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Abstract: When it comes to variable interpretation, multicollinearity is among the biggest issues that
must be surmounted, especially in this new era of Big Data Analytics. Since even moderate size
multicollinearity can prevent proper interpretation, special diagnostics must be recommended and
implemented for identification purposes. Nonetheless, in the areas of econometrics and statistics,
among other fields, these diagnostics are controversial concerning their “successfulness”. It has been
remarked that they frequently fail to do proper model assessment due to information complexity,
resulting in model misspecification. This work proposes and investigates a robust and easily inter-
pretable methodology, termed Elastic Information Criterion, capable of capturing multicollinearity
rather accurately and effectively and thus providing a proper model assessment. The performance is
investigated via simulated and real data.

Keywords: multicollinearity detection; Elastic Net Regularization; feature selection; dimensionality
reduction; coefficient penalization

1. Introduction

Multicollinearity is the high linear association between two or more variables. The
coexistence of these cohort variables in a regression analysis can result in inconclusive or
even incorrect interpretation, and it may affect the forecasting process (Bayer (2018); Silvey
(1969)). Even though relatively small multicollinearity may cause no harm, moderate and
severe ones can abate the statistical power of the regression and lead to overfitting due
to variables redundancy. That phenomenon is very common primarily in econometrics
where most variables are at a significant extent collinear due to economic interrelationships
that lurk, which can result in misleading model measures and inaccuracy in parameter
estimation. Extreme multicollinearity usually exists in big multivariate complex datasets,
where variables may be quantified in dissimilar sized measures which can enhance the
significance of insignificant variables and potentially conceal the statistically significant
ones (Ueki and Kawasaki (2013); Yue et al. (2019)). Additionally, insufficient data may
guide the deceitful existence of multicollinearity (Ntotsis and Karagrigoriou (2021)).

Several partially robust criteria and indices for multicollinearity have been pro-
posed over the years, which are based either on the coefficient of determination and
similar measures or in the eigenvalue–eigenvector analysis. Theil’s indicator (Theil (1971)),
Klein’s rule (Klein (1962)), Tolerance Limit (TOL), and Variance Inflation Factor (VIF)
(Gujarati and Porter (2008)) fall into the first category while the Farrar–Glauber test Farrar
and Glauber (1967), the sum of reciprocal eigenvalues, Red indicator (Kovács et al. (2005)),
Condition Index (Belsley (1991); Hair et al. (2010)) and eigensystem analysis are some
of the most frequently used measures that fall into the second (for a thorough analysis
see Halkos and Tsilika (2018); Imdadullah et al. (2016)). All these measures commonly
use some sort of rule of thumb to rule about the existence of multicollinearity. For each
measure, at least 2 or even 3 different thresholds can be used; for instance, in the case of VIF
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5, 10, and 20 are considered proper thresholds (see Gujarati and Porter (2008), Wooldridge
(2014), and Greene (2002) respectively). The question remains though: at which point of
extreme multicollinearity is actually extreme? All these methods usually fail to recognize
patterns among variables due to weak or absent coefficients’ penalization that results in
variable over-elimination. So, how can someone properly address multicollinearity without
risking increasing a models’ bias that the omitted over-eliminated variables might cause?
There is always a thin line between the worthiness of variable reduction, on one hand,
and the robustness and validity of the results on the other. For a thorough discussion see
Lindner et al. (2020).

To resolve the issue, regularization techniques are used that are considered optimal
for parsimonious model creation when an immense number of variables is involved. These
techniques are based on beta coefficients penalization and aim to reform the coefficients
as more unbiased as they can be by assigning weights (“of significance”) that punish
the insignificant or the less significant variables while simultaneously rewarding the
statistically significant ones. Ridge (Tikhonov 1943, 1963), Lasso (Tibshirani (1996)), and
their aggregation, Elastic Net (Hastie et al. (2001); Zou and Hastie (2005)) are the most
frequently used regularization approaches for addressing this issue. The disadvantage of
these methods is that they can be computationally time-consuming.

