background.
Phys. Rev. D, 55:1830-1840, Feb 1997.

F. v. Zernike. Beugungstheorie des Schneidenverfahrens und einer verbesserten Form, der
Phasenkontrastmethode. Physica, 1(7):689-704, 1934.

ScHooL OF MATHEMATICS, CARDIFF UNIVERSITY, SENGHENNYDD Roap, Carbpirr CF24 4AG,

UK

Email address: LeonenkoN@Cardiff.ac.uk

DivisioN OF MATHEMATICS AND PHYSICS, MALARDALEN UNIVERSITY, 721 23 VASTERAS, SWEDEN
Email address: anatoliy.malyarenko@mdh.se

DEPARTMENT OF MATHEMATICS AND STATISTICS, LA TROBE UNIVERSITY, MELBOURNE, VIC 3086,
AUSTRALIA
Email address: A.0lenko@latrobe.edu.au

Received 12th November 2021



