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Abstract

Reliable quantification of water mass changes (or redistribution) within the different compartments
of the water cycle is important for understanding processes and feedback loops within the Earth’s
climate system. This information is also essential in geodesy because it changes the Earth’s orientation
(importance for defining reference frames) and the Earth’s gravity field, which is the physical shape
of the Earth and is used for defining reference datum. The Gravity Recovery and Climate Experiment
(GRACE) and its Follow-On mission (GRACE-FO) provide time-variable Earth’s gravity fields
that contain signals related to different processes such as non-steric sea level changes, Terrestrial
Water Storage Changes (TWSC), ice sheet melting, and Post Glacial Rebound (PGR). Although
GRACE(-FO) data represent an accurate superposition of these anomalies, separating this integrated
signal into its contributors is desirable for many hydro-climatic and geophysical applications. In this
thesis, three novel Bayesian data-model fusion frameworks are developed to separate land hydrology
(surface and sub-surface) and surface deformation (due to PGR) from GRACE(-FO) data. The three
main frameworks of this thesis include: 1- the Dynamic Model Data Averaging (DMDA), that is
formulated to merge multi-model data with GRACE(-FO) data; 2- Markov Chain Monte Carlo-Data
Assimilation (MCMC-DA), as an extension of DMDA, to recursively estimate components of the
TWSC, while accounting for temporal dependencies between the storage compartments; and 3- the
Constrained Bayesian-Data Assimilation (ConBay-DA) to use multi-sensor data for GRACE(-FO)
signal separation. DMDA is used to compare several global hydrological models and merge them with
GRACE data. The groundwater and soil water storage changes are extracted within the Conterminous
United States (CONUS) by implementing the MCMC-DA approach. ConBay-DA is applied, based
on the hierarchical MCMC optimization, to use GRACE data and the surface uplift rates from the
Global Navigation Satellite System (GNSS) stations and separate hydrological and GIA deformation
components over the Great Lakes (GL) area in North America.
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Chapter 1

Introduction

1.1 Background: Earth System Dynamics and the Global Water Cycle

The global water cycle describes the redistribution of water within the Earth system, including the
hydrosphere, biosphere, atmosphere, and oceans. Water from the atmosphere reaches the continents
and oceans in the form of precipitation. Once the water reaches the ground, it might be partly stored
on land in the form of snow and ice, stored as surface water in lakes and wetlands, or it might infiltrate
into the ground, where it is stored as soil water or groundwater for different durations of time. The
continental storage of water is reduced by evapotranspiration, i.e., the sum of evaporation from soil,
surface water, vegetation, and/or by river discharge and groundwater discharge, which transport
water, e.g., to seas or oceans. Due to solar radiation, water in seas and oceans also evaporates and is
transported back into the atmosphere, where it becomes available again in the form of precipitation as
it cools and condenses, thereby completing the water cycle (see Fig. 1.1). The water cycle is also
linked to energy exchanges among the atmosphere, ocean, and land, which determine the Earth’s
climate, and cause much of its natural climate variability. Reliable quantification of the hydrological
cycle, its key fluxes and stores, and its spatiotemporal variability is required to understand numerous
processes and feedback loops within the Earth’s climate system. Such quantification is also crucial
for many applications related to hydrometeorology, water resources, hazard assessment, and land-
atmosphere interactions, including flood and drought monitoring and prediction (Forootan et al., 2017,
2019; Houborg et al., 2012; Li et al., 2019; Long et al., 2013; Slater et al., 2015), assessing water
resources sustainability (Castellazzi et al., 2016; Forootan et al., 2014c; Scanlon et al., 2012a), and
identifying ecohydrological links between climate and vegetation (Singer et al., 2014). From the
geodetic point of view, an answer to the question of how mass is distributed and redistributed within
the Earth system, provides precise information to estimate temporal changes in the Earth’s orientation
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Fig. 1.1 Schematic overview of the global water cycle. This figure is taken from the official website of the United States
Geological Survey (USGS; http://water.usgs.gov/edu/watercycle.html).

(importance for defining reference frames) and the Earth’s gravity field, which is the physical shape
of the Earth and is an important basis for geodetic applications.

Monitoring the global water cycle is difficult due to the complexity of hydrological processes and the
large spatial scale, and the fact that it includes mass fluxes between the atmosphere, land, and oceans
as well as between various states of water (solid, liquid, and vapour). As a result, different approaches
and observational instruments have been developed and implemented to improve the understanding
and quantifications of the hydrological processes within the Earth system. Hydrological models and
hydrometeorological (drought/flood) monitoring systems are the primary tools to monitor the global
terrestrial water cycle (Sood and Smakhtin, 2015). Hydrological models are typically classified as
conceptual models if empirical equations and parameters are used to represent the water dynamics or
as physics-based if the model equations are based on physical principles, e.g., land surface models
(see, e.g., Jaiswal et al., 2020). Even though the models aim for an adequate representation of the real
world, uncertainties exist due to insufficient model realism, imperfect climate input data, inadequate
empirical model parameters, and unrepresented feedbacks between model components.

Post Glacial Rebound (PGR), also known as isostatic rebound or crustal rebound, is referred to as
surface deformation and is caused by the removal of the huge weight of ice sheets during the last
glacial period. PGR and isostatic depression are phases of Glacial Isostatic Adjustment (GIA) that
represent the Earth’s viscoelastic response to the loading of glaciation and deglaciation of ice age

http://water.usgs.gov/edu/watercycle.html
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cycles within the continental regions that were ice-covered during the last glacial maximum about
20,000 years ago. The solid Earth response to changes in ice loading has important implications for
many geophysical processes. GIA affects the Earth’s shape, gravity field, and the axis of rotation via
redistribution of mantle material (Dickey et al., 2002). All these changes, in turn, affect the global sea
level (e.g., Lambeck and Chappell, 2001; Nakada and Lambeck, 1987). A reliable estimation of GIA
is necessary to understand contemporary changes in sea level (Peltier, 1998). In general, geophysical
forward models are the primary tools to study the GIA signal. However, large uncertainties in the
present-day global GIA models exist due to the insufficient input data, e.g., uncertainty of ice loading
history and the viscosity of the upper and lower mantle. This is shown by Guo et al. (2012), who
found considerable regional differences between 14 forward model solutions, disagreeing even on the
sign of vertical land motion in some areas.

In recent decades, by launching various geodetic and Earth Observation (EO) satellite missions and
the availability of in-situ monitoring networks, a wealth of data has been collecting from different
components of the water cycle. Traditionally, monitoring soil water and groundwater storage changes
mainly relied on in-situ meteorological measurements and piezometric observations. Gauge-based
measurments have also been used to estimate, e.g., precipitation, evapotranspiration, and runoff. In-situ
water monitoring networks are particularly useful to understand the local hydrological characteristics
of a region. For instance, in-situ water levels monitoring combined with measurements of level
fluctuations over surface water bodies can be used to calculate water flow (Council et al., 1999).
In-situ networks, however, are typically limited to local or regional areas and to obtain a global
picture of water storage variations. Today, organisations like the European Space Agency (ESA 1)
and the National Aeronautics and Space Administration (NASA 2) provide various EO data to track
changes in global water, carbon, and energy cycles (Lindersson et al., 2020). For instance, altimetry
satellites (e.g., Topex/Poseidon, Jason 1 and 2, and ESA’s altimetry satellites) observe variations of
the Earth’s surface water volume changes, including oceans and seas (Shum et al., 1995), as well as
lakes, reservoirs, and rivers (Berry et al., 2005). Modern satellite missions, e.g., the Ice, Cloud, and
Land Elevation Satellite (ICESat), were designed to collect data on the topography of the Earth’s ice
sheets, clouds, and vegetation. Over the last two decades, precipitation has been remotely observed
over tropical regions using the Tropical Rainfall Measuring Mission (TRMM, Huffman and Bolvin,
2015). Microwave remote sensing provides the capability to obtain soil water observation at global
and regional scales (Prigent et al., 2005). Global Positioning System (GPS), a constellation of Global
Navigation Satellite System (GNSS), presents the displacement of the Earth’s crustal deformation,
including seasonal changes and long-term trend tectonic motion in the continuous GPS observation
stations (Blewitt et al., 2001; Dong et al., 2002). GNSS observations can be used to estimate land
surface deformation and the mass balance of the ice sheets, and their current contribution to the sea
level rise.

1https://eo4sd.esa.int/category/themes/climate-resilience/
2https://earthobservatory.nasa.gov/

https://eo4sd.esa.int/category/themes/climate-resilience/
https://earthobservatory.nasa.gov/
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Among available satellite geodetic and remote sensing EO techniques, the Gravity Recovery And
Climate Experiment (GRACE, 2002–2017) satellite mission (Tapley et al., 2004a,b) and its Follow-On
mission (GRACE-FO, 2018–onward) provide time-variable Earth’s gravity fields that contain signals
related to different processes such as non-steric sea level changes, Terrestrial Water Storage Changes
(TWSC, i.e., a vertical summation of changes in water storage within plant canopies, surface water,
snow, soil and groundwater), ice sheet melting, and PGR, with a spatial resolution of a few 100
km and temporal resolution of ∼10 days to 1 month in satellite-only solutions (Flechtner et al.,
2016). The ability of GRACE(-FO) satellites to detect mass changes in the surface and sub-surface,
which cannot be measured by any other satellite mission, and its sensitivity to water storage changes
throughout all seasons, provides a unique opportunity to extract possible intensification’s of the water
cycle (Eicker et al., 2016; Kusche et al., 2016) and for drought monitoring at global (Forootan et al.,
2019; Zhao et al., 2017b) and regional scales (Houborg et al., 2012; Schumacher et al., 2018a; Sinha
et al., 2017; Thomas et al., 2014; Zhao et al., 2017a). Although GRACE(-FO) data represent an
accurate superposition of water storage changes, separating this integrated signal into its contributors
is desirable for many geodynamic and hydro-climatic applications.

1.2 The Quest to Improve Earth System and Geophysical Model Simu-
lations

Geophysical and hydrological models show limited skills to perfectly describe processes within the
Earth system. This is due to several assumptions and simplifications associated with the mathematical
equations used in these models, and probably due to errors in their structures. In the case of
hydrological models, major sources of uncertainty include the lack of accurate climate forcing, such
as precipitation, temperature and solar radiation (e.g., Döll et al., 2016), insufficient boundary data,
and insufficient knowledge about model parameters to account for intensification of the water cycle
caused by the climate change and anthropogenic modifications. Empirical model parameters are often
estimated to steer the model equations, but many of these parameters cannot directly be measured, and
therefore they might introduce biases to model simulations (Vrugt et al., 2013). Moreover, errors are
introduced due to spatial and temporal discretization, as well as due to the background information
such as hydro-geology maps. For the GIA forward models, large uncertainties are caused by the
lack of knowledge about past ice loading history and Earth structure (in particular, lower mantle
viscosity) to estimate the lithospheric response. Besides, mantle viscosity varies laterally, which has
been challenging to incorporate into GIA models (Peltier et al., 2015).

In order to improve available models, one solution is to simulate more processes. However, this
solution would increase model complexity and introduce new parameters that are not well considered
and which render the results exceedingly difficult to interpret. Another solution is to improve model
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simulation quality by integrating additional observations through data-model fusion techniques,
generally known as Data Assimilation (DA). This integration can improve the quality of model
simulations by producing outputs that are sampled by direct observations and are closer to reality.

Previous studies indicated how satellite geodetic and EO data can improve monitoring of the water
cycle and land surface deformation. For instance, Sha et al. (2019) suggested that merging GPS
observations with a geophysical forward model can improve the estimation of GIA mass balance on a
global or regional scale. Other studies indicated that GRACE TWSC in combination with remotely
sensed surface soil water data can be used to improve hydrological and land surface models. (Girotto
et al., 2016, 2017; Khaki et al., 2018c; Schumacher et al., 2016, 2018a; Tian et al., 2017; Zaitchik
et al., 2008). Regional deep crustal deformation and dynamic tectonic processes have been constrained
by GPS and GRACE data in Fu and Freymueller (2012); Hao et al. (2016); Pan et al. (2016). The
combination of GRACE, GPS, and altimetry observations is shown in an inversion framework, to
provide new estimates of GIA with quantifiable uncertainties. Even though these estimations can
lead to refinements of ice-load histories to be used in the forward models (Milne et al., 2004; Steffen
and Kaufmann, 2005), they are found to be highly dependent on surface density change assumptions,
restricted by the low resolution of GRACE data, and limited by the spatial coverage of altimetry data
in areas of high relief (Martin-Espanol and Bamber, 2016).

1.3 GRACE(-FO) Signal Separation

GRACE(-FO) observations represent a superposition of all mass change signals on land and within the
oceans and atmosphere, with non-linear and complex interactions and with many inherent timescales.
However, the separation of these integrated signals is only possible by introducing the a priori
information on mass distribution in each compartment, so mass changes can be reasonably tied to
initial state. Merging GRACE(-FO) data with models provides an alternative approach to separate
GRACE(-FO) field estimates into its water storage compartments and to downscale the mission’s
relatively coarse spatial resolution (see e.g., Forootan et al., 2014c; Girotto et al., 2016). Various
data-model fusion techniques have been developed in recent year to merge multi-resource data and
achieve vertical separation of surface and sub-surface water storage compartments of GRACE data.
These techniques are summarized into the following categories:

(a) Forward modelling techniques to evaluate different compartments of mass variations through
a simple reduction process, relying on model and/or observation data for other compartments, e.g.,
surface water and soil water, if groundwater estimation is the target (e.g., Feng et al., 2013; Khandu
et al., 2016; Rodell et al., 2009; Strassberg et al., 2009; Tiwari et al., 2009). This method is relatively
straight forward, but it is not necessarily the most accurate way to separate GRACE signals due to
the reflection of errors in the applied models and/or observation errors on the final estimation of
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mass changes (see, e.g., Forootan et al., 2014a). Also, the spatial and temporal resolution of the
observations (from satellites or in-situ) and model outputs, as well as their signal content are not
necessarily consistent (see the discussions in, e.g., Forootan et al., 2014c). Most of these differences
are taken into account in methods (b) and (c) that are discussed below.

(b) Statistical inversion techniques, based on statistical signal decomposition techniques, such as
Principal Component Analysis (PCA, Lorenz, 1956) and its alternatives, e.g., Independent Component
Analysis (ICA, Forootan and Kusche, 2012, 2013), have been used in previous studies to separate
GRACE TWSC into individual water storage estimates. For example, Schmeer et al. (2012) used
PCA to generate a priori information about mass changes from global ocean, atmosphere, and land
hydrology models. Then, they applied the least-squares technique to use GRACE TWSC and modify
these priori estimates. A statistical inversion, which works based on both PCA and ICA, is proposed
in Forootan et al. (2014c) and Awange et al. (2014) to separate GRACE TWSC using auxiliary data
of surface water from satellite altimetry and individual sub-surface water storage estimation from
a land surface model (Global Land Data Assimilation System (GLDAS, Rodell et al., 2004). This
inversion harmonizes the use of all available data sets within a single least-squares framework. As a
result, a more consistent mass estimation (compared to the forward modelling in (a)) for individual
water storage compartments can be achieved.

(c) Data Assimilation (DA), as well as simultaneous Calibration/Data Assimilation (C/DA, Schu-
macher, 2016) have been used in recent years to merge GRACE data with hydrological model outputs
or other types of observations. These techniques rely on model equations to relate water and energy
fluxes with water storage changes. Therefore, unlike the inversion approach in (b), combining infor-
mation from observations (e.g., GRACE TWSC) and models is performed in a physically justified
way. DA or C/DA also increases physical understanding of the model and improves the model states
by decreasing the simulation errors. For example, DA is used in Girotto et al. (2016, 2017); Khaki
et al. (2018c,d); Tian et al. (2017); Zaitchik et al. (2008), while C/DA is applied in Schumacher et al.
(2016, 2018a) to improve models such as GLDAS (Rodell et al., 2004), World-Wide Water Resources
Assessment (W3RA, Van Dijk, 2010), WaterGap Global Hydrological Model (WGHM, Döll et al.,
2003), and NOAH Multi Parameterization Land Surface Model (NOAH-MP LSM, Niu et al., 2011).
Most of the previous DA and C/DA applications were implemented regionally (except Khaki et al.
(2017a, 2018a); Van Dijk et al. (2014)) for example, over the Mississippi River Basin (Schumacher
et al., 2016; Zaitchik et al., 2008), Bangladesh (Khaki et al., 2018c), the Middle East (Khaki et al.,
2018d), and Murray-Darling River Basin (Schumacher et al., 2018a; Tian et al., 2017). In each of
these studies, multiple realisations of the model derived water storage simulations were generated
by perturbing the input forcing data and or model parameters. A sequential integration approach
such as the Ensemble Kalman Filtering (EnKF, Evensen, 1994) or its extensions were then used to
merge GRACE data with (ensemble) outputs of a single model (e.g., Khaki et al., 2017b; Schumacher
et al., 2016). The statistical information used in EnKF-DA is restricted to the covariance matrices.
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Moreover, relying on the simulation of (only) one model may potentially contain errors caused by the
model’s imperfect structure, such as biases in the internal parameters and/or in boundary conditions.
Therefore, in this thesis the formulation of DA using multiple models is addressed.

1.4 Bayesian Inference for Signal Separation

In recent years, Bayesian-based techniques have been developed to merge different observations with
models and update the model outputs. For example, Long et al. (2017) applied the Bayesian Model
Averaging (BMA, Hoeting et al., 1999) technique to average multiple GRACE TWSC products and
global hydrological models to analyse spatial and temporal variability of global TWSC. However,
they did not assess the update of individual surface and sub-surface water storage estimations.

Sha et al. (2019) presented a model-data synthesis method, based on Bayesian Hierarchical Modelling
(BHM, see, e.g., Banerjee et al., 2004), for updating a global GIA model using GPS data. The
main feature of their approach is to use observations to adjust a model-based solution by modelling
explicitly the discrepancy between the simulation and the true process. Their study, however, only
focused on GIA and did not address the estimation of global hydrological mass changes.

It is worth mentioning here that the EnKF used for DA and C/DA can also be classified as a Bayesian-
based technique because the cost function for updating the conditionality of unknown state parameters
on the measurement data is formulated based on the Bayes theory (e.g., Evensen, 2003; Fang et al.,
2018; Schumacher, 2016).

Methods, such as Particle Filter (PF) and Particle Smoother (PS), are also Bayesian (Särkkä, 2013)
and have already been applied in a wide range of geophysical and hydrological applications. For
example, Weerts and El Serafy (2006) compared the capability of EnKF and PF to update a conceptual
rainfall-runoff model using discharge and rainfall data. Plaza Guingla et al. (2013) used the standard
PF to assimilate densely sampled discharge records into a conceptual rainfall-runoff model. Bain
and Crisan (2008), however, showed that the rate of convergence of the approximate probability
distribution until attainment of the true posterior is inversely proportional to the number of particles
used in the filter. This means that the filter perfectly approximates the posterior distribution when
the number of particles tends to infinity. However, since the computational cost of PF grows with
the number of particles, choosing a specific number of particles in the design of filters is a crucial
parameter for these methods. The rationale for introducing a new Bayesian data-model merging
algorithm in this study is described below.
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1.5 Aims and Objectives of the Thesis

This PhD aims at developing new Bayesian frameworks to extract land hydrology and surface
deformation information from GRACE(-FO) data. To this end, the predicted water states derived from
available models (hydrological and land surface models, as well as GIA models) and other geodetic
measurements that observe a part of the water cycle (e.g., GPS measurements) are used as a priori
information to estimate different compartments of the hydrological water states.

Merging GRACE(-FO) field estimates with the outputs of the models and other geodetic observations
is a challenging problem due to the (i) spatial, spectral, and temporal resolution mismatches between
these data sets, (ii) different model structures (e.g., different number of soil layers) and various
assumptions to simulate water mass changes within the Earth system, (iii) the difficulty in describing
the uncertainty of the models and observations in data-model fusion techniques, and (iv) the strong
interactions and temporal dependencies between different water storage compartments, which are
unknown and need to be considered within formulating the signal separation problem.

To address these issues, the following objectives, hypotheses and strategies for testing them are
considered in this thesis.

Objective 1: To test Bayesian frameworks to separate land hydrology components from GRACE(-FO)
TWSC, using (multiple) hydrological model outputs, while considering their error estimates.

Objective 2: To evaluate multiple hydrological model outputs against GRACE(-FO) TWSC within a
Bayesian Framework.

Objective 3: To formulate a Bayesian framework to simultaneously estimate water storage changes
and the unknown temporal dependency between them while using GRACE(-FO) data as observation.

Objective 4: To assess the performance of the extended Bayesian framework for down-scaling
(vertically and horizontally) GRACE(-FO) TWSC.

Objective 5: To establish a hierarchical Bayesian optimization approach for merging multiple geodetic
observations with (multiple) models.

Objective 6: To assess the performance of the proposed Bayesian optimization approach for joint
estimation of land hydrology and surface deformation using GRACE and GNSS in-situ measurements.

This thesis addresses Objective 1 and Objective 2, through the development of the ’Dynamic
Model Data Averaging (DMDA)’ approach to evaluate available multiple hydrological model outputs
against GRACE(-FO) TWSC and sensibly merge them to update the global estimation of surface
and sub-surface water storage changes. The main hypothesis behind this approach is that each
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global hydrological model has its unique characteristics and strengths in capturing different aspects
of the water cycle. Therefore, relying on a single model often leads to predictions that represent
some phenomena or events well at the expenses of others. Therefore, the effective combination of
multiple models may provide more skilful hydrological simulations compared to a single model. The
motivation to formulate the DMDA is based on its capability to deal with various observations and
models with different structures.

In summary, DMDA is based on the Bayes theory, which combines the benefits of state-space merging
techniques, such as Kalman filtering (Evensen, 1994) or Particle Filtering (PF, Gordon et al., 1993),
Markov Chain (MC, Chan and Geyer, 1994; Kuczera and Parent, 1998; Metropolis et al., 1953), and
Bayesian Model Averaging (BMA, Hoeting et al., 1999). DMDA provides time-variable weights to
compute an average of hydrological model outputs, yielding the best fit to GRACE(-FO) TWSC, while
considering their error estimates. These dynamic weights indicate which of the available models at a
given point in time fits best to GRACE(-FO) TWSC estimates. These weights modify the estimation
of water storage changes derived from individual models. Therefore, the DMDA-derived ensemble is
expected to yield more skilful (realistic) hydrological simulations compared to any individual model
(see similar arguments in Duan et al., 2007).

A realistic synthetic example is set up to test the performance of DMDA, where the true merged
values are known, and the method can be evaluated to provide the confidence that it can be applied
to a real case study. To test DMDA with real data, GRACE TWSC are merged with outputs of
six global hydrological and land surface models within the world’s 33 largest river basins, and the
results are explored and interpreted using independent validation data sets. Here, the use of DMDA is
preferred over the previously introduced EnKF, PF, and PS methods due to its computational efficiency
in handling large dimensional problems such as the global integration implemented in this thesis.
Besides, the DMDA’s time-variable weights can be used to assess the performance of hydrological
models, whereas this aspect is missing in other merging techniques.

To address Objective 3, a novel Bayesian approach is formulated, which benefits from a combination
of a forward-filtering backward-smoothing recursion (Kitagawa, 1987) and an efficient Markov Chain
Monte Carlo (MCMC, Geyer, 1991) algorithm. This method ‘MCMC-Data Assimilation (MCMC-
DA)’ is used to recursively estimate individual surface and sub-surface water storage changes, as well
as temporal dependency between them, which are allowed to vary over time. The implementation is
realised through a multivariate analysis using the linear ‘state-space model’ (Bernstein, 2005), while
both state parameters and the error covariance matrix of the observation can vary in time. MCMC-DA
is formulated in a way that the full error covariance matrix of the observed GRACE(-FO) TWSC
is introduced to the state-space model as the error covariance matrix of the observation innovation,
which is also known as the residual of the observation equation between GRACE(-FO) TWSC and
model outputs. This matrix is then used in the forward-filtering backward-smoothing recursion, along
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with the observed values of the GRACE(-FO) TWSC, to update the model-derived water storage
components.

The difference between MCMC-DA and DMDA is that the latter estimates the unknown state
parameters using a Kalman filtering (Kalman, 1960) approach, while the temporal dependency
between the unknown individual water storage states is controlled by a constant forgetting factor
ranging from 0 to 1. The computation of this constant value can only be done empirically, and,
therefore, is considered as a source of increasing uncertainties in the DMDA-derived individual water
storage estimations. The central hypothesis behind formulating MCMC-DA is that the magnitude of
changes in water storage components depends on the history of hydrological processes. However,
there is little physical knowledge about how this dependency varies over time. Therefore, selecting a
constant forgetting factor cannot be physically justified, though the value could be mathematically
optimized to provide an overall best fit between the model’s unknown states and GRACE(-FO) TWSC.
To eliminate this drawback, an MCMC process replaces the constant forgetting factor (of DMDA)
to allow a dynamic estimation of temporal dependencies among unknown state parameters (i.e.,
individual water storage in various compartments). As a result, more realistic estimates of individual
water storage components can be expected from the introduced MCMC-DA.

To test this hypothesis, MCMC-DA is implemented to merge GRACE TWSC with water storage
outputs of the W3RA water balance model (Van Dijk, 2010) within the Conterminous United States
(CONUS), on 0.125◦×0.125◦ spatial grid points for the period 2003–2017. The obtained results are
then compared with those derived from the DMDA approach.

To address Objective 4, groundwater and soil water storage changes derived from MCMC-DA within
CONUS are compared with those of the original model outputs, using independent validation data
sets, while the possible relationships between the water storage changes and climatic as well as
anthropogenic factors are evaluated.

To address Objective 5, a hierarchical Bayesian optimization approach, named ’Constrained Bayesian-
Data Assimilation (ConBay-DA)’, is proposed for a joint estimation of the land hydrology and PGR
rates by merging GRACE(-FO) and in-situ GNSS measurements with the outputs of the hydrological
and GIA models. The hypothesis behind this approach is that time-variable gravity data contain both
PGR and hydrological signals. For hydrological applications, however, the effect of PGR is typically
removed from GRACE(-FO) data, during the post-processing, as a linear trend based on the output of
a GIA model. However, these rates might contain considerable uncertainties as shown by (Guo et al.,
2012; Spada et al., 2011), and therefore, they negatively affect the accuracy of hydrological mass
estimations.

In the ConBay-DA approach, instead of removing PGR from GRACE field estimates, the outputs
of a GIA model are used as a priori information, along with the hydrological model outputs, to
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simultaneous separate land hydrology and PGR from GRACE data. It worth noting here that, in many
glacial regions of the world, PGR signals are ‘contaminated’ by vertical elastic crustal deformation,
which is induced by present ice mass change. Therefore, improvement in the estimation of PGR
enhances the estimation of the magnitude and pattern of the elastic crustal deformation (surface
deformation) within the continental regions.

ConBay-DA is formulated to estimate a multivariate state-space model between GRACE(-FO) and
model outputs (both the hydrological and GIA model). However, when analysing multivariate data,
e.g., in a multivariate linear model, one concerning issue is that the relationship between model
parameters is unknown (or it is extremely difficult to determine). For instance, it could be expected
that certain parameters have a larger effect on the dependent variables than other parameters. This
issue in the application of separating TWSC and PGR from GRACE(-FO) estimates can be seen
explicitly in the glacial regions, where PGR has a large effect on hydrological estimations. Moreover,
PGR manifests as a trend in the relatively short era of the GRACE(-FO) mission, which needs to
be introduced to the Bayesian separation framework. These theories can be transformed into the
Bayesian fusion technique with specific inequality/equality constraints on the means and regression
coefficients. Therefore, in-situ GNSS measurements are used in a hierarchical level to constrain the
GIA part by accepting or rejecting the updated value of the GIA model suggested by GRACE(-FO)
data.

Estimation of the unknown state parameters and the temporal dependency between them in ConBay-
DA are realised through a combination of a forward-filtering backward-smoothing recursion (Kita-
gawa, 1987), and a Gibbs sampling (Gelfand and Smith, 1990; Smith and Roberts, 1993) algorithm.
A Metropolis-Hastings (Chib and Greenberg, 1995) algorithm is then formulated, in a hierarchical
level, to constrain the updated values of PGR rates based on in-situ GNSS data.

To address Objective 6, the performance of the ConBay-DA is assessed to separate land hydrology
and PGR from GRACE(-FO) data within the Great Lakes (GL) region in North America. The main
hypothesis to choose this region is that water mass changes due to PGR and surface deformations are
the dominant un-corrected geodynamic effect in GRACE(-FO) data within the GL area. Moreover,
Schumacher et al. (2018b) indicated that large uncertainties exist between the GIA models over
the northern part of the United States. Also, extensive interactions exist between surface water
and groundwater in this region due to the fact that the influence of surface water is predominant
(Sophocleous, 2002; Winter et al., 1998). The numerical implementation of MCMC-DA and ConBay-
DA is compared in the GL area to demonstrate how adding GNSS measurement modifies the estimation
of hydrological mass changes. It worth mentioning here that, in this thesis, the proposed Bayesian
data-model fusion techniques are named ’Bayesian Data Assimilation’ and the technical differences
between these two terms are ignored.
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1.6 Outline of the Thesis

This PhD thesis provides three data-model fusion techniques to separate different compartments of
land hydrology and surface deformation from GRACE(-FO) data, while the outputs of the model
simulations and other complementary data sets are used as a priori information in these frameworks.
Within the application of these approaches, the study is focused on the hydrology signals, while their
relations to climate variability and anthropogenic factors are explored and interpreted within different
regions of the world. To this end, observations and models of the terrestrial water cycle and surface
deformations are described in Chapter 2. The mathematical representation of the observed gravity
field changes derived from GRACE(-FO), as well as its conversion to TWSC, are provided in Section
2.1 and Section 2.2. Aspects of data post-processing and the propagation of the error information
are also addressed. This is followed by the description of the second geodetic observation-data type
used in this study, i.e., Global Navigation Satellite System (GNSS) (Section 2.3). A summary of the
hydrological and land surface models used in different applications of this study are explained in
Section 2.4. Finally, supplementary data sets, which are required to validate finding of this thesis, are
summarized in Section 2.5.

The mathematical foundations of the Bayesian inference are discussed in Chapter 3. This includes
an introduction to Bayes’ theorem (Section 3.1) and the Gaussian Process (Section 3.2). The basic
principles of the Gaussian process regression model and dynamic system modelling are presented in
Sections 3.3 and 3.4, respectively. Mathematical descriptions of the state-space model, as the basis
of the proposed Bayesian data-model fusion techniques in this study, are discussed in Section 3.4.2.
Kalman filtering and Bayesian sampling approaches are the main tools to solve the state-space models
and are used to formulate the Bayesian signal separation approach in this study. These techniques are
described in detail in Sections 3.5 and 3.6, respectively. Bayesian sampling used in this study includes
the MCMC approaches (Section 3.6.1), Gibbs sampling (Section 3.6.2), and Metropolis-Hastings
algorithm (Section 3.6.3). Comparison between Gibbs sampling and Metropolis-Hastings is discussed
in Section 3.6.4. Moreover, the convergence diagnostics for MCMC approaches are described in
Section 3.6.5. This chapter is ended by presenting the concept of Bayesian Model Averaging (BMA)
and its formulation in Section 3.7. BMA is then used to formulate the DMDA approach, in Chapter 4.

In Chapter 4, Dynamic Model Data Averaging (DMDA) is formulated. In Section 4.1, a dynamic
state-space model is introduced for describing a linear relation between GRACE(-FO) TWSC time
series and water storage changes derived from models. The Kalman filter approach, to recursively
estimate the unknown state parameters and their uncertainties, is discussed in Section 4.2. In Section
4.3, BMA is formulated to estimate the time-variable weights for each of the multiple hydrological
models. These weights are then used in Section 4.4 to dynamically average the model simulations
and estimate the improved water storage changes that best resemble measured TWSC. Finally, the
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performance of DMDA is tested in a controlled synthetic simulation in Section 4.5, where the results
of the Bayesian update are known by definition.

MCMC-Data Assimilation (MCMC-DA) is proposed and formulated in Chapter 5. MCMC-DA is
formulated based on a multivariate analysis using a linear state-space model between GRACE(-FO)
and model-derived water storage changes, as described in Section 4.1. The new formulation consists
of the Gibbs sampling algorithm and the forward-filtering backward-smoothing recursion approach,
which are explained in Sections 5.2 and 5.1, respectively. Finally, the estimated parameters are used
to update the model-derived hydrological compartments and estimate their uncertainties, which are
described in Section 5.3.

Constrained Bayesian-Data Assimilation (ConBay-DA) is formulated in Chapter 6. After a short
introduction, a multivariate state-space model to define a linear relation between GRACE Total
Water Storage Changes (Total-WSC) and the model outputs (both hydrological and GIA model) is
explained in Section 6.1. Here, it is also shown how in-situ GNSS measurements can be used to
constraint the estimation of PGR from GRACE data. To solve the multivariate state-space model with
a hierarchical constraint equation, a combination of forward-filtering backward-smoothing approach,
Gibbs sampling, and Metropolis-Hastings is formulated in Section 6.2. Dynamic estimations of the
state parameters are then used to update model-derived water storage changes and PGR rates, along
with their uncertainties in Sections 6.3.

An application of the DMDA to merge multi-model water storage simulations with GRACE TWSC
is described in Chapter 7. After giving an overview of DMDA implementation (Section 7.1), an
overview of GRACE TWSC and model-derived water storage changes are presented in Section 7.2 and
Section 7.3, respectively. A comparison between TWSC derived from GRACE and models is provided
in Section 7.4. The performance of the multiple models to predict water storage changes against
GRACE data is evaluated using DMDA estimated weights in Section 7.5. The monotonic changes of
the DMDA-derived surface water, soil water, and groundwater storage, in terms of long-term linear
trend, are explored in Section 7.6. DMDA-derived TWSC is compared with those derived from
original model outputs and GRACE data in Section 7.7. In this study, temporal correlation coefficients
between model-derived storage outputs and the El Niño Southern Oscillation (ENSO, Barnston and
Livezey, 1987) index are used as a measure to determine whether implementing the DMDA helps to
derive physically-relevant storage simulations in Section 7.8. A summary of the results and conclusion
is provided in Section 7.9.

MCMC-DA is implemented in Chapter 8 to explore meso-scale (10-100 km resolution) water storage
changes, mainly focus on soil water and groundwater storage, across the CONUS, with an emphasis
on the use of a relatively simple water balance model. In this chapter, after presenting an introduction
(Section 8.1), the importance of improving groundwater and soil water storage within CONUS is
discussed in Section 8.2. The MCMC-DA groundwater and soil water storage estimates are compared
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with those derived from the original model outputs in Section 8.3, and the possible relationships
between the storage changes and climatic and anthropogenic factors are explored and interpreted in
Sections 8.5 and 8.6. Validations are made against independent measurements, i.e., in-situ USGS
groundwater level observations, as well as soil water data from the European Space Agency (ESA)’s
Climate Change Initiative (CCI). Evaluations using the groundwater levels are made after standardizing
the available time series. To extract the influence of ENSO on groundwater and soil water storage
estimates, the Independent Component Analysis (ICA, Forootan and Kusche, 2012, 2013; Forootan
et al., 2018) is applied, and the results are compared with available ENSO indices in Section 8.7.
Down-scaling of GRACE TWSC observations using the MCMC-DA approach is evaluated in Section
8.8. Changes in groundwater and soil water storage within the Texas and California states, which are
mostly affected by anthropogenic modifications, are evaluated and interpreted in Sections 8.9 and
8.10, respectively. A summary and conclusion is presented in Section 8.11.

An application of the ConBay-DA to test the performance of this approach, is presented in Chapter 9.
An overview of the application and data used in this study are provided in Section 9.1 and Section
9.2, respectively. ConBay-DA results are shown and interpreted in Section 9.3 and Section 9.4, and a
summary of the results is provided in Section 9.5.

In Chapter 10, the major finding of this PhD thesis are summarized, and an outlook for further research
is provided.
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Data and Tools

In this chapter, after introducing the Gravity Recovery And Climate Experiment (GRACE) and its
Follow On (GRACE-FO) mission (Section 2.1), the estimation of Terrestrial Water Storage Changes
(TWSC) from GRACE time-variable gravity products is addressed in Section 2.2. Discussions on data
preparation are explained in Sections 2.2.1, 2.2.2, 2.2.3, and 2.2.4. Spatial averaging is introduced in
Section 2.2.5, and error estimation of TWSC fields in Section 2.2.6, which are necessary to understand
the investigations that are performed in the application parts (Chapter 7, Chapter 8, and Chapter 9). A
summary of the post-processing steps to estimate TWSC from GRACE(-FO) time-variable products
is presented in Section 2.2.8. Global Navigation Satellite System (GNSS) observations are explained
in Sections 2.3. In Section 2.4, a summary of the hydrological models, used in the application parts of
this thesis, is provided. Finally, supplementary data sets, which are required to validate the findings of
this thesis, are introduced in Section 2.5.

2.1 Gravity Recovery and Climate Experiment (GRACE) and GRACE
Follow On (GRACE-FO)

GRACE is a joint satellite mission of the American National Aeronautics and Space Administration
(NASA) and the German Aerospace Centre (Deutsche Zentrum für Luft- und Raumfahrt, DLR), which
continuously monitor the Earth time-variable gravity field (Tapley et al., 2004a,b). GRACE, as a
low-low satellite-to-satellite tracking (SST) mission, was launched on 17th March 2002. Initially, the
mission was targeted to cover a 5-year period, which was exceeded in 2017. The GRACE Follow-On
(GRACE-FO) is a continuation of the mission on near-identical hardware, launched in May 2018,
but is equipped, in addition with a high precision laser ranging system. Both missions consist of two
almost-identical spacecraft in tandem formation (GRACE(-FO) twins) chasing each other in orbit,



30 Data and Tools

with an inter-satellite distance of about 200 km, an initial altitude of ∼500 km, and an inclination
of 89.5◦. Over the last 2 decades GRACE altitude decreased to ∼362 km due to atmospheric drag
1. The distance between the two satellites is measured by a highly accurate inter-satellite K-Band
(Microwave) Ranging (KBR) system in 5-second intervals with an accuracy of about 1 micron.
Gravitational variations of the mass within the Earth’s interior, on its surface, and in the atmosphere
causes the variation in the distance between the two GRACE satellites. Variations in the Earth’s
gravity field occur due to rapid or slow changes, e.g., caused by mass distribution of the Earth or mass
transport of water in the oceans, ice volume changes, as well as Post Glacial Rebound (PGR) and the
movement of water vapour and other components in the atmosphere (Schmidt et al., 2008). By this
principle, GRACE(-FO) observes the integral sum of mass changes in the Earth system, but it cannot
distinguish between the different sources.

Global Positioning System (GPS) receivers are installed on board of satellites to determine their
precise location in the high-low mode observations (Tapley et al., 2004a,b). The low-low and high-low
observations are shown in Fig. 2.1. Precise orbit determination with Satellite Laser Ranging (SLR)
reflectors is also used as an independent check (Tapley et al., 2004a). A high precision accelerometer
measures non-gravitational surface forces, dominated by atmospheric drag, which must be removed
from GRACE(-FO) observations (Tapley et al., 2004b).

Fig. 2.1 Overview of the GRACE satellite-to-satellite tracking in the low-low and high-low modes.

2.1.1 GRACE Level 2 Products

Various approaches have been developed to process GRACE observations. The traditional processing
approach that has been applied over the last 2 decades is parameterizing the Earth’s gravity field using
global spherical harmonics basis functions (Wahr et al., 1998). Spherical harmonics have been widely

1https://www.csr.utexas.edu/missions/

https://www.csr.utexas.edu/missions/
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used in satellite geodesy for several decades, based largely on the computational efficiency of the
parameterization. Moreover, the satellite sensitivity is dependent on the spatial wavelength of the
mass variations which is implicit in the harmonic basis function (Wahr et al., 1998). Time-variable
gravity field solutions, represented by the spherical harmonic expansion, are known as GRACE(-FO)
level 2 data, which is computed using one month of the pre-processed along-track range (rate) data,
derived from level 1B data (Dahle et al., 2013).

Three official analysis centres provide level 2 products, each employing different processing tech-
niques, background models, and assumptions: The Centre for Space Research (CSR, USA), Jet
Propulsion Laboratory (JPL, USA), and the GeoForschungsZentrum (GFZ, Germany). These centres
provide spherical harmonic potential coefficients (level-2 data products) from the inter-satellite dis-
tance measurements. Other research institutes also process GRACE(-FO) data, e.g., Graz University
of Technology (TU Graz) in Austria 2, NASA Goddard Space Flight Centre (GSFC/NASA) in the
USA 3, Space Geodesy Research Group (GRGS) in France 4, Delft University of Technology (DUT)
in the Netherlands, and The Ohio State University in the USA.

One of the main applications of the GRACE(-FO) products is the estimation of seasonal hydrological
signals (Schmidt et al., 2008; Tapley et al., 2004a,b). Recovering monthly mean gravity field solutions
from the sampled data requires careful reduction of the short-term (sub-daily to monthly) variations
of the atmosphere and the ocean mass changes, using a background model, since these effects may
alias into longer periods (Han et al., 2004). Moreover, the effect of PGR is usually not reduced, but
its impact is treated by post-processing in hydrology applications. Details of post processing steps are
described in Section 2.2.

GRACE time-variable level 2 gravity products are provided with a temporal resolution of one month
to even one day (Mayer-Gürr et al., 2018; Ramillien et al., 2015), depending on the analysis technique.
After post-processing GRACE(-FO) level 2 data, to retrieve reliable information about the Earth mass
redistribution, TWSC can be estimated with a spatial resolution of down to a few hundred kilometres
(Schmidt et al., 2008). For example, destriping and filtering methods (Swenson and Wahr, 2006; Wahr
et al., 1998) have been developed with the aim of reducing the noise due to potential errors from
spherical harmonic higher degrees (see Section 2.2.2). The scaling factors or other additional methods
have been developed by previous studies (e.g., Feng et al., 2012; Klees et al., 2006; Landerer and
Swenson, 2012; Long et al., 2015; Longuevergne et al., 2010) to restore the lost signal and correct
leakage errors, which are mainly caused by signal truncation and filtering in post-processing (see
Section 2.2.3).

2https://www.tugraz.at/institute/ifg/downloads/gravity-field-models/itsg-grace2018/
3http://grace.gsfc.nasa.gov/
4http://grgs.obs-mip.fr/grace

https://www.tugraz.at/institute/ifg/downloads/gravity-field-models/itsg-grace2018/
http://grace.gsfc.nasa.gov/
http://grgs.obs-mip.fr/grace
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2.1.2 GRACE Mascon Solutions

In addition to spherical harmonics, the other common basis functions to estimate mass flux from
GRACE(-FO) is the mass concentration (mascon) block, which has become operational within the
past couple of years, e.g., JPL mascon solutions from Watkins et al. (2015) and CSR mascon solutions
from Save et al. (2016). A mascon solution approach estimates the mass anomalies at specified mass
concentration blocks or grid location.

In general, there are three different approaches to compute mascon solutions, where (i) is based on
an analytic expression for the mass concentration function, in which the mass variations are directly
estimated using the explicit partial derivatives relating the inter-satellite range-rate measurements to
the analytic mascon formulation. An example of this type can be found in Ivins et al. (2011) and
Watkins et al. (2015). (ii) The second approach is provided by the group at NASA Goddard Space
Flight Center (GSFC) (Luthcke et al., 2006, 2013; Rowlands et al., 2010; Sabaka et al., 2010). Similar
to (i), the mascon basis functions are directly related to the inter-satellite range-rate measurements
through explicit partial derivatives, which are used in the gravity estimation. The difference is that
each mascon basis function is represented by a finite truncated spherical harmonic expansion, rather
than an analytical expression, such that the functional representation of each mascon has signal power
outside of the mascon boundary. Finally, (iii) consists of solutions that users fit mass elements to the
spherical harmonic coefficients as a form of post-processing to remove correlated errors. Therefore,
these are not level1-derived mascon solutions in the sense that there is no direct relationship between
the formulation of the mass elements and the inter-satellite range-rate measurements (i.e., there are
no explicit partial derivatives relating the observations to the state). Examples of type (iii) include
Schrama et al. (2014) and Velicogna et al. (2014).