In this work, a criterion is proposed based on the combination of penalized coefficients;
more precisely we propose the generation of a criterion that combines penalized beta
coefficients with a penalized coefficient of determination, both emerging from the naive
Elastic Net and aims to enhance the generalizability of a learned model. The proposed
criterion, namely Elastic Information Criterion (EIC), can be considered as a non-time or
space-consuming algorithmic procedure, which is more accurate than standard measures
when it comes to pattern recognition among multicollinear variables. Another distinct
characteristic of EIC is that it evaluates the existence and the magnitude of multicollinearity
based on a unique data-driven threshold which is reckoned based on data peculiarities and
not some approximate rule of thumb that typical measures rely on. The proposed criterion
is expected to play the role of a supplementary tool in the hands of the researcher to be
used in conjunction with their judgment, experience, and knowledge, together with any
special characteristic associated with the problem/dataset at hand.

A Motivating Example

In this subsection, an example based on three random variables X1, X2 and X3 is used
as a motivation for the proposed methodology. X1 and X3 are random samples of size
n = 100 from the standard normal distribution, while X2 is calculated as a function of X1
through the expression

X2 = u× X1 + σ× ε (1)

where u is either 2 or 5, ε ∼ N (0, 1) and σ a constant that controls the variability of errors.
For σ we use values in the set [0.2, 0.5, 1, 2, 5]. At the same time, u has been chosen to
provide an additional, more general, interdependence structure between the variables
involved. The example involves 10 datasets, each containing a unique combination of
values for u and σ. This example seeks to see the efficiency rate of EIC and VIF, meaning
how many times each measure manages to do proper variable selection, i.e., to select X3
and either X1 or X2 variable. Note that in all cases X3, due to its congenital randomness,
never exhibits multicollinearity despite the measure chosen, and hence its interpretation is
omitted, without indicating its ejection from the procedure. Table 1 provides the results of
1000 replications of the above experiment.

In Table 1, it can be observed that the efficiency rate of VIF (based on a threshold
value equal to 5) is excessively inadequate. More specifically, it does not make a proper
variable selection in at least 99 percent of cases. Additionally, there were cases of [u,σ]
([2,2],[2,5],[5,5]) that multicollinearity was not detected by VIF. Given the prior knowledge
that X2 is indeed a figment of X1, one can conclude that multicollinearity is lurking
behind the generated randomness. Moreover, if the methodology to be proposed and
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presented in the sequel is applied in the motivating example, the results appear to be
remarkable. Indeed, the efficiency rate of EIC is as high as 72% and, in any case, clearly
prevails over VIF regarding variable over-elimination. Note that the corresponding rates
for VIF were almost 0% or non-existent, meaning that in all replications both X1 and
X2 appeared as multicollinear. The correlation range indicates the minimum and the
maximum correlation between X1 and X2 of each dataset. More precisely, for each [u,σ]
combination, the experiment was replicated 100 times and the minimum and maximum
correlation values between the variables were registered. Among all experiments and all
[u,σ] combinations, the overall minimum and the overall maximum correlation values
were used to provide the correlation range. The aim was to evaluate the performance of
each measure under different degrees of correlation. Even though high correlations were
detected in most cases (implying the possible existence of multicollinearity), VIF failed
either to recognize it or detect it without being able to identify the predetermined pattern
between X1 and X2. The example reveals a weakness of the VIF associated with its failure
to identify patterns exhibited by the variables involved. The development of EIC came out
of a necessity to fill this gap in the literature; i.e., to provide a measure capable not only
of recognizing multicollinearity patterns that lurk behind variables but also of working
simultaneously as a variable selection criterion.

Table 1. EIC and VIF efficiency rates comparison for the motivating example for all u and
σ combinations.

[u,σ]

Measure
EIC VIF

Correlation
Range

[2,0.2] 45% 0% [0.98, 1]

[2,0.5] 40% 0% [0.94, 0.98]

[2,1] 24% 1% [0.78, 0.94]

[2,2] 16% - [0.46, 0.83]

[2,5] 7% - [−0.1, 0.59]

[5,0.2] 50% 0% [0.99, 1]

[5,0.5] 67% 0% [0.98, 1]

[5,1] 72% 0% [0.96, 0.99]

[5,2] 70% 0.1% [0.86, 0.96]

[5,5] 35% - [0.45, 0.83]

The remainder of the article is structured into four sections. Section 2 provides the
literature review concerning the aforementioned measures that detect and eliminate the
issue of multicollinearity. Section 3 comments on the theory surrounding the regularization
methods that can be used to eradicate multicollinearity and then extensively analyses the
proposed criterion and the corresponding threshold used for ruling. Section 4 focuses on
the implementation of EIC both in simulated and real data case studies and its comparison
with other measures. Section 5 thoroughly documents, examines, and discusses the findings
and the advantages of the proposed method as compared with other measures.

2. Literature Review
2.1. Review of Multicollinearity Measures

To detect the multicollinear variables in a dataset and eliminate them, assorted criteria
have been developed over time. Some of these are briefly presented in this section. Dis-
similar results about the coefficients between F and T-tests and significant R-squared shifts
when variables are inserted/removed can imply the existence of severe multicollinear-
ity (Geary and Leser (1968)). Collinearity diagnostics such as eigensystem analysis and
Conditional Index (CI) (Belsley (1991)) can highlight the issue. Correlation matrix-based
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eigenvalues near zero presuppose multicollinearity among the variables (Hair et al. (2010);
Kendall (1957)), while if the CI of Equation (2) is greater than 10, empirically, one can say
that it leads to the same conclusion (Belsley (1991); Hair et al. (2010)).

CIj =

√
λev

max
λev

j
, (2)

where λev
j is the eigenvalue emerged from original variables correlation matrix, λev

max is the
maximum eigenvalue, j = 1, 2, . . . , k is the number of variables and λev

1 ≥ λev
2 ≥ · · · ≥ λev

k .
Besides, Kovács et al. (2005) used eigensystem analysis to compose the Red indicator,

presented in Equation (3), for proper detection. When the indicator approaching zero, then
multicollinearity is low while when approaches 1, then can be considered high.

Red =

√
∑k

j=1(λ
ev
j −1)2

k√
k− 1

. (3)

The Farrar–Glauber test (Farrar and Glauber (1967)) approaches the issue with the
comprised of a three-test procedure that examines the presence of multicollinearity, the
existence of collinear regressors, and the form of their affiliation. They also proposed the
use of a measure based on the ratio of explained to unexplained variance (Farrar and
Glauber (1967)), the large values of which indicate multicollinearity.

wj = (rjj − 1)×
(

n− k
k− 1

)
, (4)

where rjj = 1
1−R2

j
and R2

j is the R-squared of the auxiliary regression of each j variable

against all the others.
Klein (1962) and Theil (1971) independently proposed rules based on R2

j , and its

impact on the overall R-squared. Klein states that if R2
j surpasses the overall R2, then mul-

ticollinearity can be worrisome. On the other hand, Theil’s rule asserts that if the resulting
m from Equation (5) is 0 then multicollinearity is absent, while if it is approximately equal
to 1 then it can be considered troublesome.

m = R2 −
k

∑
j=1

(R2 − R2
−j). (5)

Leamer (Greene (2002)) suggested a method based on the variance of the estimated
coefficients:

Cj =


(

∑k
j=1(Xij − X̄j)

2
)−1

(X′X)−1
jj


1
2

. (6)

Equation (6) is used for ruling and takes values in [0,1]. When Cj approaches the left
end then multicollinearity exists; while, when it approaches the right end then it can be
considered non-existent. Although all the above are well established and frequently used
techniques for multicollinearity detection, the criterion that is the most frequently used in
various fields is the Variance Inflation Factor (VIF) (Gujarati and Porter (2008)) which uses
the coefficient of determination for detection purposes and is formulated as follows:

VIFj =
1

1− R2
j
=

1
Tolerance Limit

(7)

VIF indicates how magnified is the variance of an estimator in the presence of multi-
collinearity. When no multicollinearity among variables exists, then VIFj = 1 and when R2

j
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approaches 1 then VIFj approaches infinity. If VIFj is greater than 5, then the jth variable
is considered multicollinear and is proposed for extraction for a better result interpreta-
tion (Gujarati and Porter (2008)). However, the acceptance range is subject to requirements
and constraints, with most suggesting the acceptance threshold to be equal to 5 or 10. Disre-
garding its regular usage, VIF lags behind in some cases. More specifically, as Gujarati and
Porter state, (Gujarati and Porter (2008), p. 340) “high VIF is neither necessary nor sufficient to
get high variances and high standard errors. Therefore, high multicollinearity, as measured by a high
VIF, may not necessarily cause high standard errors”. Tolerance Limit (TOL) is also a detection
measure, closely related to VIF as it is its denominator. Weisburd and Britt (2013) state that
a value under 0.2 indicates severe multicollinearity. Lastly, the IND1 indicator proposed by
Ullah et al. (2019) can be used for detection purposes. Its corresponding formula is