It is known to the science community that although there are similarities in overall patterns of TWSC
estimates from existing GRACE solutions, e.g., GRACE level 2 and mascon products, (Scanlon et al.,
2016; Watkins et al., 2015), there are also some differences in their long-term trends and the seasonal
magnitudes. Scanlon et al. (2016) indicated that time series of GRACE TWSC from mascons and
spherical harmonics are highly correlated (correlation coefficients of between 0.97-0.99), and the
basin average long-term trends for spherical harmonics average 15% less than mascon products. They
have also discussed that differences in the long-term trends among GRACE solutions increase with
decreasing basin size, which indicates that the processing approach may be more critical for small
basins. The advantages of the GRACE mascon solutions relative to the traditional spherical harmonic
solutions is that there is no or little requirement for post-processing, which make it much easier for
non-geodesists to apply GRACE data to hydrologic problems (Scanlon et al., 2016).

In this thesis, the GRACE level 2 product, i.e., the traditional spherical harmonic processing approach,
is applied to estimate GRACE TWSC as observations for the applications of the proposed approaches.
For this, the required formulation to convert potential coefficients to TWSC and the techniques to
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reduce errors are provided in what follows. The reason spherical harmonics are used in this study is to
ensure that the TWSC estimates from GRACE and the hydrological model outputs, used in Bayesian
data assimilation, have the same spectral content.

2.2 From Geopotential Coefficients to Terrestrial Water Storage Changes
(TWSC)

The Earth gravitational potential V (J/kg) satisfies Laplace’s equation outside the attracting mass,
that is ∆V = 0 (Heiskanen and Moritz, 1967). Therefore, its solution can be explained as a sum of
harmonic basis functions Yn(λ ,θ) as

V (λ ,θ ,r) =
∞

∑
n=0

1
rn+1Yn(λ ,θ), (2.1)

here λ , θ and r are the spherical coordinate parameters denoting the geographical longitude (radian),
co-latitude (radian), and distance (m) to the origin of an Earth-fixed coordinate system, respectively.
Equation (2.1) is a spherical representation of the gravitational potential in the exterior of a unit
sphere, where Yn(λ ,θ) denotes surface spherical harmonics and define a complete orthogonal system
which can be expressed as

Yn(λ ,θ) =
n

∑
m=0

[P̄nm(cosθ)(cnmcos(mλ )+ snmsin(mλ ))], (2.2)

In Eq. (2.2) the Stokes coefficients cnm and snm are fully normalized potential spherical harmonic
coefficients (SHCs), derived from GRACE(-FO) level 2 product, n and m are the degree and order of
the SHCs respectively, and P̄nm denotes the normalized associated Legendre functions, which can be
evaluated using a stable recursion formula (Heiskanen and Moritz, 1967). Therefore, replacing Eq.
(2.2) in Eq. (2.1), the Earth’s gravitational potential V on a sphere with radius R (m) and with total
mass of M (kg), can be defined as

V (λ ,θ ,r) =
GM
R

∞

∑
n=0

(
R
r

)n+1 n

∑
m=0

P̄nm(cos θ) [cnmcos(m λ )+ snmsin(m λ )], (2.3)

where G (m3/(kg.s2)) denotes Newton’s gravitational constant. Mass redistribution in the Earth
system is time-dependent, which caused temporal changes in the Earth gravitational potential system.
These temporal changes can be represented in terms of changes in the Stokes’ coefficients ∆cnm and
∆snm, which are computed by subtracting a temporal mean value of the SHCs from each month of
GRACE level 2 products (i.e. ∆cnm = cnm− c̄nm and ∆snm = snm− s̄nm, with c̄nm and s̄nm being the
temporal means). Assuming global mass conversion, changes in the degree zero coefficient will
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vanish (see Section 2.2.1) and Eq. (2.3) is modified for mass changes as

∆V (λ ,θ ,r) =
GM
R

∞

∑
n=1

(
R
r

)n+1 n

∑
m=0

P̄nm(cos θ) [∆cnmcos(m λ )+∆snmsin(m λ )]. (2.4)

Wahr et al. (1998) considered a thin layer at the Earth’s surface to formulate the loading effect of
mass-redistribution and expressed it as surface density redistribution (∆σ ), which is related to the
temporal gravity changes as

∆σ(λ ,θ) =
M

4πR2

∞

∑
n=1

n

∑
m=0

(2n+1)
(1+ k′n)

P̄nm(cos θ) [∆cnmcos(m λ )+∆snmsin(m λ )]. (2.5)

In Eq. (2.5), k
′
n denotes the degree-dependent gravitational load Love numbers, which is used to

represent an indirect gravitational attraction through loading and deformation of the underlying solid
Earth (Wahr et al., 1998). Solutions for the load Love numbers can be estimated based on Earth
models, such as the spherically symmetric, non-rotating, elastic, and isotropic Earth, so-called SNREI
models (see, for example, Farrell, 1972). Considering the average density of water, ρw = 1025 kg

m3 ,
the density changes derived from Eq. (2.5) can be converted into the changes of Equivalent Water
Heights (EWHs) as

∆E(λ ,θ) =
M

4πR2ρw

∞

∑
n=1

n

∑
m=0

(2n+1)
(1+ k′n)

P̄nm(cos θ) [∆cnmcos(m λ )+∆snmsin(m λ )]. (2.6)

EWHs derived from the potential coefficients of GRACE(-FO) level 2 products provide TWSC (as the
main input observation in this thesis), which is defined as the sum of changes in all available water
storage on and below the surface of the Earth (i.e., canopy, snow, surface water body (lakes, river, ...,
soil water, and groundwater storage). This estimation also contains the PGR signals, which needs to
be removed from the estimates of Eq. (2.6). Corrections to be applied on the level 2 data are briefly
addressed in the following.

2.2.1 Low Degree Coefficients

The spherical harmonic coefficients of lower degree can be directly related to the physical shape of
the Earth. The c00 = 1 (n = 0,m = 0) coefficient can be interpreted as a scaling factor for GM

R in Eq.
(2.4). Due to the general assumption of mass conversion in the Earth system c00 does not change in
time, thus ∆c00 = 0.

Changes in degree-1 coefficients, i.e., ∆c10, ∆c11, and ∆s11 are linked to the offset between the Earth’s
centre of mass (CM) and the origin of the chosen reference system (centre of figure). Temporal
changes in degree-1 coefficients represent a considerable mass variation (Chambers, 2006). Therefore,
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its omission has a considerable impact on the estimation of, e.g., high-latitude mass variability and
large-scale oceanic mass changes.

GRACE(-FO) level 2 products are evaluated in a reference frame that is fixed to the instantaneous
CM of the Earth, ocean and its surrounding atmosphere. In this frame, the retrieval of the degree-1
coefficients of the surface loading variations cause a singularity. To recover these coefficients, one
has to transform the reference frame origin of the GRACE(-FO) data by supplying auxiliary degree-1
coefficients. These coefficients, however, can be augmented by considering the geocentre motion,
defined as the relative motion of the centre of figure of the Earth with respect to the CM of the Earth
system. Therefore, degree-1 coefficients are usually replaced by geocentre motions estimated by
analysing physical models (Swenson et al., 2008) or by using the combinations of GPS, GRACE,
and ocean bottom pressure observations in an inversion approach to estimate the geocentre motion
(Rietbroek, 2014). In this thesis, the degree-1 time series are replaced by those from Sun et al. (2016),
who used an optimization technique to combine GRACE data with an Ocean Bottom Pressure model
and a Glacial Isostatic Adjustment (GIA) model for estimating geocentre motion. This data set can be
downloaded from https://grace.jpl.nasa.gov/data/get-data/geocenter/.

Due to the orbital geometry and the short distance between the GRACE(-FO) satellites, the low
degree spherical harmonic coefficients, especially those of degree-2 are not well determined. Chen
et al. (2004) showed that degree-2 variations estimated from accurately measured Earth Orientation
Parameters (EOP) or those obtained from the Satellite Laser Ranging (SLR) present better accuracy
than those derived from GRACE(-FO). In this thesis, therefore, the time series of zonal degree-2
coefficients (C20) of GRACE(-FO) level 2 are replaced by more reliable estimates of the SLR solutions
following Chen et al. (2007). The time series can be downloaded from the Jet Propulsion Laboratory
(JPL) website 5.

2.2.2 Smoothing in the Spectral Domain

GRACE(-FO) level 2 products, represented in terms of potential spherical harmonics, are strongly
affected by correlated errors, which can be seen as a north-south ‘striping pattern’ in the gridded TWSC
fields (Kusche, 2007). Correlated errors of the potential coefficients are caused by an anisotropic
spatial sampling of the mission, instrument noise, and temporal aliasing from an incomplete reduction
of short-term mass variations. These errors increase at higher degree and order of the coefficients
(Swenson and Wahr, 2006).

To reduce the striping errors, smoothing (also called filtering) is applied, which can be implemented
in either the spatial or spectral domain. Filtering suppresses the effect of noise in maps, where in
the spatial domain in can be applied by a convolution. In the spectral domain, this can be done

5grace.jpl.nasa.gov

https://grace.jpl.nasa.gov/data/get-data/geocenter/
grace.jpl.nasa.gov
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by incorporating a smoothing kernel (also called filter matrix) W that directly acts on the potential
coefficients, i.e., ∆cnm and ∆snm, to derive the smooth coefficients ∆cW

nm and ∆sW
nm. As a result, the

EWHs derived from Eq. (2.6) can be filtered in the spectral domain to suppress the noise and derive a
smoothed field ∆EW as

∆EW(λ ,θ) =
M

4πR2ρw

∞

∑
n=1

n

∑
m=0

(2n+1)
(1+ k′n)

P̄nm(cos θ) [∆cW
nmcos(m λ )+∆sW

nmsin(m λ )], (2.7)

where

∆cW
nm =

nmax

∑
n′=1

n′

∑
m′=0

wc n′m′
c nm ∆cn′m′+ws n′m′

c nm ∆sn′m′ ,

∆sW
nm =

nmax

∑
n′=1

n′

∑
m′=0

wc n′m′
s nm ∆cn′m′+ws n′m′

s nm ∆sn′m′ .

(2.8)

In Eq. (2.8), w represents the filter in the spectral domain (Han et al., 2005; Kusche et al., 2009). The
sub-indices of c and s (e.g., in wc n′m′

c nm and wc n′m′
s nm ) indicate that the multiplication produces filtered

cosine and sine spherical harmonic coefficients, respectively (see also Han et al., 2005). It should be
mentioned here that, in general, the smoothing kernel can be an isotropic or anisotropic filter. Isotropic
filters are only degree dependent in the spectral domain and independent of the direction in the spatial
domain, e.g., the Gaussian filter introduced by Jekeli (1981), thus in Eq. (2.8), wc n′m′

nm = ws n′m′
nm = wn.

In contrast, anisotropic filters (decorrelated methods), e.g., those of Klees et al. (2008); Kusche (2007);
Kusche et al. (2009); Swenson and Wahr (2006), are degree and order dependent in the spectral domain
and location-dependent in the spatial domain. The idea behind the decorrelation or anisotropic filtering
is to identify and remove error correlation in the sets of spherical harmonic coefficients (i.e., between
different coefficients), either based on empirical analysis of the coefficients (Swenson and Wahr, 2006)
or using an a priori synthetic model of the observation geometry (Klees et al., 2008; Kusche, 2007;
Kusche et al., 2009). The decorrelation method proposed by Kusche (2007) was originally formulated
based on computing and applying a filter matrix with as many rows and columns as there are spherical
harmonic coefficients. Kusche et al. (2009) simplified the decorrelation approach of Kusche (2007) to
an order-only convolution method (comparable to the approach in (Swenson and Wahr, 2006)) which
still closely complied with the original, statistically optimal, and full-matrix method. These order
convolution filter coefficients were provided to the scientific community for three different degrees of
smoothness, which are known as DDK1, DDK2, and DDK3. Equation (2.8) can be used to implement
any anisotropic filters such as the DDK filters (Kusche et al., 2009). In this study we use DDK2 filter
proposed by (Kusche et al., 2009), which is comparable to a Gaussian filter of 340 km (Kusche et al.,
2009), to filter TWSC products for the application parts in Chapter 7, 8, and 9.
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In practice, in Eq. (2.7), the summation over n has to be truncated at a maximum degree nmax according
to

∆EW
′
(λ ,θ) =

M
4πR2ρw

nmax

∑
n=1

n

∑
m=0

(2n+1)
(1+ k′n)

P̄nm(cos θ) [∆cW
nmcos(m λ )+∆sW

nmsin(m λ )]. (2.9)

and the error due to spectral truncated can be expressed as

(2.10)

delta∆EW
′
(λ ,θ) =

M
4πR2ρw

∞

∑
n=(nmax+1)

n

∑
m=0

(2n+1)
(1+ k′n)

P̄nm(cos θ) [∆cW
nmcos(m λ )+∆sW

nmsin(m λ )].

(2.11)

In order to use GRACE(-FO) level 2 products in hydrological applications, nmax is chosen to be 60
or 90. The omission error of neglecting degrees n > nmax can be estimated by evaluating Eq. (2.9)
for nmax = 60 and nmax = 90. The differences between EWHs estimated based on nmax = 60 and
nmax = 90 is estimated to be less than 5 mm on a regular grid with 1-degree spatial resolution. The
omission error of higher degrees, i.e., n > 90, is expected to be even smaller.

2.2.3 Leakage Problem

The noise amplitude of level 2 coefficients increases at high degree and order. This means that
short-wavelength spatial changes in GRACE(-FO) TWSC exhibit a high level of noise, which is
usually suppressed by applying filters (Jekeli, 1981; Kusche, 2007). All filters contain a smoothing
kernel that spatially averages TWSC values, and as a result, anomalies might move, for example,
those inside a specified region can move outside of it, or those from outside might move into the
region. This apparent movement introduces biases in the mass change estimates, which is usually
referred to as spatial leakage-out and leakage-in problem (Klees et al., 2006; Swenson and Wahr,
2002). The impact of spatial leakage on TWSC depends on the filter size, area, the amplitude of mass
variations inside and outside the area of interest, and the location of the region. When using a filter
with large smoothing radius, more mass signals are distorted and replaced. Awange et al. (2009) and
Longuevergne et al. (2010) showed that the leakage is usually large over smaller regions or along
coastlines, where land meets surface water bodies such as lakes and seas.

Since the spatial resolution of filtered GRACE(-FO) TWSC data is typically lower than that of
hydrological models or other remote sensing data sets, it is necessary to account for these differences
before any further analysis or comparisons can be performed. Otherwise, differences in the data sets
due to the scale mismatch might be attributed to limited skills of observations or model simulation.
A straightforward way to account for this inconsistency is realized by filtering each data set in the
same way. This approach is usually applied for comparing GRACE(-FO) TWSC to other sources
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such as hydrological models in e.g., Doell et al. (2014); Kusche et al. (2009); Schmidt et al. (2008).
Alternatively, Klees et al. (2006), Longuevergne et al. (2010), Landerer and Swenson (2012), and
Feng et al. (2012) suggested to estimate a scaling factor for the TWSC to reduce the effect of spatial
leakage. This can be done by dividing the mean value of the basin function before and after filtering.
These factors can be either constant or change when a new field is analysed. Then, the re-scaled
GRACE(-FO) TWSC can be directly compared to hydrological model outputs.

Another leakage problem, known as the ‘spectral leakage’ in literature, is related to the limited range
of potential SHCs in GRACE(-FO) level 2 products due to the truncation at a maximum degree nmax.
This impact restricts the spatial resolution of the GRACE(-FO) TWSC. As a result, water storage
signals with spatial variability of smaller than a few hundred kilometres are not well presented in
these maps. This limitation makes detection of mass anomalies over, e.g., the land-ocean boundaries,
more challenging, whereas one might detect spatially propagated storage change from oceans to land
or vice versa that mask each other (see, e.g., Awange et al., 2009; Chen et al., 2006).

2.2.4 Treating the Effect of Post Glacial Rebound (PGR)

PGR (also called isostatic rebound or crustal rebound) is known as the rise of land surface after
the removal of the enormous weight of ice sheets during the last glacial period, which had caused
isostatic depression. PGR and isostatic depression are phases of Glacial Isostatic Adjustment (GIA),
which manifests as a trend in the relatively short era of the GRACE(-FO) mission. For hydrological
applications, PGR is often removed as a linear trend based on the output of GIA models (e.g., Sasgen
et al., 2012; Wahr and Zhong, 2012). As a result, the uncertainty of present-day mass change
estimated from GRACE(-FO) depends on the accuracy of GIA models. It should be mentioned that
the magnitude of PGR varies over the globe. Regions such as Greenland, North America, Canada,
and Scandinavia are more affected by GIA, while those over Africa and the Middle East experience
negligible influence. In order to remove model-derived PGR uplift rates from GRACE(-FO) level 2
data, it is needed to expand these values (PGR uplift rates u(θ ,λ )) as a series of spherical harmonic
coefficients as

u(θ ,λ ) = R
nmax

∑
n=0

n

∑
m=0

Pnm(cosθ)(cu
nmcos(mλ )+ su

nmsin(mλ )) (2.12)

where R is the mean equatorial radius, θ and λ are the co-latitude and east-longitude, , respectively,
Pnm are the fully-normalised associated Legendre polynomials and cu

nm and su
nm are the coefficients for

the uplift rates, and can be obtained from Eq. (2.13) through a numerical integration approach (Wang
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et al., 2006) or a least squares approach (Sneeuw, 1994).

cu
nm =

1
4πR2

∫∫
S

u(θ ,λ )
R

cos(mλ )Pnm(cosθ)R2dθdλ ,

su
nm =

1
4πR2

∫∫
S

u(θ ,λ )
R

sin(mλ )Pnm(cosθ)R2dθdλ . (2.13)

The spherical harmonic coefficients of the uplift rates are then removed from smoothed spherical
harmonic coefficients of GRACE(-FO) level 2 data in Eq. (2.9) to estimate EWHs after removing
PGR rates (∆EW

′

u ). Therefore Eq. (2.9) is re-written as

∆EW
′

u (λ ,θ) =
M

4πR2ρw

nmax

∑
n=1

n

∑
m=0

(2n+1)
(1+ k′n)

P̄nm(cos θ) [(∆cW
nm− cu

nm)cos(m λ )+(∆sW
nm− su

nm)sin(m λ )].

(2.14)

2.2.5 Spatial Averaging

For hydrological applications, one might need to compute area-averaged mass variations from
GRACE(-FO) level 2 product for a specific area of interest, e.g., a river basin or a continent. To
make computations as accurate as possible, this averaging is implemented in the spectral domain
to avoid introducing extra biases caused by the resolution mismatch between the (basin) boundary
and GRACE(-FO) data. The spatial average of mass changes ∆E f

W can be computed by multiplying
the filtered spherical harmonic coefficients ∆cW

nm and ∆sW
nm in Eq. (2.7) with the spherical harmonic

coefficients c f
nm and s f

nm of a basin function f (λ ,θ) as

∆E f
W(λ ,θ) =

M
4πR2ρwA f

nmax

∑
n=1

n

∑
m=0

(2n+1)
(1+ k′n)

P̄nm(cos θ) [c f
nm∆cW

nmcos(m λ )+ s f
nm∆sW

nmsin(m λ )].

(2.15)

In Eq. (2.15), R is the Earth radius, and A f is the area of the basin function f . Spherical harmonic
coefficients of the basin function f can be determined by defining a global grid with one inside the
region of interest and zero outside of it, namely

f (λ ,θ) =
{ 1 Within the area of interest,

0 Outside the area of interest.
(2.16)
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The basin function f is defined over a sphere (with radius R) represented by a spherical harmonic
expansion

f (λ ,θ) =
1

4π

nmax

∑
n=1

n

∑
m=0

P̄nm(cos θ) [c f
nmcos(m λ )+ s f

nmsin(m λ )]. (2.17)

Since the basin function f is known by definition, the coefficients of c f
nm and s f

nm can be computed
using an integral approach (Wang et al., 2006) or a least-squares approach (Sneeuw, 1994).

2.2.6 Error Estimation of TWSC

GRACE(-FO) gravity field coefficients contain correlated errors (known as striping patterns) that can
be significantly reduced by filtering the data. The Root Mean Square (RMS) of the time series of
GRACE(-FO) TWSC errors without filtering reaches up to 20 cm, and after filtering (e.g., applying a
Gaussian filter with 300 km half-width radius) reduces to a few centimetres (Wahr et al., 2006). When
the filtered GRACE(-FO) data is scaled to account for the leakage and damping impact, the residual
measurement errors must also be scaled.

To estimate the error of GRACE(-FO) TWSC, the uncertainties of coefficients are propagated as the
covariance matrix of EWHs using a formal least squares error propagation method. Most studies
only consider the variances of the potential coefficients, which are reported in GRACE(-FO) level 2
products (e.g., level 2 data from the GFZ and JPL centres). These errors, however, represent only the
variance part of the estimated variance-covariance matrix of GRACE(-FO) level 2 products. Error
estimation of TWSC derived from GRACE(-FO) level 2 is more realistic when all elements of the
covariance matrix are considered during the error propagation procedure.

By replacing degree-1 and degree-2 coefficients of GRACE(-FO) level 2 products with other esti-
mations (see Section 2.2.1), one should consider the fact that the errors of new coefficients are not
essentially consistent with the errors of level 2 products. To mitigate this inconsistency, one might use
low degree products that are estimated in a system involving GRACE(-FO) products, e.g., estimations
of the low degree coefficients in Rietbroek et al. (2012). Otherwise, correlations of the new low degree
coefficients and the GRACE(-FO) derived higher degree coefficients must be introduced.

Moreover, within the processing of satellite gravimetry data, it is common to reduce the high-
frequency signals of the Earth rotation, Earth tides, ocean tides, and high-frequency non-tidal oceanic
and atmospheric mass redistribution from the level 1B measurements by using ‘background’ models.
Otherwise, such high-frequency mass changes will be aliased into long-wavelength signals leading
to misinterpretation of hydrological signals (Flechtner et al., 2015). This reduction, however, is
imperfect since the models are not precise enough. However, errors in these models, e.g., in the tidal
and non-tidal ocean-atmosphere de-aliasing products (Forootan et al., 2013, 2014a), are not included



2.2 From Geopotential Coefficients to Terrestrial Water Storage Changes (TWSC) 41

in the full variance-covariance of monthly GRACE(-FO) level 2 products. It should be mentioned
here that since the model errors affect the whole spectrum of the GRACE(-FO) level 2 products,
isolating them from geophysical signals is extremely difficult. Errors due to an incomplete reduction
of short-term mass variations of atmospheric de-aliasing products are taken into account in this study,
similar to Forootan et al. (2014a).

Other errors that need to be considered for uncertainty estimation include errors in the GIA models,
which are used to remove GIA signal from GRACE(-FO) level 2 products within the highly effected
regions, such as Greenland and North America (see Section 2.2.4). While the amplitudes of the
GRACE TWSC are estimated between ∼±300 mm in global scale, their uncertainties are approxi-
mated between 10-20 mm, depending on the region of the study, and the procedure used to estimate
these values. An overview of GRACE TWSC and its uncertainty within the world’s 33 largest river
basins can be found in Section 7.2.

2.2.7 Filling Temporal Gaps Between GRACE and GRACE-FO

Initially, GRACE was targeted to cover a 5-year period, which was exceeded by 10 years to October
2017. The GRACE-FO mission was launched in May 2018, but suffered a failure of the main
instrument processing unit between July and October 2018. This has led to approximately one year of
data gap (Li et al., 2020), which leads to inability to supply continuous geophysical information.

Many efforts were carried out to explore the potential of bridging the gap between the two GRACE
missions with some alternative observations. However, there is no single satellite mission or proxy
observation which is able to fill this gap with comparable quality (see e.g., Cecilia Peralta et al.,
2016; Lück et al., 2018; Rietbroek et al., 2014). Geodetic remote sensing observation such as SLR,
GPS, and low Earth-orbiting satellites, namely the European Space Agency (ESA)’s Swarm Earth
explorer mission, provide temporal gravity solutions with lower spatial resolution (Bezděk et al., 2016;
Encarnacao et al., 2019; Jäggi et al., 2016; Lück et al., 2018; Sośnica et al., 2015), that can be used as
auxiliary observations to bridge the gap of the two GRACE missions (see e.g., Forootan et al., 2020;
Lück et al., 2018; Meyer et al., 2019).

Data-driven approaches (Hasan and Tarhule, 2020; Humphrey and Gudmundsson, 2019) are another
technique to reconstruct the GRACE(-FO) TWSC by determining the relationships between TWSC
and corresponding climatic and hydrological variables specifically, such as rainfall and temperature.
For example, the Artificial Neural Network (ANN) was adopted to learn the relationship between
TWSC and related variables (Ahmed et al., 2019). Forootan et al. (2014b) first applied the Independent
Component Analysis (ICA, Forootan et al., 2012) to separate the GRACE signals into their original
sources, then produced the reconstruction and derived the relations based on the autoregressive
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exogenous (ARX, Ljung, 1999). Li et al. (2020) applied data-driven methods for reconstructing and
predicting GRACE-Like gridded TWSC using climate inputs.

Besides the above approaches, many interpolation methods, such as linear interpolation (Zotov and
Shum, 2010), cubic spline interpolation (Guo et al., 2018) and least-squares fitting (Rangelova et al.,
2010), were used to interpolate missing data with neighboring data. However, the performance of
filling gap with these interpolation approaches is basically dependent on the lengths of time series and
gaps, availability of neighboring data, and so on (Taie Semiromi and Koch, 2019).

For the application part of this study, we only use GRACE observations, so there is no need to fill the
gap between GRACE and GRACE-FO. However, for further applications of the proposed approaches,
where GRACE(-FO) will be used as the observation data set, the low-degree gravity solutions from
the Swarm mission can be used in an iterative reconstruction procedure to fill the existing gap in
the GRACE record and the gap between GRACE and GRACE-FO Forootan et al. (2020). The
reconstruction approach uses Swarm data as initial values in the gapping fields, then make use of
the Independent Component Analysis (ICA) to update GRACE values using the statistics existing
in GRACE(-FO) and Swarm TWSC fields. This updating procedure iterated until the filling values
do not change considerably from one iteration to another. These fields can be used as level 3 TWSC
products covering the whole period of 2002 onwards.

2.2.8 Computational Steps for Estimating GRACE TWSC in this Study

In this study, the latest release (RL06) of the monthly GRACE level 2 product, provided by the Centre
for Space Research (CSR 6), is used to estimate TWSC from 2002 through 2017. The potential
coefficients are truncated at the spherical harmonics of degree and order 90, resulting in ∼300
km spatial resolution at the Equator. To generate monthly TWSC fields from GRACE products,
recommended corrections are applied to the GRACE spherical harmonic coefficients.

• Degree-1 coefficients are replaced by those from Sun et al. (2016).

• The zonal degree-2 coefficients (C20) are replaced by more reliable estimates of the SLR
solutions following Chen et al. (2007).

• When needed, surface deformation signals due to the Glacial Isostatic Adjustment (GIA) are
reduced using the ICE5G-VM2 GIA model (Wahr and Zhong, 2012).

• Correlated errors of the potential coefficients are reduced by applying the DDK filter (DDK2 or
DDK3, Kusche et al., 2009). The DDK filter is preferred here to the other filtering techniques
since the final smoothed solutions are generally in better agreement with the TWSC output of

6http://www2.csr.utexas.edu/grace/

http://www2.csr.utexas.edu/grace/
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global hydrological models (see, e.g., Werth et al., 2009). It also considers correlations between
potential coefficients in a more rigorous manner compared to other filter techniques such as
that of Swenson and Wahr (2006) who only models the order-dependent correlations.

• The formulation explained in Section 2.2 that follows Wahr et al. (1998), is used to convert the
level 2 potential coefficients to the gridded TWSC, from 2003 to 2017.

• A single scale factor as described by Feng et al. (2012) is used in this study to restore the
signal loss due to filtering, which simultaneously minimizes the summation of leakage-in and
leakage-out contributions, and to compute the basin averages within a region of interest, e.g.,
within the river basins.

• Uncertainties in these fields are computed by implementing a collocation error estimation
(Awange et al., 2016; Ferreira et al., 2016) using TWSC estimates from the CSR, JPL, and
GFZ level 2 data. 7).

• Errors due to an incomplete reduction of short-term mass variations of atmospheric de-aliasing
products are taken into account, similar to Forootan et al. (2014a).

2.3 Global Navigation Satellite System (GNSS) Station Data

GNSS refers to satellite constellations that emit signals from space which are decoded by GNSS
receivers to estimate time differences between the satellite and GNSS antenna. The receivers then
use these measurements to determine the vertical and horizontal components of locations. GNSS
constellations include the Europe’s Galileo, the United States’ NAVSTAR Global Positioning System
(GPS), Russia’s Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS) and China’s
BeiDou Navigation Satellite System.

In this study, in-situ GNSS uplift rates released by Schumacher et al. (2018b) are used to estimate
PGR rates in combination with GRACE data in Chapter 9. This data set consists of 4072 in-situ
sites over the globe (selected based on prior information from the GIA forward models to exclude
tectonic signals), and for this study, 343 sites within the Great Lakes (GL) region are extracted from
the original data (see Fig. 9.2).

Vertical motion from GNSS data not only contains the GIA signals in their uplift rates, but also that of
other physical processes such as vertical land motion (VLM) (e.g., jumps due to earthquakes or local
subsidence) and longer term changes due to natural and anthropogenic processes, tectonics, local
hydrology (e.g., groundwater pumping). GNSS hardware changes can also give artificially induced
jumps.

7https://www.tugraz.at/institute/ifg/downloads/gravity-field-models/itsg-grace2018/

https://www.tugraz.at/institute/ifg/downloads/gravity-field-models/itsg-grace2018/
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Schumacher et al. (2018b) used the GPS data set of the Nevada Geodetic Laboratory (NGL) as the
starting point for providing an observational estimate of global GIA VLM, and then used a novel
fully-automatic post-processing strategy to deal with the challenges of GPS time-series analysis in
general, and for GIA purposes in particular, including outlier and jump detection, atmospheric mass
loading correction, elastic signal correction and filtering for stations where other sources of VLM are
likely to dominate GIA.

In order to accurately account for the elastic response of the Earth’s crust over Antarctica and
Greenland, separate data sets are used that have been corrected for the contemporary ice mass
loading impact on elastic deformation using high-resolution ice mass balance time-series (Khan
et al., 2016; Martín-Español et al., 2016). The non-tidal oceanic and hydrological loading have
a similar effect to atmospheric loading on the GPS time-series but both are less well modelled in
general (Santamaría-Gómez and Mémin, 2015), which means that the loading computations are not
as accurate. In Schumacher et al. (2018b) GNSS data sets, however, no explicit correction is applied
for hydrological mass loading but instead they performed a spatial filtering strategy to select stations
that are predominantly influenced by the long wavelength GIA signal and to exclude stations that are
affected by local to regional hydrology (such as groundwater pumping).

To compare gridded PGR rates with GRACE(-FO) EWHs, PGR rates can be expanded in a series of
spherical harmonics coefficients following Eqs. (2.12) and (2.13). The spherical harmonic coefficients
of the uplift rates are then used in Eq. (2.6) to estimate the EWHs corresponding to the PGR rates.
Figure 9.3, in Chapter 9, shows the EWHs derived from GNSS solution (Schumacher et al., 2018b),
and those derived from the ICE5G-VM2 GIA model (Wahr and Zhong, 2012) within the GL area.

2.4 Global Hydrological Models

To simulate large-scale continental and global hydrology, several hydrological models have been
developed. Land surface models represent the land-atmosphere interface in climate models and
numerical weather prediction and aim to represent the energy and water fluxes by implementing
surface energy and water balance equations. Hydrological water balance models are used to reconstruct
historical series and predict future ones. They are based on the principle of mass conservation or
the continuity equation, which considers that the difference of inputs and outputs will be reflected in
water storage in the catchment (Pérez-Sánchez et al., 2019). The main aim of hydrological balance
models is to assess inflows in a water resource system, and it is essential for appropriate analysis
of its availability. These models are of conceptual structure, i.e., even though the complex physical
processes are often known, the model equations are reasonably simplified due to the lack of adequate
forcing data sets. In what follows, a short description of models used in this study is presented.
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Monthly water storage components from six large-scale Global Hydrological Models (GHMs) includ-
ing PCR-GLOBWB (Van Beek et al., 2011; Wada et al., 2014), SURFEX-TRIP (Decharme et al.,
2013), LISFLOOD (Van Der Knijff et al., 2010), HBV-SIMREG (Lindström et al., 1997), W3RA
(Van Dijk, 2010), and ORCHIDEE 7 are used as priori information of water storage changes in DMDA
application (Chapter 7). The output of these models are published by Schellekens et al. (2017), and are
available at 0.5◦ spatial resolution covering the period of 1979–2012. These fields can be downloaded
from http://earth2observe.github.io/water-resource-reanalysis-v1.

Although these models are structurally different, i.e., they use different methodologies to simulate
water changes, they are driven by the same reanalysis-based forcing data set, WFDEI (WATCH
Forcing Data methodology applied to ERA-Interim reanalysis Weedon et al., 2014). In other words,
all hydrological models that are used in this study may represent the TWSC, but their respective
approaches for simulating TWSC and its corresponding storage compartments are not identical. For
example, Schellekens et al. (2017) state that PCR-GLOBWB and SURFEX-TRIP contain all surface
and sub-surface water storage components in their TWSC estimation. In contrast, TWSC derived
from LISFLOOD, HBV-SIMREG, and W3RA are equal to the summation of groundwater, soil water,
and snow, while that of ORCHIDEE is the summation of soil water, surface water, and snow storage
components. An overview of the model outputs used in this study is provided in Table 2.1. Schellekens
et al. (2017) also states that among all these six model, only LISFLOOD and ORCHIDEE considered
human water use as an input parameter to simulate water storage changes. Comparison between
these models in terms of linear trends and seasonality fitted to their water storage components, such
as groundwater, soil water, and surface water storage changes, are shown in Section 7.3. To ensure

Table 2.1 Overview of models used in this study and their water storage components.

Water Storage Compartments
Model Groundwater Number of

Soil layer
Surface
Water

Canopy Number of
Snow layer

PCR-GLOBWB Yes 2 Yes Yes 1
W3RA Yes 3 No No 1

HBV-SIMREG Yes 1 No No 1
SURFEX-TRIP Yes 14 Yes Yes 12

LISFLOOD Yes 2 No No 1
ORCHIDEE No 11 Yes No 6

that the TWSC estimates from the GRACE level 2 data and model outputs have the same spectral
content, 0.5◦ resolution hydrological model outputs are transformed into the spectral domain and
truncated to the maximum degree and order 90 (Eq. (2.9), Section 2.2.2). Basin averages of each
model components and their errors in terms of EWH are obtained from the same procedure used to
process GRACE level 2 data.

The Worldwide Water Resources Assessment (W3RA, Van Dijk, 2010) is used in this study to merge
with GRACE TWSC within CONUS for the application of MCMC-DA approach (Chapter 8). The
grid-distributed W3RA water balance model was first developed in 2008 by the Commonwealth

http://earth2observe.github.io/water-resource-reanalysis-v1
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Scientific and Industrial Research Organization (CSIRO 8) to simulate landscape water storage in the
vegetation and soil systems at 1◦×1◦ spatial resolution (Van Dijk, 2010). For this study, the original
code 9 is modified for the CONUS by using daily 0.125◦×0.125◦ interpolated ERA-Interim reanalysis
fields (Dee et al., 2011) of precipitation, albedo, 2-meter wind, as well as minimum and maximum
temperature 10 as forcing data to run the model from 1980-2017. In W3RA, each cell is modelled
independently of its neighbours, but lateral mass exchanges are accounted for by implementing a
routing scheme. More details on the W3RA model can be found in Van Dijk (2010).

For the application of MCMC-DA and ConBay-DA (Chapter 8 and 9), W3RA’s monthly averaged
model states (snow, surface water storage, surface soil water (top layer), shallow-rooted soil water,
deep-rooted soil water storage, and groundwater storage) are used, which are known as the W3RA’s
water storage components, for the period January 2003 through December 2017. Our motivation in
selecting W3RA is its simplicity, which makes its computational load manageable for scientific appli-
cations (see examples of W3RA’s applications in, e.g., Forootan et al. (2019); Khaki et al. (2017b)),
and its acceptable performance when compared with other commonly used global haydrological or
land surface models Schellekens et al. (2017).

Model uncertainty is estimated following Renzullo et al. (2014) by using the perturbed meteorological
forcing approach. To this end, an additive error is assumed for the short-wave radiation perturbation
of 50 Wm2, a Gaussian multiplicative error of 30% for rainfall perturbation, and a Gaussian additive
error of 2 ◦C as the magnitude of the additive error air temperature perturbations. Estimated model
uncertainty is used subsequently as the initial value of the variance/covariance matrix of the unknown
state parameter (see Section 5.1.1) in the Bayesian inference, which is then updated through a
forward-filtering and backward smoothing algorithm presented in Section 5.2.

2.5 Supplementary Data Sets

2.5.1 El Niño Southern Oscillation (ENSO) Index

The El Niño Southern Oscillation (ENSO, Barnston and Livezey, 1987) is a large-scale inter-annual
climate variability phenomenon in the Tropical Pacific Ocean, which affects the climate of many
regions of the Earth due to its ability to change the global atmospheric circulation, which influences
temperature and precipitation across the globe (Forootan et al., 2016; Trenberth, 1990). The positive
phase on ENSO is known as El Niño, and its opposite phase is known as La Nina. The ENSO
index used in this study is derived from sea surface temperature in the Niño 3.4 region (5◦N −

8https://www.csiro.au/en/
9http://wald.anu.edu.au/challenges/water/w3-and-ozwald-hydrology-models/

10https://apps.ecmwf.int/datasets

https://www.csiro.au/en/
http://wald.anu.edu.au/challenges/water/w3-and-ozwald-hydrology-models/
https://apps.ecmwf.int/datasets
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5◦S,170◦E − 120◦W ). Monthly ENSO index (Niño 3.4 index), which is provided by the NOAA
National Centre for Environmental Information (NCEI) covering 1948 onward, is downloaded from
https://www.esrl.noaa.gov/psd/data/correlation/nina34.data. This index will be used later in this
study to demonstrate whether the surface and sub-surface water storage estimates in Chapter 7 and 8
are closer to reality than those from individual models.

2.5.2 In-situ USGS Groundwater Level Data

In-situ groundwater level data (GWL) can be converted to groundwater storage changes (GWS) using
an effective Storage coefficient (Sc), where GWS = Sc×GWL, which can be used as an independent
validation data set to evaluate groundwater storage changes derived from models and/or DA results.
In this thesis, we use the data provided by the US Geological Survey (USGS) groundwater network
11, which contains a record of groundwater levels between 1970-now for ∼100000 wells across the
CONUS in Chapter 8. The point-wise data for 2003–2017 are downloaded and filtered to exclude
measurements with large data gaps (temporal gaps > 2 years), and those without any variation, in
their time series’s (e.g., those time series which only contain linear and/or non-linear trends, without
any other signals are excluded from data sets). Selected groundwater levels (∼38000 wells) are then
temporally averaged to produce monthly time series. The stations located in each 0.125◦×0.125◦ grid
are then spatially averaged, for each time step separately, to produce a time series that is comparable
to the W3RA model outputs.

The USGS groundwater network covers a range of unconfined to confined conditions that are important
to consider in evaluating groundwater level records and comparing with modelled ground water storage
changes. The storage coefficient (Sc), required to convert groundwater level to groundwater storage,
can vary over several orders of magnitude from unconfined aquifers (e.g., between 0.02 and 0.3)
to confined aquifers (known as storativity ∼ 0.001) (Freeze and Cherry, 1979). However, there is
a continuum between unconfined to confined conditions with some aquifers predominantly semi-
confined, such as the California Central Valley. In systems with vertically stacked aquifers, it is often
difficult to determine whether wells are screened in unconfined or confined aquifers, or both, which
increases the uncertainty of estimating groundwater storage from groundwater level data. Therefore,
different approaches have been introduced to approximate it regionally. For example, Rodell et al.
(2007) applied an average value of 0.15 in the Mississippi River basin, and Xiao et al. (2015) used
a range of 0.02 to 0.6 in the Mid-Atlantic Region of the CONUS based on the technical insights
provided by USGS. However, since the Sc estimates are only available for some regions, for the entire
CONUS, the USGS groundwater level data are standardized by subtracting their temporal mean and
dividing the residuals by their standard deviations. These values are then used to evaluate standardised
groundwater storage estimates derived from the W3RA and the MCMC-DA (see Section 8.5.3).

11https://water.usgs.gov/ogw/networks.html

https://www.esrl.noaa.gov/psd/data/correlation/nina34.data
https://water.usgs.gov/ogw/networks.html
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Comparisons in terms of water storage changes are performed for Texas and California, where data on
storage coefficients are available from previous studies, i.e., High Plain aquifer within Texas, Gutentag
et al. (2014), and Central Valley aquifer within California, Scanlon et al. (2012b). The average Sc in
these regions is reported to be 0.18 and 0.15, respectively.

2.5.3 ESA CCI Satellite-Derived Soil Data

The European Space Agency’s Climate Change Initiative (ESA CCI) soil moisture product (Gruber
et al., 2019) is used in this study to validate the top layer (< 10 cm) soil water storage of W3RA and
those from MCMC-DA in Chapter 8. The ESA CCI soil moisture algorithm generates consistent,
quality-controlled, and long-term soil moisture climate data records by harmonising and merging
soil moisture retrievals from multiple satellites into (i) an active-microwave-based only (ACTIVE),
(ii) a passive-microwave-based only (PASSIVE) and a (iii) combined active–passive (COMBINED)
product (Dorigo et al., 2017). According to (Dorigo et al., 2017) and a review of existing literature,
the ESA CCI product quality has steadily increased with each successive release and that the merged
products generally outperform the single-sensor input products. ESA CCI soil moisture generally
agrees well with the spatial and temporal patterns estimated by land surface models and observed
in-situ, however, (Dorigo et al., 2017) identified surface conditions (e.g., dense vegetation, organic
soils) for which it still has large uncertainties (see similar discussion of this study in Section 8.6).

In this study, v04.7 released of daily ESA CCI with the spatial resolution of 0.25◦×0.25◦ covering
the period of 2003–2017 is downloaded from the ESA website12. The monthly ESA CCI soil moisture
time series is computed by the temporal averaging of daily products. These values are then spatially
interpolated (using linear interpolation, Meijering, 2002) on the same 0.125◦× 0.125◦ grids as in
W3RA in the application part of MCMC-DA, and on 1◦×1◦ grids as in W3RA in the application part
of ConBay-DA. The volumetric units (m3 m−3) of the ESA CCI is converted to the vertical changes
in soil water storage (in mm) using a weighted averaging of the first 2 layers (0-5 cm, 5-10 cm) of the
STATSGO porosity values 13.

12http://www.esa-soilmoisture-cci.org
13http://www.soilinfo.psu.edu/

http://www.esa-soilmoisture-cci.org
http://www.soilinfo.psu.edu/


Chapter 3

An Overview of Bayesian Fusion
Techniques

In this chapter the mathematical foundations of the Bayesian inference are discussed. An introduction
of Bayes’ theorem and the Gaussian Process are presented in Section 3.1 and Section 3.2, respectively.
The basic principles of the Gaussian process regression model and dynamic system modelling are
shown in Sections 3.3 and 3.4, respectively. The mathematical descriptions of the state-space model
is represented in Section 3.4.2, and Kalman filtering and Bayesian sampling approaches, as the main
tools to solve the state-space models in the proposed Bayesian signal separation frameworks in this
PhD thesis are described in detail in Sections 3.5 and 3.6. This chapter is ended by presenting the
concept of Bayesian Model Averaging (BMA) and its formulation in Section 3.7.

3.1 Introduction to Bayesian Statistics

Bayesian statistics is a class of statistical methods that provide a coherent framework for learning
and problem solving under uncertainty conditions. The foundation of statistics is based on the theory
of probability, which is understood as a measure of the plausibility and uncertainty of a statement.
Bayesian statistics mostly involve conditional probability, which is the probability of an event (e.g.,
Θ) given another event (e.g., Y ), and can be calculated using the Bayes’ theorem. In traditional
statistics, which is not founded on Bayes’ theorem, the probability is only associated with random
experimental results, while Bayesian statistics allow for probabilities of all statements or propositions.
The advantage of Bayesian statistics in comparison to traditional statistics is that by using Bayes’
theorem and estimating the probability density functions for the unknown parameters, the method of
testing hypotheses or estimating their confidence regions can be readily tackled by these approaches
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(Koch, 2007). Therefore, Bayesian methods face rapid expansion and affect many application areas,
where the uncertainty is inherent in many processes involved.

3.1.1 Conditional Probability and Bayes’ Theorem

Conditional probability is the probability of one event, e.g., Θ, occurring with some relationship to
one or more other events, e.g., Y , and is the key concept in Bayes’ theorem. One writes Θ|Y to denote
the situation that Θ is true under the condition that Y is true. If Θ and Y are two events in a sample
space S, then the marginal probability of events Θ and Y are denoted by p(Θ) and p(Y ), while the
joint probability of events Θ and Y is denoted by p(Θ,Y ), and the probability of Θ conditional on Y
is denoted by p(Θ|Y ), and is defined as

p(Θ|Y ) = p(Θ,Y )
p(Y )

, where p(Y )> 0. (3.1)

From the probability rules (Koch, 2007), p(Θ,Y ) is the probability of both Θ and Y occurring, which
is equal to p(Y,Θ). Equation (3.1) indicates that p(Θ,Y ) = p(Θ|Y )p(Y ). Similarly, we can state that
p(Y,Θ) = p(Y |Θ)p(Θ). The fact that these two expressions are equal (i.e., p(Θ,Y ) = p(Y,Θ)) leads
to Bayes’s theorem, which is defined as

p(Θ|Y ) = p(Y |Θ)p(Θ)

p(Y )
. (3.2)

Given the hypothesis Θ (i.e., the parameters of interest), and evidence Y (i.e., observed data), Bayes’
theorem states the relationship between the probability of the hypothesis before getting the evidence,
i.e., p(Θ), and the probability of the hypothesis after getting the evidence, i.e., p(Θ|Y ). For this reason,
the marginal probability of p(Θ) is called the prior probability distribution of the parameter of interest,
while p(Θ|Y ) is called the posterior probability distribution. It is worth noting that Bayesian statistics
typically involve using probability distributions rather than point probabilities for the quantities in the
theorem. It is due to the fact that the prior probability is derived from previous samples and is not
known and a fixed population quantity, which precisely determines why different sources may give
various estimations of this prior probability. Therefore, our knowledge of the prior probabilities is not
likely to be perfect.

From a Bayesian perspective, the prior probability distribution of a quantity in the theorem captures
our prior uncertainty about its true value. The inclusion of a prior probability distribution ultimately
produces a posterior probability that is also no longer a single quantity; instead, the posterior becomes
also a probability distribution.

In Eq. (3.2), p(Y |Θ) is termed as the sampling distribution, which is proportional to the “likelihood
function”, only differing by a constant that makes it a proper density function, and sometimes written
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as L(Y |Θ) = p(Y |Θ). In Bayes’ theorem, P(Y ) is the marginal probability distribution of the observed
data (or evidence), and it can be estimated as

p(Y ) =
∫

p(Y |Θ)p(Θ)dΘ. (3.3)

The marginal probability distributions, sometimes called the “marginal likelihood” for the data, acts
as a normalising constant to make the posterior distribution proper (see, e.g., Raftery (1995) for the
importance of using marginal likelihood). Bayes’ Theorem for probability distributions is often stated
as the posterior distribution of the parameter of interest, which is proportional (denoted here as ∝) to
the likelihood density of the observed data conditional on the parameters of interest multiplied to their
initial values. This definition can be simplified as

Posterior ∝ Likelihood×Prior. (3.4)

3.1.2 Prior and Posterior Probability Distributions

In all application of Bayesian methods, it must be acknowledged that both the prior and the likelihood
have only been specified as a convenient approximation to the beliefs of the analyst. The prior
distribution is often considered to be the most controversial element of Bayesian statistics. In
principle, the prior should be found by introspection and consideration of all available information
about the hypothesis before taking the evidence or data into account. However, this constitutes a
non-trivial task, and several approaches have been suggested to formulate priors in practice.

The prior is usually chosen from a parametric family of distributions or mixtures of those, which often
gives a reasonable compromise between an accurate representation of prior beliefs and analytical
tractability. In practice, it is usually helpful to generate samples from the initial information and
inspect whether the values are reasonable a priori information. Furthermore, the corresponding
sampling distributions can be used to generate synthetic data sets whose properties should also
conform with prior beliefs. Nevertheless, in any Bayesian analysis, it is recommended to examine how
sensitive the posterior distribution reacts to the prior distribution changes. Comparing posteriors and
priors can illustrate how informative the observed data is about the parameters. When the observed
data does not contribute to reducing uncertainty about a parameter, then both distributions will be the
same, expressing that the beliefs are unchanged (Jeffreys, 1998; Koch, 2007).

Prior distributions about the parameter of interests (hypothesis), which might come from a literature
review or explicitly from earlier data analysis, are known as traditional informative prior. Weakly
informative prior distributions do not supply any controversial information but are strong enough to
pull the data away from inappropriate inferences that are consistent with the likelihood. Other prior
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distributions that are uniform, or nearly so, and allow the information derived from the likelihood to be
interpreted probabilistically are non-informative priors, or maybe, in some cases, weakly informative
(more information can be found in Berger and Bernardo, 1989; Jeffreys, 1998).

Selecting an appropriate prior is a key component of Bayesian modelling. With only a finite amount
of data, the prior can have a very large influence on the posterior. It is important to be aware of this
and understand the sensitivity of posterior inference to the choice of prior. In practice, it is common
to use non-informative priors to limit this influence; when conjugate priors are chosen for tractability
reasons.

In Bayesian theory, the prior is called a conjugate prior for the likelihood function p(Y |Θ) when
the posterior distributions of the parameter of interest p(Θ|Y ) have the same functional form as
the prior probability distribution p(Θ). For example, the Gaussian family is conjugate to itself (or
self-conjugate) concerning a Gaussian likelihood function; if the likelihood function is Gaussian,
choosing a Gaussian prior over the mean will ensure that the posterior distribution is also Gaussian. In
Bayesian inference, conjugate priors are useful because they reduce Bayesian updating to modify the
prior distribution parameters, rather than computing integrals, and ensure that the posterior is tractable
even after multiplying the likelihood by the prior. Moreover, conjugate prior allows for efficient
inference algorithms because the posterior and prior share the same functional form (Gutiérrez-Pena
and Smith, 1995).

3.2 Gaussian Process

A Gaussian process is a class of stochastic processes designed to solve probabilistic classification
problems, and can be used as a prior probability distribution over countably or continuous functions
in Bayesian inference. Recent advances in Bayesian frameworks have developed an elegant and
principled methodology for using Gaussian processes to express uncertainty over the space of functions
that fit some set of empirical data due to their flexible non-parametric nature and computational
simplicity.

The distribution of a Gaussian process is defined for the infinite number of possible outputs of a
function, in which the distribution over any finite number of them has a joint Gaussian distribution
(MacKay, 1997). Gaussian distributions, known as normal distributions, are completely specified by
their first and second-order statistics. In other words, a normal distribution is defined as one whose
higher-order cumulants are all zero (Cardoso, 1999). In Eq. (3.5), p(Θ), at a particular input data Θ,
is a Gaussian distributed function if

p(Θ)∼N (µ(Θ),k(Θ,Θ)), (3.5)
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where µ(Θ) and k(Θ,Θ) are the mean and the covariance kernel functions, respectively. These two
functions fully specify the Gaussian process. To mathematically show a Gaussian process, let χ be any
set, and Θi denotes any finite subset of Θ at a particular input location, where Θi = [Θn, . . . ,Θn+i] ∈ χ ,
n = 1, ...,N. Following the above definition, p(Θ) is a Gaussian process if its values at any finite
number of points, e.g., Θi,Θ j,Θk, · · · ∈ χ , have a joint Gaussian distribution as

p(Θi,Θ j,Θk, . . .) = N




µ(Θi)

µ(Θ j)

µ(Θk)
...

 ,


k(Θi,Θi) k(Θi,Θ j) k(Θi,Θk) . . .

k(Θ j,Θi) k(Θ j,Θ j) k(Θ j,Θk) . . .

k(Θk,Θi) k(Θk,Θ j) k(Θk,Θk) . . .
. . .


 . (3.6)

Figure 3.1 shows a graphical demonstration of a 2-D, i.e., 2 dimensional, multivariate Gaussian
process defined by Eq. (3.6). Most of the structure of a Gaussian process derived from its covariance

Fig. 3.1 Graphical definition of a 2-D multivariate Gaussian process, i.e., p(Θi,Θk), defined in Eq. 3.6.

kernel function k, which describes how the values of sampled functions vary across nearby (or not-
so-nearby) points. The Gaussian process covariance functions provide a very flexible and elegant
methodology for establishing priors over random functions. Any positive semi-definite kernel can be
used to specify the covariance function. Different covariance functions encourage different degrees
of smoothness. Probably the most widely used one is the exponentiated quadratic covariance, also
commonly referred to as the squared exponential, Gaussian or Radial Basis Function (RBF) kernel

k(Θi,Θ j) = σ
2exp(

∥Θi−Θ j∥2

λ 2 ) (3.7)

where i, j are the identity factors, σ2 is a scale parameter that indicates the amount by which locality
should influence the covariance, and λ is the length scale, that specifies the smoothness of the function.
σ2 and λ are the hyperparameters and can be selected via a maximum likelihood optimisation
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procedure. Having σ2 and µ(Θ) the general form of the normal probability density function of Θ (Eq.
(3.5)) is defined as

p(Θ) =
1√

2πσ2
exp(−1

2
(
Θ−µ(Θ)

σ
)2). (3.8)

3.3 Regression Models with Gaussian Process

The regression model is the simplest in which one can appreciate usefulness of Gaussian processes
for time series modelling. To describe a regression model through a Gaussian process, consider a
functional mapping Z → Y from a D-dimensional input data Z ∈Z , i.e., Z = RD, to a real-valued
target Y → Y where

Y = f (Z;Θ)+ ε. (3.9)

In Eq. (3.9), f denotes a continuous function mapping Z → Y , Θ is a set of unknown parameters,
known as weights to build a regression model, and ε is additive measurement error or noise. In the
above formulation, a functional mapping is specified from Z to Y , but it is accepted that there may be
some amount of noise involved in the mapping. Setting the noise in this manner means that for a given
input Z, there is now a distribution over possible mappings to Y . In Eq. (3.9), Z can be water storage
changes derived from hydrological models for a finite number of points t, i.e., Z = [Z1,Z2, . . . ,Zt ],
and Y denotes GRACE TWSC as the target values for each point, i.e., Y = [Y1;Y2; . . . ;Yt ], while
assuming zero-mean Gaussian noise, i.e., ε ∼N (0,V ), where V = k(ε,ε) is the covariance matrix
of the GRACE TWSC observations. In the case of a simple linear mapping, f (Z;Θ) is defined as
f (Z,Θ) = ZT Θ, where Θ = [Θ1,Θ2, . . . ,Θt ] are the unknown regression parameters to define linear
regression between GRACE observation and model outputs. Assuming spherical zero-mean Gaussian
noise gives rise to a Gaussian likelihood over the entire data set (assuming independence) as the
product of the single case likelihood over the t observations as

p(Y |Z,Θ) = N (ZT
Θ,V ). (3.10)

Note that under a Gaussian noise model, an infinite number of possible mappings into Y for any given
input Z is possible. Thus, the infinite number of repetitions for the above procedure will produce an
infinite number of unique functions over Y . Intuitively, many of these functions are implausible to
have produced the set of observed targets. When using Bayesian inference on a parametric model, an
initial value is chosen on the parameter of interest p(Θ) and a posterior distribution over the parameter
given the data p(Θ|Y ) is estimated by combining the prior with the likelihood function p(Y |Θ) (see
Eq. (3.2)).
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A parametric approach to Bayesian regression consists of specifying a family of functions parame-
terised by a finite set of parameters, putting a prior on those parameters and performing inference.
However, we can find a less restrictive and potent approach to inference on functions by directly
specifying a prior over an infinite-dimensional space of functions. It contrasts with putting a prior over
a finite set of parameters that implicitly specify a distribution over functions. A very useful prior over
functions is the Gaussian process, which addresses how one defines a distribution over this infinite set
of functions in a principled way using Bayesian probability theory. Gaussian processes take advantage
of an a priori assumption to specify a preference over functions. This is expressed through setting
a Gaussian prior over the parameter of interest, p(Θ0) = N (θ0,Σ0), with some positive definite
covariance matrix Σ0. As the functions are defined by their parameters, specifying a distribution
over the parameters is analogous to specifying a distribution over functions. Thus following Bayes’
theorem (see Eq. (3.2)), a posterior distribution over the unknown parameters is defined as

p(Θ|Y,Z) = p(Y |Z,Θ)p(Θ)

p(Y |Z)
, (3.11)

Following Eq. (3.3) the marginal likelihood p(Y |Z) is given by integrating out the weights or
parameters Θ as

p(Y |Z) =
∫

p(Y |Z,Θ)p(Θ)dΘ. (3.12)

The posterior estimation over parameters (Eq. (3.11)) can be useful in itself to e.g., update the input
data Z (e.g., hydrological model outputs) with respect to the observed values Y (e.g., GRACE TWSC),
but it can also be used to make much richer predictions for the targets of a given data point. The
predictive distribution over targets Ŷt+1 = f (Zt+1;Θt+1) for a novel data point Zt+1 can be specified
through averaging the targets given over each possible set of parameters, weighted by the posterior
probability of the parameters Θ = [Θ1,Θ2, ...,Θt ] as

p(Ŷt+1|Zt+1,Z,Y ) =
∫

p(Ŷt+1|Zt+1,Θ)p(Θ|Z,Y )dΘ, (3.13)

where the first term in the integral, i.e., p(Ŷt+1|Zt+1,Θt+1), results from the Gaussian process prior
linking all possible values of Θt+1 and Ŷt+1 with a joint normal distribution (Rasmussen, 2003),
and the second term, p(Θ|Z,Y ), is simply the posterior of Θ from Eq. (3.11). Therefore, when the
likelihood has a Gaussian distribution as Eq. (3.10), both the posterior and predictive distributions are
Gaussian. For other likelihoods, one may need to resort to approximation methods (see, e.g., Murray
et al., 2010; Nguyen and Bonilla, 2014).
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3.4 Dynamic System Modelling with Gaussian Process

Learning dynamical systems, also known as system identification or time series modelling, aims to
create a model or improve an existent model based on measured signals. The developed/improved
model can be used later to predict the system’s future behaviour or explain the observed data’s
structure, or de-noise the original observed time series (Lennart, 1999). Two important families of
dynamical system models are: (I) autoregressive models; (II) the state-space models. The unified
description of these dynamical systems is provided in this section. Furthermore, generative models to
easily identify the assumptions made by each model and the different inference/learning algorithms
that have been tailored to each model are discussed in the following section.

3.4.1 AutoRegressive Models

Autoregressive models describe a time series by defining a mapping from past observations to the
current observation. The term “autoregression” indicates that it is a regression of the variable against
itself. An autoregressive model of order p is written as

Yt = f (Yt−1,Yt−2, . . . ,Yt−p;Θt−1,Θt−2, . . . ,Θt−p)+ εt , (3.14)

where εt ∼N (0,Vt) represents random noise that is independent and identically distributed across
time, and in a simple linear autoregressive model, Eq. (3.14) is re-written as

Yt = Θ1Yt−1 +Θ2Yt−2 + · · ·+ΘpYt−p + εt . (3.15)

Changing the parameters of Θ1,Θ2, . . . ,Θp results in different time series patterns. Therefore, autore-
gressive models are remarkably flexible at handling a wide range of different time series patterns.
An important characteristic of this model is that there is no measurement noise (see Section 3.4.2).
Here, noise injected via εt influences the future trajectory of the system. Learning in this model is
performed using conventional Gaussian process regression techniques. In particular, exact inference
is possible if we choose a conjugate likelihood as

p(Yt |Yt−1, . . . ,Yt−p;Θt−1,Θt−2, . . . ,Θt−p)∼N ( f (Yt−1, . . . ,Yt−p;Θt−1, . . . ,Θt−p),Vt). (3.16)

Non-linear autoregressive models with external (exogenous) inputs are often known as NARX models.
Gregorcic and Lightbody (2002) and Kocijan et al. (2005) presented learning of a Gaussian process-
based NARX model via maximisation of the marginal likelihood, and Girard et al. (2002) proposed a
method to propagate the predictive uncertainty in GP-based NARX models for multiple-step ahead
forecasting.
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3.4.2 State-Space Models

State-space models refer to a class of probabilistic graphical model (Koller and Friedman, 2009) that
describes the probabilistic dependence between the latent (unobserved) state variables (e.g., hydro-
logical model outputs stored in matrix Z), state parameters (e.g., Θ), and the observed measurement
(e.g., GRACE TWSC in Y ). The state parameters or the measurement can be either continuous
or discrete. The state-space model provides a general framework for analysing deterministic and
stochastic dynamical systems that are measured or observed through a stochastic process, such models
have been successfully applied in engineering, statistics, computer science and economics to solve
a broad range of dynamical system problems. Other terms used to describe state-space models are
hidden Markov model (Rabiner, 1989) and latent process models. In probability theory, a Markov
model is a stochastic model used to model pseudo-randomly changing systems, where it is assumed
that future states depend only on the current state, not on the events that occurred before it (it is known
as the Markov property). Generally, this assumption enables reasoning and computation with the
model that would otherwise be intractable (Gagniuc, 2017).

The objective of state-space modelling is to compute the optimal estimate of the state parameters
given the observed data, which can be derived as a recursive form of Bayes’s rule (Brown et al., 1998;
Chen et al., 2010b). In a general state-space formulation, let Θt denotes the state parameters at time
t, and Y1:t denotes the cumulative observations up to time t, i.e., Y1:t = [Y1,Y2, . . . ,Yt ]. Based on the
Bayes’ theorem defined in Eqs. (3.1) and (3.2), the filtering posterior probability distribution of the
state parameters conditional on the sequence of observations is

p(Θt |Y1:t) =
p(Θt ,Y1:t)

p(Y1:t)
=

p(Yt |Θt ,Y1:t−1)p(Θt |Y1:t−1)

p(Yt |Y1:t−1)
, (3.17)

where the last equality of Eq. (3.17) follows the conditional independence assumption between the
observations. The one-step state prediction, known as the Chapman-Kolmogorov equation, is defined
as

p(Θt |Y1:t−1) =
∫

p(Θt |Θt−1)p(Θt−1|Y1:t−1)dΘt−1. (3.18)

Equations (3.17) and (3.18) provide the fundamental relations to develop state-space models, where the
probability distribution (or density) p(Θt |Θt−1) describes a state transition equation, and p(Yt |Θt ,Y1:t−1)

describes the observation equation. For an illustration purpose, considering a discrete-time multivari-
ate linear Gaussian system, the state-space model is characterised by two linear equations:
State equation: the n-dimensional hidden state process Θt follows a first-order Markovian dynamics,
as it only depends on the previous state at time t−1, and is corrupted by a (correlated or uncorrelated)
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state noise process δt . The state equation is defined as

Θt = BtΘt−1 +δt , (3.19)

where Bt is the n× n state-transition matrix, also known as Markovian transition matrix, between
current and prior states at time t and time t−1.
Observation equation: the m-dimensional measurement Yt is subject to a linear transformation of the
hidden state Θt , and is further corrupted by a measurement noise process εt

Yt = ZtΘt + εt , (3.20)

where Zt is a m×n observation-transition matrix between the current observation and current state at
time t. The noise processes εt and δt in the state-space model are both Gaussian with zero mean and
respective covariance matrices Vt and Q, which can be shown as[

εt

δt

]
∼ N

([
0
0

]
,

[
Vt 0
0 Q

])
. (3.21)

It is worth mentioning that Eq. (3.19) defines a first-order autoregressive process (see Section
3.4.1). A higher-order autoregressive structure can also be reformulated and transformed into a
first-order autoregressive formulation by concatenating several state vectors into a new state vector
(e.g., Θnew

t = [Θt ,Θt−1]) (Bernstein, 2005).

The linear Gaussian state-space model can be extended to a broad class of dynamical Bayesian net-
works (Ghahramani, 1997) by changing one or more of the conditions about the state or measurement
variables (Chen et al., 2010b): (i) from continuous state to discrete or mixed-value state variable; (ii)
from continuous observation to discrete or mixed observation; (iii) from Gaussian to non-Gaussian
noise processes; (iv) inclusion of non-linearity in Eqs. (3.19) and (3.20). For instance, changing
condition (i) may result in a discrete-time hidden Markov model or switching state-space model;
changing condition (ii) or (iii) may result in a generalised state-space model with a Generalised Linear
Model (GLM, Nelder and Wedderburn, 1972) in place of Eq. (3.20); and changing condition (iv)
may result in a non-linear neural filter. In addition, a control variable can be incorporated into the
state Eq. (3.19), which will result in a standard Linear Quadratic Gaussian (LQG) control system, for
which the optimal solution can be derived analytically (Bertsekas et al., 1995).

3.4.3 Benefits of Gaussian Process State-Space Models

In this thesis, we are interested in linear state-space models to define a dynamic relationship between
observations and models within the proposed Bayesian data-model fusion techniques. In particular,



3.5 Kalman Filtering 59

we consider the case where a Gaussian process (Rasmussen, 2003) is responsible for modelling the
underlying dynamics, which is widely known as the Gaussian process state-space model. Gaussian
process state-space models are particularly appealing because they are defined generally and can
accept flexible priors over the transition function. The presence of a latent state, within the state-space
model, allows for a succinct representation of the dynamics in the form of a Markov chain. The
state contains the information about the dynamic system (e.g., hydrological process within the Earth
system), which is essential to determine future forecasts. We choose to build upon Gaussian processes
for a number of reasons. First, they are non-parametric, which makes them effective in learning
from small datasets. Second, we want to take advantage of the probabilistic properties of Gaussian
processes. By using a Gaussian process for the latent transitions, we can get away with an approximate
model and learn a distribution over functions. This allows us to account for model errors whilst
quantifying uncertainty, as discussed and empirically shown by Schneider (1997) and Deisenroth et al.
(2015). Consequently, the system will not become overconfident in regions of the space where data
are scarce.

Moreover, a related advantage of state-space models over autoregressive ones is that to train an
autoregressive model, the time series of observations Y is broken down into a set of input/output
pairs, and the function that maps inputs to the outputs is obtained with regression techniques. One
could use noise in the inputs regression (also known as errors invariables) to deal with observation
noise. However, this would fail to exploit the fact that the particular noise realisation affecting the
observation Yt is the same when using Yt as an input or output. When using a state-space model, the
time series is not broken down into input/output pairs, and inference and estimating the unknown state
parameters are performed in a way that the measurement noise is coherently taken into account as
observation noise.

3.5 Kalman Filtering

A common objective of statistical inference for the state-space models is to infer the state pa-
rameters Θ = [Θ1,Θ2, . . . ,Θt ] (including its uncertainty) based on the time series of observations
Y = [Y1,Y2, . . . ,Yt ]. In light of Eq. (3.17), the goal of the state-space analysis is to estimate the
posterior probability distribution (or density) p(Θ|Y ). In the special case of the linear Gaussian
state-space model, the predictive posterior distribution is fully characterised by the conditional mean
and conditional covariance of a Gaussian distribution. When the state equation (Eq. (3.19)) and the
observation equation (Eq. (3.20)) are known, with known system matrices Zt ,Bt ,Vt ,Q, the optimal
inference algorithm is described by a Kalman filtering (Kalman, 1960) (where Yt is used for an
online operation) or fixed-interval Kalman smoothing (Bierman, 1973) (where Yt is used for an offline
operation).
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Kalman filtering (Kalman, 1960) is an algorithm to estimate the posterior probability distribution of
the unknown state parameters in a joint probability distribution over the time series measurements and
un-observed variables in each time-frame. Let us assume that within the state-space model defined
by Eqs. (3.19) and (3.20), the system matrices Ht = {Zt ,Bt ,Vt ,Q} are known, which are denoted
here as Ht . The likelihood probability distribution (or the sample density function) associated with
the state-space model for t = 1,2, . . . ,T is denoted by p(Y1:T |H1:T ,Θ1:T ). It should be noted here
that for the rest of this thesis, ∗1:t denotes a time series for t = 1,2, . . . ,T , e.g., Y1:t = [Y1,Y2, . . . ,Yt ].
Considering the Bayes rule (e.g., Eq. (3.10)), the likelihood probability distribution over the entire
data sets (i.e., for t = 1, ...,T ) can be factorised as

p(Y1:T |H1:T ,Θ1:T ) = p(Y1|H1,Θ1)p(Y2|Y1,H2,Θ2) . . . p(YT |YT−1,HT ,ΘT )

= Π
T
t=1 p(Yt |Yt−1,Ht ,Θt),

(3.22)

where Y0 = 0. Therefore, to construct the likelihood function p(Y1:T |H1:T ,Θ1:T ), we need to estimate
the probability densities of p(Yt |Yt−1,Ht ,Θt), t = 1,2, . . . ,T . We can achieve this using filtering
techniques, in particular when the system is linear, and errors are Gaussian. Kalman filter to solve
Gaussian state-space models is a recursive procedure that involves 3 steps: (1) initialisation, (2)
prediction, and (3) correction (Kalman, 1960). In the following, each of these steps will be discussed
in greater detail. It should be noted here that in the following equations, ∗t|s denotes the prediction of
the variable ∗ at time t, conditional upon information available at time s.
(1) Initialisation: The Kalman filter is initialised by deriving the best predictor of the initial state (a
priori information for the unknown parameters when t = 0) Θ0|0, and an estimate of its covariance
matrix, Σ0|0.
(2) Prediction: Θt|t−1 and Σt|t−1 are estimated for each time step t based on the state equation (Eq.
(3.19)) as

Θt|t−1 = BtΘt−1|t−1, (3.23)

Σt|t−1 = BtΣt−1|t−1B′t +Q, (3.24)

where Q is the covariance matrix of the state noise process δt (see Eq. 3.21). Θt|t−1 is then used in the
observation equation Eq. (3.20) to construct the forecast Yt|t−1 = ZtΘt|t−1. Having observation Yt , the
forecast error can be estimated as

ut = Yt −Yt|t−1 = Yt −ZtΘt|t−1 = εt +Zt(Θt −Θt|t−1). (3.25)
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Because of the Gaussian errors assumption in state-space model, ut is Gaussian, i.e.,

ut ∼N (0,Vt +ZtΣt|t−1Z′t). (3.26)

According to the Eq. (3.25) Yt = ut +Yt|t−1. Therefore, the probability distribution of Yt conditional
on Yt−1 is equal to the probability distribution of ut which can be shown by

p(Yt |Yt−1,Ht ,Θt) = p(ut |Ht ,Θt), (3.27)

therefore, given Θt|t−1 and Σt|t−1, the likelihood distribution p(Yt |Y1:t−1,Ht ,Θt), t = 1,2, . . . ,T can be
computed from the normal density function Eq. (3.8) as

p(Yt |Y1:t−1,Ht ,Θt) =
1√

(2π)ny |Vt +ZtΣt|t−1Z′t |
exp(−

u′t(Vt +ZtΣt|t−1Z′t)
−1ut

2
). (3.28)

(3) Correction: Since the observed data Yt is already known, the predictions Θt|t−1 and Σt|t−1 can be
updated (corrected) according to the Kalman (1960) formulation as

Θt|t = Θt|t−1 +Kt(Yt −Yt|t−1) = Θt|t−1 +Kt(Yt −ZtΘt|t−1), (3.29)

Σt|t = Σt|t−1−Kt(Vt +ZtΣt|t−1Z′t)K
′
t , (3.30)

where Kt is called Kalman gain factor and formulated as

Kt = Σt|t−1Z′t(ZtΣt|t−1Z′t +Vt)
−1. (3.31)

The intuition behind these formulae is relatively straightforward. The corrected prediction is a linear
combination between the old prediction, Θt|t−1, and the current prediction error (Yt −Yt|t−1). Given
the linear form, Kt is chosen such that it minimises the prediction error variance. Kalman filter works
recursively and requires only the last "best guess", rather than the entire history, of a system’s state to
calculate a new state. This means that the prediction step and the correction step are repeated at every
time step, with the latest time step estimate, and its covariance informing the prediction used in the
following iteration. The proof of these formulae is not provided here since they can be found in many
literary works (see e.g., Chui et al., 2017).
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3.6 Bayesian Inference for State-Space Model

Bayesian inference (Gelman et al., 2013) provides the opportunity to estimate the full posterior
distribution of the state parameters within the state-space models and its uncertainty based on Bayesian
statistics, especially when the state equation or the observation equation is unknown, i.e., the system
matrices are unknown.

p(Θ,X |Y ) = p(Θ|Y )p(X |Y ) = p(Y |Θ,X)p(Θ)p(X)

p(Y )
=

p(Y |Θ,X)p(Θ)p(X)∫
p(Y |Θ,X)p(Θ)p(X)dXdθ

. (3.32)

Equation (3.32) shows the joint posterior distribution (p(Θ,X |Y )) of the state parameters Θ and the
other unknown parameters (denoted by X) within the state-space model (Eqs. (3.19) and (3.20)) using
the Bayes’s rule. In this equation X can be use to denote the covariance matrix of the noise processes
Vt and Q in Eq. (3.21), p(Y |Θ,X) shows the likelihood distribution, while p(Θ) and p(X) denote
the prior distributions for the Θ and X , respectively. The denominator of Eq. (3.32) is a normalising
constant known as the partition function.

Ensemble Kalman Filter (EnKF, Evensen, 1994) and Particle Filtering (PF, Gordon et al., 1993) or
smoothing (Doucet and Johansen, 2009) are among popular algorithms that can be used to recursively
update an estimate of the model states and produce corresponding innovation values given a sequence
of observations in the state-space equation (Eqs. (3.19) and (3.20)). In theory, EnKF accomplishes
this goal by linear projections, and the estimations in PF are performed through a Sequential Monte
Carlo sampling. Comparing EnKF and PF, the latter includes a random element, converging to the
true posterior probability function if the number of samples is vast. While the PF’s strength is in its
ability to account for both Gaussian and non-Gaussian error distributions, it suffers from the problem
of dimensionality, which means that the sample size increases exponentially with the dimension of
the state-space to achieve a certain performance. This fact precludes using PF in high-dimensional
data-model fusion problems (Bengtsson et al., 2008; Daum and Huang, 2003; Snyder et al., 2008).

When accuracy is important, simulation-based (stochastic) methods, e.g., Markov Chain Monte Carlo
(MCMC, Geyer, 2011) approaches such as Gibbs sampling (Gelfand and Smith, 1990; Smith and
Roberts, 1993) offer an attractive alternative (see Sections 3.6.1 and 3.6.2) to produce a simulation
sample (though not necessarily an independent one) from the (joint) posterior distributions of the
unknown parameters in dynamic models, such as state-space models (see Eq. (3.32)). A simulation
sample can be used to approximate almost any quantity relevant to Bayesian inference, including
posterior expectations, variances, quantiles, and marginal densities. In other words, given a sample
from the posterior of sufficient effective size, posterior expected values can be approximated by
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sample means, posterior quantiles by sample quantiles, posterior marginal densities by sample-based
density estimates, and so forth.

In general, Monte Carlo-based Bayesian inference is powerful yet computationally expensive (Geyer,
1992, 2011; Smith, 2013). A trade-off between tractable computational complexity and good perfor-
mance is to exploit various approximate Bayesian inference methods, such as expectation propagation
(Minka, 2001), mean-field approximation (Opper and Saad, 2001) and variational approximation
(Beal et al., 2006; Jordan et al., 1999). These techniques can also be integrated or combined to
produce new methods, such as Monte Carlo Expectation Maximisation (EM) or motivational MCMC
algorithms (McLachlan and Krishnan, 2007).

Since the approximations become more exact as more samples are used, accuracy tends to be limited
only by the computational resources available. The best posterior inference is readily accomplished
if an efficient method of sampling from the posterior is available. Independent sampling from the
posterior is seemingly ideal since relatively few samples are required to obtain a good approximation in
most cases, and the approximation error is relatively easy to characterise. However, such methods have
proven difficult to implement in a general way that efficiently scales with the unknown parameters’
dimension.

For example, rejection sampling (accept/reject) is efficient only if the posterior is tightly bounded
by a known function proportional to an easy-to sample density (see e.g., Casella et al., 2004).
Finding such a function is generally difficult, and even adaptive variants struggle in high-dimensional
situations. Currently, the most efficient, typically adaptable methods are using dependent sampling.
Dependent sampling usually incurs a computational cost of acquiring a larger number of samples to
attain a given accuracy. Still, the flexibility of these methods and their scalability to higher dimensions
offset this disadvantage. During the past three decades, the category of Markov chain Monte Carlo
(MCMC, Geyer, 2011) sampling approaches have been dramatically used in various studies. Unlike
most classical methods, MCMC can often be efficiently automated, even for moderately complicated
models. The underlying logic of MCMC sampling is that we can estimate any desired expectation by
ergodic averages. That is, we can compute any statistic of a posterior distribution as long as we have
N simulated samples from that distribution according to

E[ f (s)]p ≈
1
N

Σ
N
i=1 f (s(i)), (3.33)

where p denotes the posterior distribution of interest, E[ f (s)] is the desired expectation, and f (s(i)) is
the i-th simulated sample from p. For example, we can estimate the mean of the unknown parameters
Θt in the state-space Eqs. (3.19) and (3.20) by

E[Θt ]p ≈
1
N

Σ
N
i=1Θ

(i)
t . (3.34)
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3.6.1 Markov Chain Monte Carlo (MCMC) Sampling

MCMC is a sampling method, which follows a Bayesian inference to estimate the full posterior
distribution of the parameters of interest, given a set of observations. MCMC sampling provides a
class of algorithms for systematic random sampling from high-dimensional probability distributions,
where each new sample depends on the existing samples, known as a Markov Chain. This property
allows the algorithms to focus on the quantity that is being approximated from the distribution, even
with many random variables (Van Ravenzwaaij et al., 2018).

The benefit of the Monte Carlo approach is that calculating the mean of a large sample of numbers can
be much more comfortable than calculating the mean directly from the normal distribution’s equations.
This benefit is most pronounced when random samples are easy to draw and when the distribution’s
equations are hard to work with in other ways. Unlike Monte Carlo sampling approaches that can
draw independent samples from the distribution, Markov Chain Monte Carlo methods draw samples
where the next sample is dependent on the existing sample, called a Markov Chain (Geyer, 2011).

The Markov chain property of MCMC (see Eq. (3.35)) is that a unique sequential process generates
random samples. Each random sample is used as a stepping stone to generate the next random sample
(hence the chain). It allows the algorithms to narrow in on the quantity that is being approximated
from the distribution, even with a large number of random variables. A particular property of the
chain is that, while each new sample depends on the one before it, new samples do not rely on any
samples before the previous one (this is the “Markov” property).

MCMC is particularly useful in Bayesian inference because of the focus on posterior distributions
which are often difficult to work with via analytic examination. In these cases, MCMC allows the
user to approximate aspects of posterior distributions that cannot be directly calculated (e.g., random
samples from the posterior, posterior means, etc.). Several Markov chain methods are available for
sampling from a posterior distribution, where two important examples are the Gibbs sampler and the
Metropolis-Hastings algorithm. The different MCMC algorithms differ in their performance with the
speed and convergence depending on the model structure, which is briefly presented in what follows.

Markov Chain

Markov chains are an essential component of Markov chain Monte Carlo (MCMC) techniques. Under
MCMC, the Markov chain is used to sample from some target distribution. A Markov chain is a
stochastic process that operates sequentially (e.g., temporally), transitioning from one state to another
within an allowed set of states.

Θ0→Θ1→Θ2→ ··· → Θt → . . . (3.35)
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Markov chain is defined by three elements:
(I) A state-space Θ, which is a set of values that the chain is allowed to take.
(II) A transition operator p(Θt |Θt−1) that defines the probability of moving from state Θt−1 to Θt .
(III) An initial condition distribution π0 establishes the probability of being in any possible state at the
initial iteration i = 0.
The Markov chain starts at some initial state, which is sampled from initial values, then transitions
from one state to another according to the transition operator p(Θt |Θt−1).
A Markov chain is called memoryless if the next state only depends on the current state and not on
any of the states previous to the current value. The mathematical definition of the Markov chain is

p(Θt |Θt−1,Θt−2, . . . ,Θ1) = p(Θt |Θt−1). (3.36)

This memory-less property of a Markov chain is formally known as the Markov property in Bayesian
inference. If the transition operator for a Markov chain does not change across transitions, the Markov
chain is called time-homogeneous. A nice property of time-homogeneous Markov chains is that as the
chain runs for a long time and t→ ∞, the chain will reach an equilibrium called the chain’s stationary
distribution.

p(Θt+1|Θt) = p(Θt |Θt−1). (3.37)

If the state-space of a Markov chain takes on a finite number of distinct values, and it is time-
homogeneous, then the transition operator can be defined by a matrix P, where the entries of P are

Pi j = p(Θt = j|Θt−1 = i). (3.38)

Equation (3.38) means that if the chain is currently in the i-th state, the transition operator assigns the
probability of moving to the j-th state by the entries of i-th row of P (i.e., each row of P defines a
conditional probability distribution on the state-space). A Markov chain can also have a continuous
state-space that exists in the real numbers Θ ∈ RN . In this case, the transition operator cannot be
represented simply as a matrix but is instead some continuous function on the real numbers. Note that
the continuous state-space Markov chain also has a stationary distribution. The stationary distribution
of a Markov chain is important for sampling from probability distributions, a technique at the heart of
the MCMC approaches.

3.6.2 Gibbs Sampling

Gibbs sampling is one of the most frequently used MCMC techniques to obtain samples from the
posterior distribution. The idea in Gibbs sampling is to generate posterior samples by sweeping through
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each variable (or block of variables) to sample from its conditional distribution with the remaining
variables fixed to their current values. For instance, consider the random variables (X1,X2, . . . ,XD).
Gibbs sampling is started by setting these variables to their initial values X (0)

1 ,X (0)
2 , . . . ,X (0)

D (often
values sampled from their prior distribution p(X (0)

d ), for d = 1, . . . ,D). At iteration (i), a Markov
chain is generated by updating X1,X2, . . . ,XD in turn by drawing from the full conditional distributions
as

X (i)
d ∼ p(X (i)

d |X
(i−1)
−d )∼ p(X (i)

d |X
(i)
1 ,X (i)

2 , . . . ,X (i)
d−1,X

(i−1)
d+1 , . . . ,X (i−1)

D ), d = 1,2, . . . ,D. (3.39)

This process continues until convergence (the sample values have the same distribution as if they were
sampled from the proper posterior joint distribution). Algorithm 1 details a generic Gibbs sampler.

Algorithm 1 Gibbs sampler
Initialise X (0)

1 ,X (0)
2 ,X (0)

3 , . . . ,X (0)
D

for iteration i = 1,2, ... do
X (i)

1 ∼ p(X (i)
1 |X

(i−1)
2 ,X (i−1)

3 , . . . ,X (i−1)
D )

X (i)
2 ∼ p(X (i)

2 |X
(i)
1 ,X (i−1)

3 , . . . ,X (i−1)
D )

...
X (i)

D ∼ p(X (i)
D |X

(i)
1 ,X (i)

2 , . . . ,X (i)
D−1)

In Algorithm 1, we are not directly sampling from the posterior distribution itself. Rather, we simulate
samples by sweeping through all the posterior conditionals, one random variable at a time. Because
we initialise the algorithm with random values, the samples simulated based on this algorithm at
early iterations may not necessarily be representative of the actual posterior distribution. However,
the theory of MCMC guarantees that the stationary distribution of the samples generated under
Algorithm 1 is the target joint posterior that we are interested in (Geyer, 1992). For this reason,
MCMC algorithms are typically run for a large number of iterations (in the hope that convergence
to the target posterior will be achieved). Because samples from the early iterations are not from the
target posterior, it is common to discard them. The discarded iterations are often referred to as the
burn-in period (see also Section 3.6.5).

Essentially, Gibbs sampling reduces the problem of sampling X := (X1,X2, ...,XD) to the problem of
conditionally sampling of variables Xd , for d = 1,2, ...,D. Since Xd are of lower dimension (perhaps
even one-dimensional), compared to X , they may be easier to sample by conventional methods.
Moreover, it is often possible to choose a prior distribution such that many of the full conditionals
are easy to sample. For example, when conditional priors are chosen from easily sampled families
that are partially conjugate to the sampling model (see Section 3.1.2), the Gibbs sampler is easy to
construct (see, e.g., Gelman et al., 2013).
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However, there are cases in which Gibbs sampling will be very inefficient. That is, the mixing of
the Gibbs sampling chain might be prolonged, meaning that the algorithm may spend a long time
exploring a local region with high density, and, thus, take very long to explore all areas with significant
probability mass. For example, when the cross-correlation of the posterior conditional distributions
between variables is high, successive samples become very highly correlated, and sample values
change very slowly from one iteration to the next, resulting in chains that basically do not mix. The
performance of the Gibbs sampling can sometimes be improved by modifying the algorithm. For
example, the order in which the variables Xd are sampled can affect the mixing rate (e.g., Roberts and
Sahu, 1997). Replacing some of the full conditional distributions with (partial) posterior marginals
results in a partially collapsed Gibbs sampler (Van Dyk and Park, 2008). It may have better sampling
properties, though it must be implemented carefully to preserve the stationary distribution (e.g.,
Van Dyk and Jiao, 2015).

3.6.3 Metropolis-Hastings

Metropolis-Hastings (Chib and Greenberg, 1995), another MCMC algorithm to simulate samples
from a probability distribution of the full joint density function, relies on the (independent) proposal
distributions of the variables of interest Xd , where d = 1,2, ...,D. Algorithm 2 provides details of a
generic Metropolis-Hastings algorithm where X (i) := (X (i)

1 ,X (i)
2 , ...,X (i)

D ).

Algorithm 2 Metropolis-Hastings algorithms
Initialise X (0), for d = 1,2, . . . ,D

for iteration i = 1,2, ... do
Propose: Xcand ∼ p(X (i)|X (i−1))

Acceptance Probability: α(Xcand |X (i−1)) = min{1, p(X (i−1)|Xcand)p(Xcand)

p(Xcand |X (i−1))p(X (i−1))
}

u∼ Uniform(u;0,1)
if u < α then

Accept the proposal: X (i)← Xcand

else
Reject the proposal: X (i)← X (i−1)

end if
end for

The first step is to initialise the sample value for each random variable (this value is often sampled
from the variable’s prior distribution). The main loop of Algorithm 2 consists of three components:
(1) Generate a proposal (or a candidate) sample Xcand from the proposal distribution p(X (i)|X (i−1));
(2) Compute the acceptance probability via the acceptance function α(Xcand |X (i−1)) based upon the
proposal distribution p(X (i)|X (i−1)) and the full joint density p(X (i)); (3) Accept the candidate sample
with the acceptance probability α , or reject it with probability 1−α .