IND1j = (R2
j − 1)×

(
1− k
n− k

)
, (8)

and when IND1j ≤ 0.02, then multicollinearity exists.
When multicollinearity is high, then VIF and all the above-mentioned measures usu-

ally fail to recognize patterns among variables. This occurs as a consequence of coefficient
penalization absence and can be resolved, to some extent, by regularization methods dis-
cussed in the next subsection. Finally, it should be noted that for specialized business and
econometric computations for detecting and evaluating collinearity based on methods such
as the ones presented above, one may refer to Xcas, a free programming algebra system
(Halkos and Tsilika (2018)).

3. Elastic Information Criterion
3.1. Review of the Regularization Methods

In statistics, econometrics, and machine learning, among other fields, regularization
methods are considered optimal for parsimonious model creation when an immense
number of variables are involved. The use of such methods addresses the problem of
model over-fitting by imposing low predictor coefficient value when it is sparse—and by
expansion can be exploited as variable selection criteria—and secondly can sustain the
significant estimates in the presence of multicollinearity.

In this work, a criterion is proposed based on the Elastic Net Regularization (ENR)
penalty to enhance the generalizability of a learned model. ENR linearly combines two Lp

metrics and, more precisely, the Manhattan and Euclidean distances—L1 and L2 penalties
respectively, of the Lasso and Ridge methods (Zou and Hastie (2005)).

Ridge, Lasso, and their aggregation, Elastic Net, are regularly used regression methods
based on norms and are particularly useful tools to mitigate the issue of multicollinearity.
For the use of these methods, two tuning parameters are computed. Firstly, the mixing
parameter α ∈ [0, 1], which combats over-fitting by constraining the size of the weights.
Secondly, the non-negative regularization parameter λ, which minimizes the prediction
error (MSE) by controlling the model’s regularization magnitude.

Ridge, which was developed by Tikhonov (1943, 1963), manages to shrink the model’s
complexity while preserving all variables involved by minimizing the coefficients of the
insignificant variables (see also Perez-Melo and Kibria (2020)). When in Ridge, α = αr =
0, λ = λr and the penalty function for the β j coefficient of the jth variable can be expressed:

pαr ,λr (|β j|) = λr × β2
j . (9)

On the contrary, Lasso, initially introduced in geophysics but popularized in statistics
by Tibshirani (1996), manages to shrink the model’s complexity by setting equal to zero all
the insignificant coefficients and by dropping the corresponding variables. Therefore, it can
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also enact a variable selection technique that makes the model more interpretable. When in
Lasso, α = αl = 1, λ = λl , and the penalty function for the β j coefficient can be expressed:

pαl ,λl (|β j|) = λl × |β j|. (10)

Ridge regression tends to shrink the high collinear coefficients towards each other,
while Lasso picks one over the other. To manage both simultaneously, Elastic Net was
developed as a compromise between the two, in an attempt to shrink and do a sparse
selection simultaneously by mixing Lasso’s and Ridge’s penalties (Hastie et al. (2001)). This
capability allows tuning both α and λ parameters at the same time (Zou and Hastie (2005)).
Tuning parameter α = αen ∈ [0, 1] and when in ranges’ endpoints, then Ridge and Lasso
regularizations arise respectively. In the case of Elastic Net tuning parameter λ is denoted
as λen, while the corresponding penalty function for the β j coefficient can be expressed as:

pαen ,λen(|β j|) = λen ×
(

1− αen

2
β2

j + αen|β j|
)

. (11)

The disadvantage of this method is that it can be computationally time-consuming due
to all the possible αen values (Liu and Li (2017)) that need to be considered, especially when
the case requires the procedure to be repeated as many times as the number of variables
involved. In order to resolve this issue along with the ones arising from standard measures
of multicollinearity, a new robust criterion will be proposed as a specialized advanced
regularization method in the following section.