68 An Overview of Bayesian Fusion Techniques

Proposal Distribution

The Metropolis-Hastings algorithm starts with simulating a candidate sample Xcand from the proposal
distribution p(.). Note that samples from the proposal distribution are not accepted automatically as
posterior samples. These candidate samples are accepted probabilistically based on the acceptance
probability α(.). There are mainly two kinds of proposal distributions, symmetric and asymmetric. A
proposal distribution is a symmetric distribution if

p(X (i)|X (i−1)) = p(X (i−1)|X (i)). (3.40)

Clear choices of symmetric proposals include Gaussian distributions or Uniform distributions centred
at the current state of the chain. For example, if we have a Gaussian proposal, then we have

Xcand = X (i−1)+δ ,

δ ∼N (0,σ).
(3.41)

Because the probability density function for normal distributions of Xcand−X (i−1) and X (i−1)−Xcand

are equal to N (0,σ), this is a symmetric proposal. This proposal distribution randomly perturbs the
current state of the chain, and then either accepts or rejects the perturbed value. The algorithms of this
form are called the Random-walk Metropolis algorithm (Chib and Greenberg, 1995).

Random-walk Metropolis-Hastings algorithms are the most common Metropolis-Hastings algorithms.
However, we may choose to (or need to) work with asymmetric proposal distributions in certain cases.
For example, we may choose an inherently asymmetric proposal distribution, such as the log-normal
density, which is skewed towards larger values. In other cases, we may need to work with asymmetric
proposal distributions to accommodate particular constraints in our models. For example, if we wish
to estimate the posterior distribution for a variance parameter, we require that our proposal does not
generate values smaller than zero (Haario et al., 1999).

Acceptance Function

Intuitively, the Metropolis-Hastings acceptance function is designed to strike a balance between the
following two constraints:
(1) The sampler should tend to visit higher probability areas under the full joint density (this constraint
is given by the ratio p(Xcand)

p(X (i−1))
).

(2) The sampler should explore the space and avoid getting stuck at one site (e.g., the sampler can
reverse its previous move in the space; this constraint is given by the ratio p(X (i−1)|Xcand)

p(X (i)|X (i−1))
.

The Metropolis-Hastings acceptance function must have this particular form because this ensures that
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the Metropolis-Hastings algorithm satisfies the condition of detailed balance, which guarantees that
the stationary distribution of the Metropolis-Hastings algorithm is the target posterior that we are
interested in (see Geyer, 2011; Gilks, 1996, , for more details).

Importantly, note that the acceptance function can be asymmetric (e.g., α(X (i)|X (i−1)) ̸=α(X (i−1)|X (i)))
irrespective of the proposal distribution. The acceptance function in the case of symmetric proposals,
where α(X (i)|X (i−1)) = α(X (i−1)|X (i)) is driven as

α(Xcand |X (i−1)) = min{1, p(X (i−1)|Xcand)p(Xcand)

p(Xcand |X (i−1))p(X (i−1))
}= min{1, p(Xcand)

p(X (i−1))
}, (3.42)

where p(Xcand) and p(X (i−1)) are the full joint density. This result is intuitive. When the proposal
distribution is symmetric, the acceptance probability becomes proportional to how likely each current
state X (i−1) and the proposal state Xcand are under the full joint density.

Accept/Reject a Proposal

Finally, we accept a given proposal with the acceptance probability α , which is the outcome of the
acceptance function described above. The min operator in the acceptance function makes sure that the
acceptance probability α is never larger than 1. Operationally, we draw a random number uniformly
between 0 and 1, and if this value is smaller than α , we accept the proposal; otherwise, we reject it.

3.6.4 Gibbs Sampling Visa Versa Metropolis-Hastings

Gibbs sampling is a special case of Metropolis-Hastings sampling where the proposal distributions
are the posterior conditionals. Recall that all proposals are accepted in Gibbs sampling, which implies
that the acceptance probability is always 1. The algebra below shows that the acceptance function is
equal to 1 for Gibbs sampling algorithm.

α(Xcand
n ,X (i−1)

−n |X (i−1)
n ,X (i−1)

−n )

= min{1,
p(X (i−1)

n ,X (i−1)
−n |Xcand

n ,X (i−1)
−n )p(Xcand

n ,X (i−1)
−n )

p(Xcand
n ,X (i−1)

−n |X (i−1)
n ,X (i−1)

−n )p(X (i−1)
n ,X (i−1)

−n )
},

(3.43)

the proposal distributions for Gibbs sampling are the posterior conditionals distribution as

p(X (i−1)
n ,X (i−1)

−n |Xcand
n ,X (i−1)

−n ) = p(X (i−1)
n |X (i−1)

−n )

and

p(Xcand
n ,X (i−1)

−n |X (i−1)
n ,X (i−1)

−n ) = p(Xcand
n |X (i−1)

−n ),

(3.44)
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here, the chain rule is considered, where the full joint distribution of p(◦,⋆) is defined as = p(◦|⋆)p(⋆)
(see Section 3.1.1). Therefore

p(Xcand
n ,X (i−1)

−n ) = p(Xcand
n |X (i−1)

−n )p(X (i−1)
−n ),

and

p(X (i−1)
n ,X (i−1)

−n ) = p(X (i−1)
n |X (i−1)

−n )p(X (i−1)
−n ).

(3.45)

According to the Eqs. (3.44) and (3.45), Eq. (3.43) is rewritten as

α(Xcand
n ,X (i−1)

−n |X (i−1)
n ,X (i−1)

−n )

= min{1,
p(X (i−1)

n |X (i−1)
−n )p(Xcand

n |X (i−1)
−n )p(X (i−1)

−n )

p(Xcand
n |X (i−1)

−n )p(X (i−1)
n |X (i−1)

−n )p(X (i−1)
−n )

}

= 1.

(3.46)

3.6.5 Convergence Diagnostics For MCMC

Two important issues that must be addressed while implementing MCMC are where to start and when
to stop the algorithm. These two tasks are related to determining convergence of the underlying
Markov chain to stationarity and convergence of Monte Carlo estimators to population quantities,
respectively. It is known that under some standard conditions on the Markov chain, for any initial
value, the distribution of X (i)

n converges to the stationary distribution (see, e.g., Meyn and Tweedie,
2012; Robert and Casella, 2013) as i→ ∞.

The prior distribution of Xn is not equal to the posterior distribution, known as target density π , and
MCMC algorithms produce (serially) correlated samples. Therefore, the further the initial value from
the posterior distribution, the longer it takes for Xn to approximate π . In particular, if the initial value
is not in a high-density (π) region, the samples at the earlier iterations may not be close to the target
distribution. In such cases, a common practice is to discard early realisations in the chain and start
collecting samples only after the effect of the initial value has (practically) worn off. The main idea
behind this method, known as burn-in, is to use samples only after the Markov chain gets sufficiently
close to the stationary distribution. However, its usefulness for Monte Carlo estimation has been
questioned in the MCMC community (Geyer, 2011). Thus, ideally, MCMC algorithms should be
initialised at a high-density region, but if finding such areas is difficult, collection of Monte Carlo
samples can be started only after a particular iteration M when approximately X (M)

n ∼ π . Once the
starting value M is determined, one needs to decide when to stop the simulation. (Note that the starting
value M here refers to the beginning of a collection of samples instead of the initial value of X (0)

n

for the Markov chain, although these two values can be the same.) Often the quantities of interest
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regarding the target density π can be expressed as the means of certain functions defined as

Eπg≡
∫

χ

g(χ)π(χ)dχ, (3.47)

where g is a real-valued function. For example, appropriate choices of g make Eπg different measures
of location, spread, and other summary features of π . Here, the support of the target density π is
denoted by χ =RD, for some D≥ 1, although it can be non-Euclidean as well. The MCMC estimator
of the population mean Eπg is the average sample ḡN,M as

ḡN,M =
N

∑
i=M+1

g(X (i)
n )/(N−M). (3.48)

It is known that usually ḡN,M → Eπg as N→ ∞. In practice, however, MCMC users run the Markov
chain for a finite N number of iterations, thus MCMC simulation should be stopped only when ḡN,M

has sufficiently converged to Eπg. The accuracy of the time average estimator ḡN,M depends on
the quality of the samples. Thus, when implementing MCMC methods, it is necessary to conclude
the Markov chain convergence wisely and subsequently determine when to stop the simulation. By
performing a theoretical analysis on the underlying Markov chain, an analytical upper bound on its
distance to stationarity may be obtained (Rosenthal, 1995), which in turn can provide a rigorous
method for deciding MCMC convergence and thus finding M (Jones and Hobert, 2001; Jones
et al., 2004). Similarly, using a sample size calculation based on an asymptotic distribution of the
(appropriately scaled) Monte Carlo error ḡN,M−Eπg, an honest stopping value N can be found. In the
absence of such theoretical analysis, often practical diagnostic tools are used to check the convergence
of MCMC samplers and estimators, although these tools cannot determine convergence with certainty.

Since the early 1990s, with the increasing use of MCMC, much research effort have gone into
developing convergence diagnostic tools. These diagnostic methods can be classified into several
categories. For example, corresponding to the two types of convergence mentioned before, some
of these diagnostic tools are designed to assess convergence of the Markov chain to the stationary
distribution, whereas others check for convergence of the summary statistics like sample means
and sample quantiles to the corresponding population quantities. The available MCMC diagnostic
methods can be categorised according to other criteria as well. For example, (I) their level of theoretical
foundation, if they are suitable for checking joint convergence of multiple variables; (II) whether they
are based on multiple (parallel) chains or a single chain or both, (III) if they are complemented by a
visualisation tool or not, (IV) if they are based on moments and quantiles or the kernel density of the
observed chain, and so on. Several review articles on MCMC convergence diagnostics are available in
the literature (see, e.g., Brooks and Roberts, 1998; Cowles and Carlin, 1996).

Cowles and Carlin (1996) describe 13 convergence diagnostics and summarise these according to the
different criteria mentioned above. In this study, a simple graphical method suggested by Brooks and



72 An Overview of Bayesian Fusion Techniques

Roberts (1998) and Sinharay (2003) is used to determine the number of iterations and to define the
convergence of the sampling algorithm in the MCMC-DA, and ConBay-DA approaches, proposed
in Chapters 5 and 6, respectively. Different simple graphical tools exist for convergence assessment,
which examines the chain(s) of values generated for each parameter to determine if the simulation
process stabilises in some sense. These tools are elementary and easy to implement and provide useful
feedback about the convergence of the MCMC.

Trace Plots

Creating a trace-plot for each parameter in the model is the most popular check for convergence of
an MCMC algorithm. The trace plot is a time series plot that shows the realisations of the Markov
chain at each iteration against the iteration numbers. This graphical method is used to visualise how
the Markov chain is moving around the state-space, that is, how well it is mixing. If the MCMC
chain is stuck in some part of the state-space, or if there is a clear pattern (e.g., visible trends ) in this
plot, the MCMC algorithm may not have converged. It is often said that a good trace plot should
look like a hairy caterpillar (Fig. 3.2). For an efficient MCMC algorithm, if the initial value is not

Fig. 3.2 An example of MCMC sample chain values after successive iterations. Poor chain mixing (characterized by any
sort of pattern) suggests that the MCMC sampling chains may not have completely traversed all features of the posterior
distribution and that more iterations are required to ensure the distribution has been accurately represented.

in the high-density region, the beginning of the trace plot shows back-to-back steps in one direction.
In contrast, if the trace plot shows a similar pattern throughout, then there is no point in rejecting
burn-in samples. If an MCMC algorithm consists of multiple chains, the trace plots often overrate
the generated values on a typical graph for each parameter. MCMC chains not traversing the sample
space, in the same way, provide evidence of lack of convergence. Some MCMC users monitor the log
of posterior density (or a multiple of it) at the chain’s current state. If the log of posterior density has
an increasing trend, the chain has not reached the primary mode yet. If the log-density is going down,
the chain probably started near a mode around, which there is little probability mass and will be more
respectively part of the distribution.
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Autocorrelation Functions Plots

Unlike independent and identically distributed (i.i.d) sampling, MCMC algorithms result in autocor-
related samples, which need a large number of iterations to traverse the whole sample space of the
parameters. The lag-k (sample) autocorrelation is defined to be the correlation between the samples
lag-k steps apart. The autocorrelation plot shows values of the lag-k autocorrelation function against
increasing lag-k values. This tool is not strictly a convergence diagnostic tool but helps to interpret the
trace plots and, thus, indirectly helps to assess convergence of the MCMC algorithm. For fast-mixing
Markov chains, lag-k autocorrelation values drop down to (practically) zero quickly as k increases
(see Fig. 3.3 first row plots). In contrast, high lag-k autocorrelation values for larger lag-k indicate
a high degree of correlation and slow mixing of the Markov chain (see Fig. 3.3 second row plots).
Generally, to get precise Monte Carlo estimates, Markov chains need to be run for many iterations,
which takes the autocorrelation function to be practically zero. The autocorrelation plots on the right

Fig. 3.3 An example of autocorrelation plots. The first graph demonstrates a sample of good chain mixing, which will
converge to a stationary distribution (the posterior) quickly. The bottom graph demonstrates poor chain mixing, with slow
convergence. The plots on the right show the corresponding autocorrelations. It can be seen that whereas the autocorrelation
dies out for the first chain (at about the 10th lag, it remains high for poor chain mixing.

show the corresponding autocorrelations. You can see that whereas the autocorrelation dies out for
the first chain pretty soon (at about the 10th lag), it remains high for the other two cases.

Running Mean Plots

Another graphical method used in practice is the running mean plot, although its use has faced
criticism (Geyer, 2011). The running mean plot shows the mean (time average) of all Monte Carlo
estimates against the iterations. Usually, running means are plotted at every k-th iteration (e.g., k=50).
This line plot should stabilise to a fixed number as iteration increases, but non-convergence of the plot
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indicates that the simulation cannot be stopped yet. While the trace plot is used to diagnose a Markov
chain’s convergence to stationarity, the running mean plot is used to decide stopping times. Figure 3.4
shows an example of the running mean plot for 3 different chains. The black curve shows that the
convergence is slow, while the blue curve shows a faster convergence, but still slower than the red
curve. In the multivariate case, individual trace, autocorrelation, and running mean plots are generally

Fig. 3.4 An example time series of the running chain mean as used to check whether the chain is slowly or quickly
approaching its target distribution.

made based on realisations of each marginal chain. Thus, the correlations that may be present among
different components are not visualised through these plots. In multivariate settings, investigating
correlation across different variables is required to check for the presence of high cross-correlation
(Cowles and Carlin, 1996).

3.7 Bayesian Model Averaging

In practice, multiple models provide descriptions of the distributions generating the observed data Y.
It is a standard statistical practice that, in such situations, a best model must be selected according to
some criteria, like model fit to the observed data set, predictive capabilities or likelihood penalisations,
such as information criteria. After making the selection, all inference is made, and conclusions
are drawn assuming the selected model as the right model. However, there are downsides to this
approach. The selection of one particular model may lead to overconfident inferences and riskier
decision making since it ignores the existent model uncertainty favouring very specific distributions
and assumptions on the model of choice. Therefore, modelling this source of uncertainty to select or
combine multiple models appropriately is very desirable. Using Bayesian inference for this purpose
has been suggested as a framework capable of achieving these goals. Bayesian Model Averaging
(BMA, Hoeting et al., 1999) is an extension of the usual Bayesian inference methods, in which
one not only models parameter uncertainty through the prior distribution but also model uncertainty
obtaining posterior parameter and model posteriors using Bayes’ theorem and therefore allowing for
direct model selection, combined estimation and prediction.
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Let each model is denoted by Z(m), where m = 1,2, ...,M is used to identify the model integrated into
the observation at time t. Considering Eq. (3.11), one then obtain the posterior probability distribution
of the unknown parameters Θ(m), using Bayes’ theorem (see Eq. (3.2)) as

p(Θ(m)|Y,Z(m)) =
p(Y |Z(m),Θ(m))p(Θ(m)|Z(m))∫

p(Y |Z(m),Θ(m))p(Θ(m)|Z(m))dΘ(m)
, (3.49)

where the integral in the denominator is calculated over the support set for each prior distribution
and represents the marginal distribution of the data set for all parameter values specified in model m.
This quantity is called the model’s marginal likelihood (see also Eq. (3.12)) or model evidence and is
denoted by

p(Y |Z(m)) =
∫

p(Y |Z(m),Θ(m))p(Θ(m)|Z(m))dΘ
(m). (3.50)

BMA then adds a layer to hierarchical modelling present in Bayesian inference by assuming a prior
distribution over the set of all considered models to determine the prior uncertainty over each model’s
capability to describe the data accurately. If there is a probability mass function over all the models
with values Z(m) for m = 1,2, ...,M, then Bayes’ theorem can be used to derive posterior model
probabilities given the observed data by

p(Z(m)|Y ) = p(Y |Z(m))p(Z(m))

∑
M
i=1 p(Y |Z(i))p(Z(i))

, (3.51)

which is a straightforward posterior model probability (Raftery et al., 1997), representing the backing
of each considered model by the observed data. There is also a link between these posterior model
probabilities and the use of Bayes Factors. Given two models i and j, the Bayes factor of model i
against model j is given by

BFi, j =
p(Z(i)|Y )
p(Z( j)|Y )

, (3.52)

thus, quantifying the relative strength of the evidence in favour of model i against that of model j.
Given a baseline model, which can be arbitrarily fixed as model 1, it is clear that Eq. (3.51) can be
written in terms of Bayes Factors by simply dividing by the baseline model’s evidence, resulting in

p(Z(m)|Y ) = BFm,1 p(Z(m))

∑
M
i=1 BFi,1 p(Z(i))

, (3.53)

which means that one can estimate the posterior model probabilities by using Bayes Factors estimations
and vice versa. These model probabilities can mainly be used for two purposes. First, the posterior
probabilities can be used as straightforward model selection criteria, with the most likely model being
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selected. Second, consider a quantity of interest present in all models, e.g., Θ, it follows that its
marginal posterior distribution across all models is given by

p(Θ|Y ) =
M

∑
m=1

p(Θ(m)|Y,Z(m))p(Z(m)|Y ), (3.54)

Equation (3.54) shows the weighted average of all posterior distributions based on the posterior model
probabilities estimated by Eq. (3.51). Therefore, BMA allows for a direct combination of models to
obtain combined parameter estimates or predictions (Roberts, 1965). However, the implementation
and application of BMA are not easy due to the difficulties in estimation of the model evidence,
known as the marginal likelihood (Eq. (3.50)), which is non-trivial in most applications. The integral
can be approximated by Monte Carlo methods or its extensions such as Importance Sampling (Tokdar
and Kass, 2010). Namely, given a sampling weight w(Θ), defined over the same integration domain
of Eq. (3.50), the evidence can be approximated by taking N random samples from the probability
distribution determined by w(Θ) and computing the weighted average as

p(Y |Z(m)) =
N

∑
n=1

p(Y |Θ(m)
n ,Z(m))p(Θ(m)

n |Z(m))

w(Θ(m)
n )

, (3.55)

The ordinary Monte Carlo approximation can be performed by using the parameter prior p(Θ) as
a sampling weight (Gelfand and Smith, 1990). Markov Chain Monte Carlo (MCMC) methods can
also be used to approximate the marginal likelihood by sampling Θ

(m)
1 ,Θ

(m)
2 , ...,Θ

(m)
N from an MCMC

chain (Gelfand and Dey, 1994). The estimator defined by Eq. (3.55) is guaranteed to converge to
the evidence when the sample size increases. Another benefit of the MCMC comes through the
use of trans-dimensional Markov Chain methods like the Reversible Jump MCMC (Green, 1995) or
stochastic searches through the model space like variable selection through stochastic search (SSVS,
George and McCulloch, 1997) employed in regression models. When using MCMC samples, the
quality of the approximation is not guaranteed, and there are more sophisticated results ensuring its
good behaviour (see Robert and Casella (2013) for a complete treatment).



Chapter 4

Dynamic Model Data Averaging (DMDA)

In this chapter, Dynamic Model Data Averaging (DMDA, i.e., a modified version of the Dynamic
Model Averaging (DMA) approach presented by Raftery et al., 2010) is formulated to merge multiple
a priori information, derived from multi-model water storage simulations, with a set of observation,
derived from GRACE(-FO) TWSC, while considering the uncertainty of all data sets (Fig. 4.1
summarises the DMDA method implemented in this study). In summary, DMDA is based on
the Bayes theory and provides time-variable weights to compute an average of multiple a priori
information, yielding the best fit to the observations. These weights can then be used to separate the
components of the observation and modify the estimation of a priori information (e.g., surface and
sub-surface water storage changes derived from hydrological models). Therefore, the DMDA water
storage estimates in this study are expected to be more realistic than those of individual models. In
this chapter, it will be shown that the implementation of DMDA combines the benefits of state-space
merging techniques, such as the Kalman filtering (Kalman, 1960) or Particle Filtering (PF, Gordon
et al., 1993), Markov Chain (MC, Chan and Geyer, 1994; Kuczera and Parent, 1998; Metropolis
et al., 1953), and Bayesian Model Averaging (BMA, Hoeting et al., 1999). The proposed approach
is able to deal with various observations and models with different structures, and can be applied in
data assimilation applications that work with only one model, e.g., (Girotto et al., 2016; Khaki et al.,
2017b,c; Schumacher et al., 2018a), as well as in handling multiple model outputs as in Van Dijk et al.
(2014).

In this chapter, a dynamic state-space model to define a linear relationship between a set of observation
(GRACE(-FO) TWSC) and a priori information (hydrological model outputs) is described in Section
4.1. The Kalman filter approach to recursively estimate the unknown state parameters and their
uncertainties is formulated in Section 4.2, while the Bayesian averaging of the Kalman filter estimates
is presented in Section 4.3. Updating a priori information and estimating their uncertainties is
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described in Section 4.4. Finally, the performance of DMDA is tested in a controlled synthetic
simulation in Section 4.5, where the results of the Bayesian update are known by definition.

4.1 Linear State-Space Model

Linear relationships between observations and a priori information in a dynamic system can be
represented by a linear state-space model as

Yt = ZtΘt + εt , (4.1)

Θt+1 = Θt +δt . (4.2)

Equation (4.1) is known as the ‘observation equation’, while Eq. (4.2) is known as the ’state equation’
according to Bernstein (2005) (see also Eqs. (3.19) and (3.20)). In Eq. (4.1) the observation
vector (e.g., GRACE(-FO) TWSC) for P spatial grid points at time t = 1,2, ...,T is shown by
Yt = [y1,y2, . . . ,yP]t , and a priori information (e.g., the water storage components derived from a
hydrological model) is stored in a P×P diagonal matrix Zt , where the diagonal elements contain
[zp,1,zp,2, . . . ,zp,K ]t corresponding to each spatial grid point p = 1,2, ...,P (see also Eq. (4.3)). The
number of parameters in a priori information is denoted by k = 1, ...,K. For hydrological applications
K shows the number of individual water storage compartments derived from hydrological model
outputs, such as canopy, snow, surface water, soil water, and groundwater storage.

Zt =


[z1,1,z1,2, . . . ,z1,K ] 0 . . . 0

0 [z2,1,z2,2, . . . ,z2,K ] . . . 0
...

. . .
...

0 0 . . . [zp,1,zP,2, . . . ,zP,K ]


t

, Θt =




θ1,1

θ2,1
...

θK,1


...

θ1,P

θ2,P
...

θK,P




t

(4.3)

In Eq. (4.1), each element of Θt (P×1) contains the unknown state parameters [θ1,p,θ2,p, . . . ,θK,p]t (see
also Eq. (4.3))., which make a linear relation between the observation Yt and a priori information Zt .
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In an ideal situation, where the observation (GRACE(-FO) TWSC) is equal to a priori information
(the summation of individual water storage components of the model), the unknown state parameters
Θt are equal to 1. However, for hydrological applications, it is expected that the model estimates
contain errors due to the imperfect structure of the hydrological model and uncertainties in the input
forcing data that are used to run the model simulations. Besides, GRACE(-FO) TWSC estimates
contain errors as described, e.g., in Forootan et al. (2014a). As a result, the state parameters Θt are
unknown, and are allowed to evolve in time according to the state equation Eq. (4.2).

In Eqs. (4.1) and (4.2), εt and δt are interpreted as the residual of the observation equation (Eq. (4.1))
and the state equation (Eq. (4.2)), respectively. The residual of the observation equation, i.e., εt , is
assumed to be Gaussian distributed with the mean value of zero and the error covariance matrix of
Vt , which can vary in time. The benefit of the Gaussian process state-space model is discussed in
Section 3.4.3. The state residual δt is assumed to be stationary and is Gaussian distributed. It is also
independent from εt , with the mean value of zero and its error covariance matrix Q (more details
about the Gaussian process state-space model are provided in Section 3.4.2 of Chapter 3). Thus, the
distribution of εt and δt can be written as[

εt

δt

]
∼ N

([
0
0

]
,

[
Vt 0
0 Q

])
. (4.4)

Uncertainty of the observation is reflected in Vt . The error covariance matrix of δt (Q in Eq. (4.4))
defines the temporal dependency between water storage changes at each time point to the previous
time step. Equations (4.1) and (4.2) are formulated with the main assumption that there is little
physical knowledge about how the defined regression model and its parameters are likely to evolve
in time. In hydrological applications, since changes in water storage compartments depend on
the history of hydrological processes, accounting for temporal dependency between water states
is desirable. However, in practice, there might be no information about the temporal relationship
between observations and a priori information (e.g., between GRACE(-FO) TWSC and hydrological
model outputs). Therefore, Q and consequently δt are unknown. However, it will be shown that by
introducing two parameters λ and α , which are referred to as ’Kalman forgetting factors’ and ’BMA
forgetting factors’, respectively, one can control the temporal dependency of the DMDA solutions.
These two parameters provide the opportunity to treat a priori information and observations of each
step temporally as dependent on or independent of previous steps.

It is worth mentioning here that for linear and Gaussian-type state-space models, as presented in
this chapter, the PF method will yield the same likelihood as EnKF when the number of simulations
is large enough (this has been tested but the results are not shown to keep the focus of this study
on presenting the DMDA). Therefore, the DMDA, which combines the benefits of the EnKF and is
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mathematically rigorous as the PF, is adopted in this thesis. More details of the EnKF and PF are
provided in Section 3.6 of Chapter 3.

4.2 Kalman Filter to Estimate State-Space Parameters

To solve the state-space model by the Kalman filter approach, the first step is to initialize the unknown
state parameters by choosing a prior value for Θ0|0 and its error covariance matrix Σ0|0 when t = 0
(see Section 3.5 of Chapter 3). The numerical examples of prior values are discussed in Section 5.1.1
5. For the following equations, Y1:t represents the vector of observations up to the time step t, i.e.,
[Y1, ...,Yt ], and ◦t|s denotes the prediction of the variable ◦ at time t, conditional upon information
available at time s.

In the Kalman filter solution of the state-space model, since the observation Yt and the residual outputs
εt are assumed to be Gaussian distributed, the state parameters Θt|t are obtained from a Gaussian
posterior distribution with the mean value of Θ̂t|t and the variance Σ̂t|t . Accordingly, at time t−1, the
posterior distribution of state parameters are assumed to be normal with the mean value of Θ̂t−1|t−1

and the covariance Σ̂t−1|t−1, defined as

p(Θt−1|Y1:t−1)∼ N(Θ̂t−1|t−1, Σ̂t−1|t−1). (4.5)

In the next step of the Kalman filtering, the state parameter at time t, i.e., Θt , are predicted by
introducing δt ∼N (0,Q) to the state equation (Eq. (4.2)). The posterior probability distribution of
predicated Θt conditional on the observed Y1:t−1 has a normal distribution with the mean value of
Θt|t−1 and the covariance matrix of Σt|t−1 shown by Eq. (4.6) as

p(Θt |Y1:t−1)∼ N(Θt|t−1,Σt|t−1), (4.6)

where

Θt|t−1 = Θ̂t−1|t−1,

Σt|t−1 = Σ̂t−1|t−1 +Q.
(4.7)

In Eq. (4.7) which is derived from the state equation (Eq. (4.2)), Q is unknown (the error covariance
matrix of δt in Eq. (4.2)). Therefore, to mathematically define a temporal dependency, Σt|t−1 in Eq.
(4.6) can be replaced by

Σt|t−1 = λ
−1

Σ̂t−1|t−1, (4.8)
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where 0 < λ ≤ 1 controls the influence of previous observations on the regression value at time t and is
known as ‘Kalman forgetting factor’ in the DMDA approach (see, e.g., Fagin, 1964; Jazwinski, 2007).
Therefore, in the state-space model, the covariance matrix of the state innovation (Q) is assumed to be
equal to (λ−1−1)Σt−1|t−1.

Hannan et al. (1989) indicated that in the recursive estimation of auto-regressive models, i.e., the state
equation, the covariance of previous steps is derived as a weighted product of the current step (i.e.,
weighted by λ−1 in Eq. (4.8)). By this assumption, the effective window size of temporal dependency
is estimated by 1/(1−λ ). In the application of DMDA, where six global models are merged with
GRACE(-FO) TWSC data, λ is chosen to be 0.95, which means that for monthly data, the effective
window size is equivalent to 18 months. This value is experimentally selected as a value to minimise
the Root Mean Square of Differences (RMSD) between the observed and modelled TWSC.

DMDA is formulated to update multiple sources of a priori information about a dynamic system,
using a set of observations. Therefore, each set of a priori information is denoted by Z(m)

t , for the rest
of the equations in this chapter, where m = 1,2, . . . ,M is used to identify each model used in DMDA
approach. Therefore, the unknown sate parameters Θt and its covariance matrix of Σt derived from
each set of a priori information m are denoted by Θ

(m)
t and Σ

(m)
t , respectively. It is worth mentioning

that available models, used as a priori information, might have different structures, e.g., the number
of soil layers varies between models. Therefore, the length of the state vector Θt and the size of
observation-transition matrix Zt change from one model to another. These differences can be handled
by DMDA.

To apply DMDA and update a priori information (e.g., water storage simulated by m = 1,2, . . . ,M
different models), the parameter prediction of Eq. (4.6) is then extended as

p(Θ(m)
t |Y1:t−1)∼ N(Θ

(m)
t|t−1,λ

−1
Σ̂
(m)
t−1|t−1), m = 1, ...,M (4.9)

After this prediction, the next step of the Kalman filter is to update (correct) parameters Θt|t−1 and
their uncertainty Σt|t−1 conditional on new observation Yt (see also Eqs. (3.29), (3.30), and (3.31)),
where the posterior distribution of the updated value is shown by

p(Θ(m)
t |Y1:t)∼ N(Θ̂

(m)
t|t , Σ̂

(m)
t|t ), (4.10)

where

Θ̂
(m)
t|t = Θ

(m)
t|t−1 +Σ

(m)
t|t−1Z(m)

t (Vt +Z(m)
t (Σ

(m)
t|t−1 +W (m)

t )Z(m)
t
′)′(Yt −Z(m)

t Θ
(m)
t|t−1), (4.11)
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Σ̂
(m)
t|t = Θ

(m)
t|t−1−Σ

(m)
t|t−1Z(m)

t
′(Vt +Z(m)

t (Σ
(m)
t|t−1 +W (m)

t )Z(m)
t
′)−1Z(m)

t Σ
(m)
t|t−1. (4.12)

In Eqs. (4.11) and (4.12), Vt is the covariance matrix of observation, and Wt is the covariance matrix
of predictors Zt (see Eq. (4.1)). In Eq. (4.11) and in the rest of this chapter, ◦′ denotes the transpose
matrix of ◦.

4.3 Bayesian Averaging of the Kalman Filter Estimates

It is evident from Eqs. (4.11) and (4.12) that the estimation of state parameter Θ̂t|t is conditional
on a particular model. Therefore, the DMDA solution to obtain unconditional results and update
multi-model simulations involves calculating the posterior model probability p(Z(m)

t |Y1:t) as a weight
for each model, which changes at each time step. In the following, it will be shown that time-variable
weights need to be computed for each model m by choosing a BMA forgetting factor α in a recursive
method. These weights are then used to dynamically average a priori values (the models), which leads
to the best fit to observations. This justifies the term ‘Dynamic’ in the DMDA and makes the method
different from other averaging techniques such as the Bayesian Model Averaging (BMA).

According to the Bayes’ theorem defined by Eq. (3.2) (Chapter 3), the posterior model probability for
each model m at time t can be estimated as

p(Z(m)
t |Y1:t) =

p(Yt |Z(m)
t ,Y1:t−1)p(Z(m)

t |Y1:t−1)

∑
M
i=1 p(Yt |Z(i)

t ,Y1:t−1)p(Z(i)
t |Y1:t)

, (4.13)

where, p(Yt |Z(m)
t ,Y1:t−1) is the density of the observation, known as likelihood distribution, at time t,

conditional on the a priori information derived from model m and the observation values up to time
t−1, i.e., Y1:t−1 = [Y1,Y2, ...,Yt−1], which is estimated by a normal distribution as

p(Yt |Z(m)
t ,Y1:t−1)∼ N(Z(m)

t Θ
(m)
t|t−1,Vt +Z(m)

t (Σ
(m)
t|t−1 +W (m)

t )Z(m)
t
′), (4.14)

and, p(Z(m)
t |Y1:t−1) is the model prediction equation, which is defined by

p(Z(m)
t |Y1:t−1) = Σ

M
i=1 p(Z(m)

t−1|Y1:t−1)ami. (4.15)
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In Eq. (4.14), Θ
(m)
t|t−1 and Σ

(m)
t|t−1 are the predicted values derived from Eq. (4.7). In Eq. (4.15)

ami = P(Z(i)
t |Z

(m)
t−1) is the element of the M×M transition matrix A(ami) between models, which can

be onerous when the number of models is large, e.g., for M models and τ time steps, the number
of combinations of models will be M2τ . In the numerical application of DMDA in Chapter 7, the
number of hydrological models is 6, therefore M = 6, and 122-time steps over the entire period of
the study (2002–2012), which leads to 6244 combinations of models. To specify the transition matrix
A, the implicit specification of the transition matrix is avoided using the BMA forgetting factor of
0 < α < 1, which has the same role as λ in Eq. (4.8). As a result, the model prediction equation (Eq.
(4.15)) can be rewritten as

p(Z(m)
t |Y1:t−1) =

p(Z(m)
t−1|Y1:t−1)

α

∑
M
i=1 p(Z(i)

t−1|Y1:t−1)α
. (4.16)

The posterior model probability, or weights, for each model at time t, is estimated in a recursive
solution between Eqs. (4.13), (4.14), and (4.16). This process is initialized by setting p(Z(m)

0 |Y0) =
1
M

for m = 1, ...,M, and assigning an initial values for the state parameters Θ
(m)
0 ∼ N(0,Σ(m)

0 ) where
Σ
(m)
0 =Variance (Yt)/Variance (Z(m)

t ). The reason for choosing this prior value is that in linear
regression, a regression coefficient for a predictor Zt is likely to be less than the standard deviation of
the observations Yt divided by the standard deviation of predictors Zt (for more information see Raftery,
1993). In this study, for the application part of DMDA (Chapter 7) to merge six global hydrological
models with GRACE TWSC, the optimum regression estimates are found when 0.85 < α < 0.9. By
this choice, the RMSD between the DMDA TWSC and those of GRACE was found to be minimum.
A BMA forgetting factor α = 0.9 corresponds to a temporal smoothing window with the length of
36 time steps. It means that the contribution of a priori information at time t−37 into the posterior
model probability of each model m at time t is negligible. The length of this smoothing window is
reduced, e.g., to 8 months if α = 0.2.

4.4 Updating a priori information and their Uncertainties by DMDA

The multi-model predictions of Ŷ DMDA
t is a weighted average of model-specific prediction Ŷ (m)

t , using
the posterior model probabilities, p(Z(m)

t |Y1:t), as its weights, i.e.,

Ŷ DMDA
t =

M

∑
m=1

p(Z(m)
t |Y1:t)Ŷ

(m)
t , (4.17)
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where Ŷ (m)
t = Z(m)

t Θ̂
(m)
t|t . The posterior model probability for each model at time t, along with the

estimated time-variable state parameter Θ̂
(m)
t|t = [θ̂

(m)
1,p , . . . , θ̂

(m)
K,p ]t from Kalman filter-type updating

Eq. (4.11) are used to update the a priori information, which can be water storage components in
hydrological application, as

ẑDMDA
k,p,t =

M

∑
m=1

p(Z(m)
t |Y1:t)z

(m)
k,p,t θ̂

(m)
k,p,t , (4.18)

where k = 1,2, . . . ,K are used to identify each of the water storage components in hydrological
applications, i.e., groundwater, soil water, surface water, canopy, and snow. To update the water
storage simulations of a single-model using the GRACE(-FO) TWSC and the DMDA approach, M
needs to be set to 1, and the prediction step is limited to the conditional estimation of the parameter
Θ

(m)
t |Z

(m)
t using Eq. (4.11).

The posterior model probability can also be used to estimate the unconditional probability distribution
of state parameters Θ

(1:M)
t|t = (Θ

(1)
t|t , ...,Θ

(M)
t|t ) given by observation Yt as shows by

p(Θ(1:M)
t |Y1:t) =

M

∑
m=1

p(Θ(m)
t |Z

(m)
t ,Y1:t)P(Z

(m)
t |Y1:t), (4.19)

where p(Θ(m)
t |Z

(m)
t ,Y1:t) shows the conditional distribution of Θ

(m)
t|t , which is approximated with a

normal distribution as

p(Θ(m)
t |Z

(m)
t ,Y1:t)∼ N(Θ̂

(m)
t|t , Σ̂

(m)
t|t ). (4.20)

The DMDA approach can be reduced to a standard Bayesian Model Averaging (BMA, Hoeting et al.,
1999) when α = λ = 1 (see also Section 3.7). Then the posterior model probability of model m is
given by

P(Z(m)
t |Y1:t) =

p(Y1:t |Z(m)
t )

∑
M
i=1 p(Y1:t |Z(i)

t )
, (4.21)

where p(Y1:t |Z(m)
t ) is the marginal likelihood, obtained by integrating the product of the likelihood,

P(Y1:t |Θ(m)
t ,Z(m)

t ), over the parameter of interest, P(Θ(m)
t ), according to Eq. (3.2) in Chapter 3 (see

also Hsu et al., 2009). Figure 4.1 summarises the work-flow of the DMDA approach.



4.4 Updating a priori information and their Uncertainties by DMDA 85

Fig. 4.1 Flowchart of the Dynamic Model Data Averaging (DMDA) method. The framework can accept an arbitrary number
of models, and it can be extended to accept various types of observations.
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4.5 Set up a Simulation to Test the Performance of DMDA

Before applying the DMDA method to real data, its performance is tested in a controlled synthetic
example, where the results of the Bayesian update are known by definition. In the first step of
this simulation, the aim is to compare DMDA and BMA in terms of updating hydrological model
outputs with respect to the observations. In the second step, it will be shown that the DMDA-derived
time-variable weights are the same as the expected values. To make the synthetic study simple, it

Fig. 4.2 A synthetic example, where DMDA is applied in a controlled setup, to integrate 2 hydrological models (here
selected as SURFEX-TRIP (M1) and LISFLOOD (M2)) with simulated observed TWSC to separate its compartments (i.e.,
groundwater and soil water storage). All data sets in this simulation are related to the Niger River Basin and covering the
period between 2002–2012; Figure 4.2 (A) shows TWSC simulated from PCR-GLOBWB (here standing in for observed
TWSC, shown by red curves); Figure 4.2 (B1, B3) shows the time series of groundwater and soil water storage derived from
model 1 (M1, the blue curves), and Fig. 4.2 (B2, B4) shows those of model 2 (M2, the green curves), which are considered
as the input predictors in DMDA; The uncertainty of these data sets are shown by the grey error bars fitted to each time
series. Figure 4.2 (C1) presents the time-varying weights estimated for two selected model, and Figure 4.2 (C2) shows the
reconstructed of weights in the second step of this simulation. Figure 4.2 (D1) and (D2) show the updated hydrological
components obtained from the DMDA and BMA method and a comparison between the obtained results and the expected
values derived from simulated observation data.

is assumed that TWSC is defined as the summation of just groundwater and soil water components.
By this definition, the time series of groundwater and soil water storage of two hydrological models,
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i.e., here selected as LISFLOOD (M1) and SURFEX-TRIP (M2), are introduced as predictors to the
DMDA. TWSC derived from a third model, here selected to be PCR-GLOBWB, is considered as the
observation (here standing in for GRACE TWSC). By this choice, after applying DMDA to merge M1

and M2 with simulated observed TWSC, it is expected that the updated groundwater and soil water
storage estimates (DMDA results) will be fitted to those of simulated observations. Here, the results
within the Niger River Basin (id:20 in Fig. 7.1) are selected, covering the period of 2002–2012. Figure
4.2 (A) shows the PCR-GLOBWB TWSC as observations (i.e., GRACE-like TWSC estimates in this
study), Fig. 4.2 (B) represents the time series of groundwater and soil water derived from M1 (B1, B3,
blue curves) and M2 (B2, B4, green curves), while the expected value of DMDA groundwater and soil
water (simulated observation) are shown with the red colour curves in these figures.

The magnitude of minimum (Min), maximum (Max), and the Root Mean Squares (RMS) of the signal
for all simulated data sets can be found in Table 4.1. The uncertainty of these data sets is computed
following the least squares error propagation while considering the leakage error of GRACE TWSC
in the Niger River Basin. It is worth mentioning that the final results of the simulation do not depend
on the selection of models and the adopted simplification. The RMSD between the simulated TWSC
and two selected models (reported in Table 4.1) indicates that M2 (RMSD of ∆TWSC = 14.1 mm) had
a better agreement with the observations compared to M1 (RMSD of ∆TWSC = 18.6 mm). Figure 4.2
(C1) shows the estimated weights for the first model (W1, Mean= 0.47) and the second model (W2,
Mean= 0.53) obtained using DMDA (Eq. (4.13)). These results show that the model which had a
better agreement with observations gained higher weights.

To compare DMDA and BMA methods to average hydrological components, both of these methods
are applied on simulated data sets. The final results are shown in Fig. 4.2 (D1: groundwater) and (D2:
soil water). Groundwater, soil water, and consequently, TWSC derived from DMDA shows better
agreement with the expected values than the BMA results. The RMS of errors for both methods is
reported in Table 4.1, which indicates that although TWSC derived from BMA follow the expected
value (RMS of error= 8.4 mm), the obtained individual components from this method are not close to
the simulated values (RMS of errors of 20.4 mm and 18.6 mm are found for groundwater and soil
water, respectively). A considerable decrease in the differences between hydrological components
and the expected values of DMDA shows that the method is suitable to update multi-model water
storage estimates. Details of the numerical comparisons can be found in Table 4.1.

In the second step of this simulation, the weights of the first step (W1, W2, Fig. 4.2 (C1)) are considered
to define the true TWSC. A temporal white noise with a standard deviation of 0.02 m (equal to the
standard deviation of GRACE TWSC error within the Niger River Basin) is added as error. After
applying the DMDA for the second time, the reconstructed weights, using the new synthetic TWSC
observations, are shown in Fig. 4.2 (C2). The correlation coefficient between W1 and W2 with their
reconstructed values is found to be 0.73, and the RMS of the reconstruction errors is found to be 0.18.
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This indicates that the DMDA’s weights are close to the introduced values. These results motivate the
application of DMDA to real data sets in Chapter 7.

Table 4.1 Magnitude of simulated predictors, observations, and DMDA results in a controlled synthetic simulation.

Hydrological Compartment Model name Min Max RMS
[mm] [mm] [mm]

Groundwater (First model) LISFLOOD -10.5 16.1 7.9
Groundwater (Second model) SURFEX-TRIP -12.1 39.8 14.2
Groundwater (Expected value of DMDA) PCR-GLOBWB -39.5 70.4 24.2
Groundwater (DMDA result) DMDA Output -35.3 92.3 19.9
Groundwater (BMA result) BMA Output -46.0 130.2 43.8

Soil water (First model) LISFLOOD -37.4 62.2 30.8
Soil water (Second model) SURFEX-TRIP -45.7 79.9 41.5
Soil water (Expected value of DMDA) PCR-GLOBWB -52.0 107.9 48.7
Soil water (DMDA result) DMDA Output -58.5 113.8 51.2
Soil water (BMA result) BMA Output -40.8 49.6 21.0

TWSC (First model) LISFLOOD -46.8 75.5 37.2
TWSC (Second model) SURFEX-TRIP -57.6 115.2 54.6
TWSC (Expected value of DMDA results) PCR-GLOBWB -83.3 164.5 64.2
TWSC (DMDA result) DMDA Output -77.8 153.8 63.2
TWSC (BMA result) BMA Output -77.8 153.8 63.2

|∆|Groundwater |LISFLOOD−Expected value| 0 58.1 11.2
|∆|Groundwater |SURFEX−Expected value| 0 45.8 10.3
|∆|Groundwater |DMDA−Expected value| 0 31.2 5.3
|∆|Groundwater |BMA−Expected value| 0 87.6 20.4

|∆|Soil water |LISFLOOD−Expected value| 0 46.8 9.6
|∆|Soil water |SURFEX−Expected value| 0 29.3 5.7
|∆|Soil water |DMDA−Expected value| 0 29.2 5.2
|∆|Soil water |BMA−Expected value| 0 89.5 18.6

|∆|TWSC |LISFLOOD−Expected value| 0 94.7 18.6
|∆|TWSC |SURFEX−Expected value| 0 60.9 14.1
|∆|TWSC |DMDA−Expected value| 0 24.2 6.2
|∆|TWSC |BMA−Expected value| 0 31.4 8.4



Chapter 5

MCMC-Data Assimilation (MCMC-DA)

In this chapter, MCMC-Data Assimilation (MCMC-DA) is formulated as an extension of the Dynamic
Model Data Averaging (DMDA) introduced in Chapter 4. MCMC-DA is formulated based on a
linear state-space model (Bernstein, 2005) between observation (GRACE(-FO) TWSC) and a priori
information (hydrological model outputs) according to the Eqs. (4.1) and (4.2), where both unknown
state parameters and the error covariance matrix of the observation are allowed to vary in time.
Estimation of the error covariance matrix of δt shown by Eq. (4.4) is the main difference between
the Bayesian formulation of this study (MCMC-DA) compared to the DMDA method. In MCMC-
DA, unlike DMDA, one does not need to consider a forgetting factor 0 < λ ≤ 1 to define temporal
dependency in the Kalman filter approach (i.e., the error covariance matrix of Q in Eq. (4.7)), but
instead an MCMC algorithm is applied to simultaneously estimate the unknown state parameters
and the error covariance matrix Q in a recursion approach. The new formulation consists of a
Markov Chain Monte Carlo (MCMC, Geyer, 1991; Gilks, 1996) algorithm, such as a Gibbs sampling
algorithm (formulated in Section 5.1) and a forward-filtering backward-smoothing recursion approach
(Kitagawa, 1987) (formulated in Section 5.2) to recursively estimate unknown state parameters as
well as the temporal dependencies between them.

The posterior values of the state parameters, through MCMC-DA algorithm, are then used to update a
priori information and to estimate their uncertainties in Section 5.3.

5.1 Gibbs Sampling Algorithm to Estimate State-Space Model

In the linear state-space model (Eqs. (4.1) and (4.2)), the conditional distribution of the parameter
of interest, i.e., Θt and Q, is defined by the observation equation (Eq. (4.1)) and the state equation
(Eq. (4.2)). To solve the linear state-space model defined by Eqs. (4.1) and (4.2), sampling techniques
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can be applied to generate samples from the distribution of (i) time-varying coefficients (Θ1:T =

[Θ1,Θ2, . . . ,ΘT ]), and (ii) the error covariance matrix of δ1:T , i.e., Q, conditional on the observed data
(Y1:T ) and its error covariance matrix (V1:T ), and the rest of the unknown parameters, i.e., Q in (i) and
Θ1:T in (ii).

Gibbs sampling (Gelfand and Smith, 1990; Smith and Roberts, 1993) is one of the most common
MCMC algorithms, which repeatedly generates a Markov chain of samples from the distribution of
each variable, in turn, conditional on the current values of other variables and the data (see Section
3.6.2). Gibbs sampling is applicable when the joint posterior distribution of the parameter of interest
is difficult to sample directly. Although, the conditional distribution of each variable is known and is
easier to sample from, which is the case here.

The state-space model given by Eqs. (4.1) and (4.2) is linear, and it is assumed that the distribution
of observations Yt (GRACE(-FO) TWSC) and a priori information Zt (e.g., hydrological model
outputs) are Gaussian and independent from each other (though their covariances are assumed to
be spatially correlated). Therefore, the conditional posterior distribution of Θ1:T is a product of
Gaussian Probability Density Functions (PDFs), and can be generated using the standard simulation
smoother introduced by Carter and Kohn (1994), which showed that how we can use Gibbs sampling
for Bayesian inference on a linear state-space model, with Gaussian error distribution, and with
temporal variation of the state parameters Θt . Samples generated from the conditional posterior of
Q are the product of independent Inverse-Wishart distributions (Schuurman et al., 2016), which are
defined on symmetric and positive definite matrices and used generally as the conjugate prior for the
covariance matrix of a multivariate normal distribution in the Bayesian inference (see Section 3.1.2).
The implemented Gibbs sampling for estimating the unknown parameters in linear state-space model
in Eqs. (4.1) and (4.2) is summarized as follows.

Step1:
Gibbs sampling (Gelfand and Smith, 1990; Smith and Roberts, 1993) is based on the Bayes rule,
which uses the knowledge derived from observations (through the likelihood function), to update prior
knowledge about the parameters of interest to become posterior belief about them. Therefore, the first
step of Gibbs sampling is to define initial states, or prior values, for the unknown state parameters Θt ,
where t = 0, and the error covariance matrix of additive innovation δt , i.e., Q(i), where i denotes the
number of iteration in the Gibbs sampling (it is zero here). Details of prior values for the unknown
parameters are explained in Section 5.1.1.

Step2:
Sample Θ1:T (i) from the posterior PDF of Θ1:T (i) conditional on the observed data (Y1:T ) and, its
error covariance matrix (V1:T ) and the covariance matrix of additive innovation (residual) δt obtained
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from the previous iteration, i.e., Q(i−1). This sampling is defined by:

p(Θ(i)
1:T |Y1:T ,V1:T ,Q(i−1)) = p(Θ(i)

T |Y1:T ,V1:T ,Q(i−1))ΠT−1
t=1 p(Θ(i)

t |Θ
(i)
t+1,Y1:T ,V1:T ,Q(i−1)), (5.1)

where

p(Θ(i)
t |Θ

(i)
t+1,Y1:T ,V1:T ,Q(i−1))∼ N(Θ

(i)
t|t+1,Σ

(i)
t|t+1). (5.2)

In Eq. (5.1) and for the rest of the equations in this chapter, p(◦|∗) is used to denote a generic PDF of
a variable (such as ◦) conditional on another variable (such as ∗), while N(.) indicates a Gaussian
PDFs, and Π(.) is an operator to multiply PDF. Forward-filtering backward-smoothing approach, as
in Kitagawa (1987), is used to estimate unknown state parameters Θt|t+1 and their error covariance
matrices Σt|t+1. Details and the corresponding equations are provided in Section 5.2.

Step3:
Generate samples from the posterior PDF of Q(i) conditional on the observed data (Y1:T ) and its error
covariance matrix (V1:T ), and Θ

(i)
1:T that are derived from Step 2. This sampling is defined by:

p(Q(i)|Y1:T ,V1:T ,Θ
(i)
1:T )∼ IW (Q̄(i), ν̄), (5.3)

where

ν̄ = T +ν ,

Q̄(i) = Q(0)+
T

∑
t=1

(Θ
(i)
t −Θ

(i)
t−1)(Θ

(i)
t −Θ

(i)
t−1)

′.
(5.4)

In Eq. (5.3), IW (.) denotes an Inverse-Wishart PDF, Q̄ is the posterior scale matrix, and ν is an initial
value that is chosen as the degree of freedom to define the conjugate prior for Q as the product of
independent Inverse-Wishart distribution (see Section 5.1.1), and ν̄ is the posterior value of the degree
of freedom. In all the equations of this chapter, T denotes the total number of time steps t.

Step4:
Return to Step 2 and continue the iteration until a breaking criterion is satisfied. In this study, a simple
graphical method suggested by Brooks and Roberts (1998) and (Sinharay, 2003) used to determine
the number of iterations and to define the convergence of the sampling algorithm (see Section 3.6.5).
This is done by creating a time-series plot for each of the parameters of interest, i.e., Θt in Eq. (4.1),
and Q in Eq. (4.4), to view the path traversed by the chains. From the obtained results (figures
not shown), it can be found that after 10000 iterations, the Gibbs sampling converged to stationary
distributions. However, to increase confidence in the process, it is required to select more iterations,
i.e., N=20000. The reason for this is that after initializing the sampling algorithm with a priori values
for the unknown state parameters Θt , and the covariance of additive innovations Q, samples from
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early iterations may not necessarily be representative of the actual posterior distributions. Thus, the
early M=500 iterations are discarded as the ‘burn-in’ period.

5.1.1 Specifying Prior Values for Unknown Parameters

The first step of Gibbs sampling to solve the state-space model, given by Eqs. (4.1) and (4.2), is to
define initial states, or prior values for the unknown state parameters Θt , where t = 0, and the error
covariance matrix of additive innovation δt , i.e., Q(i), where i denotes the number of iteration in the
Gibbs sampling (it is zero here). As discussed in Section 5.1, since the state-space equation is linear,
and with assuming that the distribution of observations Yt and Zt to be Gaussian and independent from
each other, the conditional posterior distribution of Θ1:T in Eq. (5.1) is a product of their (Gaussian)
PDFs. Therefore, the prior value of Θ0 is Gaussian distributed and is defined as

Θ0 ∼ N(Θ0|0,Σ0|0), (5.5)

where N(.) represents a Gaussian (normal) distribution, and Θ0|0 and Σ0|0 are the mean and variance
of Θ0. In GRACE(-FO) applications, Θ0|0 is chosen to be 1, because in theory the summation of
individual water storage values Zt must be equal to the GRACE(-FO) TWSC observation Yt in Eq.
(4.1). Uncertainty of a priori information (e.g., simulated individual water storage of W3RA, see
Section 2.4) are stored in Σ0|0, which are needed for computing updates by the Gibbs sampling in
Step 2.

In Eq. (4.2), Q is the error covariance matrix of additive innovation δt and defines the temporal
dependency between water storage states Θt at each time point to the previous time steps. Considering
Eq. (5.5), the conjugate prior for Q can be estimated by an independent Inverse-Wishart distribution
(IW (.)) as

Q(0) ∼ IW (S,ν), (5.6)

In Eq. (5.6) S is a K×K scale matrix, where K is the number of unknown state parameters, and ν is
the degrees of freedom Schuurman et al. (2016). S is used to position the Inverse-Wishart distribution
in parameter space, and ν > K +1 sets the certainty about the prior information in the scale matrix.
In this study, ν is set to be K +1, which is the minimum value that can be chosen for this parameter
(Primiceri, 2005; Schuurman et al., 2016). Schuurman et al. (2016) compared three Inverse-Wishart
prior specifications: (I) a prior specification that is based on an identity matrix, and is often used as
an uninformative prior in practice, (II) a data-based prior that uses input from maximum likelihood
estimations, and (III) the default conjugate prior proposed by (Kass and Natarajan, 2006). Their
results showed that the data-based maximum likelihood prior specification for the covariance matrix
of the random parameters, based on estimates of the variances from the data, performed the best,
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compared to the other techniques. They also found that when the prior is specified too far from
zero (e.g., Inverse-Wishart prior with S as an identity matrix), this will result in an overestimation
of the variances. However, specifying the central tendencies too close to zero will result in an
underestimation of the variances, as, firstly too much weight is shifted towards zero, and secondly
because an element of the scale matrix set close to zero will also have a small variance. Following
Cogley (2005); Primiceri (2005); Schuurman et al. (2016), the scale matrix S is chosen to be a constant
fraction of the variance of the initial values Θ0 as K2

Q Σ0|0. Therefore, Eq. (5.6) is rewritten as

Q(0) ∼ IW (K2
Q Σ0|0,K +1). (5.7)

In Eq. (5.7), Σ0|0 is the covariance matrix that is derived from the ensemble of W3RA (see Eq. (5.5)).
Following Primiceri (2005), KQ is chosen to be 0.01, which allows Θt to be a temporal variable. More
details about selecting different initial values and their impact on the Inverse-Wishart estimation can
be found in Schuurman et al. (2016). Initial values chosen for Θ0 and Q(0) are then used in Step 2 and
Step 3 of Gibbs sampling in Eqs. (5.2) and (5.4), respectively.

5.2 Forward-Filtering Backward-Smoothing Approach

In this section, the forward-filtering backward-smoothing approach is described, which is used in
the second step of the Gibbs sampling (see Eq. (5.1)) to generate samples of Θ1:T (unknown state
parameters in the state-space model given by Eqs. (4.1) and (4.2)) from the PDF of Θ1:T conditional on
the observed data (Y1:T ) and its error covariance matrix (V1:T ), and the rest of the unknown parameters,
i.e., Q. In the rest of this section, Θt|t and its variance Σt|t , as well as Θt|t−1 and Σt|t−1 are defined as

Θt|t = E(Θt |Y1:t ,V1:t ,Q),

Σt|t =Var(Θt |Y1:t ,V1:t ,Q),

Θt|t−1 = E(Θt |Y1:t−1,V1:t−1,Q),

Σt|t−1 =Var(Θt |Y1:t−1,V1:t−1,Q),

(5.8)

where t represents the (monthly) time steps between 1 and T, and E(◦|∗) and Var(◦|∗) denote the
mean value and the variance for the normal distribution of (◦) conditional on (∗).

The forward-filtering backward-smoothing is a recursive approach that consists of two steps:
(1) Forward-filtering: where a standard Kalman filter is used following Carter and Kohn (1994) to
recursively estimate Θt|t and Σt|t , for t=1,2,..,T, given the initial values of Θt|t and Σt|t when t=0 (Θ0|0



94 MCMC-Data Assimilation (MCMC-DA)

and Σ0|0, see Section 5.1.1). The Kalman filter recursion is presented in the following equations as

Θt|t−1 = Θt−1|t−1,

Σt|t−1 = Σt−1|t−1 +Q,

Kt = Σt|t−1Z′t(ZtΣt|t−1Z′t +Vt)
−1,

Θt|t = Θt|t−1 +Kt(Yt −ZtΘt|t−1),

Σt|t = Σt|t−1−KtZtΣt|t−1.

(5.9)

The last elements of the Kalman filter recursion when t=T, i.e., ΘT |T and ΣT |T , are used to generate
the samples of ΘT in Eq. (5.10) as

ΘT ∼ N(ΘT |T ,ΣT |T ), (5.10)

where N(.) denotes the normal distribution of ΘT with the mean value of ΘT |T and the variance of
ΣT |T .

(2) Backward-smoothing: The outputs of step (1) (i.e., Θt|t−1, Σt|t−1, Θt|t , and Σt|t for t=1,2,...,T),
and the generated sample of ΘT , derived from Eq. (5.10) are then used in Eq. (5.11) to update Θt−1|t

and Σt−1|t , and generate samples of Θt−1, for t = T,T −2, ...,1. For a generic time t, the updating
formulas of the backward recursion smoother can be written as

Θt−1|t = Θt−1|t−1 +Σt−1|t−1Σ
−1
t|t−1(Θt −Θt−1|t−1),

Σt−1|t = Σt−1|t−1−Σt−1|t−1Σ
−1
t|t−1Σt−1|t−1,

Θt−1 ∼ N(Θt−1|t ,Σt−1|t).

(5.11)

The backward recursion smoother is started from time T and continues until time 1. The output of the
forward-filtering backward-smoother approach is the generated samples of Θ1:T , conditional on the
observed data (Y1:T ) and its error covariance matrix (V1:T ), and the unknown covariance matrix of the
additive innovation Q, which is defined as p(Θ(i)

t |Θ
(i)
t+1,Y1:T ,V1:T ,Q(i−1)) in Eq. (5.2). The generated

samples of Θ1:T are then used in the third step of Gibbs sampling to generate samples of the unknown
covariance matrix of additive innovations, i.e., shown by Q in Eq. (5.3).

5.3 Updating a priori Information and their Uncertainties by MCMC-
DA

At the end of the Gibbs sampling, N−M number of generated samples for Θ1:T , derived from the
forward-filtering backward-smoothing approach (Eq. (5.9)) is used to estimate the posterior value of
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unknown state parameters (Θ̄1:T ) as

Θ̄t =
1

N−M
Σ

N
i=M+1Θ

(i)
t , (5.12)

where Θ̄t = [θ̄1,p, θ̄2,p, . . . , θ̄K,p]t , and are used to update the priori information Zt according to the
observation equation (Eq. (4.1)) as

ẑk,t,p = zk,t,pθ̄k,t,p, (5.13)

where ẑk,t,p is the updated value of the a priori information zk,t,p, and k = 1,2, ...,K denotes each of
the a priori information compartments (e.g., water storage compartments).

The uncertainties of the MCMC-DA updated value of priori information (ẑk,t,p) are estimated using the
variance of generated samples Θ1:T , i.e., Σ1:T , which is derived from the forward-filtering backward-
smoothing approach in Section 5.2. To this aim, the posterior value of Σ1:T is denoted by Σ̄t which
can be estimated using the following equation as

Σ̄t =
1

N−M
Σ

N
i=M+1Σ

(i)
t , (5.14)

where the diagonal elements of the error covariance matrix of Σ̄t contain δ θ̄ 2
k,p,t , corresponding to the

variance of θ̄K,p,t , which then used to estimate the uncertainties of ẑk,t,p. This is done through an error
propagation procedure using the uncertainty of the a priori information δ z2

k,t as

δ ẑ2
k,p,t = δ θ̄

2
k,p,t .z

2
k,p,t +δ z2

k,p,t .θ̄
2
k,p,t , (5.15)

where δ ẑ2
k,p,t are the uncertainty of the MCMC-DA updated values of priori information (ẑk,p,t ) for

p = 1, ...,P, t = 1,2, ...,T and k = 1,2, ...,K.

MCMC-DA is implemented in Chapter 8 to merge W3RA water balance model with GRACE TWSC
on a 0.125◦×0.125◦ spatial grid points within the CONUS for the period of 2003-2017. Therefore,
for this case study, the number of spatial grid points P is equal to 71212, and the t = 1,2, ...,168
months covering the period of this study. Considering this scale, the application of MCMC-DA within
CONUS is computationally expensive. Significantly, the convergence of the Gibbs sampling might
take around 1-month using a general-purpose computer (e.g., 8-core CPU (2.9GHz) with 64GB RAM).
Therefore, a paralleled implementation of the Gibbs sampling on a High-Performance Computing
(HPC) system is essential to maximize the performance of MCMC-DA in large-scale applications.

Figure 5.1 summarises the work-flow of the MCMC-DA approach to update water storage components
of the hydrological model using GRACE TWSC estimates.



96 MCMC-Data Assimilation (MCMC-DA)

Fig. 5.1 Flowchart of the MCMC-DA method. The framework can accept an arbitrary number of models and it can be
extended to accept various type of observations.



Chapter 6

Constrained Bayesian Data Assimilation
(ConBay-DA)

The Constrained Bayesian Data Assimilation (ConBay-DA) approach is formulated in this chapter to
merge two sets of observation with a priori information using a hierarchical multivariate state-space
model (Section 6.1), while the state parameters and temporal dependency between them are unknown
and are varying in time.

ConBay-DA benefits from a combination of forward-filtering and backward-smoothing approach
(Kitagawa, 1987) (Section 5.2) and a Gibbs sampling algorithm (Gelfand and Smith, 1990; Smith
and Roberts, 1993) (Section 6.2), which are formulated to recursively estimate time-variable state
parameters and the unknown temporal dependency between them using the first set of observation.
A Metropolis-Hastings algorithm (Chib and Greenberg, 1995) is then used in a hierarchical level to
accept/reject the estimated value of a certain parameter based on the second set of observations. The
posterior estimated values of the state parameters are then used to update a priori information and
their uncertainties in Section 6.3.

ConBay-DA is formulated in this thesis with the aim of merging GRACE(-FO) field estimate and de-
formation rates from in-situ GNSS observation, as the first and second set of observation, respectively,
for a joint estimation of the land hydrology and surface deformation signal, while hydrological and
GIA model outputs are used as multiple a priori information within the signal separation framework.
Therefore, the a priori information are chosen from two different sources.
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6.1 Multivariate State-Space Model with Unknown State Equation

A multivariate state-space model between a set of observation and multiple a priori information can
be represented by the observation and the state equations (Bernstein, 2005) as

Yt = ZtΘt +Xtβt + εt , (6.1)

[Θt+1,βt+1] = [Θt ,βt ]+δt , (6.2)

These formulations are the extended version of Eqs. (4.1) and (4.2), where Yt = [y1,y2, . . . ,yP]t

represents the vector of observation for P spatial grid points, at time t = 1,2, ...,T , while Zt and Xt

are two separate diagonal matrix to store a priori information from two different sources, and Θt

and βt are the unknown state parameters to make a relationship between the observation and a priori
information.

For the application of ConBay-DA in this thesis, Yt denotes the GRACE(-FO) field estimate, the
diagonal elements of Zt (P×P) contain the hydrological model outputs, and the diagonal elements of
Xt (P×P) contains Equivalent Water Heights (EWHs) derived from a GIA model for the spatial grid point
p = 1,2, ...,P at time t. Each of the diagonal elements of Zt is a 1×K vector of [z1,p,z2,p, . . . ,zK,p]t ,
where K is the number of individual water storage components, such as snow, canopy, surface water,
soil water, and groundwater storage changes. Θt is a P×1 vector, where each element is itself a K×1
vector containing the unknown state parameters for water storage components, [θ1,p,θ2,p, . . . ,θK,p]

T
t ,

and βt is a P×1 vector representing the unknown state parameters for GIA signal, corresponding to
the spatial grid points p = 1,2, ...,P.

A hierarchical constraint equation is formulated here to use the second observation data sets (e.g.,
rates from in-situ GNSS measurements in this study) for controlling the sampling of βt derived from
Eq. (6.1) as

Ḡt = Xtβt + γt , (6.3)

where Ḡt is a P× 1 vector of the observation at spatial grid point p = 1,2, ...,P, and γt is their
corresponding measurement error.

In Eqs. (6.1), (6.2), and (6.3) εt , δt , and γt are additive innovations (i.e., residuals) corresponding
to the observation equation, state equation, and the constraint equation, respectively. εt and γt are
assumed to be Gaussian distributed with a mean value of zero and the error covariance matrices of Vt

and Ut , which vary over time, and the state residual δt is assumed stationary Gaussian distributed and
independent from εt and γt , with a mean value of zero and an error covariance matrix of Q. Thus, the



6.2 ConBay-DA Formulation 99

distribution of the additive innovations can be written asεt

δt

γt

∼ N


0

0
0

 ,
Vt 0 0

0 Q 0
0 0 Ut


 . (6.4)

The uncertainty of the first set of observations (e.g., GRACE(-FO) measurements) is reflected in Vt ,
while the uncertainty of the second set of observation (e.g., in-situ GNSS measurements) is reflected
in Ut . The error covariance matrix Q (corresponding to the state innovation δt) defines the temporal
dependency between various compartments of the a priori information, which is unknown, and will
be simultaneously estimated with the unknown state parameters Θt and βt through the Gibbs sampling
algorithm described in Section 6.2.

The ConBay-DA is formulated in the next section as a combination of a forward-filtering and
backward-smoothing approach, Gibbs sampling, and Metropolis-Hastings to estimate the unknown
state parameters Θt and βt , and the covariance matrix Q, while the generated samples of βt in each
iteration of Gibbs sampling are not accepted automatically as posterior samples; instead they are
introduced as candidate samples to the hierarchical Metropolis-Hastings to be accepted or rejected
based on the GNSS measurements. These candidate samples are accepted probabilistically based on
the acceptance probability α (see Section 3.6.3), which is estimated using the posterior probability
distribution of βt conditional on the second set of the observations (e.g., GNSS measurement) based
on the Eq. (6.3).

6.2 ConBay-DA Formulation

The multivariate state-space model defined by Eqs. (6.1) and (6.2), provide the conditional distribution
of the parameter of interest, i.e., Θt , βt and Q. The Gibbs sampling algorithm is formulated here
to generate samples from the posterior distribution of (i) time varying state parameters (Θ1:T =

[Θ1,Θ2, . . . ,ΘT ]) and (β1:T = [β1,β2, . . . ,βT ]) and (ii) the error covariance matrix of δ1:T , i.e., Q,
conditional on the first set of observation (Y1:T ) and its error covariance matrix (V1:T ), and the rest of
the unknown parameters, i.e., Q in (i) and Θ1:T and β1:T in (ii). However, generated samples from
the posterior distribution of βt (e.g., state-space parameters corresponding to the GIA effects in this
study) in step (i) are not accepted automatically as posterior samples and will be controlled by the
second set of observations Ḡt (e.g., in-situ GNSS measurement) based on Eq. (6.3). Before generating
samples of covariance matrix Q, a Metropolis-Hastings algorithm is formulated in a hierarchical
level to estimate the acceptance probabilities using the posterior distribution of candidate samples βt

conditional on the observations Ḡt . The acceptance probabilities are then used to determine the best
generated samples of βt , which leads to decrease RMSD between the updated value of Xt (i.e., Xtβt)
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and the observations Ḡt according to Eq. (6.3). The accepted values of the generated samples βt are
then used to generate the posterior samples of Q in step (ii).

The state-space model given by Eqs. (6.1) and (6.2) is linear, and it is assumed that the distribution
of the observations and the a priori information are Gaussian and independent from each other
(though their covariances are assumed to be spatially correlated). Therefore, the conditional posterior
distribution of Θ1:T and β1:T are the products of Gaussian Probability Density Functions (PDFs),
which can be generated using a standard simulation smoother introduced by Carter and Kohn (1994).
Samples generated from the conditional posterior of Q are the product of independent Inverse-Wishart
distributions (Schuurman et al., 2016), which are defined on symmetric and positive definite matrices
and used generally as the conjugate prior (defined in Section 3.1.2) for the covariance matrix of a
multivariate normal distribution in the Bayesian inference. The mathematical formulations to estimate
the posterior distribution of the parameters of interest are explained in details in what follows.

Step1:
Define initial states, or prior values, for the unknown state parameters Θt and βt , where t = 0, and
the prior value of the error covariance matrix of additive innovation δt , i.e., Q(i), where i denotes the
iteration number in the Gibbs sampling (it is zero here). Details of initial values for the unknown
parameters are explained in Section 5.1.1, where the prior values for βt are determined similar to
those of Θt .

Step2:
Sample Θ

(i)
1:T , β

(i)
1:T from the posterior PDFs of Θ

(i)
1:T , β

(i)
1:T conditional on the observation (Y1:T ), its

error covariance matrix (V1:T ), and the covariance matrix of additive innovations δt , which is obtained
from the previous iteration, i.e., Q(i−1). To simplify the rest of the equations, we define Φt = [Θt ,βt ]

′
,

where [◦]′ denotes the transpose of the matrix [◦].

p(Φ(i)
1:T |Y1:T ,V1:T ,Q(i−1)) = p(Φ(i)

T |Y1:T ,V1:T ,Q(i−1))ΠT−1
t=1 p(Φ(i)

t |Φ
(i)
t+1,Y1:T ,V1:T ,Q(i−1)),

(6.5)

where

p(Φ(i)
t |Φ

(i)
t+1,Y1:T ,V1:T ,Q(i−1))∼ N(Φ

(i)
t|t+1,Σ

(i)
t|t+1). (6.6)

In Eq. (6.5) and for the rest of the equations, p(◦|∗) is used to denote a generic PDF of (a variable
such as ◦) conditional on (another variable such as ∗), while N(.) indicates a Gaussian PDF, and Π(.)
is an operator to multiply PDF. A Forward-filtering backward-smoothing approach, as in Kitagawa
(1987), is used to estimate the unknown state parameters Θt|t+1 and their error covariance matrices
Σt|t+1. Details and the corresponding equations are provided in Section 5.2. For the application
of ConBay-DA, the parameter Θ in all the equations of the forward-filtering backward-smoothing
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approach of Section 5.2, must be replaced by Φ, which has already defined as [Θ,β ]. The outputs of
the forward-filtering backward-smoother approach is the generated samples of Θ

(i)
1:T and β

(i)
1:T derived

from multivariate normal distribution, where each generated samples of Θ
(i)
t and β

(i)
t can be described

as a normal distribution with a mean value denoted by µ(∗)(i) and the covariance matrix of Σ
(i)
∗ as

Θ
(i)
t ∼ N

(
µ(Θt)

(i),Σ
(i)
Θt

)
β
(i)
t ∼ N

(
µ(βt)

(i),Σ
(i)
βt

) (6.7)

Step3:
Estimate the acceptance probability αt to accept/reject generated samples of β

(i)
t , where t = 1, ...,T ,

based on the constraint equation of Eq. (6.3). The acceptance probability αt are estimated for each
spatial grid point p = 1,2, ...,P. For each iteration (i), the acceptance functions α

( j)
t for j = 1,2, ..., i

are estimated to compare the posterior distributions of the β
(i)
t and β

( j)
t conditional on the GNSS

measurements Ḡt and its error covariance matrix Ut as

α
( j)
t =

p(β ( j)
t |Ḡt ,Ut)

p(β (i)
t |Ḡt ,Ut)

=
p(Ḡt |β ( j)

t ,Ut)p(β ( j)
t )

p(Ḡt |β (i)
t ,Ut)p(β (i)

t )
, j = 1,2, ..., i. (6.8)

where p(Ḡt |β ( j)
t ,Ut) is the likelihood density of the second observation data set (Ḡt) conditional

on the parameter of interest (β ( j)
t ) and the error covariance matrix of the residual Ut , and p(β ( j)

t )

denotes the prior distribution of β
( j)
t . Since the state-space model is formulated with the assumption of

Gaussian distribution for all the data and model parameters, the likelihood density of the observation
Ḡt , as well as the prior distribution of β

( j)
t are estimated using the normal density function as

p(Ḡt |β ( j)
t ,Ut) =

(
2πΣ

( j)
X̂t

)−1
exp

−
(

Ḡt − X̂ ( j)
t

)2

2Σ
( j)
X̂t

 , j = 1,2, ..., i, (6.9)

p(β ( j)
t ) =

(
2πΣ

( j)
βt

)−1
exp


(

β
( j)
t −µ(β

( j)
t )
)2

2Σ
( j)
βt

 , j = 1,2, ..., i, (6.10)

where X̂ ( j)
t is the updated value of Xt (GIA model output in this study) and is estimated using the

mean value of generated sample β
( j)
t , while Σ

( j)
X̂t

denotes the uncertainty of X̂ ( j)
t , which is estimated
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using the error propagation formula as

hatX ( j)
t = Xt .µ(βt)

( j),

Σ
( j)
X̂t

= XtΣ
( j)
βt

X
′
t +Ut ,

(6.11)

where j = 1,2, ..., i. It is worth noting here that α
(i)
t = p(β (i)

t |Ḡt ,Ut)

p(β (i)
t |Ḡt ,Ut)

= 1. At iteration (i), the generated

sample of β
(i)
t is accepted as β

accepted(i)

t , when α
(i)
t = min{α(1)

t ,α
(2)
t , ...,α

(i)
t }, otherwise β

accepted(i)

t =

β
(l)
t if

α
(l)
t = min{α(1)

t ,α
(2)
t , ...,α

(l−1)
t ,α

(l)
t ,α

(l+1)
t , ...,α

(i)
t }, l = 1,2, ..., i−1. (6.12)

The minimum value of α
(l)
t indicates that the generated samples of β

(l)
t , and therefore, the update

value of priori information Xt , i.e., Xtβ
(l)
t , is more fitted to the observation Ḡt (according to the Eq.

(6.3)), compared to those of Xtβ
(i)
t . β

accepted(i)

1:T derived from this step, along with the Θ
(i)
1:T of Step 2

are then used to generate samples of the unknown covariance matrix of additive innovations δt , i.e., Q
in Eq. (6.4), in the next step of the Gibbs sampling.

Step4:
Sample Q(i) from the posterior PDF of Q(i) conditional on the observed data (Y1:T ) and its error
covariance matrix (V1:T ), and Φ

(i)
1:T = [Θ

(i)
1:T ,β

accepted(i)

1:T ], where Θ
(i)
1:T are estimated in step 2, and

β
accepted(i)

1:T are derived from step 3. This sampling is defined by:

p(Q(i)|Y1:T ,V1:T ,Φ
(i)
1:T )∼ IW (Q̄(i), ν̄), (6.13)

where

ν̄ = T +ν ,

Q̄(i) = Q(0)+
T

∑
t=1

(Φ
(i)
t −Φ

(i)
t−1)(Φ

(i)
t −Φ

(i)
t−1)

′.
(6.14)

In Eq. (6.13), IW (.) denotes an Inverse-Wishart PDF, Q̄ is the posterior scale matrix, and ν is an
initial value that is chosen as the degree of freedom to define the conjugate prior for Q as the product
of independent Inverse-Wishart distribution (see 5.1.1), and ν̄ is the posterior value of the degree of
freedom. In all these equations, T denotes the total number of time steps t.

Step5:
Return to step 2 and continue the iteration until a breaking criterion is satisfied. In this study, the
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number of iteration is chosen to be N = 20000, such as those determined for MCMC-DA in Chapter
5, and the first M = 500 iterations are discarded as the ‘burn-in’ period.

6.3 Updating a priori information and their Uncertainties by ConBay-
DA

At the end of the ConBay-DA algorithm, N−M generated samples for Θ1:T and β1:T , are used to
estimate the posterior value of unknown state parameters Θ̄1:T , and β̄1:T as

Θ̄t =
1

N−M
Σ

N
i=M+1Θ

(i)
t ,

β̄t =
1

N−M
Σ

N
i=M+1β

accepted(i)

t , for t=1,2,. . . ,T
(6.15)

Θ̄1:T , and β̄1:T are then used to update the a priori information Zt (e.g., hydrological model outputs)
and Xt (e.g., GIA model output) as

Ẑt = ZtΘ̄t ,

X̂t = Xt β̄t , for t=1,2,. . . ,T,
(6.16)

The uncertainties of the ConBay-DA updated signals are estimated using the variance of generated
samples, i.e., Σ

(i)
Θt

and Σ
(i)
βt

in Eq. (6.7), which is derived from the forward-filtering backward-smoothing
approach following the equations in Section 5.2. To this aim, the posterior value of Σ̄Θt and Σ̄βt for
t = 1,2, ...,T are obtained as

Σ̄Θt =
1

N−M
Σ

N
i=M+1Σ

(i)
Θt
,

Σ̄βt =
1

N−M
Σ

N
i=M+1Σ

(i)
βt
,

(6.17)

The diagonal elements of the error covariance matrix of Σ̄Θt contain δ θ̄ 2
k,t corresponding to each

compartment of the a priori information Zt , k = 1, ..,K, which can be used to estimate the uncertainties
of Ẑt through an error propagation procedure according to the Eq. (5.15).

The uncertainties of X̂t derived from Eq. (6.16) is estimated similar to that of Ẑt based on Eq. (5.15).
The work-flow of the ConBay-DA approach, formulated in this chapter, is summarised in Fig. 6.1.
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Fig. 6.1 Flowchart of the ConBay-DA method. The framework can accept an arbitrary number of models, and it can be
extended to accept the various type of observations.



Chapter 7

Application of DMDA to Merge
Multi-Hydrological Models with GRACE
data

7.1 Introduction

The DMDA method, which is proposed in Chapter 4, is implemented here to merge multi-model
water storage simulations with GRACE TWSC within the world’s 33 largest river basin (Fig. 7.1) for
the period of 2002–2012, during which both GRACE data and model simulations are available. To
this aim, surface and sub-surface water storage simulations of the six published global hydrological
and land surface models (Schellekens et al., 2017) are used. These models are introduced in Section
2.4. Results of this chapter follows Mehrnegar et al. (2020a). A challenging problem in merging
GRACE TWSC with the outputs from multiple hydrological models is related to their different spatial
and temporal resolutions. To overcome the computational problem caused by the spatial and temporal
mismatch, Schumacher et al. (2016) introduced spatial and temporal matching functions, which can
avoid computational problems. In this study, the spatial/temporal operator is not implemented because
both model outputs and GRACE data are set at monthly (temporal) and basin-averaged (spatial).
Handling the differences in the spectral domain is described in Section 2.4.

In what follows, after presenting an overview of GRACE TWSC (Section 7.2) and model-derived
water storage changes (Section 7.3) a comparison between GRACE and model-derived TWSC is
presented in Section 7.4. The model outputs are compared against GRACE TWSC in Section
7.5, using the DMDA-derived temporal weights within the world’s largest river basins, covering
2002–2012. The DMDA-derived updates, which are assigned to the long-term trend of surface and
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sub-surface water storage components, are explored and interpreted in Section 7.6. Numerous studies
showed that various hydrological models are not in close agreement for many regions worldwide. The
representation of long-term trends, in particular, is a common problem among hydrological model
simulations (Döll et al., 2014), which is the component in which we are primarily interested in this
study.

In addition, the DMDA-derived TWSC is compared with those derived from original model outputs in
Section 7.7. Temporal correlation coefficients between model-derived storage outputs and the ENSO
index are used as a measure to determine whether implementing the DMDA helps to derive realistic
storage simulations (see Section 7.8). A summary of the obtained results is provided in Section 7.9.

7.2 An Overview of GRACE TWSC

For the application of DMDA in this thesis, GRACE TWSC is estimated globally with 0.5◦ spatial
resolution, the same as those of models outputs. Basin averages of GRACE TWSC within the world’s
33 largest river basins and the leakage errors are obtained following Section 2.2.5. Figure 7.2 provides
an overview of the basin averaged GRACE TWSC within the world’s 33 largest river basins (Fig.
7.1), where Fig. 7.2 (A) shows the Standard Deviation (StD) of GRACE TWSC covering the period
of 2002–2012. This map indicates the strength of the TWSC signal in these basins. Figure 7.2 (B)
contains the Standard Deviation (StD) of the TWSC errors, which indicates the magnitude of these
errors. Finally, Fig. 7.2 (C) shows the Signal to Noise Ratio (SNR) that is computed by dividing the
plot (A) by (B). These maps show that the basin averaged GRACE TWSC is of acceptable accuracy
and can be used with confidence in this application.

Fig. 7.1 The world’s 33 largest river basins examined in this study; The numbered river basins include the following:
1: Amazon, 2: Amur, 3: Aral, 4: Brahmaputra, 5: Caspian-Volga, 6: Colorado, 7: Congo, 8: Danube, 9: Dnieper, 10:
Euphrates, 11: Lake Eyre, 12: Ganges, 13: Indus, 14: Lena, 15: Mackenzie, 16: Mekong, 17: Mississippi, 18: Murray, 19:
Nelson, 20: Niger, 21: Nile, 22: Ob, 23: Okavango, 24: Orange, 25: Orinoco, 26: Parana, 27: St. Lawrence, 28: Tocantins,
29: Yangtze, 30: Yellow, 31: Yenisei, 32: Yukon, 33: Zambezi
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7.3 An Overview of water storage estimates from multiple hydrological
model outputs

Long-term linear trends (between 2002-2012) fitted to the groundwater, soil water, and surface water
storage of the six global hydrological models are shown in Fig. 7.3, Fig. 7.4 and Fig.7.5. From
Fig. 7.3, it can be seen that except PCR-GLOBWB, the other 4 hydrological models, do not show
considerable linear trends in groundwater storage in almost all the 33 river basins. LISFLOOD shows
decreasing groundwater storage in some irrigated regions such as the Ganges, Barhmaputra, and Indus
River Basins, which experienced a strong decline in rainfall over the entire period of our study (e.g.,
9.0 ± 4.0 mm/decade between 1994–2014 over the Ganges and Brahmaputra River Basins Khandu
et al., 2016). A large difference between PCR-GLOBWB and LISFLOOD can be found in the Ganges
and Indus River Basins, where PCR-GLOBWB groundwater shows positive trend and LISFLOOD
groundwater shows a strong negative trend within these regions. Figure 7.4 shows that soil water

Fig. 7.2 An overview of the basin averaged GRACE TWSC for the world’s 33 largest river basins. (A) Standard Deviation
(StD) of the basin averaged GRACE TWSC between 2002–2012 showing the strength of its signal. (B) Standard Deviation
StD of the TWSC errors. (C) Signal to Noise Ratio (SNR) computed by dividing the values in plot (A) by corresponding
values of plot (B).

Fig. 7.3 Long-term linear trends [mm/yr] fitted to the groundwater storage of global hydrological model outputs used in this
study between 2002-2012.
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storage changes derived from all six hydrological models indicate an increasing trend within the
Murray and lake Eyre River Basins in Australia, and a decreasing trend in the Ob and Caspian-Volga
River Basins in North Asia. Among these models, ORCHIDEE and SURFEX-TRIP show the highest
linear rate in the soil water changes, mostly in North Asia.

Among the six global models used in this study, only PCR-GLOBWB, SURFEX-TRIP, and OR-
CHIDEE models contain surface water storage estimates. Figure 7.5 indicates that PCR-GLOBWB
does not show any significant trend in its surface water changes, except in the Mackenzie River Basin
in the northwest of America. SURFEX-TRIP and ORCHIDEE model indicates strong linear trends in
surface water changes within the basins in South America, between 2002-2012, which is a negative
trend for the Amazon River Basin and a positive trend for the Parana and Tocantins. ORCHIDEE
surface water is found to contain a positive trend over the Nile and Ganges River Basins between
2002-2012.

7.4 Comparison between GRACE and Model-derived TWSC

To understand how GRACE TWSC modifies model-derived individual and vertically summed water
storage simulations, the mismatch between GRACE TWSC and those derived from the six hydrological
models (i.e., PCR-GLOBWB, SURFEX-TRIP, LISFLOOD, HBV-SIMREG, W3RA, ORCHIDEE,

Fig. 7.4 Long-term linear trends [mm/yr] fitted to the soil water storage changes of global hydrological model outputs used
in this study between 2002-2012.

Fig. 7.5 Long-term linear trends [mm/yr] fitted to the surface water storage of six global hydrological model outputs used in
this study between 2002-2012.
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Table 7.1 The Root Mean Squares Differences (RMSD) between GRACE TWSC and: 6 global hydrological models, the
Mean of TWSC derived from these 6 models, and DMDA TWSC, between 2002–2012.