3.2. The Penalized Regularization Antidote

In this section, the Elastic Information Criterion (hereafter EIC) is proposed. EIC can
be considered an extension of the Elastic Net procedure and result in a (computational) time
and space non-consuming algorithmic procedure that has also proven to be more accurate
than typically used measures regarding pattern recognition among multicollinear variables.
The Elastic Net was selected as the optimal regularization due to its capability to examine
the impact of different αen and λen combinations on the model through a cross-validation
procedure. EIC was initiated out of necessity for accurate and effective multicollinearity
capture without having variable over-elimination. Its aim is to detect patterns among the
multicollinear variables and more precisely, which one enacts as a function of the other(s),
and remove them, leaving the one(s) that originated from them intact. The EIC’s results
emanate from the Elastic Net cross-validation procedure, and its formula is given in the
following form:

EICj = αj,en ×

k
∑

p=1
p 6=j

|βj
p,en|1+αj,en

1− R2
j,en

≥ 0, j = 1, 2, . . . , k (12)

and

Xj = β
j
0,en +

k

∑
p=1
p 6=j

β
j
p,enXp (13)

where

• k is the total number of regressors (explanatory variables),
• αj,en is the optimal alpha emerging from the Elastic Net procedure and corresponds to

the modelling of the Xj variable,

• β
j
0,en is the intercept term in Equation (13),

• β
j
p,en is the penalized coefficient of the pth regressor in Equation (13),
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• R2
j,en is the R2 of the jth variable as predictor regressed against all other regressors.

EIC integrates two aspects of collinearity detection. The primary one, based on a
tolerant method alteration, aims to reduce the sensitivity of coefficients throughout the
penalty function. The number of β

j
p,en coefficients diversifies from zero to k since when

αj,en= 1, then the variable’s coefficient reduces to zero. The summation of this function

aggregates all the resulting β
j
p,en coefficients emerging through Elastic Net regression.

On the other aspect, the goodness of fit in the linear model is used as a penalty for
multicollinearity disclosure. Lastly, the tuning parameter αj,en is utilized for penalization
smoothing purposes. EIC tends to perform more precisely for αj,en at or close to the end-
point of the [0,1] range. Thus, in order to limit—in terms of time—the computational
burden for αj,en selection, the values examined range from 0 to 0.1 with step 0.01, the
middle point of the αj,en range (0.5), and from 0.9 to 1 with step 0.01. Note that otherwise
the αj,en specification, the same cross-validation procedure as in the naive Elastic Net is
followed (see Algorithm 1).

Algorithm 1 Pseudocode for EIC implementation in R.
Input: A n× k matrix, namely A, containing the dataset with each Xj column representing
a variable.
Output: A 1× k data frame containing the EIC value for each Xj variable indicating the
level of multicollinearity.

Procedure: Compute aj,en, β
j
p,en, and R2

j,en parameters of Equation (12) for each
Xj variable
Step 1: Set the vector of the considered values alpha (αj,en), namely alpha.sample <-
c(seq(0, 0.1, by = 0.01), 0.5, seq(0.9, 1, by = 0.01)).
Step 2: Perform cva.glmnet function, which is a part of glmnetUtils package, by setting
the following arguments: x = A[, −1], y = A[, 1]) and alpha = alpha.sample.
Step 3: The resulting arguments are as follows: alpha is the a1,en, lambda is the λ1,en, and
β

j
p,en are the penalized coefficients of the explanatory variables of the model considered.

Step 4: Compute the absolute value of each of the resulting β
j
p,en coefficients raised to

the power of 1 + α1,en.
Step 5: Sum all the values resulted through Step 4 in order to calculate the numerator of
Equation (12).
Step 6: Compute the R2

1 of the X1 variable regressed against every other variable in
the dataset which corresponds to the R2

1,en of Equation (12), based on the coefficients as
resulted through Step 3.
Step 7: Replace the result of Step 3–5 on Equation (12) and then calculate the EIC1 value,
which corresponds to the multicollinearity level of the X1 variable.
Step 8: Repeat Steps 1–6 for the remaining k variables.

3.3. Data-Driven Threshold

To verify the presence of multicollinear variables with EIC, the following threshold
determined by the collection or analysis of data has been proposed (see Algorithm 2).

threshold = λ̄en + 3× s.e.(λ̄en) (14)

where λ̄en =
∑k

j=1 λj,en
k and s.e. stands for the standard error (of the sample mean λ̄en).

Adding three standard errors to the threshold, which is a typical quality control bound,
reduces the possibility of wrongfully variable rulings.
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Given a dataset of k variables and based on Equations (12) and (14), one can conclude
that a variable does not display multicollinearity for values of EIC lower than the threshold:

0 ≤ αj,en ×

k
∑

p=1
p 6=j

|βj
p,en|1+αj,en

1− R2
j,en

≤ λ̄en + 3× s.e.(λ̄en) (15)

Algorithm 2 Pseudocode for the threshold of EIC in R.
Input: A n× k matrix, namely A, containing the dataset with each Xj column representing
a variable.
Output: A single number which serves as threshold for ruling about the existence of multi-
collinearity.

Procedure Compute Equation (14) for the input dataset
Step 1: The implementation of Steps 1 and 2 of Algorithm 1 will result in the λ1,en which
corresponds to the X1 variable.
Step 2: The completion of Algorithm 1 will produce the values of λ1,en, λ2,en, . . . , λk,en
parameters. Calculate their arithmetic mean.
Step 3: Find the standard error of the mean via the function std.error and triple
the result.
Step 4: Sum the values resulted from Step 2 and 3 to form the threshold value of
Equation (14).

Remark 1. The proposed criterion resolves a defect in classical diagnostic measures, like VIF, by
being capable of detecting patterns among variables. In that sense, it provides a powerful and
supportive tool in econometric analysis, which is expected to complement effectively all other aspects
(purpose of the study, researcher’s judgment, etc.) of the decision-making process.

4. Numerical Applications

There are continuous and recurrent discussions in econometrics, regarding the way to
effectively address the issue of multicollinearity. It is believed that, to some extent, this is
due to the absence of simulated studies and the fact that in real cases, available data are
simple and direct, which prevents an in-depth understanding of the issue, when in fact
econometric research is considered particularly complex. In this research area, variables
tend to be interdependent, while sample sizes are relatively limited. Therefore, due to
the nature of the problem, it is difficult to have an interpretable application in real data.
In order to investigate the validity of EIC, a real case scenario based on a dataset on the
economic growth of a country’s prosperity is presented below, followed by a simulated
case study. In both experiments, a comparison concerning the proper variables’ prediction
rate, between EIC and various other measures has been implemented for evaluating the
effectiveness of the proposed methodology.

4.1. Real Case Study

For validation purposes on real data, the following experiment was conducted. For
evaluating a country’s prosperity and having a better understanding of where its economy
is headed, several economic growth indicators have developed throughout the decades.
Some main closely monitored and widely applied indicators include the Balance of Trade to
GDP (BoT), the Government Debt to GDP (GovDebt), the Gross Domestic Product Growth
Rate (GDPGR), the Inflation Rate (InfR), the Interest Rate (IntR) and the Unemployment
Rate (UnemR) (Organisation for Economic Co-operation and Development (2021); Trading
Economics (2021); World Bank Open Data (2021)). A dataset consisting of these six variables
with annual observations covering the time period 2000 to 2020 for Greece was formulated
for illustrating the performance ability of the proposal EIC criterion as compared with
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traditional diagnostic measures. Data originated from the World Bank Open Data (2021)
and the Organisation for Economic Co-operation and Development database (Organisation
for Economic Co-operation and Development (2021)). Based on the dataset, a direct
interdependency pattern between GDPGR and both GovDebt and BoT exists, since the
latter two appear as percentages of the former. According to the relevant bibliography (see
e.g., Dumitrescu et al. (2009); Fried and Howitt (1983); Ntotsis et al. (2020); Oner (2020)),
correlations are observed between the variables involved in the dataset. The aim is (a) to
observe whether the measures mentioned in Section 2.1 can identify the aforementioned
interdependency pattern among the variables, and (b) to observe how EIC corresponds to
the same situation.

In Table 2 for each variable, the existence (1) or not (0) of multicollinearity was detected
by various diagnostic measures. Except for EIC, the other measures, including VIF, identify
as multicollinear some of the variables BoT, InfR, IntR, and UnemR. However, EIC restricts
the multicollinearity issue solely to GDPGR and identifies it as the “root” of multicollinearity
in the dataset. It must be noted that the selection of this variable is of great importance
due to its linkage to all others, and because this connection goes undetected by all other
measures. On the other hand, the results clearly show that classic diagnostic measures, like
VIF, fail to recognize the underlying pattern among the variables involved. On the other
hand, the proposed EIC criterion not only exposes the pattern but also identifies its root
and recommends, correctly, its removal from the dataset.