ID Basin Name PC
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1 Amazon 78.03 69.21 116.90 112.42 83.27 91.76 78.58 35.77
2 Amur 24.38 25.61 27.49 23.82 23.91 32.12 24.01 20.85
3 Aral 47.42 59.30 62.26 62.67 65.25 58.09 56.12 37.73
4 Brahmaputra 67.52 76.57 119.69 83.70 61.78 167.11 70.45 49.18
5 Caspian-Volga 22.29 44.18 40.19 61.00 50.52 32.08 38.74 20.03
6 Colorado 36.07 38.17 41.88 42.52 37.28 35.98 34.32 31.08
7 Congo 26.75 37.84 34.38 34.33 33.60 31.40 29.11 27.82
8 Danube 34.71 39.28 40.42 50.06 45.03 33.47 37.96 25.36
9 Dnieper 39.69 53.11 48.09 59.82 48.43 48.98 47.23 38.93
10 Euphrates 62.22 77.38 69.95 78.62 73.82 75.64 72.41 46.15
11 Lake Eyre 26.57 35.24 32.47 37.86 33.17 29.62 31.96 24.58
12 Ganges 87.86 97.34 90.07 92.92 80.98 98.85 74.33 40.12
13 Indus 47.73 46.56 51.95 44.56 46.64 55.25 38.58 35.80
14 Lena 30.90 21.96 41.23 29.65 32.05 36.93 29.08 17.82
15 Mackenzie 27.47 20.89 34.82 25.69 25.92 28.70 23.98 16.59
16 Mekong 70.68 52.22 127.17 103.75 75.58 58.36 70.95 50.26
17 Mississippi 17.44 32.13 39.67 42.92 37.46 29.31 29.35 17.86
18 Murray 29.13 35.86 32.44 38.47 35.65 32.56 32.65 26.16
19 Nelson 27.36 39.05 41.51 47.34 40.30 35.84 35.40 22.41
20 Niger 30.14 35.20 38.22 44.18 40.59 22.67 31.36 24.27
21 Nile 18.64 26.26 29.08 32.01 29.00 27.19 21.60 18.28
22 Ob 19.60 31.18 41.63 42.82 38.72 38.04 32.40 17.64
23 Okavango 84.51 91.20 90.68 93.86 86.11 92.52 89.11 78.26
24 Orange 19.48 22.90 20.17 25.33 22.85 23.36 21.63 20.46
25 Orinoco 104.59 86.10 142.70 116.51 79.25 79.95 80.75 50.53
26 Parana 24.26 24.93 37.27 32.09 30.48 27.42 22.60 19.33
27 St. Lawrence 39.49 58.64 66.07 66.71 54.91 38.58 50.17 27.27
28 Tocantins 92.10 82.62 134.08 120.09 92.07 76.58 87.35 59.12
29 Yangtze 33.50 25.90 34.52 26.39 21.49 48.77 27.56 19.62
30 Yellow 37.17 34.84 28.68 34.98 35.50 28.82 31.52 24.60
31 Yenisei 19.85 25.85 36.65 30.91 27.91 29.90 24.65 15.71
32 Yukon 95.58 63.80 96.54 102.20 95.93 99.00 91.34 50.93
33 Zambezi 72.32 89.30 89.38 100.50 93.29 75.78 84.22 64.07

Schellekens et al., 2017) are shown in Fig. 7.6 in terms of Root Mean Square of Differences (RMSD),
without removing linear trends and seasonality. The biggest RMSD is estimated within the basins
which are strongly affected by climate and human water-use such as Amazon, Orinoco and Tocantins
(all corresponding to the LISFLOOD model), the Yukon basin in North America (corresponding to the
HBV-SIMREG model), and some irrigated regions such as Ganges and Brahmaputra (corresponding
to the ORCHIDEE model). The numerical values corresponding to Fig. 7.6 are reported in Table
7.1. The RMSD computed for each model against GRACE TWSC, after removing the linear trends
and seasonality, is shown in Fig. 7.7, from which one can see that inter-annual differences exist
between model outputs and GRACE in some river basins. These differences could be related to
climate variability such as that of ENSO (see, e.g., Anyah et al., 2018; Chen et al., 2010a; Forootan
et al., 2016, 2019; Hurkmans et al., 2009; Ni et al., 2018; Zhang et al., 2015). By comparing Fig. 7.6
and Fig. 7.7, it is found that the large differences between hydrological models and GRACE TWSC
are mainly due to the differences in the linear trends and seasonality. GRACE represents hydrological
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Fig. 7.6 The Root Mean Squares Differences (RMSD) between GRACE TWSC and those of derived from 6 global
hydrological models, over the world’s 33 largest river basins, covering the period of 2002–2012.

Fig. 7.7 The RMSD between GRACE TWSC and those derived from 6 hydrological models, after removing linear trends
and seasonality, over the world’s 33 largest river basin covering the period of 2002–2012.
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variations that are composed of both climate variability and human activities, but there are certain
limitations in the hydrological models to simulate these components (Pokhrel et al., 2012); and that is
why the proposed DMDA combination is crucial to provide more realistic water storage estimations.

7.5 DMDA Weights to Compare Global Hydrological Models

TWSC derived from DMDA is a weighted average of TWSC derived from selected models, which
is obtained by estimating time-varying weights based on the Bayes rule as in Eq. (4.17). Figure
7.8 shows the estimated weights for ten basins with the largest RMSD between GRACE TWSC
and those derived from individual models. Time-variable weights derived from DMDA allow us (1)
to quantify the quality and compare individual water storage simulations derived from each global
hydrological model against GRACE TWSC at different times, and (2) to separate GRACE TWSC in
a Bayesian framework, while considering different model structures and errors within and between
model simulations and GRACE data. The average of weights during 2002–2012, derived from DMDA,
is considered as the basis to select the best model to simulate TWSC over 33 river basins, which are
shown in the middle of Fig. 7.8.

Fig. 7.8 Temporal weights derived from DMDA approach for the six initially considered models, over 10 selected river
basins with the biggest RMSD computed using GRACE and models-derived TWSC. In the middle of Fig. 7.8, the most
contributed models in the DMDA-derived TWSC are shown over the world’s 33 largest river basins, covering the period of
2002–2012.
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From the numerical results, PCR-GLOBWB is associated with the largest weights during the period
of study; thus, the PCR-GLOBWB is the largest contributor to DMDA-derived TWSC in North Asia,
Central Africa, and North America. The weights computed for SURFEX-TRIP are found to be larger
than other models within the snow-dominated regions, such as the Yukon and Mackenzie in the north
part of America and the Lena in the northeast of Asia. These results confirm the investigations by
Schellekens et al. (2017), who compared the mentioned models against the Interactive Multi-sensor
snow and Ice Mapping System (IMS, Ramsay, 1998). Multiple snow layers of SURFEX-TRIP helps
it to better simulate snow dynamics during the cold seasons.

In Fig. 7.8 it can be seen that SURFEX-TRIP received the highest averaged weights (compared to
other models) within the Amazon and Brahmaputra River Basins during 2002–2012, where surface
water storage changes is the main components of TWSC (Chen et al., 2009; Khandu et al., 2016). In
the Amazon River Basin, SURFEX-TRIP is also found to perform well between 2009–2011, during
which the extreme floods (Chen et al., 2009) increased the inter-annual magnitude. TWSC within
the Amazon is also closely connected to the ENSO events in the tropical Pacific (Kousky et al., 1984;
Ropelewski and Halpert, 1987). Later in Section 7.8, it will be seen that surface water derived from
SURFEX-TRIP is well correlated with the ENSO index compared to other models of this study. This
could be another reason that the highest weights are obtained for SURFEX-TRIP between 2009–2011
within the Amazon River Basin.

Moreover, Fig. 7.8 indicates that within the river basins with considerable irrigation activities (such as
the Indus, Euphrates, and Orange River Basins), the relatively highest weights are assigned to the
LISFLOOD and ORCHIDEE, where both account for human water-use (Schellekens et al., 2017).
ORCHIDEE is also found to perform well within the Brahmaputra, Ganges, and Murray River Basins,
each of which experienced a strong decline in rainfall over the entire period of this study (e.g., 9.0 ±
4.0 mm/decade between 1994–2014 over Ganges and Brahmaputra Khandu et al., 2016). Specifically,
ORCHIDEE contains 14 soil layers (see Table 2.1) that help it to better resolve vertical water exchange
within the irrigated regions. Mehrnegar et al. (2020a) indicated that GRACE TWSC changes within
the Murray River Basin are considerably influenced by ENSO events (see also Forootan et al., 2012,
2016), and the simulated outputs of ORCHIDEE reflects these changes better than the other tested
models justifying the higher weights that are assigned to this model within the DMDA procedure.
Later in Section 7.7, it will be seen that after applying the DMDA, model-derived TWSC is tuned to
the GRACE TWSC.

An overall interpretation of Fig. 7.6 is that those models with smaller RMSD, when compared with
GRACE TWSC, receive bigger weights. However, some exceptions are found. For example, in the
Ganges River Basin, LISFLOOD received the biggest weight, while the RMSD between this model
and GRACE TWSC is found to be 90.07 mm, which is larger than that of PCR-GLOBWB, i.e., 87.86
mm, and W3RA, i.e., 80.98 mm. Although W3RA shows the best agreement with GRACE TWSC
in terms of magnitude, it does not reproduce the trend that is evident in GRACE data. In contrast,
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LISFLOOD is found to be the only model that reproduced the trend, and as a result, is weighted the
highest by the DMDA procedure.

7.6 Linear Trends of DMDA Water Storage Estimates

Estimated weights for the six models (presented in Section 7.5) along with the computed state
parameters θ̂t (see the flowchart of Fig. 4.1) are used to compute the DMDA-derived groundwater,
soil water, and surface water storage. To extract the monotonic changes of water storage changes
within the 33 river basins, long-term linear trends are fitted to the DMDA results that are shown in
Fig. 7.9, and the numerical values are reported in Table 7.2.

Fig. 7.9 Long-term (2002–2012) linear trends fitted to the DMDA-derived (a1) groundwater, (b1) soil water, and (c1)
surface water components, expressed in mm/yr. The uncertainties of the linear trends are shown in (a2), (b2), and (c2),
respectively.

Figure 7.9 (a1) and (a2) show the linear trends fitted to the DMDA-derived groundwater storage and
their uncertainty. The results indicate decreasing groundwater storage in 42% of the assessed river
basis (i.e., 14 of 33). The largest decreasing trends are found in basins with large-scale irrigation,
such as the Ganges (-14.77 ± 0.25 mm/yr), Indus (-8.26 ± 0.16 mm/yr) and Euphrates (-5.36 ± 0.23
mm/yr). The results confirm findings by Khandu et al. (2016), Forootan et al. (2019), and Voss et al.
(2013), respectively. The strongest increasing trends in groundwater are seen in the Tocantins basin
(South America), Okavango (South Africa), and Lena (northeast Asia). However, all of these trends
are not physically significant (less than 3 mm/yr). The positive trends in groundwater storage in these
last two basins are associated with the heavy rainfalls, seasonal floods and the geographical location of
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the Okavango Delta (McCarthy et al., 1998), and underground ice melting caused by global warming
(Dzhamalov et al., 2012), respectively. Comparison between linear trends fitted to the DMDA-derived
groundwater storage and those of model outputs (Fig. 7.3) indicates that after merging GRACE TWSC
with multiple hydrological model outputs, linear trends fitted to the groundwater storage changes has
been modified considerably. This means that introducing GRACE data can successfully modify the
anthropogenic effects, which are not well simulated by models.

Table 7.2 The amplitude of long-term linear trends [mm/yr] and their uncertainty, fitted to the DMDA-derived groundwater,
soil water, and surface water storage, within the world’s 33 largest river basin from 2002 to 2012.

Basin DMDA DMDA DMDA
ID Name Groundwater Soil water Surface water
1 Amazon 0.17 ± 0.12 -1.92 ± 0.09 1.43 ± 0.06
2 Amur 0.46 ± 0.06 2.61 ± 0.09 0.25 ± 0.03
3 Aral 0.02 ± 0.08 -1.43 ± 0.22 0.21 ± 0.12
4 Brahmaputra -0.44 ± 0.16 -7.00 ± 0.69 -0.13 ± 0.21
5 Caspian-Volga -2.06 ± 0.15 -2.98 ± 0.16 -0.02 ± 0.07
6 Colorado 0.80 ± 0.11 -0.75 ± 0.09 0.82 ± 0.08
7 Congo -0.72 ± 0.08 0.59 ± 0.03 0.06 ± 0.06
8 Danube -0.47 ± 0.18 -0.75 ± 0.21 -0.08 ± 0.04
9 Dnieper -0.5 ± 0.29 -2.27 ± 0.28 -0.03 ± 0.18

10 Euphrates -5.36 ± 0.23 -5.75 ± 0.39 -2.09 ± 0.09
11 Lake Eyre 0.55 ± 0.16 2.42 ± 0.19 0.77 ± 0.04
12 Ganges -14.77 ± 0.25 2.69 ± 0.40 0.29 ± 0.05
13 Indus -8.26 ± 0.16 1.10 ± 0.13 -0.06 ± 0.07
14 Lena 1.74 ± 0.11 1.94 ± 0.05 0.20 ± 0.08
15 Mackenzie 0.51 ± 0.06 0.12 ± 0.05 -0.05 ± 0.10
16 Mekong 1.58 ± 0.43 -0.79 ± 0.33 0.83 ± 0.17
17 Mississippi 1.25 ± 0.09 1.36 ± 0.09 0.33 ± 0.02
18 Murray 0.06 ± 0.06 6.66 ± 0.15 -1.47 ± 0.04
19 Nelson 0.70 ± 0.18 2.45 ± 0.15 0.11 ± 0.03
20 Niger -1.14 ± 0.15 0.75 ± 0.15 0.32 ± 0.05
21 Nile 0.45 ± 0.06 0.77 ± 0.06 -0.05 ± 0.02
22 Ob -1.42 ± 0.08 -1.54 ± 0.06 0.05 ± 0.07
23 Okavango 1.74 ± 1.31 3.92 ± 0.55 -1.42 ± 0.37
24 Orange 1.32 ± 0.05 1.28 ± 0.06 -0.85 ± 0.05
25 Orinoco 0.87 ± 0.11 3.45 ± 0.26 -0.22 ± 0.19
26 Parana 0.68 ± 0.08 0.03 ± 0.13 1.04 ± 0.04
27 St. Lawrence 1.49 ± 0.18 1.07 ± 0.07 0.48 ± 0.05
28 Tocantins 2.41 ± 0.47 2.37 ± 0.35 0.08 ± 0.21
29 Yangtze 0.55 ± 0.23 -0.30 ± 0.09 0.20 ± 0.02
30 Yellow -3.50 ± 0.14 -0.27 ± 0.05 0.08 ± 0.21
31 Yenisei -0.26 ± 0.07 1.79 ± 0.06 0.75 ± 0.11
32 Yukon -4.73 ± 1.08 -1.52 ± 0.20 -1.11 ± 0.23
33 Zambezi 1.19 ± 0.38 0.65 ± 0.31 0.35 ± 0.25

Long-term linear trends fitted to the DMDA soil water storage and their uncertainty are shown in Fig.
7.9 (b1) and (b2). The strongest increasing trends in DMDA soil water storage changes are found
within the Murray (Australia), Okavango, and Orinoco (South America) River Basins with rates of
6.66 ± 0.15, 3.92 ± 0.55, and 3.45 ± 0.26 mm/yr respectively, and the largest decreasing trends are
found in the Brahmaputra and Euphrates with rates of -7.00 ± 0.69 and -5.75 ± 0.39 mm/yr.

Figure 7.9 (c1) and (c2) show the linear trends and their uncertainty fitted to the surface water storage
estimated through the DMDA method. Linear trends of surface water within 28 out of the 33 river
basins are found to be physically insignificant (values between -2 and +2 mm/yr). The strongest
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negative trends are found in the Euphrates, Murray, and Okavango River Basins with rates of -2.09
± 0.09, -1.47 ± 0.04, and -1.42 ± 0.37 mm/yr respectively. In contrast, the largest positive trends
are found within the Amazon and Colorado, at the rate of 1.43 ± 0.06 and 1.04 ± 0.04 mm/yr,
respectively. The heavy flood during the summer of 2008–2009 (Chen et al., 2010a; Marengo et al.,
2011), which was considerably larger than the temporal mean, likely caused this positive trend in the
Amazon River Basin. Negative trends in all three water storage compartments of the Euphrates River
Basin (groundwater -5.36 ± 0.23 mm/yr, soil water -5.75 ± 0.39 mm/yr, and surface water -2.09 ±
0.09 mm/yr) can be associated with both irrigation and long-term drought as shown by Forootan et al.
(2017).

7.7 An overview of TWSC Derived from DMDA

DMDA TWSC, as a summation of DMDA-derived water storage components (i.e., groundwater, soil
water, surface water, snow, and canopy) is compared with the TWSC derived from models within
the world’s 33 largest river basins. Figure 7.10 shows differences between linear trends fitted to
the GRACE and (left panel) DMDA TWSC, and (right panel) the mean of original model outputs.
The results indicate that except for the Aral, Danube, and Nile River Basins the difference between
linear trends of DMDA TWSC and GRACE data, is smaller than that of between mean of the models
and GRACE data (see also Table 7.3). For example, within the irrigated river basins of Ganges and
Euphrates, the differences between linear trends of GRACE TWSC and the mean of the models
are estimated to be ∼−20 and ∼−18 mm/yr, respectively, while the differences between GRACE
TWSC and DMA TWSC are estimated less than −5 and −9 mm/yr, respectively in these regions.
The numerical values corresponding to Fig. 7.10 are given in Table 7.3.

This table also shows the differences between the linear trends fitted to GRACE TWSC and individual
models. These results indicate that, as expected, in 73% of the region of the study (24 of 33 major river
basins) the DMDA TWSC can reproduce that of GRACE better than individual models. In the Aral
River Basin, for example, the difference between linear trend of DMDA TWSC and GRACE TWSC is
estimated to be ∼ 2 mm/yr, while the difference between HBV-SIMRWG TWSC and GRACE TWSC
is smaller than the DMDA result (-1.38 mm/yr). This is possibly because the ORCHIDEE model
gains the highest weights through the DMDA approach within this region, and therefore is the most
contributed model within the DMDA results (see Fig. 7.8). However, the difference between linear
trend of ORCHIDEE and GRACE TWSC is 95% larger than that of HBV-SIMREG (∼ 4 mm/yr).
According to the Table 2.1, ORCHIDEE only simulates soil water, surface water storage, and snow. It
can be postulated that, although ORCHIDEE performs well within the irrigated regions to simulate
soil water and surface water storage, its lack of groundwater storage can negatively affect the DMDA
results.
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Table 7.3 ∆Trend [mm/yr] between GRACE TWSC and 6 hydrological models, the mean of models, and DMDA TWSC,
2002–2012.
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1 Amazon 4.65 14.28 5.75 6.81 8.70 7.78 7.99 5.27
2 Amur -3.47 -3.15 -2.47 -1.38 -1.12 -3.98 -2.60 -1.03
3 Aral 2.13 4.23 -1.41 -1.38 2.85 3.88 1.72 1.92
4 Brahmaputra -14.54 -13.45 -13.14 -17.90 -14.63 -18.62 -15.38 -9.63
5 Caspian-Volga -3.70 -5.72 -4.44 -6.85 -6.23 -3.90 -5.14 -1.93
6 Colorado 2.37 2.40 5.65 4.11 2.48 2.92 3.32 2.89
7 Congo -1.74 -2.75 -5.17 -2.80 -3.23 -2.90 -3.10 -2.76
8 Danube 0.05 0.86 0.81 0.42 0.85 -1.61 0.23 0.95
9 Dnieper -5.02 -5.96 -6.08 -6.38 -4.75 -8.10 -6.05 -2.30
10 Euphrates -16.82 -18.63 -17.34 -19.16 -17.98 -17.57 -17.92 -8.83
11 Lake Eyre 0.48 2.78 2.55 3.95 2.53 1.96 2.37 1.37
12 Ganges -24.84 -24.34 -3.36 -22.89 -20.12 -25.53 -20.18 -4.21
13 Indus -12.04 -10.92 13.64 -10.06 -11.31 -14.26 -7.49 -3.60
14 Lena 1.91 -0.93 2.65 2.55 2.80 -2.10 1.15 -0.48
15 Mackenzie 0.39 0.38 -0.20 -1.42 -0.16 -0.56 -0.26 -0.81
16 Mekong -6.76 -5.94 -8.02 -7.50 -8.02 -7.69 -7.32 -9.03
17 Mississippi -3.05 0.53 1.71 1.64 1.69 0.01 0.42 0.64
18 Murray -0.66 2.46 1.66 3.87 2.90 2.41 2.11 0.88
19 Nelson -0.74 -1.10 3.85 5.71 3.06 2.70 2.25 -0.02
20 Niger 4.76 5.19 4.96 5.27 5.80 4.00 5.00 4.23
21 Nile 0.80 1.56 0.92 0.77 0.94 -5.67 -0.11 0.30
22 Ob 0.53 -1.56 -0.91 -2.41 -2.43 -1.91 -1.45 0.12
23 Okavango 23.77 24.97 24.92 25.09 23.60 24.63 24.50 17.92
24 Orange 0.63 2.15 1.91 2.28 1.92 1.92 1.80 0.61
25 Orinoco 17.06 19.74 13.46 16.82 21.97 15.07 17.35 8.80
26 Parana -0.73 -3.46 -0.53 -0.85 -1.05 -6.93 -2.26 -0.78
27 St. Lawrence 1.68 3.11 3.59 3.09 4.67 1.15 2.88 1.09
28 Tocantins 5.41 1.89 2.73 1.41 2.40 -0.74 2.18 1.87
29 Yangtze 8.02 6.04 4.24 4.83 4.83 10.96 6.49 3.58
30 Yellow -7.43 -6.42 -3.12 -4.83 -6.99 -5.86 -5.78 -1.54
31 Yenisei 4.66 4.26 4.64 5.37 5.06 4.54 4.75 2.11
32 Yukon -23.89 -15.33 -24.78 -29.48 -23.86 -23.35 -23.45 -11.85
33 Zambezi 16.88 18.32 19.24 19.31 18.78 17.30 18.30 15.25
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Fig. 7.10 An overview of the difference between the linear trends (∆Trend) fitted to the GRACE TWSC and: (left) the
DMDA-derived TWSC, (right) the mean of 6 models over the world’s 33 largest river basins covering the period of
2002–2012.

Figure 7.11 shows the RMSD between DMDA-derived TWSC and GRACE TWSC, as well as the
RMSD between the mean of TWSC derived from original models and that of GRACE data. The results
indicate that the magnitude of differences is considerably decreased after applying the DMDA (see a
summary of the corresponding statistics in Table 7.1). Therefore, DMDA is effective in introducing
missing components to model simulations, e.g., long-term linear trends and cyclic (e.g., seasonal)
components, contributing to addressing the defects which were previously reported in studies such as
Scanlon et al. (2018).

Fig. 7.11 The Root Mean Squares of Differences (RMSD) between GRACE TWSC and TWSC derived from DMDA (left),
and the mean of 6 models (right) over the world’s 33 largest river basins covering the period of 2002–2012.

7.8 Contribution of ENSO to the Changes of Water Storage Compo-
nents

The El Niño Southern Oscillation (ENSO) is a dominant climate mode that results from ocean–atmosphere
interactions over the equatorial Pacific (Trenberth and Stepaniak, 2001) and considerably influences
precipitation and inter-annual TWSC in various regions (Anyah et al., 2018; Awange et al., 2014;
Chen et al., 2010a; Fasullo et al., 2013; Forootan et al., 2016, 2019; Ni et al., 2018; Zhang et al.,
2015). Previous studies explored the influence of ENSO on GRACE TWSC and the global water
balance estimates (Eicker et al., 2016; Forootan et al., 2018; Phillips et al., 2012). Their results
indicate that the ENSO teleconnection patterns are well reflected in the GRACE signal, whereas more
pronounced variability is found by GRACE than the reanalysis water flux estimates shown by Eicker
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et al. (2016). Therefore, it is expected that by merging multi-model outputs with GRACE data, their
skill in representing ENSO related water storage change will be improved.

7.8.1 Extracting the ENSO Modes from Water Storage Changes

To show this impact, the ENSO mode is extracted from water storage changes and compared with
the ENSO index. The extraction is implemented here by applying the Principal Component Analysis
(PCA, Von Storch and Zwiers, 2001, see also Appendix A.1). Before this implementation, the long-
term linear trends and cyclic changes (with annual and semi-annual periods) are removed from the
time series due to their dominant variance so that we can focus on inter-annual and multi-year cyclic
time-scales.

Fig. 7.12 The first four EOFs and PCs of the DMDA-derived groundwater storage after removing the linear trends and
seasonal cycles (74% of total variance), between 2002–2012. EOF1 and PC1 explain 17% of the residual signal. EOF2 and
PC2, as well as EOF4 and PC4 that respectively represent 15% and 10% of the residual signal capture the influence of ENSO
on global groundwater changes. EOF3 and PC3 carry 9% of the residual signal. The uncertainty of the DMDA-derived
groundwater storage, after removing linear trends and seasonal cycles is shown by the grey error bars fitted to the PC curve.

Figures 7.12, 7.13, and 7.14 show the spatial patterns (the first four dominant Empirical Orthogonal
Functions, EOFs) and their corresponding temporal patterns (Principal Components, PCs) derived
from the DMDA groundwater, soil water, and surface water storage estimates for the entire period of
2002–2012. The results indicate that the second and fourth modes of both groundwater and soil water,
and the first and third modes of the surface water capture the influence of ENSO on global water
storage changes, which are known here as the ENSO modes of water storage change. PC2 derived
from the DMDA groundwater and soil water estimates, as well as PC1 derived from the surface water,
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are found to be in-phase with the ENSO index, while PC4 (derived from the DMDA groundwater and
soil water) and PC3 (derived from the DMDA surface water) follow its out-of-phase evolution, i.e.,
the Hilbert transformation (Horel, 1984) of the ENSO index (more details can be found in Forootan
et al., 2018). By comparing Figs. 7.12 and 7.13, it can be seen that the magnitude of soil water

Fig. 7.13 The first four EOFs and PCs of the DMDA-derived soil water after removing the linear trends and seasonal cycle
(74% of total variance), covering the period of 2002–2012. EOF1 and PC1 explain 19% of the residual signal. EOF2 and
PC2, as well as EOF4 and PC4 respectively correspond to 15% and 10% of the residual signal and capture the influence of
ENSO on global soil water storage changes. EOF3 and PC3 indicate 12% of the residual signal. The uncertainty of the
DMDA-derived soil water storage, after removing linear trends and seasonal cycles is shown by the grey error bars fitted to
the PC curve.

storage changes due to ENSO is higher than that of groundwater, particularly in the north of Asia
and Australia. This is likely due to the stronger interactions (coupling) between rainfall (climate) and
soil water (than that of rainfall and groundwater) in these regions. In some regions, e.g., Amazon and
Zambezi, we can see that the effects of ENSO on groundwater storage is much bigger than that of soil
water storage.

7.8.2 Correlation Coefficients of Water Storage Changes with the ENSO Index

Figure 7.15 shows temporal correlation coefficients between the ENSO index and the ENSO modes of
groundwater and soil water storage derived from DMDA and the original model outputs. Maximum
and minimum correlation of 0.75 and 0.53 corresponding to a maximum lag of up to 2 months
are found globally between the DMDA groundwater and the ENSO index, respectively. Smaller
correlation coefficients are found between those of the original models and the ENSO index. Among
these models, W3RA and HBV-SIMREG indicate stronger correlations (∼ 0.6 and∼ 0.4, respectively)
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with the ENSO index with a maximum lag of 2 months. Other models such as LISFLOOD and
SURFEX-TRIP indicate notably different values. Small positive correlations are found with a
maximum value of 0.3 between the original PCR-GLOBWB’s groundwater and the ENSO index.

In Fig. 7.15, it can be seen that the correlation coefficients of the soil water storage derived from
SURFEX-TRIP and LISFLOOD models are the highest, in comparison to those of DMDA and
other model outputs, i.e., correlations of 0.6 to 0.8 within the 33 river basins examined here. PCR-
GLOBWB and W3RA show a correlation coefficient of ∼ 0.5, while those from HBV-SIMREG and
ORCHIDEE are different from the other estimates, for example, less than 0.1 in the Niger and Nile
River Basins and greater than 0.75 in North Asia. Khaki et al. (2018b) indicate that over the Nile
River Basin, all three water storage components (i.e., groundwater, surface water, and soil water) are
strongly influenced by ENSO. Therefore, the derived correlation of 0.1 in the Nile River Basin from
HBV-SIMREG is likely to be unrealistic. Moreover, the high correlation coefficients of ORCHIDEE
and SURFEX-TRIP with the ENSO index could be due to the fact that they have the largest number
of soil layers (11 and 14, respectively) in their structure (Schellekens et al., 2017), compared to the
other models. Thus, these two models may simulate soil water storage better than PCR-GLOBWB
and W3RA.

Fig. 7.14 The first four EOFs and PCs of the DMDA-derived surface water after removing the linear trends and seasonal
cycles (54% of total variance) covering the period of 2002–2012. EOF1 and PC1 (26% of the residual signal) along with
EOF3 and PC3 (13% of the residual signal) capture the influence of ENSO on global surface water changes. EOF2 and PC2,
as well as EOF4 and PC4, explain to 15% and 9% of the residual signal, respectively. The uncertainty of the DMDA-derived
surface water storage, after removing linear trends and seasonal cycles is shown by the grey error bars fitted to the PC curve.
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Similar assessments are performed between the surface water storage changes and the ENSO index,
and the results are shown in Fig. 7.16. Correlation coefficients up to 0.8 are computed from the
DMDA estimates with a maximum lag of up to 2 months.

The DMDA-derived surface water storage is compared with those of PCR-GLOBWB, SURFEX-TRIP,
and ORCHIDEE, which contain the surface water storage compartment. The correlation coefficients
are found to be generally smaller than those of soil water and groundwater components (with a
maximum of 0.5), which likely shows that the modelling of surface water needs improvement because
in reality surface water in lakes and rivers within regions like East Africa shows an immediate
response to ENSO (e.g., Becker et al., 2010). Figure 7.16 shows that the surface water storage
output of SURFEX-TRIP has the highest correlation coefficients with the ENSO index in all basins of
America (values between 0.33 and 0.51) and Africa (values between 0.23 and 0.48), while ORCHIDEE
shows the highest correlations (values between 0.32 and 0.58) in most parts of Asia. The correlation
coefficients for PCR-GLOBWB are found to be relatively smaller, i.e., between 0.1 and 0.2 with lags
of between 5-12 months.

Comparisons between the DMDA and original model outputs, in terms of correlation coefficients with
ENSO index in Figs. 7.15 and 7.16, indicate that combining models with GRACE data improve the
correlations with the ENSO index, and the correlation lags are considerably reduced globally. It is

Fig. 7.15 Correlation coefficients and their lags between the ENSO index and groundwater and soil water storage derived
from the DMDA method and hydrological model outputs used in this study for the period of 2002–2012.
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worth mentioning that the DMDA results that are presented here are derived by setting the α value in
Eq. (4.16) to 0.9. This means that 36-month temporal correlations are assumed between water storage
simulations of the six models. This value guarantees an extraction of the dominant part of ENSO
using two PCA modes after merging GRACE and model outputs.

Fig. 7.16 Correlation coefficients and their lags between the ENSO index and surface water estimates derived from the
DMDA method and hydrological models used in this study from 2002 to 2012.

7.9 Summary and Conclusion

In this chapter, the application of DMDA was examined (1) to compare multi-model (individual)
water storage simulations against GRACE-derived Terrestrial Water Storage Changes (TWSC); and
(2) to separate GRACE TWSC into its hydrological compartments within the world’s 33 largest river
basins.

Numerically, the DMDA method was implemented by integrating the output of six global hydrological
and land surface models (Schellekens et al., 2017), i.e., PCR-GLOBWB, SURFEX-TRIP, LISFLOOD,
HBV-SIMREG, W3RA, ORCHIDEE, and monthly GRACE TWSC (2002–2012) within the world’s
33 largest river basins, while considering the inherent uncertainties of all inputs.

DMDA provides time-variable weights (see Section 4.3) to compute an average of multiple a priori
information, yielding the best fit to the observation. These weights can also be used to understand the
behaviour of a priori information (which here refers to the output of hydrological models) against the
observations (GRACE(-FO) TWSC) while considering their error estimates. To test this hypothesis,
a realistic synthetic example was defined to evaluate the performance of DMDA (Fig. 4.2). This
analysis showed that the method is able to correctly separate GRACE TWSC estimations into its
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individual hydrological compartments. It was also shown that the DMDA’s estimation of temporal
weights (for each model) is close to reality and can be used to assess the performance of models.

Temporal weights estimated for the six global hydrological and land surface models in this study
were interpreted in Section 7.5 for different regions of the world. The Relationship between various
climate events in different regions during the last two decades and the structure of the models were
used as an evidence to confirm finding of this study. From the results, it can be concluded that DMDA
time-variable weights allow us to assess each model’s performance during various time steps and to
explore which model can best simulate water storage changes due to various climate events.

The application of DMDA to merge six global hydrological model outputs with GRACE data showed
that this approach can deal with models with different structures, and performed well to update water
storage simulations with respect to GRACE data. Based on these results, we have gained confidence
in this method for improving the characterization of water storage over broad regions of the globe
using GRACE data. In what follows, the main conclusions and remarks of this study are summarized.

• Estimated weights (Fig. 7.8) showed that the PCR-GLOBWB model gained the largest weights;
thus, it contributed the most in the DMDA-derived TWSC in North Asia, North America, and
the centre of Africa. SURFEX-TRIP performed best within basins with dominant surface
water storage changes, as well as in snow-dominant regions. The LISFLOOD and ORCHIDEE
models were found to perform well within irrigated basins and those affected by ENSO events.

• DMDA results in Fig. 7.9 (a1) showed that considerable trends exist in groundwater storage
changes within the Ganges, Indus, and Euphrates River Basins during 2002–2012. These
changes were dominantly influenced by anthropogenic modifications. Trends in soil water
storage changes (Fig. 7.9 (b1)) were found to be mostly related to prolonged drought events
such as those in the Brahmaputra and Euphrates River Basins.

• Figures 7.15 and 7.16 showed that the ENSO mode of water storage variability in most of the
world’s 33 largest river basins are improved after merging GRACE TWSC with individual
model outputs using the DMDA approach. DMDA assigned the largest corrections of the ENSO
mode in groundwater to the Nile, Murray, Tocantins, Ob, Okavango and Orange River Basins.
The highest improvement in the ENSO modes of soil water storage were found within the Nile,
Niger, Zambezi, and Amur River Basins, and those of the surface water storage were found
within the Nile, Niger, Congo, Tocantins, and Murray River Basin. For example, the correlation
coefficient between groundwater storage and ENSO in the Murray River Basin changed from
-0.2 to 0.6, and in the Nile River Basin from 0.1 to 0.4 for soil water, and from 0.3 to 0.7 for the
surface water components.





Chapter 8

Application of MCMC-DA to Merge
GRACE with W3RA Water Balance
Model over CONUS

8.1 Introduction

The objective of this chapter is to implement the MCMC-DA approach (formulated in Chapter 5) to
explore high resolution soil water and groundwater storage changes across the Conterminous United
States (CONUS) (with 0.125◦ spatial resolution), with an emphasis on the use of a relatively simple
water balance model. To this aim, the Worldwide Water Resources Assessment (W3RA, Van Dijk,
2010) model, which is simpler than the currently used NASA’s Catchment Land Surface Model
(CLSM, Ducharne et al., 2000), is selected as the platform to be merged with GRACE TWSC, which
is adapted here by defining the CONUS boundary as its domain, during 2003–2017 (see also Section
2.4). W3RA is selected both due to its computational load being manageable for scientific applications,
and its reasonable performance compared to the other commonly used global hydrological or land
surface models Schellekens et al. (2017).

GRACE TWSC and its full error covariance matrix are obtained following the computational steps in
Section 2.2.8, on a 0.125◦×0.125◦ spatial grid points within the CONUS, for the period 2003–2017.

In this chapter, it will be shown that, by formulating the rigorous Bayesian data-model integration
(MCMC-DA), GRACE TWSC improves model estimates of both soil water storage and groundwater
storage changes in terms of trends and seasonality, which are not well simulated by most of the
available models (Scanlon et al., 2019). Beyond long-term trends and seasonality, the effect of other
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climate processes such as that of the El Niña Southern Oscillation (ENSO, Barnston and Livezey,
1987) will be explored. The results are published in Mehrnegar et al. (2020b).

In what follows, after providing an overview on the importance of the improved estimation of
groundwater and soil water storage changes within CONUS (Section 8.2), TWSC derived from
observations (GRACE) and model (W3RA) are compared in terms of their linear trends and annual
cycle in Section 8.3. A comparison between DMDA (proposed in Chapter 4) and MCMC-DA to
merge W3RA model outputs with GRACE observations is provided in Section 8.4. The MCMC-
DA groundwater and soil water storage estimates are then compared with those of the original
model outputs (Sections 8.5 and 8.6, respectively), while the possible relationships between the
storage changes and climatic and anthropogenic factors are evaluated. Validations are done against
independent measurements, i.e., in-situ USGS groundwater level observations, as well as soil water
storage data from the European Space Agency (ESA)’s Climate Change Initiative (CCI) (introduced
in Section 2.5). Evaluations using the groundwater levels are done after standardising the available
time series. Within Texas and California, where reliable information is available, the equivalent
groundwater storage estimates are computed from the USGS level observations, and are used to
evaluate groundwater storage estimates from MCMC-DA and the original model within these states.

In order to extract the influence of ENSO on groundwater and soil water storage estimates, both
Principal Component Analysis (Von Storch and Zwiers, 2001, PCA,) and Independent Component
Analysis (ICA, Forootan and Kusche, 2012, 2013; Forootan et al., 2018) can be applied. PCA
(Appendix A.1), as the second order statistical decomposition techniques, was applied to extract the
ENSO modes from DMDA water storage changes in Chapter 7. In this study, ICA (Appendix A.2),
as the higher order statistical decomposition technique, is chosen to extract the ENSO modes from
water storage changes, and the obtained result are compared with available ENSO indices and are
interpreted in Section 8.7. Choosing ICA over PCA is due to its power to extract cyclo-stationary
modes as demonstrated by Forootan and Kusche (2013).

Down-scaling GRACE TWSC using the outputs of the W3RA in the MCMC-DA approach is
demonstrated in Section 8.8. Changes in groundwater and soil water storage within the Texas and
California states, which are affected by anthropogenic modifications, are evaluated and interpreted in
Sections 8.9 and 8.10, respectively. At the end of this chapter, a summary of the obtained results and
a conclusion are presented in Section 8.11.

8.2 Hydrological Properties of Conterminous United States (CONUS)

Over the past decades, climate variability and change along with anthropogenic modifications and land
management activities have affected water resources across the Conterminous United States (CONUS)
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(Fasullo et al., 2016; Rodell et al., 2018). For example, changes in rainfall patterns, and, therefore,
change in the annual (net-)precipitation has resulted in several extreme flood and drought events
across the country (Dong et al., 2011; Leng et al., 2016; Peterson et al., 2013; Schubert et al., 2004).
In addition, the population has increased with an average annual growth of 0.67% between 2010 and
2019, mostly in the south and west, and the trend is expected to continue until 2050 (Means III et al.,
2005; Potter and Hoque, 2014).

Groundwater across the CONUS accounts for almost half of the water consumed for irrigation,
livestock, and drinking water (including public domestic water supply) (Dieter, 2018). In arid and
semi-arid regions throughout much of the CONUS, groundwater is the only potential freshwater
resource (Maupin et al., 2017). As expected from the current hydro-climatological conditions,
groundwater depletion has been reported in irrigated regions, such as the Central and Southern High
Plains in Kansas and Texas and the Central Valley aquifers in California (Famiglietti et al., 2011;
Scanlon et al., 2012a). Continuing the current negative trends in groundwater resources in these
regions presents a dire threat to future crop production, natural stream-flow, groundwater-fed wetlands,
saltwater intrusion, and related ecosystems (Scanlon et al., 2010).

Soil water is another key variable in the water cycle that can be used as a measure of the land-
atmosphere feedback (Levine et al., 2016). In general, soil water conditions contribute to the natural
and agricultural productivity of a region by defining the vadose zone water that is available for uptake
into vegetation (Hillel, 1998; Illston et al., 2004). In turn, water is transpired from vegetation to
the atmosphere during photosynthesis, increasing low-level atmospheric moisture at various scales.
Therefore, information about soil water changes has been used to predict changes in precipitation
(Brocca et al., 2017), climatic extremes and future climate projections (Bolten et al., 2009; Mo et al.,
2011). Soil water information is now used for monitoring and understanding drought development
(see e.g., www.drought.gov).

8.3 Comparison between GRACE and W3RA TWSC

Before concentrating on the results of MCMC-DA and their evaluation with independent data,
an overview of the comparison of variance between GRACE TWSC (used as observations) and
W3RA (whose individual water storage estimates are used as a priori information in the MCMC-DA
approach) is provided in this section. Grid-based linear trends and annual amplitudes of TWSC
correspond to 36% and 53% of the total variance over the CONUS, respectively (see Fig. 8.1).
Groundwater and soil water storage changes of the original W3RA model and those updated by the
MCMC-DA approach (Figs. 8.4 and 8.10) and their interpretation are presented in the following
sections. To compute the linear trend along with annual and semi-annual cycles, a regression equation
l(t) = a+b t + c cos(2πt)+d sin(2πt)+ e cos(4πt)+ f sin(4πt)+ ε(t) is used. Here, l(t) contains

www.drought.gov
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TWSC time series in each grid (as in Fig. 8.1) or individual water storage time series, and t is a
time vector that varies between 2003 and 2017. To estimate the unknown coefficients (shown by
â, b̂, ĉ, d̂, ê, and f̂ ), a least-squares approach is used while assuming ε(t) to be the vector of residuals.
b̂ is considered as the linear trend (in mm/yr) and

√
ĉ2 + d̂2 as the amplitude of the annual cycle (in

mm). The non-parametric Wilcoxon-Mann-Whitney statistical test (WMW, Fay and Proschan, 2010)
with 95% and 99% significant levels are used to evaluate the statistical significance of the estimated
unknowns.

TWSC are shown in Fig. 8.1, where considerable differences are found between the original W3RA
TWSC and GRACE TWSC in terms of both linear trend (compare Fig. 8.1 (A1) and Fig. 8.1 (B1))
and annual-amplitude (compare Fig. 8.1 (A2) and Fig. 8.1 (B2)) within different parts of the CONUS,
where large differences in the linear trend are found in the west and south, e.g., California and Texas
that are influenced by irrigation and drought (Famiglietti et al., 2011; Rodell et al., 2018; Scanlon
et al., 2012a). GRACE indicates larger trends in these regions with the mean value of −9.47±1.02
mm/yr in California and−7.65±1.32 mm/yr in Texas, relative to those of W3RA with the mean value
of −3.15±0.86 mm/yr and −3.86±1.24 mm/yr within California and Texas, respectively. Within
the northern CONUS (e.g., Montana, North Dakota, and South Dakota), similar results are found
with higher positive trends from GRACE (∼ 9.48±1.78 mm/yr) than those of W3RA (∼ 2.61±0.86
mm/yr). More pronounced changes in GRACE TWSC within the northern CONUS are attributed to
high-intensity rainfall and flooding events (e.g., the 2011’s flood in the Missouri River, Reager et al.,
2014; Zhang and Schilling, 2006; Zheng et al., 2014).