Table 2. Detection of existence (1) or not (0) of multicollinearity by diagnostic measures.

Individual Multicollinearity Diagnostic Measures

EIC VIF TOL CI F-G wj Leamer IND1

BoT 0 1 1 0 1 1 0
GovDebt 0 0 0 0 1 0 0
GDPGR 1 0 0 0 1 0 0

InfR 0 1 1 1 1 0 0
IntR 0 0 0 1 1 0 0

UnemR 0 1 1 1 1 1 1

This example clearly shows that EIC succeeds in identifying interdependency patterns
when all other diagnostics measures fail. If such patterns are non-existent, all measures are
expected to behave equally well. The superiority of the proposed criterion lies in the fact
that it offers a powerful tool for pattern identification, which could be useful for researchers.

4.2. Simulation Case Study

This study is based on data generated from a standardized normal distribution with
different scenarios, sample sizes, and number of variables. The number of variables
ranged from 5 to 15, while the number of observations was 10, 50, and 100. Each scenario
was replicated for validation purposes, providing similar results in all cases. Based on
the similarity of the results, the decision to present the results for the same number of
variables (10) and the same size of observations (100) throughout the study was made for
comparability purposes.

The study focuses on three datasets with different degrees of correlation among
variables, 20%, 45%, and 75% for datasets “low”, “medium”, and “high”, respectively. For
each dataset, a sized 100× 10 data frame was created and replicated 5000 times, with each
Xj, j = 1, 2, . . . , k, column representing a variable. For each dataset, several variables have
been selected to be altered and involved in the analysis as linear operators of X1 with the
subsequent formula:

Xj = u× X1 + σ× ε, Xj 6= X1, (16)

where u is a random integer number in [1, 5], ε ∼ N (0, 1) and σ is a constant that controls
the variability of errors. For σ we use values in the set [0.2, 0.5, 1, 2, 5]. As in the case of the
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motivating example (Section 1), u has been chosen to provide an additional, more general,
interdependence between the variables involved. Equation (16) was formulated out of
necessity for implementing a more general interdependency pattern among the variables
involved. Simultaneously, there was a need to explore the capabilities of the proposed
methodology under a more challenging underlying mechanism (as opposed to the case
of a fixed value for the u coefficient) for the building of the model in Equation (16). The
selected linear transformations of X1 are: X2 for the low, X2, X3, X4, X6, and X8 for the
medium, and all Xj except X8 and X10 for the high correlation-based category.

Note that the EIC was chosen to be compared only with the VIF, which is considered
the most widely used diagnostic measure. A random sampling between the replications
was held and the detection process with all measures was implemented, which did not
display noteworthy results and verified the above-claimed decision.

The Parallel Coordinates Graph (Figure 1), which was carried out in RAWGraphs
(Mauri et al. (2017)), provides the percentage of times each Xj variable appears as mul-
ticollinear based on EIC (upper line) and based on VIF (lower line) with yellow lines
corresponding to low, green to the medium and red to the high correlation-based dataset.
High values (close to 1, i.e., 100%) indicate extreme multicollinearity, while low values
(close to 0, i.e., 0%) indicate weak (or absence of) multicollinearity. As an example, consider
the yellow line (low correlation dataset) associated with the variable X1 (which has been
taken to be non-multicollinear). The EIC correctly identifies the non-multicollinearity of X1
since the upper line is crossed at a value less than 0.05 (the actual value is 0.01). Meanwhile,
VIF fails to identify the same. Indeed, although the yellow line should have been vertical
(crossing the lower line at about the same value as the upper line) the crossing is observed
far to the right, at a value between 70% and 80% (the actual value is 0.76) indicating that
VIF characterizes, incorrectly, X1 as multicollinear.

Based on the above observations according to Figure 1, we can conclude that only EIC
succeeds in correctly identifying the level of multicollinearity of all variables involved with
X1 appearing on the left corner (of the upper line of Figure 1) and all others on the right
corner. We also observe that as correlation increases (from yellow to red), VIF is deceived
and fails to recognize the unaltered variable (X1) but instead, it signifies it, falsely, as the
most multicollinear variable, which may result in variable over-elimination and improper
model selection.

Figure 1. The Parallel Coordinates Graph—the proportion of times each variable appears as multi-
collinear based on VIF (lower line) and EIC (upper line) in three (low/yellow—medium/green—
high/red) correlation categories. Only variables with non-zero proportions are displayed.

In the sunburst diagram (Mauri et al. (2017)) of Figure 2, one can see the percentage
rate at which each measure (VIF in the inner circle and EIC in the outer circle) managed to
properly do correct variable selection in each of the three categories. In Figure 2, VIF tends
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to do variable over-elimination and by expansion model misspecification. When the proper
variables have been selected (all Xj except X2 for low, X1, X5, X7, X9, and X10 for medium,
X1, X8, and X10 for high), then all the other (improper) variables have been selected too.
Thus, one can state that the accuracy rate of proper variable selection based on VIF is 0%.
On the contrary, the equivalent rate based on EIC surpasses 50% in all cases.

Figure 2. Proper model selection based on EIC and VIF for all three correlation-based categories.

5. Conclusions

Conclusively, the suggested Elastic Information Criterion procedure results in a robust
and easily interpretable methodology for handling multicollinearity along with the ap-
propriate data-driven threshold. The criterion constitutes a novel shrinkage and selection
method since it is based on both the coefficient of determination and beta coefficients penal-
ization, emerging in virtue of a biased (towards the endpoints of the mixing parameter α)
Elastic Net, while the threshold has been established based on λj,en tuning parameter of
the same procedure. Thus, EIC is governed by the same or similar properties as those of
Elastic Net. Additionally, it demonstrates a sufficiently sparse representative model with
an adequate proper variable prediction rate, while firmly encouraging a grouping effect
even when the significance of a variable is relatively limited.

The results of the real and simulated data analysis strongly suggest implementing
EIC not only for econometric modeling and forecasting but also for classification purposes
due to its high efficiency rate (Wooldridge (2014)). EIC does not commonly fail with highly
correlated data as opposed to typically used measures for multicollinearity detection, while
its high prediction accuracy is due to the restricted values of the parameter α. Furthermore,
EIC tends to perform better when the Elastic Net procedure is implemented at or near
the αj,en edges while it appears to have a robust variable selection accuracy rate over both
real and simulated case studies. The pivotal characteristic of reduction or ejection of the
insignificant coefficients that Elastic Net attains manages to enhance its efficiency rate. In
comparison to other multicollinearity detection measures, it is evident that EIC prevails in
terms of proper variable selection accuracy. An additional finding of this work is that the
implementation of EIC can be vital in the field of econometrics, where interrelationships
among variables frequently occur. Its capability to identify where (in which variable(s)) the
troublesome multicollinearity lurks and penalize it accordingly minimizes a models’ bias
without resulting in variable under or over-elimination.

EIC, as a criterion for implementing the Elastic Net mechanism, is particularly effective
in tackling multicollinearity that lurks behind variables (Hastie et al. (2001); Zou and Hastie
(2005)). Indeed, as displayed above in all levels and as compared with the most widely
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used measures, EIC (a) identifies the existence of patterns among variables, (b) is capable
of recognizing and “selecting” the altered variables, leaving the unaltered ones intact,
and (c) achieves extreme values in the presence of perfect multicollinearity and also in
the total absence of it. Based on these characteristics and properties we can say that the
effectiveness of EIC can place it high in the list of measures that can be used to address the
multicollinearity issue and in that sense it can be considered as a useful and effective tool
in the hands of the researcher to be used in conjunction with their judgment, experience,
and knowledge together with any special features associated with the problem/dataset
at hand.

In addition to the contributions of the proposed criterion to the multicollinearity
literature, another advantage of EIC is that it operates as a variable/model selection
criterion and consequently it can be exploited as a dimension reduction technique and
thus, an alternative competitor to Principal Components Analysis and Linear Discriminant
Analysis. It should be reminded that these classical dimension reduction techniques suffer
from the fact that each generated component is a combination of different proportions of
the original variables; thus it is often difficult to interpret the results (Zou et al. (2006)). On
the other hand, the proposed EIC criterion manages to preserve the interpretability of the
original variables because it relies simultaneously on shrinkage and sparse selection.
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