Large differences in the annual-amplitude of TWSC are found within the Great Lakes and in the
southeast of CONUS, with the mean values of 76.23±4.08 mm derived from W3RA and 34.65±3.21
mm from GRACE TWSC. In contrast, the annual-amplitude of W3RA TWSC within Florida is
estimated up to 96.5± 5.34 mm, which is much greater than those estimated by GRACE TWSC

Fig. 8.1 Linear trend [mm/yr] and annual-amplitude [mm] fitted to the GRACE TWSC and the original W3RA TWSC
changes within the CONUS, covering the period of 2003–2017. The plots in (A1) and (A2) correspond to GRACE TWSC,
while (B1) and (B2) correspond to W3RA TWSC.
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(20±3.5 mm). The differences in the seasonality of TWSC, between modelled and measured, can
be related to errors in the forcing data and uncertainty in model parameters to control these values
(Van Dijk et al., 2011; Van Dijk, 2010), which is the case for most available models as demonstrated
by Scanlon et al. (2018). Comparison in Fig. 8.1 indicates that GRACE TWSC has the potential
to be used for improving the W3RA’s water storage simulations in terms of long-term trends and
seasonality. It will also be shown that the improvement is even beyond these components, and some
climate modes, such as that of ENSO is influenced after implementing MCMC-DA.

8.4 Comparison between DMDA and MCMC-DA TWSC within CONUS

The performance of the DMDA approach to merge W3RA model outputs and GRACE observation
within CONUS is compared with those of MCMC-DA. This comparison is done in terms of the
RMSD between modelled and measured TWSC (Fig. 8.2 (A), (B), (C)), and the phase differences for
the annual amplitude of modelled TWSC with GRACE data (Fig. 8.2 (D), (E), (F)) before and after
implementing DMDA and MCMC-DA. A visual representation of the median, first and third quartiles
of the RMSD and phase differences of Fig. 8.2 can be seen in Fig. 8.3 (A) and (B), respectively.
The numerical results indicate that the median of RMSD between modelled and measured TWSC is
reduced by ∼ 50%, from 60 mm to 31 mm, after merging GRACE with W3RA through the DMDA
approach. RMSD between MCMC-DA TWSC and GRACE data is estimated to be zero within
CONUS, which indicates that MCMC-DA TWSC yields the best fit to GRACE data. Both DMDA and
MCMC-DA performed well in reducing the phase differences between modelled and measured TWSC,
where the median of phase differences between the annual amplitude of W3RA and GRACE TWSC
is reduced from −50 deg to zero after implementing both techniques (see Fig. 8.2 (B)). Although
DMDA performed well to reduce the phase differences between W3RA and GRACE TWSC in more
than 70% of the CONUS, large values of phase differences (between ±25 deg) still exist between
modelled and GRACE data, mostly in the south and southeast CONUS (see Fig. 8.2 (E) and Fig. 8.2
(B)).

The DMDA soil water and groundwater storage are also validated against independent ESA CCI and
USGS data (results are not shown here). The numerical results indicate that, compared to DMDA, the
MCMC-DA estimates are on average 25% closer to the independent estimates. This improvement is
likely gained by the dynamic estimation of temporal dependency between unknown state parameters
in Eq. (4.2) that, compared to DMDA, introduces more realistic updates to the individual water storage
components. This is especially true for the top soil layer, in which changes are dynamic and strongly
coupled to the atmosphere rather than to groundwater change, where the hydrological memory of the
region plays an important role in its evolution. In light of this assessment, the interpretations of this
study are limited to those derived from MCMC-DA.
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Fig. 8.2 RMSD [mm] between GRACE TWSC and (A) W3RA TWSC, (B) DMDA TWSC, and (C) MCMC-DA TWSC,
and phase difference [Deg] for the annual amplitude of GRACE TWSC with (D) W3RA TWSC, (E) DMDA TWSC, (F)
MCMC-DA TWSC, within CONUS, between 2003–2017. The blue horizontal line is the median, the edges of the box
are the 25th and 75th percentiles, and the whiskers extend to the most extreme data points (blue points), which are not
considered as outliers.

Fig. 8.3 Box plots illustrating the (A) RMSD between GRACE TWSC and modelled TWSC before and after implementing
DMDA and MCMC-DA to merge W3RA with GRACE data, and (B) the phase difference for the annual amplitude of
modelled TWSC with GRACE data, before and after merging W3RA with GRACE data through DMDA and MCMC-DA.
This figure shows the box plots of RMSD and phase differences illustrated in Fig. 8.2.

In what follows, the performance of the MCMC-DA will be assessed in estimating individual water
storage changes. The focus is to explore changes in groundwater storage, which is essential for water
resources, and by integrating GRACE data into the model, it will be shown that the model’s missing
trends in the groundwater compartment will be introduced to the MCMC-DA result. Moreover,
the soil water storage (top layer < 10cm) will be evaluated, which is important to understand the
land-atmosphere interactions (Brocca et al., 2017; Levine et al., 2016). Previous Data Assimilation
(DA) attempts (Girotto et al., 2016) showed that a single GRACE DA might introduce unrealistic
signals to the soil water storage compartments. Therefore, here, it will be examined whether such
errors can be avoided using MCMC-DA, where the uncertainties and the dynamic evolution of water
states are rigorously accounted for.
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8.5 Groundwater Storage Changes Across the CONUS

Implementing MCMC-DA significantly modifies linear trends, as well as annual and semi-annual
amplitudes of groundwater estimates. On average, changes in these components are found to be
in the magnitude of 110%, 25%, 20% of the original W3RA estimates, respectively. The mean
values of linear trends within the CONUS are reported in Table 8.1, which are estimated based
solely on W3RA output versus those using MCMC-DA. The linear trend and annual-amplitude in

Fig. 8.4 Linear trend [mm/yr] and annual-amplitude [mm] fitted to the (A1 and A2) groundwater storage changes for the
original W3RA; (B1 and B2) groundwater storage estimates from MCMC-DA; and (C1 and C2) the USGS groundwater level
observations, covering the period of 2003–2017. In this figure, the terms GWSC and GWL are used to show groundwater
storage changes and groundwater level, respectively. In order to enhance the visualisation, the black boxes in Fig. 8.4
(marked as Box 1, 2, 3, 4, 5, and 6) are used to show the regions with considerable groundwater changes after integrating
GRACE TWSC into W3RA. The extension of these boxes is reported here as Box 1: [112◦W −125◦W , 32◦N−42◦N], Box
2: [95◦W −109◦W , 30◦N−39◦N], Box 3: [75◦W −90◦W , 32◦N−39◦N], Box 4: [79◦W −86◦W , 24◦N−31◦N], Box 5:
[75◦E−90◦E, 40◦N−50◦N], and Box 6: [79◦W −97◦W , 30◦N−40◦N].

groundwater storage are shown in Figs. 8.4 (A1) and (A2) and Figs. 8.4 (B1) and (B2) for W3RA and
MCMC-DA, respectively. Similar plots from the USGS groundwater level observations are shown as
an independent comparison in Figs. 8.4 (C1) and (C2). Six black boxes are highlighted in Fig. 8.4 to
show the regions with considerable changes after integrating GRACE TWSC into W3RA compared
to the original model outputs. The extensions of these boxes are reported in Fig. 8.4.

8.5.1 Linear Trend of MCMC-DA Groundwater Storage

Pronounced negative trends are found using the MCMC-DA approach in the southwestern (−3.89±
0.34 mm/yr, Box 1, California and Nevada) and south central CONUS (−2.83±0.46 mm/yr, Box 2,
Texas, New Mexico, Colorado, Kansas, and Oklahoma). These values are much greater in magnitude
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than those from the original W3RA results (−1.76±0.54 in Box 1 and −0.10±0.18 mm/yr in Box
2). The USGS groundwater level data (Fig. 8.4 (C1)) also show negative trends within these regions
(Box 1, −18.39±1.96, and Box 2, −16.55±2.04 mm/yr). Estimated linear trends of both USGS
groundwater level and MCMC-DA groundwater storage are found to be statistically significant within
Box 1 and Box 2 based on WMW statistical test results with a 99% significance level. As USGS
observations are not converted to the storage equivalence, the long-term linear trends of standardized
USGS groundwater level are used to validate standardized MCMC-DA groundwater storage and those
of the original model outputs (Fig. 8.5). These data sets are standardized by subtracting their temporal
mean and dividing the residuals by their standard deviations. Linear trends fitted to the standardized

Fig. 8.5 Linear trend fitted to the standardized (A) groundwater storage changes (GWSC) from the original W3RA, (B)
MCMC-DA, and (C) USGS groundwater level observations cover the period 2003–2017.

MCMC-DA groundwater storage and USGS groundwater levels in Fig. 8.5 show considerably larger
values of groundwater depletion in west and south CONUS (Box1 and Box2) between 2003-2017.
W3RA, however, shows groundwater depletion in these region by ∼ 50% less than two other data

Table 8.1 The mean value of linear trends fitted to the W3RA and MCMC-DA groundwater storage estimates. The results
(expressed in mm/yr) are computed for CONUS covering the period of 2003–2017.

State ID, Name W3RA MCMC-DA State ID, Name W3RA MCMC-DA

1-West Virginia -3.69±0.39 -1.39±0.36 25-Ohio -1.54±0.28 0.38±0.15
2-Florida -1.01±0.43 1.47±0.40 26-Texas -0.11±0.34 -2.96±0.56
3-Illinois 0.35±0.24 1.7±0.44 27-Colorado -0.13±0.22 -0.59±0.13
4-Minnesota -0.22±0.24 -1.01±0.30 28-South Carolina -3.04±0.45 1.03±0.30
5-Washington D.C. -2.83±0.31 -1.36±0.24 29-Oklahoma -0.22±0.31 -2.38±0.41
6-Rhode Island -3.42±0.31 0.09±0.14 30-Tennessee -1.72±0.47 -0.42±0.58
7-Idaho 0.08±0.3 0.34±0.19 31-Wyoming 0.39±0.22 1.56±0.20
8-New Hampshire -4.30±0.39 -1.84±0.23 33-North Dakota -0.18±0.19 0.22±0.12
9-North Carolina -2.65±0.43 0.13±0.05 34-Kentucky -2.28±0.39 -0.73±0.23
10-Vermont -3.46±38 -1.48±0.22 38-Maine -1.46±0.39 0.31±0.21
11-Connecticut -4.6±0.32 -0.77±0.16 39-New York -3.27±0.35 -0.93±0.21
12-Delaware -3.14±0.31 -1.78±0.31 40-Nevada -1.03±0.19 -1.65±0.15
13-New Mexico -0.10±0.22 -2.67±0.33 43-Michigan 0.41±0.25 0.96±0.28
14-California -2.63±0.32 -4.95±0.44 44-Arkansas 0.02±0.39 -0.06±0.19
15-New Jersey -3.82±0.31 -0.62±0.30 45-Mississippi 0.60±0.49 0.26±0.83
16-Wisconsin 0.45±0.17 1.86±0.14 46-Missouri 0.34±0.48 1.08±0.54
17-Oregon -0.64±0.34 -0.63±0.26 47-Montana 0.73±0.22 1.67±0.18
18-Nebraska 0.15±0.20 1.40±0.21 48-Kansas -0.18±0.23 -1.26±0.44
19-Pennsylvania -3.63±0.35 -1.37±0.27 49-Indiana -0.64±0.26 0.74±0.40
20-Washington 1.95±0.41 0.95±0.32 51-South Dakota 0.01±0.2 0.69±0.22
21-Louisiana 2.55±0.48 1.12±0.42 52-Massachusetts -4.47±0.34 -1.04±0.25
22-Georgia -2.64±0.49 0.42±0.04 53-Virginia -2.61±0.40 -0.63±0.42
23-Alabama -1.63±0.54 -0.83±0.71 55-Iowa 0.66±0.20 1.51±0.27
24-Utah -0.38±0.20 -0.59±0.22 56-Arizona -0.18±0.19 -1.21±0.26
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sets. These results indicate that the impact of the last decade’s droughts that is amplified by intensive
irrigation is well reflected in GRACE data (see, e.g., Diffenbaugh et al., 2015; Faunt et al., 2016;
Mehta et al., 2013; Rodell et al., 2018; Scanlon et al., 2012a) but was not captured by the model
as the human water-use component is not included in W3RA. However, this analysis demonstrates
that integrating GRACE data into this modelling framework can improve this characterization of
variability and trends. Temporal correlation coefficients between the USGS observation and W3RA
(CCW3RA) and MCMC-DA (CCMCMC−DA) groundwater storage are presented in Fig. 8.6 (A) and (B),
respectively. These results show that the correlation coefficients between USGS observation and
W3RA groundwater estimation are less than −0.5 in 70% of CONUS (including Box1 and Box2) and
this value increases to over ∼ 0.4 after implementing MCMC-DA. Due to the fact that on average,
changes in the linear trends and annual amplitudes of MCMC-DA groundwater are in the magnitude
of 110%, and 25% of those of W3RA groundwater storage, it can be said that the improvement in
the correlation coefficients generally occurred due to improvements in the linear trends and annual
amplitudes after merging GRACE with W3RA. In the eastern CONUS (Box 3, including South

Fig. 8.6 Correlation coefficients (A) between the USGS groundwater level and W3RA groundwater storage (CCW3RA); and
(B) between the USGS groundwater level and MCMC-DA groundwater storage (CCMCMC−DA). The results correspond to
the period of 2003–2017.

and North Carolina, Virginia, Georgia, and Tennessee) W3RA shows a systematic negative trend in
groundwater storage; however, incorporating GRACE using MCMC-DA adjusts these trends to a
mixture of positive and negative values (compare Box 3 in Figs. 8.4 (A1) and (B1)) with patterns
more similar to those from the USGS groundwater level data (see Box 3 in Fig. 8.4 (C1)). In Box
3 (southeast CONUS), a mixture of both positive and negative temporal correlation coefficients,
(minimum -0.5 and maximum 0.2) can be seen between USGS groundwater level observation and
W3RA groundwater storage changes (see Fig. 8.6 (A)). However, after merging W3RA with GRACE
data the correlations are improved to be between +0.2 and +0.6 (Fig. 8.6 (B)). Analysis for Box 3
indicates that the simple groundwater output of the original W3RA has limitations in accounting for
differences in physical parameters of wells in this region, and their different extraction and recharge
rates are not well reflected in the model parameters. However, this dynamic complexity is introduced
to the groundwater states by implementing the MCMC-DA of GRACE data.

Modification of trends and variability in groundwater storage after implementing MCMC-DA is not
limited to the regions with negative trends. In Florida (Box 4), W3RA simulates negative trends
(−4.9±0.86 mm/yr) in the north and positive trends (+2.4±0.53 mm/yr) in the south, whereas both
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MCMC-DA and independent USGS observations indicate trends with opposite signs (MCMC-DA
trend in the north +4.3±0.8 mm/yr and −1.4±0.4 mm/yr in the south). The positive trends in the
north of the Florida state may be related to considerable inter-annual precipitation in southeastern
CONUS (Dourte et al., 2015) and that of the south attributed to agricultural expansion and population
growth (Renken et al., 2005; Takatsuka et al., 2018). Moreover, temporal correlation coefficients
between W3RA and USGS are significantly improved from -0.6 (on average) to 0.4 after merging
with GRACE data.

8.5.2 Impact of the MCMC-DA on Seasonality of Groundwater Storage Changes

Seasonal amplitudes (i.e., only annual is shown here) in the MCMC-DA and the original W3RA
groundwater storage are similar (differences < 10% in mm) in almost 75% of the grids across the
CONUS. In contrast, large differences are found in Florida (Box 4) and within the Great Lakes (GL)
area (Box 5), where the high annual-amplitude of W3RA is reduced by ∼ 80% after implement-
ing MCMC-DA (compare Figs. 8.4 (A2) and (B2)). Similar differences in seasonal amplitudes
are apparent between GRACE TWSC and W3RA TWSC (see Fig. 8.1). Over-estimation of the
seasonal amplitude in the groundwater storage component of W3RA near the GL (Box 5 in Fig.
8.4) may be caused by the model limitations in accounting for surface water changes in the region.
Furthermore, in this region, uncertainties of the Glacial Isostatic Adjustment (GIA) model used to
reduce the uplift load from GRACE observation are large (Schumacher et al., 2018b). This reduction
directly affects the estimation of long-term trends in GRACE TWSC, and consequently, it alters
the individual water storage estimates after MCMC-DA. The annual and semi-annual amplitudes in

Fig. 8.7 The forest land distribution with 80% density across the CONUS, which is provided using the ESA CCI’s Land
Cover (LC) data (v2.0.7) http://maps.elie.ucl.ac.be/CCI. The original LC data is a consistent global LC map at 300
m spatial resolution on an annual basis from 1992 to 2015. For this study, the 2015’s LC data has been extracted within the
CONUS, with a spatial resolution of 12.5 km.

MCMC-DA groundwater storage in the southeastern CONUS (Box 6 in Fig. 8.4 including Georgia,
Alabama, Mississippi, Tennessee, and Kentucky) are estimated to be higher than those from W3RA
by more than 55% in mm. These discrepancies are attributed to the high density of vegetation in
the southeastern CONUS (see Fig. 8.7), where the effect of cool temperatures on the vegetation,
and the related vegetation-moisture dynamics cannot be well simulated by W3RA (Van Dijk, 2010).

http://maps.elie.ucl.ac.be/CCI
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Therefore, the seasonal patterns of groundwater storage in evergreen forests of southeastern CONUS
are underestimated by the hydrological model.

8.5.3 Numerical Validation of Groundwater Estimates using USGS Data

A visual representation of the median, first and third quartiles of linear trends fitted to unit-less
estimates (standardized) of groundwater storage derived from W3RA, MCMC-DA, and USGS data
(see Fig. 8.5) are shown in Fig. 8.8 for 20 states across the CONUS. These states are selected
within the regions where considerable modifications in estimated groundwater trends are found after
implementing MCMC-DA and where USGS data are available from > 38000 wells between 2003
and 2017. The WMW statistical test indicates that the trends of MCMC-DA estimates in Fig. 8.8

Fig. 8.8 A comparison between the linear trends fitted to the standardized (unit-less) groundwater storage time series from
the original W3RA, MCMC-DA groundwater storage, USGS groundwater level observations, and standardize GRACE
TWSC within different states of the CONUS, covering the period of 2003–2017. The tops and bottoms of each box are the
25th and 75th percentiles of each data sets (the first and third quartiles), and the red lines show the median of the time series.
In this figure, the terms GWSC and GWL indicate groundwater storage changes and groundwater level, respectively.

are significantly closer to those of USGS compared to W3RA. Relatively significant improvements
are detected in California with the median of USGS: 10% MCMC-DA: 8% and W3RA: 3% and
relatively smaller changes in Missouri with the median of USGS: 1%, MCMC-DA: 1% and W3RA:
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1%. In order to show further impacts of assimilating GRACE data within modelled groundwater
estimates beyond those presented in Fig. 8.4, correlation coefficients are estimated between USGS
groundwater level time series and those of the original W3RA and MCMC-DA, after removing trends
and annual amplitudes, with the results shown in Fig. 8.9 (A) (USGS versus W3RA) and Fig. 8.9 (B)
(USGS versus MCMC-DA). The greatest improvements are located within the south eastern CONUS,
including Florida and Louisiana, and within central CONUS, including Texas, Utah, and Nebraska
(i.e., more than 40% improvements on average in both central and south eastern CONUS).

8.6 Soil Water Storage Changes Across the CONUS

Integrating GRACE data into the model is expected to modify the vertical summation of water storage
components. The portion of an update, which is assigned by MCMC-DA to each individual storage
compartment, depends on the estimated Θ̄ in Eq. (5.13). The numerical results indicate that the
estimated top (0− 10 cm), shallow (10− 50 cm), and deep soil layers (50− 200 cm) account for
∼ 14%, 28%, and 58% of the variance in the total soil water storage, respectively. It has been found
that, after implementing MCMC-DA, the magnitudes of soil water storage are changed by 72% on
average. Long-term linear trends (22% of the total variance) and annual-amplitude (39% of the total
variance) within the top-soil layer (< 10 cm) are shown in Fig. 8.10, where those of the original
model output are presented in Figs. 8.10 (A1) and (A2) and MCMC-DA results in Figs. 8.10 (B1)
and (B2). Finally, the independent estimates of surface soil storage from the ESA CCI (see Section
2.5.3) are shown in Figs. 8.10 (C1) and (C2).

Linear trends in the top-soil layer of W3RA (Fig. 8.10 (A1)) are found to be small across the CONUS,
i.e., less than ±0.1 mm/yr. Comparing Fig. 8.10 (A1) with (B1) indicates that the linear trends are
greatly modified after implementing MCMC-DA. Strong negative trends (∼−2 mm/yr) are found in
the west (e.g., Box 1, i.e., California and Nevada) and in the south of the country (e.g., Box 2, i.e.,
Texas, Louisiana, Oklahoma, and New Mexico), while positive trends (up to 2 mm/yr) are found
in the north of the country (e.g., Box 3, i.e., Montana, Wyoming, North and South Dakota). These

Fig. 8.9 Correlation coefficients (A) between the USGS groundwater level and W3RA groundwater storage; and (B) between
the USGS groundwater level and MCMC-DA groundwater storage. Correlation coefficients are estimate after removing
linear trends and seasonality from all data sets, covering 2003–2017.
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Fig. 8.10 Linear trend [mm/yr] and annual-amplitude [mm] fitted to (A1 and A2) soil water storage (top-layer, i.e., 10 cm)
of the original W3RA; (B1 and B2) the updated soil water storage estimates derived from MCMC-DA; and (C1 and C2) soil
water storage estimates from ESA CCI across the CONUS, covering 2003–2017. To enhance the visualisation, five boxes
are shown in this figure (marked as Box 1, 2, 3, 4, and 5), where considerable changes are detected in the soil compartment
after integrating GRACE TWSC into W3RA. The extension of these boxes are reported here as Box 1: [112◦W −125◦W ,
32◦N−42◦N], Box 2: [90◦W −116◦W , 26◦N−39◦N], Box 3: [100◦W −115◦W , 42◦N−50◦N], Box 4: [110◦W −124◦W ,
32◦N−48◦N], and Box 5: [75◦W −90◦W , 30◦N−40◦N]
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estimates are consistent with those from the ESA CCI data, where the linear trends are estimated to
be ∼−2, −1.7, and 1.6 mm/yr in Box 1, 2, and 3, respectively.

However, differences in estimates within some regions are found, such as the Sierra Nevada and
central California (i.e., Box 1), as well as within Louisiana (east of Box 2) where ∼ −2 mm/yr
declining soil water storage of MCMC-DA is not detected by the ESA CCI product (i.e., −0.14
and 0.95 mm/yr within the Sierra Nevada and Louisiana, respectively). The main source of these
differences is attributed to the high density of vegetation within the southeastern and northwestern
CONUS (see Fig. 8.7).

Estimated negative linear trends in the MCMC-DA soil water storage changes within the Louisiana
state (Fig. 8.10 (B1), Box 2) are likely associated with the rapid expansion of population and
agricultural activities, which have caused the replacement of the natural forest lands with crops and
modern vegetation landscapes (Conroy et al., 2003; Sun, 2013). Removal of tree cover from forest
and woodland soils may increase runoff and erosion rates, which in turn may decrease soil infiltration
capacity (Benito et al., 2003; Doerr and Thomas, 2000; Ferreira et al., 2000). Furthermore, a large
area of the western CONUS, in California and western Nevada, has experienced severe forest fires
during the last decades, which influenced ecosystem properties, such as forest fragmentation, soil
erosion rates, and sedimentation (Agee, 1996; Beaty and Taylor, 2007; Miller et al., 2009). GRACE
satellites can detect large-scale changes in water storage components, such as those related to massive
changes in vegetation, which are successfully introduced into the MCMC-DA soil water storage
estimates within these regions. ESA CCI product is, however, sensitive to the surface roughness and
vegetation density parameter, which affects the quality of these data within the forest regions (Dorigo
et al., 2017).

W3RA soil water storage shows high seasonality in the west and northwest of the CONUS (Fig. 8.10
(A2), Box 4), where MCMC-DA decreases this value by ∼ 42% on average (Fig. 8.10 (B2), Box 4).
These values are found to be similar to those of ESA CCI (with differences <∼ 5 mm) within 76% of
the region (see Fig. 8.10 (C2) Box4). In the southeastern CONUS, where considerable inter-annual
precipitation is expected (Dourte et al., 2015), the magnitude of the annual-amplitude in the W3RA
soil water storage is estimated to be less than a few millimetres (see Fig. 8.10 (A2), Box 5). This is
due to the fact that the effect of cool temperatures on vegetation and the related vegetation-moisture
dynamics cannot be simulated well by W3RA (Van Dijk, 2010). Therefore, seasonal patterns in
evergreen forests are underestimated. After implementing MCMC-DA, this value increases up to
∼ 21 mm (Fig. 8.10 (B2), Box 5), which is closer to the ESA CCI value of ∼ 16 mm (Fig. 8.10 (C2)).
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8.6.1 Correlation Coefficients and RMSD of Soil Water With ESA CCI Soil Water
Products

Temporal correlation coefficients and the Root Mean Squares of Differences (RMSD) between ESA
CCI soil water storage and the top-layer soil water changes derived from W3RA and MCMC-DA are
shown in Fig. 8.11, where the results indicate average improvements of 67% and 73%, respectively.
Positive correlation coefficients (higher than 0.6) are found within ∼ 90% of the CONUS between the

Fig. 8.11 Correlation coefficients and RMSD between the ESA CCI soil water storage and in (A1) and (B1), soil water
storage estimates from the original W3RA; and in (A2) and (B2), the MCMC-DA’s soil water storage. The computations
use the whole period of 2003–2017.

ESA CCI and both W3RA and MCMC-DA outputs. WMW statistical test (at 95% confident level)
indicates that except for the southeastern part of the CONUS (i.e., Alabama, Georgia, South Carolina,
Mississippi, and Louisiana states) the values of the correlations are increased after implementing
MCMC-DA. A comparison between the forest coverage across the CONUS shown by Fig. 8.7 and
Figs. 8.11 (A1) and (A2) indicates that the minimum correlation coefficients (less than 0.4) are found
within the forest regions, where both W3RA and ESA-CCI are relatively weak to represent the true
signals. This is also reflected in the RMSD plots, where except for the southeastern CONUS the
differences are decreased from ∼30 mm to ∼5 mm in the central and western parts of CONUS (see
Figs. 8.11 (B1) and (B2)).

8.7 Impact of ENSO on Groundwater and Soil Water Storage Changes
Across the CONUS

To demonstrate how GRACE TWSC might alter the inter- and intra-annual components of water
storage changes, the dominant ENSO mode from MCMC-DA and W3RA water storage components
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are extracted and compared with climate indices (see, e.g., Anyah et al., 2018) in terms of temporal
correlation coefficients with the El Niña Southern Oscillation (ENSO). To this end, the Independent
Component Analysis (ICA, Forootan and Kusche, 2012, 2013; Forootan et al., 2018) is applied to
isolate the ENSO modes from monthly W3RA and MCMC-DA groundwater and soil water storage
outputs. The results are then compared in terms of amplitude and correlation coefficients with
the ENSO index (El Niña 3.4 index 1). ICA is applied to the groundwater and soil water storage

Fig. 8.12 Results of the ICA to extract the ENSO modes from groundwater storage changes after removing the linear trend
and seasonal cycles (∼ 59% of total variance) covering 2003–2017. The spatial anomaly map and its corresponding unit-less
temporal evolution on Fig. 8.12 top represent the first independent mode. The second independent mode is shown in Fig.
8.12 bottom. CC.EMCMC-DA and CC.HEMCMC-DA mean Correlation Coefficient between ENSO index and temporal pattern
of MCMC-DA groundwater storage, and between Hilbert ENSO index and temporal pattern of MCMC-DA groundwater
storage respectively. The terms of CC.EW3RA and CC.HEW3RA mean Correlation Coefficient between ENSO index and
temporal pattern of W3RA groundwater, and between Hilbert ENSO index and temporal pattern of W3RA groundwater,
respectively.

estimates of W3RA and MCMC-DA after removing the long-term linear trend and seasonality (these
components are shown in Figs. 8.4 and 8.10). ICA is applied to the water storage compartments from
MCMC-DA. Then, W3RA estimates are projected onto the spatial components for comparison. In
Figs. 8.12 and 8.13 the spatial anomaly modes are from the MCMC-DA estimates, and the associated
temporal patterns (that are statistically independent and marked as IC1 and IC2) derived from MCMC-
DA and W3RA. These are compared with the ENSO index and its Hilbert transformations. The two
modes correspond to 15% and 13% of the residual groundwater, and 13% and 10% of the residual
soil water storage variability, respectively. Form the obtained results, it has been found that the IC1
derived from both groundwater and soil water storage is in phase with the ENSO index, while IC2
follows its out-of-phase evaluation, i.e., the Hilbert transformation of the ENSO index. Therefore,
these two modes capture the dominant influence of ENSO on groundwater and soil water storage
changes across the CONUS, covering 2003–2017.

1https://www.esrl.noaa.gov/psd/data/correlation/nina34.data

https://www.esrl.noaa.gov/psd/data/correlation/nina34.data


8.7 Impact of ENSO on Groundwater and Soil Water Storage Changes Across the CONUS 141

The numerical results indicate that correlation coefficients between the ICs and the ENSO index are
increased after integrating GRACE TWSC estimates into W3RA. For example, temporal correlation
coefficient between IC1 of W3RA groundwater storage and the ENSO index (Fig. 8.12) is increased
from 0.34 to 0.56 (65% improvement), and those of IC2 is increase from 0.18 to 0.45 (60% improve-
ment) after merging models with GRACE data. This improvement can also be found in the soil water
compartment, where the temporal correlation coefficients are increased from 0.21 to 0.64 for IC1 and
from 0.11 to 0.49 for IC2 (Fig. 8.13).

In order to understand the effects of El Niña and La Niña events on soil water and groundwater
storage, an independent comparison is performed by applying ICA on monthly precipitation data
from ERA-Interim2. As expected, correlation coefficients between precipitation IC1 and the ENSO
index (0.67), and between precipitation IC2 and the Hilbert ENSO index (0.43) are relatively high
(Fig. 8.14).

Comparing the ENSO modes of groundwater and soil water storage, as well as the precipitation
anomaly (Fig. 8.12, Fig. 8.13, and Fig. 8.14), with the ENSO index shows that La Niña events
(where the ENSO index is negative) resulted in water deficits in the southeast of the CONUS including
parts of Texas, Louisiana, Arkansas, Mississippi, Alabama, and Georgia (see also, Cook et al.,

2https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/

Fig. 8.13 Results of the ICA to extract the ENSO modes from MCMC-DA soil water storage changes after removing the
linear trend and seasonal cycle (∼ 43% of total variance) between 2003–2017. This figure shows the first two independent
modes with the spatial and temporal pattern of IC1 on top and those of IC2 on the bottom. The spatial patterns correspond
to the MCMC-DA. The El Niña 3.4 index and its Hilbert transformed time series are shown alongside the IC1 and IC2,
respectively. CC.EMCMC-DA and CC.HEMCMC-DA mean Correlation Coefficient between ENSO index and temporal pattern
of MCMC-DA soil water storage, and between Hilbert ENSO index and temporal pattern of MCMC-DA soil water storage,
respectively. The terms of CC.EW3RA and CC.HEW3RA mean Correlation Coefficient between ENSO index and temporal
pattern of w3RA soil water storage, and between Hilbert ENSO index and temporal pattern of W3RA soil water storage,
respectively.

https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
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2007; Manuel, 2008; Rippey, 2015; Seager et al., 2014). In contrast, wetter than normal conditions
are detected in the northwest, e.g., the 2011’s Missouri River floods (Reager et al., 2014; Zheng
et al., 2014). Both W3RA and MCMC-DA capture the influence of La Niña events on groundwater
storage changes across the CONUS, especially between 2010–2014. (Fig. 8.12). However, the ENSO
mode of W3RA soil water storage shows an opposite evolution compared to that of the ENSO index
(with the correlation coefficient of −0.85) during these four years. This is, however, modified after
implementing the MCMC-DA approach, where a correlation coefficient of 0.72 is subsequently found
between IC1 and the ENSO index (Fig. 8.13).

8.8 Down-Scaling GRACE TWSC Observation Using MCMC-DA

MCMC-DA is able to down-scale GRACE TWSC observations vertically (separating to individual
storage estimates) and horizontally (i.e., improving the ∼ 300 km resolution to ∼ 12.5 km). To
illustrate this gain, latitudinal (the longitude is fixed at −100◦) and longitudinal (latitude is fixed at
40◦) profiles are shown in Fig. 8.15 left and right panels, respectively. Here, only changes in the linear
trends fitted to the GRACE TWSC, W3RA and MCMC-DA groundwater and soil water estimates are
shown.

Fig. 8.14 Results of the ICA to extract the ENSO modes from precipitation anomalies within the CONUS. The linear trend
and seasonal cycles (∼ 53% of total variance) between 2003–2017 are removed before applying the ICA. This figure shows
the first two independent modes of the residual signal derived from precipitation anomaly (i.e., corresponded to the ENSO
mode), and their relation with El Niña 3.4 index (ENSO index) and its Hilbert transform, where the spatial and temporal
patterns of IC1 are shown on top and those of IC2 on the bottom. The El Niña 3.4 index and its Hilbert transformed time
series are shown alongside the IC1 and IC2, respectively, where CC.Eprecipitation and CC.HEprecipitation represent correlation
coefficient between ENSO index and temporal pattern of precipitation anomaly, and between Hilbert ENSO index and
temporal pattern of precipitation anomaly respectively.
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The GRACE signal evolves quite smoothly (see the solid black lines), but those of W3RA and
MCMC-DA represent strong spatially-dependent variability. Integrating GRACE TWSC into W3RA
using MCMC-DA, however, modifies the evolution of both soil and groundwater storage estimates.
In the left panel (i.e., longitude profile), the larger portion of the storage update is introduced to the
groundwater compartment (compare the light- and dark-blue curves), where the profile is modified
towards GRACE. The soil water storage profile is only modified marginally (i.e., standard deviations
of the update is 36% of groundwater). Similar magnitudes of updates to the soil water and groundwater
storage are found with the standard deviations of 1.14 mm and 2.46 mm, respectively (see Fig. 8.15
right panel).

The results, therefore, indicate that the MCMC-DA considers the magnitude of storage in various
compartments to modify them, and the updated estimates can be used to explore high-resolution
hydrological changes across the CONUS as demonstrated in previous sections. In what follows,

Fig. 8.15 The latitudinal (left panel, the longitude is fixed at −100◦) and the longitudinal (right panel, the latitude is fixed
at 40◦) profiles derived from the linear trends of W3RA and MCMC-DA groundwater, soil water, and TWSC, as well as
TWSC derived from GRACE data. The left y-axis corresponds to the linear trend of GRACE TWSC, and the right y-axis
corresponds to the linear trend of the individual water storage states from the original W3RA and MCMC-DA.

changes in the water storage components within Texas and California are explored, where consid-
erable differences are found between the MCMC-DA and W3RA estimates (see Section 8.5 and
Section 8.6). Comparisons are provided in terms of the spatial distribution of trends and spatially
averaged groundwater and soil water storage changes within these states. An approximate of Storage
coefficients (Sc) are available for these states from previous studies, therefore, an evaluation in terms
of groundwater storage is presented. Complementary comparisons are provided with the soil storage
using ESA CCI data, as well as precipitation anomalies, and the Palmer Hydrological Drought Index
3 (PHDI, Palmer, 1965).

3https://www.ncdc.noaa.gov/temp-and-precip/drought/historical-palmers/

https://www.ncdc.noaa.gov/temp-and-precip/drought/historical-palmers/
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8.9 Changes in Water Storage Components Within Texas

Texas (located in the southcentral CONUS) is the second-largest state in the country by area (after
Alaska) and population (after California). According to the Office of the State Demographer and the
Texas State Data Center’s 2014 predictions, its population is projected to increase until 2050 (Potter
and Hoque, 2014).

Texas experienced several drought events during the last 2 decades, and those of 2010–2014 being the
strongest (Fig. 8.16 (A), Long et al., 2013). The ENSO modes of the MCMC-DA groundwater (Fig.
8.12) and soil water storage (Fig. 8.13), as well as those of precipitation anomaly (8.14), indicate that
La Niña events are the main climatological cause of these droughts (see also Rippey, 2015; Seager
et al., 2014). This is well reflected in the magnitude of precipitation anomalies (Fig. 8.16 (B)), where
the annual precipitation is substantially reduced by 56% during the drought years of 2010–2014.
This is also well reflected in the averaged GRACE TWSC and MCMC-DA TWSC in Fig. 8.16 (C),
where the evolution closely follows the PHDI (with the correlation coefficient of 0.75), showing that
this integration improves the representation of drought events. USGS groundwater storage within

Fig. 8.16 An overview of hydro-climatological changes within Texas, where the spatially averaged time series correspond to
(A) the Palmer Hydrological Drought Index (PHDI), (B) precipitation anomalies, (C) TWSC derived from GRACE, W3RA,
and MCMC-DA, (D) groundwater storage derived from USGS observations, W3RA, and MCMC-DA, as well as (E) soil
water changes derived from ESA CCI products, W3RA, and MCMC-DA.

Texas is obtained by averaging the observed levels and using an average storage coefficient (i.e., 0.18,
see Section 2.5.2) for the conversion. The results (the dark green curve in Fig. 8.16 (D)) indicate
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that during the extreme drought of 2010–2014, the mean of groundwater storage in Texas markedly
decreased (−36 mm) compared to the mean value of 2003–2010. Comparing groundwater storage
estimates of the original W3RA and MCMC-DA with those of USGS indicates a higher agreement
after integrating GRACE data (i.e., Root Mean Squares of Differences, RMSD, reduced from 60 mm
to 18 mm).

Earlier in Fig. 8.10 (A), it appears that the original W3RA simulates soil water storage with a
negligible linear trend within the entire CONUS. Integration of GRACE TWSC into W3RA model
outputs introduces a negative linear trend to the soil compartment and modifies its cyclic components
(such as seasonality). This is reflected in the averaged soil storage time series (Fig. 8.16 (E)), where
the evolution of MCMC-DA is found to be closer to ESA CCI with the correlation coefficient of 0.56
compared to that of the original W3RA (i.e., 0.32). The standard deviation of storage is also modified
from 16.56 mm to 26.63 mm after integrating GRACE TWSC.

8.10 Changes in Water Storage Components Within California

California is the third-largest (by area) and most densely populated state, which ranks first in the
country in terms of economic activities and agricultural value. California has various types of climate
from hyper-arid to polar, depending on latitude, elevation, and proximity to the coast. PHDI in
Fig. 8.17 (A), precipitation anomalies in Fig. 8.17 (B), and TWSC observed by GRACE mission
in Fig. 8.17 (C) indicate that California has experienced several drought events during the last
decades, such as the three-year drought of 2007–2009 (Jones, 2010) and the five-year drought between
2012–2017 (e.g., Diffenbaugh et al., 2015; Griffin and Anchukaitis, 2014; Seager et al., 2015). The
averaged GRACE TWSC estimates indicate that during 2012–2017, the state lost TWSC at the rate
of -22.50 mm/yr. Large differences are found between the original W3RA and GRACE TWSC
during these drought years (RMSD of 54.51 mm), indicating that in addition to the precipitation
deficit (−10.45 mm/yr) anthropogenic modifications contributed strongly to the water storage decline
(−12.05 mm/yr).

In Fig. 8.17 (D), the averaged groundwater storage changes within California are shown. The USGS
water levels are converted to storage estimates using an average Sc of 0.15 from Scanlon et al. (2012b).
The averaged soil water storage results are shown in Fig. 8.17 (E) with a comparison with the ESA
CCI products. Comparing the curves in Fig. 8.17 (D) with Fig. 8.17 (E) indicates that 77% of the
update from GRACE TWSC is introduced to the groundwater compartment. A decreasing trend of
−4.95 mm/yr is derived for groundwater storage during 2003–2017 and −18.9 mm/y for the drought
period of 2012–2017. These estimates are found to be close to that from USGS data, i.e., −3.46
mm/yr during 2003–2017 and −17.79 mm/yr during 2012–2017. GRACE data have mostly modified
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Fig. 8.17 An overview of hydro-climatological changes within California, where the spatially averaged time series
correspond to (A) the Palmer Hydrological Drought Index (PHDI), (B) precipitation anomalies, (C) TWSC derived from
GRACE, W3RA, and MCMC-DA, (D) groundwater storage derived from USGS observations, W3RA, and MCMC-DA, as
well as (E) soil water changes derived from ESA CCI products, W3RA, and MCMC-DA.
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the linear trend in the soil water storage changes (see Fig. 8.17 (E)), i.e., changing from −0.45 mm/yr
to −1.66 mm/yr, which is closer to that of ESA CCI (−1.12 mm/yr).

8.11 Summary and Conclusions

In this chapter, MCMC-DA (introduced in Chapter 5) was implemented to explore high resolution
(∼12.5 km) groundwater and soil water storage changes across the CONUS, covering 2003–2017.
This approach was tested by performing various comparisons between the original W3RA estimates
and the MCMC-DA results, as well as validations against the in-situ US Geological Survey (USGS)
groundwater level observations and the European Space Agency (ESA)’s Climate Change Initiative
(CCI) water storage between 2003–2017.

The numerical results indicated that the MCMC-DA introduced trends, which exist in GRACE TWSC,
mostly to the groundwater storage and to a less extent to the soil water storage compartments. For
example, the linear trend fitted to the groundwater storage changes of the original W3RA model
was changed from −0.11± 0.34 to −2.06± 0.56 mm/yr within Texas, and from −2.63± 0.32 to
−4.95± 0.44 mm/yr within California. A higher similarity was found in groundwater estimation
of MCMC-DA and those of USGS in the southeastern CONUS, e.g., in Florida, North and South
Carolina, and Virginia states.

The linear trend in the model’s original soil water storage is modified from ±0.5 mm/yr to ±2 mm/yr,
averaged over the entire CONUS, which is closer to the independent estimations from the ESA CCI.
MCMC-DA also improved the estimation of soil water storage changes in regions with high forest
intensity (e.g., southeastern CONUS).

To demonstrate the impact of integrating GRACE TWSC into W3RA on the inter- and intra-annual
components of water storage changes, we also investigate the storage changes associated to the El
Niña Southern Oscillation (ENSO). For this, the Independents Component Analysis (ICA) is applied
to isolate the ENSO modes from groundwater and soil water storage estimates. The modes derived
from MCMC-DA are found to be better correlated to the Niña 3.4. ENSO index. For example, the
correlation coefficients between the ENSO mode of groundwater and soil water storage and ENSO
index are increased from 0.34 to 0.56 and from 0.21 to 0.64, respectively. Comparisons of ENSO
modes of water storage show that MCMC-DA improve agreement between soil water and precipitation
(correlation coefficient of 0.58), relative to W3RA (correlation coefficient of 0.41). This indicates
that the coupling procedure between the shallow soil water storage and precipitation is stronger than
that of the deep storage changes associated with the groundwater compartment.

Comparing W3RA and MCMC-DA TWSC (e.g., the red and blue curves in Fig. 8.16 (C)) indicates
that integrating GRACE data into W3RA modifies the timing of water storage changes (i.e., on
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average it advances the phase of the W3RA TWSC time series by 2 months). Therefore, we conclude
that the proposed integration of GRACE data into W3RA improved representation of slowly evolving
hydrological processes, such as hydrological droughts (see e.g., Forootan et al., 2019).

The results indicate that estimation of groundwater and soil water storage over the Great Lakes (GL)
area (northeast CONUS) is complex. This may be due to limitations in accounting for interactions
between surface water and groundwater in regions where the predominant influence is surface water
(e.g., the GL area). Furthermore, over the northern part of CONUS, the GIA model uncertainties, as
required to reduce the effect of PGR from GRACE TWSC estimates, are significant (Schumacher
et al., 2018b). This uncertainty directly affects the estimation of long-term trends in TWSC, and
consequently, alters the individual water storage estimates after MCMC-DA. In the next chapter, the
extended MCMC-DA, the ConBay-DA (formulated in Chapter 6), is implemented to simultaneously
estimate water storage change components and surface deformation from GRACE data within the GL
area, while the influence of estimating PGR uplift rates on TWSC estimation is discussed.



Chapter 9

Application of ConBay-DA for a Joint
Estimation of Land Hydrology and
Surface Deformation

9.1 Introduction

ConBay-DA (formulated in Chapter 6) is implemented here to merge GRACE field estimates and
in-situ GNSS measurements for a joint estimation of the land hydrology and PGR uplift rates (surface
deformation). The methodology can be applied globally but an illustration of its implementation is
presented within the Great Lakes (GL) area, the Unites States (US), during 2003 to 2017.

GL is located in the northeast of the CONUS, where mass changes due to PGR and surface defor-
mations are significant contributors within the GRACE(-FO) data. As Schumacher et al. (2018b)
indicated, large uncertainties exist between the GIA models over the northern part of the US, making
this region a good candidate to study the performance of ConBay-DA. Winter et al. (1998) and
Sophocleous (2002) found strong interactions between surface water and groundwater storage changes
within GL. Therefore, separating GRACE(-FO) signals into its compartments can be of interest to
hydrological applications.

In what follows, an overview of the observations and models used here is provided in Section 9.2.
The estimated PGR rates and TWSC are shown and evaluated in Sections 9.3 and 9.4, respectively,
and a summary of the results can be found in Section 9.5.
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9.2 An Overview of Data and Models Used in the Application of ConBay-
DA

For this study, instead of removing PGR uplift rates from GRACE data during the post processing steps
(as it was discussed in Section 2.2.4), the PGR rate is assumed to be unknown that can be estimated
from GRACE(-FO) data through the ConBay-DA of Chapter 6. To distinguish the terminology of
this chapter from previous ones, the equivalent water heights estimated from GRACE(-FO) data are
named as the GRACE Total Water Storage Changes (Total-WSC), which means that they contain
signals of both hydrology and PGR. In another words, Total-WSC estimates are obtained as a
summation of terrestrial water storage changes (TWSC, as it was assumed to be solely hydrology
driven in previous chapters) and the Equivalent Water Heights (EWHs) that correspond to the PGR
deformation. The computations of these fields within GL ([75◦W −92.5◦W , 40◦N−50◦N]) and its
full error covariance matrix follow Section 2.2.8. Grids are considered to have 1◦ spatial resolution,
and the test is performed for the period of 2003–2017 considering the GRACE mission data only.

W3RA water balance model (Van Dijk, 2010) (Section 2.4) and the ICE5G-VM2 GIA model (Wahr
and Zhong, 2012) are used as a priori information, while the in-situ GNSS measurements (Schumacher
et al., 2018b, see also Section 2.3) are used in a hierarchical level to constrain the PGR estimates from
GRACE data.

Considering the resolution of GRACE, the original W3RA model outputs (0.125◦×0.125◦) and the
ICE5G-VM2 GIA model output (0.5◦×0.5◦) are averaged on 1◦×1◦ grids. Figure 9.1 shows the

Fig. 9.1 The global PGR-related crustal uplift rates derived from in-situ GNSS measurements (Schumacher et al. (2018b)),
between 2003–2017.

spatial distribution, as well as the PGR uplift rates of global in-situ GNSS measurement used in this
study. To make the best of the in-situ GNSS measurements and match the spatial resolution of GNSS
data with GRACE Total-WSC, an interpolation approach, based on the Least Squares Collocation
(LSC) technique (Moritz, 1978), is used to obtain grid with 1-degree spatial resolution within the
CONUS. The interpolated values are shown in Fig. 9.2 over the GL area, were we aim to estimate the
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PGR rates and TWSC from GRACE data. The gridded uplift rates of the in-situ GNSS measurements
and those of the GIA model output are converted to EWH, following the procedure explained in
Section 2.2.4. Figure 9.3 shows the rate of the EWHs derived from in-situ GNSS measurements (Fig.
9.3 (A)) and those of ICE5G-VM2 GIA model (Fig. 9.3 (B)), while the differences between them are
shown in Fig. 9.3 (C).

Considerable differences (∼±14 mm/yr) between in-situ GNSS measurements and the GIA model
output can be seen in the northeast and northwest of the GL area, where the simulated PGR rates are
found to be under-estimated (compared with the observations) in the northeast, and over-estimated
in the northwest of GL (Fig. 9.3 (C)). In the northeast, the rate of EWHs derived from GNSS
measurements are estimate around 30 mm/yr and in the northwest are estimated up to 4 mm/yr.
ICE5G-VM2 GIA model, however, simulated these values to be ∼ 15 mm/yr.

GRACE Total-WSC within the GL area is also compared with W3RA TWSC + EWHs derived from
ICE5G-VM2 GIA model in terms of long-term linear trend (Fig. 9.4 (A1) and (B1)) and annual
amplitude (Fig. 9.4 (A2) and (B2)) between 2003–2017. Considerable linear trends and annual-
amplitude differences are found between measured and the modelled Total-WSC. For instance, linear
trends fitted to the GRACE Total-WSC in the northeast of the GL area is estimated up to ∼ 34 mm/yr,

Fig. 9.2 Gridded PGR uplift rates derived from interpolated in-situ GNSS measurements (Schumacher et al. (2018b)) over
the Great Lakes (GL) area, between 2003–2017.

Fig. 9.3 The rate of EWHs [mm/yr] derived from (A) in-situ GNSS measurements, and (B) ICE5G-VM2 GIA model output.
Differences between (A) and (B) are shown in Fig. 9.3 (C).
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which is considerably larger than those derived from models (W3RA+ICE5G-VM2) with the mean
value of ∼ 20 mm/yr. Positive trends up to 8 mm/yr are estimated for GRACE data in the northwest,
while those of derived from model are estimated up to 18 mm/yr.

Fig. 9.4 Long-term linear trends [mm/yr] and annual-amplitudes [mm] fitted to the GRACE- and model- derived Total-WSC
within the GL area, covering the period of 2003–2017. The plots in (A1) and (A2) correspond to the GRACE data, while
(B1) and (B2) correspond to the summation of W3RA TWSC and ICE5G-VM2 EWHs.

Large differences are also found in terms of annual-amplitude between GRACE Total-WSC and
W3RA TWSC, mostly in the northeast and southwest of GL. In these regions, the annual-amplitude
of GRACE are estimated up to 70 mm, while W3RA water balance model simulates this value up to
90 mm in the northeast, and less than 45 mm in the southwest of GL. Differences in the seasonality of
water storage changes between modelled (the seasonality of W3RA TWSC) and measured (GRACE),
can be related to the errors in the forcing data and uncertainty in the model parameters to control these
values (Van Dijk et al., 2011).

9.3 PGR Uplift Rates Derived from ConBay-DA

After implementing ConBay-DA to merge GRACE observation and in-situ GNSS measurements with
a priori information, the estimated value of PGR uplift rates, as the updated values of ICE5G-VM2
GIA model, are compared with the original model output in this section.

MCMC-DA (formulated in Chapter 5), as an unconstrained Bayesian-DA, is also implemented to
separate land hydrology and PGR uplift rate from GRACE Total-WSC, and the results are compared
with those of ConBay-DA. The main goal of this implementation is to assess the impact of the
constraint (introduced in Eq. 6.3) on the signal separation results, and to see how in-situ GNSS
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measurements might affect the estimation of the PGR uplift rates and hydrological signals from
GRACE data. To separate GRACE Total-WSC to its compartments, using MCMC-DA, the observation

Fig. 9.5 The rate of EWHs corresponding to the PGR uplift rates [mm/yr], derived from (A1) ConBay-DA, and (B1)
MCMC-DA approach. Difference between the rate of EWHs derived from in-situ GNSS and those of derived from
ConBay-DA and MCMC-DA are shown in (A2) and (B2), respectively.

equation (Eq. (4.1)) and the state equation (Eq. (4.2)) of the state-space models, as the basis of
formulating the MCMC-DA approach, are needed to be extended to include hydrological and GIA
model outputs as a priori information. The extended formulation of Eq. (4.1) and Eq. (4.2) were
shown by Eq. (6.1) and Eq. (6.2).

The rate of EWHs that corresponded to PGR are estimated by ConBay-DA and MCMC-DA, which are
shown in Fig. 9.5 (A1) and (B1), while their differences with the EWHs of in-situ GNSS measurements
(Fig. 9.3 (A1)) are shown in Fig. 9.5 (A2) and (B2), respectively. The obtained results indicate
that the bias between in-situ GNSS observation and the GIA model output is considerably reduced,
after implementing both MCMC-DA and ConBay-DA, by 56% and 90%, respectively. However,
in the middle of GL, PGR of both techniques are over-estimated, compared to the in-situ GNSS
measurements. This could be due to the inconsistencies between GRACE and GNSS signals or the
fact that the hydrological model did not provide reasonable estimates of interactions between surface
water changes and the other components of the water cycle.

Comparing MCMC-DA and ConBay-DA in Fig. 9.5 (A2) and (B2) shows that using in-situ GNSS
measurements to constrain the estimation of PGR can reduce the effect of these uncertainties in the
middle of GL, where differences between MCMC-DA and in-situ GNSS measurements are found to be
13 mm/yr, in terms of EWH magnitude, while those between ConBay-DA and in-situ measurements
are estimated to be up to 4 mm. The main hypothesis to formulate the constraint equation in ConBay-
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DA is that PGR manifests as a trend in the relatively short era of the GRACE(-FO) mission, which
can be defined within the Bayesian signal separation framework (Eq. 6.3). To test this hypothesis, the
annual-amplitudes fitted to the EWHs of PGR derived from ConBay-DA and MCMC-DA are shown
in Fig. 9.6 (A) and (B), respectively. The results indicate that unwanted seasonal components are
introduced to the PGR estimates of MCMC-DA. However, in ConBay-DA, the constraint equation and
GNSS data removes the seasonality of the estimated PGR, i.e., the amplitude of the seasonality is of
the level of GRACE noise (∼ 20 mm). The reason could be due to the fact that W3RA excludes surface
water storage, while GRACE detects this change within the GL area. The lack of a priori information
about surface water storage may reflected as an uncertainty on the GRACE signal separation, which
can be seen in Fig 9.6 (A).

9.4 Water Storage Changes Derived from ConBay-DA

After evaluating the performance of the ConBay-DA approach to estimate PGR uplift rates, it is
important to see how merging GRACE and in-situ GNSS measurements with a priori information
can improve the estimation of land hydrology signals compared to the original model outputs and
MCMC-DA (latter pre-defines the PGR values using a model instead of co-estimating these rates
with water storage compartments). Figure 9.7 (A1) and (A2) shows the long-term linear trend and
annual-amplitude fitted to the Total-WSC derived from ConBay-DA covering 2003–2017, which
indicates that implementing ConBay-DA, as expected, reduces biases between the modelled and
GRACE Total-WSC estimates. For example, the mean value of Root Mean Square of Differences
(RMSD) between measured and modelled Total-WSC is reduced from ∼ 68 mm to ∼ 15 mm within
the GL area (see Fig. 9.8). Since, all the hydrological and land surface deformation signals are
estimated simultaneously within the proposed Bayesian approaches (MCMC-DA and ConBay-DA), it
is expected that any changes in PGR uplift rate estimation affect the estimation of hydrological signals
from GRACE data. To assess this hypothesis, the long-term linear trends and the annual-amplitudes of
the top-layer (< 10 cm) soil water storage changes derived from MCMC-DA (unconstrained Bayesian-

Fig. 9.6 Annual amplitudes fitted to the estimated PGR signal derived from (A) ConBay-DA, and (B) MCMC-DA, i.e.,
without using GNSS measurements to constrain PGR estimates.
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DA) and ConBay-DA are compared in Fig. 9.9 (A1, A2) and (B1, B2), respectively. Comparing
MCMC-DA and ConBay-DA results in Fig. 9.9 indicates that using in-situ GNSS measurements
influences the estimation of hydrological signals. Validation against ESA CCI soil moisture products
(Fig. 9.9 C1, C2), in terms of RMSD and temporal correlation coefficients (see Fig. 9.10), indicates
that ConBay-DA can better estimate soil water storage from GRACE data, compared to the original
model and MCMC-DA approach. For example, in south of GL, the correlation coefficients between
MCMC-DA and ESA CCI soil water changes is estimated to be less than−0.4, while those of between
ConBay-DA and ESA CCI product show positive values up to 0.5. A considerable improvement

Fig. 9.7 Long-term linear trends [mm/yr] and annual-amplitudes [mm], fitted to the Total-WSC derived from ConBay-DA
within the GL area, covering the period of 2003–2017.

Fig. 9.8 Root Mean Square of Differences (RMSD) between (A) measured and modelled Total-WSC, and (B) measured and
ConBay-DA Totoal-WSC, covering the period of 2003–2017.

Fig. 9.9 Long-term linear trends and annual-amplitudes fitted to the soil water storage changes derived from (A1, A2)
MCMC-DA, (B1, B2) ConBay-DA, (C1, C2) ESA CCI, within the GL area, covering 2003-2017.
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can be seen in the northeast of the region, where the annual-amplitude of the MCMC-DA soil water
storage is less than 5 mm, while after implementing ConBay-DA this value is increased up to ∼ 12
mm, on average, which is close to those of ESA CCI product, i.e., 13.2 mm. In the south part of
GL, the annual-amplitudes of the MCMC-DA soil water storage are estimated to be less than 3 mm,
while those of the ConBay-DA outputs, and the ESA CCI products, are estimated to be up to ∼ 8
mm. Therefore, one can say that ConBay-DA improves the estimation of soil water storage by 62%,
compared to MCMC-DA, against independent ESA CCI validation data set.

Fig. 9.10 Temporal Correlation Coefficients (A1, A2) and RMSD (B1, B2) between ESA CCI soil water storage, and soil
water changes derived from MCMC-DA and ConBay-DA approach within GL are, between 2003-2017.

The reason of finding these differences between MCMC-DA and ConBay-DA is the strong contribution
of PGR in the GRACE signal and the fact that these values are uncertain. Therefore, within the
application of ConBay-DA and MCMC-DA, to optimise updated value of the modelled Total-WSC
at each time step, with respect to GRACE data, the unknown state parameters corresponding to the
GIA model output (βt in Eq. (6.1)) gains the highest value of the posterior probability distribution
compared to those of hydrological compartments (θt in Eq. (6.1)). Therefore, the largest updates are
introduced to the GIA model output in order to reduce RMSD between GRACE and model Total-
WSC. As already discussed in Section 9.3, without using in-situ GNSS measurement to constrain
the estimation of PGR (as is the case in MCMC-DA), the PGR accepts a large portion of the update
because statistically it will be more likely that the biases between a priori information and observations
will be reduced. This update therefore does not care about the physical representation of PGR, which
should be purely linear. As a result, the MCMC-DA estimation of PGR contains seasonal component
and its hydrological estimation is negatively affected as the validation in Fig. 9.9 represents.

In order to visualise differences between the estimated parameters from MCMC-DA and ConBay-DA,
a comparison of posterior values of the unknown states θ soilwater

t , θ
groundwater
t , and β PGR

t are shown
in Fig. 9.11. The results correspond to only one spatial grid point with the latitude of 45◦ and the
longitude of −90◦, for 2003–2017. These parameters (and others computed for other grids) can be
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used in Eq. (6.16) to update soil water storage, groundwater storage, and PGR rates, respectively.
These results indicate that the posterior values of β PGR

t from MCMC-DA are higher than those of

Fig. 9.11 The Posterior values of the unknown state-space parameters Θt and βt corresponding to the soil water storage
(θ soilwater

t ), groundwater storage (θ groundwater
t ), and PGR uplift rate (β PGR

t ), derived from MCMC-DA (without using
GNSS measurements), and ConBay-DA, for the period of 2003–2017. The posterior values are shown for a spatial grid
point with latitude of 45◦ and longitude of −90◦.

θ soilwater
t , θ

groundwater
t . Therefore, in MCMC-DA, the required values to update a priori information

and to reduce RMSD are mostly introduced to the GIA model output, while the updated values of
soil water and groundwater storage are negligible. After merging in-situ GNSS measurements with
GRACE data in ConBay-DA, the posterior value of the state parameters θ soilwater

t and θ
groundwater
t are

considerably increased, compared to the MCMC-DA results, while the posterior value of β PGR
t is

decreased. Consequently, soil water and groundwater storage changes have gained larger updates in
ConBay-DA, compared to the MCMC-DA results, which can be seen in Fig. 9.9. This shows that
introducing GNSS observations in an extra step controls the updates and consequently improves the
estimation.

9.5 Summary and Conclusion

ConBay-DA was implemented in this chapter to simultaneously use GRACE Total-WSC (as a
summation of TWSC and EWHs of PGR uplift rate) and in-situ GNSS measurements to update a
priori information of hydrological and surface deformation, where they were introduced using the
W3RA hydrological model outputs and the ICE5G-VM2 GIA model. As a case study, the Great
Lakes (GL) area and the period of 2003–2017 was chosen. The main goal was to evaluate the
performance of the ConBay-DA to separate PGR uplift rates and water storage changes from GRACE
data, while using GNSS measurements to constrain their estimates. To assess the impact of the
constraint equation on the signal separation results, an extension to the MCMC-DA (unconstrained
Bayesian-DA) was performed to separate land hydrology and surface deformation from GRACE
Total-WSC. The PGR uplift rates derived from MCMC-DA and ConBay-DA were compared against
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in-situ GNSS measurements, and soil water storage changes derived from both techniques were
validated against ESA CCI soil water storage, as an independent validation data set.

The numerical results indicated after implementing ConBay-DA that RMSD between model-derived
Total-WSC and GRACE Total-WSC reduced by ∼ 70%, on average, and the bias between GIA model
output and the in-situ GNSS observation reduced by ∼ 90%. MCMC-DA results showed the same
improvement in the estimation of Total-WSC, but the bias between GIA model output and in-situ
GNSS measurements reduced by 56% after implementing MCMC-DA. This reduction, however, was
considerably smaller than those of ConBay-DA. The estimated values of PGR through MCMC-DA
contained annual component (see Fig. 9.6), which is not physically realistic. ConBay-DA reduced
this uncertainty by 86%, using the in-situ GNSS measurements to constrain the updated value of the
ICE5G-VM2 GIA model.

Validation of top-layer soil water estimates, derived from MCMC-DA and ConBay-DA, against ESA
CCI soil water storage supports the hypothesis that, using in-situ GNSS measurements in the Bayesian
signal separation approach, improves the estimation of hydrological signals in terms of both linear
trends and seasonality. From the results, it can be concluded that using the GNSS constraint equation
in ConBay-DA defines an upper and lower boundary to update the GIA model output, which allows
us to introduce more updates to the hydrological signals compared to those of MCMC-DA. Therefore,
the GNSS constraint equation not only optimises the estimation of the land surface deformation, but
also improves estimation of the hydrological signals, in terms of both linear trends and seasonality. A
short summary of the setup to implement MCMC-DA and ConBay-DA and statistical comparisons of
the results are shown in Fig. 9.12.

Fig. 9.12 An overview of the setup to implement MCMC-DA and ConBay-DA, and a statistical comparison between their
application in G to separate TWSC and PGR from GRACE data.



Chapter 10

Conclusion and Outlook

This thesis is aimed at developing flexible data-model fusion frameworks, based on Bayesian methods,
to merge multi-model states with GRACE(-FO) and other geodetic observations to: (a) update
(modify) water states and surface deformation simulated by models, and (b) separate GRACE(-FO)
superimposed signals into their components. To this end, in Chapter 1, the importance of using
satellite geodetic techniques and models to study the Earth system, as well as the main hypothesis and
objectives of the research were introduced that mainly focused on establishing Bayesian frameworks
for: (1) merging multiple hydrological model outputs with GRACE(-FO) TWSC, (2) separating
GRACE(-FO) TWSC and simultaneously accounting for temporal dependency between model states,
and (3) a hierarchical integration of a priori information about the Earth system with multiple geodetic
observations.

In Chapter 2, GRACE(-FO) data and its processing steps, as well as other geodetic observations and
auxiliary models, used in this study, were introduced, while an overview of the Bayesian inference
was provided in Chapter 3. As the first step toward the Bayesian framework, Dynamic Model Data
Averaging (DMDA) was proposed and formulated in Chapter 4 to merge multiple a priori information
(e.g., multiple hydrological model outputs) with a set of observation (e.g., GRACE TWSC) to address
the above objective (1). In Chapter 5, the Markov Chain Monte Carlo Data Assimilation technique
(MCMC-DA) was developed to update a priori information based on a set of observation by recursively
estimating the unknown state parameters within a state-space model, while temporal dependency
between the parameters was estimated simultaneously through a Bayesian sampling approach. This
addressed objective (2). To address objective (3), a hierarchical Bayesian optimization approach,
Constrained Bayesian-Data Assimilation (ConBay-DA), was formulated in Chapter 6 to merge two
set of observations (e.g., GRACE and GNSS measurements) with a priori information, where the
second set of observation is used in a hierarchical level to constrain a specific compartment of the
water cycle (water storage changes due to the PGR uplift rates).
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The applicability of the DMDA, MCMC-DA and ConBay-DA formulatiuons to separate GRACE
signal was investigated in Chapter 7, Chapter 8, and Chapter 9 via several real case studies. In the
following, the main conclusions and outlook for this research trajectory are presented.

10.1 Conclusions

10.1.1 Comparison of DMDA, MCMC-DA, and ConBay-DA approaches

DMDA, MCMC-DA, and ConBay-DA were formulated in this study based on a linear state-space
model to define a relationship between observations and a priori information in a dynamic system,
while the state parameters and the temporal dependency between them were unknown and were
estimated through Bayesian approaches. The proposed approaches in this study are flexible in
accounting for the full error covariance matrix of the GRACE(-FO) TWSC, and the uncertainty of the
model simulations, which is allowed to vary in time.

The main difference between DMDA and two other techniques, is that in DMDA a Kalman Filter
(Kalman, 1960) approach (Eqs. (4.11) and (4.12)) is formulated to estimate the unknown state
parameters, while a forgetting factor of 0 < λ < 1 is empirically estimate to define the unknown
temporal dependency between the water states (see Eq. (4.8)). It is due to the fact that the magnitude
of changes in water storage components depends on the history of hydrological processes, which is
unknown, and there is not enough physical knowledge about how this dependency varies over time. In
MCMC-DA the Kalman Filter of DMDA is replaced by a combination of forward filtering-backward
smoothing approach (Kitagawa, 1987) and Gibbs sampling (Gelfand and Smith, 1990; Smith and
Roberts, 1993), where the first builds the relationship between observations and a priori information,
and the second accounts for unknown correlations between model states, which allows to introduce
more realistic updates to the individual water states, compared to the DMDA.

This hypothesis was tested by comparing the performance of DMDA and MCMC-DA to merge W3RA
model outputs with GRACE data on a 0.125◦×0.125◦ spatial grid points within CONUS, between
2003–2017 (see Section 8.4). TWSC derived from both techniques were compared with GRACE
observations in terms of RMSD and phase differences of annual amplitudes. The results indicated
that although both techniques performed well to improve model simulations, MCMC-DA TWSC is
more close to GRACE TWSC (RMSD and phase difference of zero) compared to the DMDA results.
The finding of this study, clearly showed that estimating the unknown temporal dependency using a
Bayesian sampling approach in MCMC-DA improves the estimation of the water states, compared to
the empirically defined this parameters in DMDA approach.
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DMDA is formulated in this study to merge a set of observation with multiple a priori information
in two steps: (1) a Kalman Filter to solve the state-space model between a set of observations and
a priori information. For multiple a priori information, the Kalman Filter is implemented to solve
the state-space model between the observations and each set of a priori information; (2) Bayesian
Model Averaging (BMA, Hoeting et al., 1999) to provide a time-variable weights to average the
water states derived from multiple a priori information of the first step, yielding the best fit to the
observations, while the implicit specification of the transition matrix is avoided using the forgetting
factor of 0 < α < 1.

In ConBay-DA, which is an extension of the MCMC-DA, a hierarchical Metropolis-Hastings algorithm
(Chib and Greenberg, 1995) is combined with the forward filtering-backward smoothing approach
and Gibbs sampling algorithm of MCMC-DA to constrain a specific compartments of the water cycle
(e.g., water storage changes due to the PGR uplift rate) based on a second set of observation (e.g.,
GNSS measurement).

The formulation and presentation of MCMC-DA and ConBay-DA in Chapters 5 and 6 are based on
merging the observations with only one set of a priori information, as the simplest case study. The
formulation of this frameworks, however, can be extended to merge multiple a priori information with
GRACE observation using the second part of DMDA, i.e., BMA in Section 4.3. Therefore, all three
Bayesian techniques proposed in this study have the potential to merge and to evaluate the behaviour
of multiple model outputs against GRACE(-FO) data.

The advantage of the DMDA approach, compared to the MCMC-DA is that the implementation of the
DMDA is more computationally efficient compared to the two other techniques, which makes it a
unique approach to integrate multiple hydrological models with GRACE(-FO) data, over a large area
and for high-spatial resolution applications. As an evidence, for example, it took almost three weeks
to estimate the posterior probability distributions of the water states and their uncertainties within
CONUS through MCMC-DA algorithm, using a general purpose computer (MATLAB toolbox),
while DMDA provided these estimations in less than 1 hour. Therefore, it can be say that, although
MCMC-DA introduces more realistic updates to the water storage changes, it is computationally
insufficient, compared to DMDA, to merge multiple hydrological model outputs with GRACE data in
a large scale area, e.g., continental to global scale, and for a high spatial (e.g., less than 12 km) and
high temporal resolution applications (e.g., daily data).

Comparison between the application of MCMC-DA and ConBay-DA to estimate land hydrology and
surface deformation in Chapter 9 indicated that using a second source of observations (e.g., GNSS
measurements) along with the GRACE data, can improve the estimation of both hydrological and
surface deformation signals. The reason could be due to the fact that, the second set of observation
provide useful information about a specific compartment of the water cycle or geophysical signal,
which can optimise the performance of signal separation techniques.
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Benefits of the Proposed Bayesian Frameworks Compared to Previous Studies

Application of Bayesian techniques to merge observations and models is getting more attention in
geophysical and hydrological studies. From the introduced Bayesian methods to merge GRACE
observations with model simulations in Chapter 4, Chapter 5, and Chapter 6, the use of Bayesian
methods is quite recent in hydrological studies. In recent years, Data Assimilation (DA) and simulta-
neous Calibration/Data Assimilation (C/DA) have been used in various studies to merge GRACE(-FO)
TWSC with hydrological model simulations or other Earth Observations (EO) data using a sequential
integration approach such as the Ensemble Kalman Filtering (EnKF, Evensen, 1994) or its extensions.

The cost functions of DA and C/DA approaches to update model parameters, conditional on the
measurement data, are formulated based on Bayes’ theorem (e.g., Evensen, 2003; Fang et al., 2018;
Schumacher, 2016). Schumacher (2016) discussed that the statistical information used in EnKF-DA
is restricted to the covariance matrices of the observations and models. Therefore, the observation
error model and the spatial resolution of GRACE TWSC has a significant influence on C/DA results.
Instead of limiting the statistical information in the data to the use of their covariances, a sampling
of their Probability Density Functions (PDFs) and a Bayesian optimization approach is adopted in
DMDA, MCMC-DA and ConBay-DA that results in more realistic estimations of states and their
errors. Moreover, the proposed approaches are flexible for any spatial resolution of the observations
and models, which does not have any influence on final results. More important, unlike the previous
DA, the proposed Bayesian techniques are implemented in an offline mode, where we do not need to
run the models, and we only use the outputs of the available hydrological models to merge with the
observations.

Particle Filter (PF) and Particle Smoother (PS) are other types of Bayesian approaches (Särkkä, 2013),
which have been used in some hydrological applications such as Plaza Guingla et al. (2013); Weerts
and El Serafy (2006) to assimilate the observations into the models. These techniques use a set of
particles (also called samples) to represent the posterior distribution of some stochastic process given
noisy and/or partial observations. The positive point of these technique is that the state-space model
can be non-linear and the initial state and noise distributions can take any form required (Del Moral,
1997). Moreover, PF techniques provide a well-established methodology for generating samples
from the required distribution without requiring assumptions about the state-space model or the state
distributions.

The rate of convergence of the approximate probability distribution until attainment of the true
posterior in PF approaches is inversely proportional to the number of particles used in the filter (Bain
and Crisan, 2008). This means that the filter perfectly approximates the posterior distribution when
the number of particles tends to infinity. However, since the computational cost of PF grows with the
number of particles, choosing a specific number of particles in the design of filters is a key parameter
for these methods. Therefore, PF and PS might not be efficient for high-dimensional fusion tasks (e.g.,
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Bain and Crisan, 2008; Snyder et al., 2008) such as the global hydrological application presented
here. The applications of the proposed Bayesian approach in this study indicated that these techniques
provide the ability to deal with high-dimensional fusion tasks, and its computational load is much
lower than PF and PS.

BMA has been used in many climate hydrology studies to merge (multi) models with measurements.
For example, Long et al. (2017) applied BMA to average multiple GRACE TWSC products and
hydrological models to analyse spatial and temporal variability of global TWSC. A model-data
synthesis method, based on Bayesian modelling, has also been used in Sha et al. (2019) to update a
global GIA model using GPS data. Their studies, however, did not assess the update of individual
surface and sub-surface water storage estimates.

Previous data-model fusion techniques are often applied using only one set of data (e.g., GRACE,
GNSS, remote sensing spoil water storage, or altimetry data alone) to merge with only one physical
or geographical model with some notable exceptions (Girotto et al., 2017; Tian et al., 2017; Van Dijk
et al., 2018), or they are limited to a particular region (not global), or to a particular component of
the water cycle. The proposed Bayesian approaches employed in this PhD thesis were formulated
to simultaneously estimate all surface and sub-surface water storage changes, as well as surface
deformation from GRACE(-FO) data. Moreover, from the application parts of DMDA, MCMC-DA
and ConBay-DA in Chapters 7, 8, 9 it was shown that these approaches are flexible to implement in
both regional and global scales, and for different spatial and temporal resolutions to study different
aspects of the water cycle.

Application of the Proposed Bayesian Techniques to Improving Hydrological Water
States and Land Surface Deformation

A fundamental question regarding the merging of GRACE(-FO) TWSC with model outputs is whether
the integration of GRACE(-FO) TWSC into hydrological models improves the representation of
total and individual water states. To answer this question, various case studies were considered
to demonstrate how the established Bayesian framework were employed to update a priori model-
derived estimates, using GRACE data, while rigorously accounting for uncertainties in models and
measurements.

Water storage changes derived from implementing the proposed approaches in Chapters 7, 8, and 9
were interpreted and evaluated by performing various comparisons between the original model outputs
and the Bayesian results, with respect to metrics such as Root Mean Square of Differences (RMSD)
and temporal correlation coefficients. Validations were done against independent measurements such
as in-situ US Geological Survey (USGS) groundwater level observations and the European Space
Agency (ESA)’s Climate Change Initiative (CCI) soil data, introduced in Section 2.5.
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Previous Data Assimilation (DA) attempts (Girotto et al., 2016) showed that a single GRACE DA
might introduce unrealistic signals to the soil water storage compartments. The results in this study
indicated that such errors could be considerably reduced using the proposed Bayesian techniques
(such as MCMC-DA), where the uncertainties and the dynamic evolution of water states are rigorously
accounted for updating model outputs. For example, the MCMC-DA results showed that the soil water
storage estimates were improved within the CONUS unlike the previous attempts by Girotto et al.
(2016). We also found a stronger linear trend in MCMC-DA soil water storage across the CONUS,
compared to W3RA (changing from ±0.5 mm/yr to ±2 mm/yr), which is closer to independent
estimates from the ESA CCI. MCMC-DA also improved the estimation of soil water storage in regions
with high forest intensity, where ESA CCI and hydrological models have difficulties in capturing the
soil-vegetation-atmosphere continuum. Moreover, the results derived from implementing ConBay-DA
within the GL area, and validation against ESA CCI soil water storage, indicated that merging EO
data with models can improve the estimation of soil water storage changes, in terms of both linear
trends and seasonality.

To demonstrate the impact of integrating GRACE TWSC into hydrological models on the inter- and
intra-annual components of water storage changes, water storage changes associated with the El Niño
Southern Oscillation (ENSO, Barnston and Livezey, 1987) were investigated. From this investigation,
we found that the modification of water storage changes are even beyond linear trends and seasonality,
since some climate modes, such as that of ENSO, are influenced after implementing the proposed
Bayesian approaches.

Furthermore, it was shown that the proposed Bayesian techniques are able to improve the timing of
water storage changes estimates. For example, in Section 8.4, it was shown that both MCMC-DA and
DMDA considerably reduced the phase differences between modelled and measured TWSC within
CONUS. The averaged time series of groundwater, soil water, and TWSC in Texas (south of CONUS)
are compared with those of independent validation data sets, and it was found that MCMC-DA
advanced the phase of the W3RA TWSC time series by 2 months, on average, as shown by Fig. 8.16.

The results derived from the application of the Bayesian approaches showed that the model simulations
of TWSC were always improved after merging with GRACE data. This improvement was also seen for
the individual water storage compartments, such as the groundwater and soil water storage. However,
the quality of the GRACE signal separation to its individual compartments was not always skilful
in all the regions of the case studies, and in the whole time period. A possible reason might be due
to the large interactions and/or the similarity of inter-annual cycles between different water storage
compartments, which are not well reflected in a priori information. Moreover, possible tipping points
or abrupt changes caused by various phenomena (e.g., earthquakes, sudden atmospheric pressure
changes, hurricanes, floods and desertification of grasslands) are difficult to simulate in models but
reflected in GRACE(-FO) data. Identifying the exact source of these discrepancies and quantifying
them will need further research (see e.g., Peng et al., 2019).
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From the application of ConBay-DA within the GL area, we found that a lack of a priori information
on water storage (e.g., lack of surface water storage in W3RA model outputs) may increase the
uncertainties of the signal separation results. For example, we found a small annual amplitude in
the separated PGR signal from GRACE data, which is not physically realistic (see Fig. 9.6). It
may because surface water storage is the dominant signal within the GL area, which is detected by
the GRACE(-FO) mission. W3RA, however, does not contain surface water storage. The lack of a
priori information about this compartment may be reflected as an uncertainty within the GRACE
signal separation results. To reduce this uncertainty, one solution is to remove the surface water
storage of the GL area from GRACE data, using altimetry measurements. The uncertainty of the
altimetry measurements, however, will be reflected within the GRACE data, which will affect the
final estimations of the water states. The other solution, is to use the altimetry observation as an a
priori information for surface water storage changes. However, one of the challenging problems of
using altimetry data is the spatial and temporal resolution mismatch between observation and models.
Finding a spatial/temporal resolution mismatch is a subject for further research.

10.2 Outlook

Improving the Bayesian algorithm

Bayesian data-model fusion techniques in this thesis were formulated with the assumption that all
the data used in this study, and their uncertainties, are Gaussian distributed. To assess the impact
of different assumptions about the error distributions of the observations (whether Gaussian or non-
Gaussian) on the final estimates, the Bayesian formulations of this study need to be extended by using
a non-Gaussian state-space model to define the relationship between observations and models. As
a result, Kalman filtering in DMDA and forward-filtering backward-smoothing recursion approach
in MCMC-DA and ConBay-DA, should be replaced by an alternative sampling approach to obtain
accurate approximations of the likelihood function. To understand to what extent these techniques
and different observation error distributions might impact the final estimates future research and case
studies must be designed.

To reduce the computational load of DMDA, instead of implementing an MCMC sampling algorithm
to estimate the transition matrix between models, a BMA forgetting factor of α = 0.9 was considered
(see Section 4.3). This factor defined the temporal smoothing for predicting posterior probability
values at each time step. Based on the same logic that, in MCMC-DA, we replaced the Kalman
forgetting factor of DMDA with the Gibbs sampling, in future, one might apply an efficient sampling
approach instead of using an empirical (α) value. This replacement might lead to better estimations
of temporal weights in the DMDA approach.
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The formulation of the ConBay-DA technique can be extended to merge multiple (more than two)
geodetic or Earth Observations (EO) data sets, such as satellite altimetry and remote sensing soil
water data, which may provide more information about different hydrological compartments. Merging
various EO data with models is a challenging problem due to the different spectral/spatial and temporal
resolution mismatch. Therefore, finding an optimal matching operator to solve spectral/spatial
mismatch between them and evaluating their impact on final results should be assessed in future
studies.

A secondary application of the proposed Bayesian techniques can also be devoted to their application
for predicting (or extrapolating) water storage estimates. To achieve this purpose, however, the
Bayesian formulation needs to be extended. For example, the DMDA weights can be used to identify
the best model in different river basins and seasons. By analysing this information and knowing the
observed TWSC by GRACE-FO, one can use a combination of different model runs (weighted by the
DMDA outputs) and extrapolate the surface and sub-surface water storage estimates.

Further Applications

In this study, the GRACE level 2 product was applied to estimate GRACE TWSC as observations
in the applications of the proposed approaches. It is known to the science community that although
there are similarities in overall patterns of TWSC estimates from existing GRACE solutions (e.g.,
GRACE level 2 and mascon products, Watkins et al., 2015), there are also some differences in their
long-term trends and the seasonal magnitudes. These differences are more pronounced in coastal
regions such as the southeastern CONUS. In general, there is no perfect solution for selecting the best
gravity recovery technique for coastal regions, which is why alternative inversion techniques are being
developed (Ferreira et al., 2020; Yang et al., 2017). The influence of using various GRACE products
on DMDA, MCMC-DA, and ConBay-DA estimations will be subject to future investigations.

The error variance-covariance matrix of the GRACE field estimates is a key parameter in Bayesian
signal separation approaches to estimate the posterior PDF of the unknown state parameters and the
temporal dependency between them (see Eq. (4.11), Eq. (5.1), and Eq. (6.6)). The uncertainty of error-
covariance matrix of GRACE data is then reflected on signal separation results. understand the impact
of different approximations of the full error variance-covariance matrix of GRACE observations on
Bayesian signal separation is a subject for further investigations.

MCMC-DA was implemented in Chapter 8 to merge outputs from one model, i.e., the W3RA water
balance model, with GRACE TWSC. The application of MCMC-DA can be extended to merge
multi-hydrological model outputs with GRACE TWSC, using the Bayesian weighting approach of
DMDA. Such extensions and evaluating weights assigned to these models should be assessed in future
research.
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The application of the ConBay-DA to merge GRACE Total-WSC and in-situ GNSS time series in
a global scale is a challenging problem due to the large spacial and temporal gaps within the time
series. Therefore, defining a matching operator is necessary to establish a relationship between the
observations and a priori information, which will be a subject to future investigations.

The Bayesian data-model fusion techniques, introduced in this thesis, have the potential to be used
in different climate and hydrological applications to compare available hydrological, land-surface
and climate models against observations. It can also be used to generate ensemble means from
multi-model outputs such as climate projections.
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Sośnica, K., A. Jäggi, U. Meyer, D. Thaller, G. Beutler, D. Arnold, and R. Dach (2015), Time
variable Earth’s gravity field from SLR satellites, Journal of geodesy, 89(10), 945–960, doi:
10.1007/s00190-015-0825-1.

Spada, G., V. R. Barletta, V. Klemann, R. Riva, Z. Martinec, P. Gasperini, B. Lund, D. Wolf,
L. Vermeersen, and M. King (2011), A benchmark study for glacial isostatic adjustment codes,
Geophysical Journal International, 185(1), 106–132, doi:10.1111/j.1365-246X.2011.04952.x.



References 189

Steffen, H., and G. Kaufmann (2005), Glacial isostatic adjustment of Scandinavia and northwestern
Europe and the radial viscosity structure of the Earth’s mantle, Geophysical Journal International,
163(2), 801–812, doi:10.1111/j.1365-246X.2005.02740.x.

Strassberg, G., B. R. Scanlon, and D. Chambers (2009), Evaluation of groundwater storage monitoring
with the GRACE satellite: Case study of the High Plains aquifer, central United States, Water
Resources Research, 45(5), doi:10.1029/2008WR006892.

Sun, G. (2013), Impacts of Climate Change and Variability on Water Resources in the Southeast USA,
NCA Southeast Technical Report 204-234, pp. 210–236, doi:10.5822/978-1-61091-509-0_10.

Sun, Y., R. Riva, and P. Ditmar (2016), Optimizing estimates of annual variations and trends in
geocenter motion and J2 from a combination of GRACE data and geophysical models, Journal of
Geophysical Research: Solid Earth, 121(11), 8352–8370, doi:10.1002/2016JB013073.

Swenson, S., and J. Wahr (2002), Methods for inferring regional surface-mass anomalies from Gravity
Recovery and Climate Experiment (GRACE) measurements of time-variable gravity, Journal of
Geophysical Research: Solid Earth, 107(B9), ETG–3, doi:10.1029/2001JB000576.

Swenson, S., and J. Wahr (2006), Post-processing removal of correlated errors in GRACE data,
Geophysical Research Letters, 33(8), doi:10.1029/2005gl025285.

Swenson, S., D. Chambers, and J. Wahr (2008), Estimating geocenter variations from a combination
of GRACE and ocean model output, Journal of Geophysical Research: Solid Earth, 113(B8),
doi:10.1029/2007JB005338.

Taie Semiromi, M., and M. Koch (2019), Reconstruction of groundwater levels to impute missing
values using singular and multichannel spectrum analysis: application to the ardabil plain, iran,
Hydrological Sciences Journal, 64(14), 1711–1726, doi:10.1080/02626667.2019.1669793.

Takatsuka, Y., M. R. Niekus, J. Harrington, S. Feng, D. Watkins, A. Mirchi, H. Nguyen, and M. C.
Sukop (2018), Value of irrigation water usage in South Florida agriculture, Science of The Total
Environment, 626, 486–496, doi:10.1016/j.scitotenv.2017.12.240.

Tapley, B. D., S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins (2004a), GRACE
measurements of mass variability in the Earth system, Science, 305(5683), 503–505, doi:
10.1126/science.1099192.

Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber (2004b), The gravity recovery and cli-
mate experiment: Mission overview and early results, Geophysical Research Letters, 31(9), doi:
10.1029/2004GL019779.

Thomas, A. C., J. T. Reager, J. S. Famiglietti, and M. Rodell (2014), A GRACE-based water storage
deficit approach for hydrological drought characterization, Geophysical Research Letters, 41(5),
1537–1545, doi:10.1002/2014GL059323.

Tian, S., P. Tregoning, L. J. Renzullo, A. I. J. M. van Dijk, J. P. Walker, V. R. Pauwels, and S. Allgeyer
(2017), Improved water balance component estimates through joint assimilation of GRACE water
storage and SMOS soil moisture retrievals, Water Resources Research, 53(3), 1820–1840, doi:
10.1002/2016WR019641.

Tiwari, V., J. Wahr, and S. Swenson (2009), Dwindling groundwater resources in northern India, from
satellite gravity observations, Geophysical Research Letters, 36(18), doi:10.1029/2009GL039401.

Tokdar, S. T., and R. E. Kass (2010), Importance sampling: a review, Wiley Interdisciplinary Reviews:
Computational Statistics, 2(1), 54–60, doi:10.1002/wics.56.



190 References

Trenberth, K. E. (1990), Recent observed interdecadal climate changes in the Northern Hemi-
sphere, Bulletin of the American Meteorological Society, 71(7), 988–993, doi:10.1175/1520-
0477(1990)071<0988:ROICCI>2.0.CO;2.

Trenberth, K. E., and D. P. Stepaniak (2001), Indices of el niño evolution, Journal of climate, 14(8),
1697–1701, doi:10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2.

Van Beek, L. P. H., Y. Wada, and M. F. P. Bierkens (2011), Global monthly water stress: 1. Water
balance and water availability, Water Resources Research, 47(7), doi:10.1029/2010WR009791.

Van Der Knijff, J. M., J. Younis, and A. P. J. De Roo (2010), LISFLOOD: a GIS-based distributed
model for river basin scale water balance and flood simulation, International Journal of Geographi-
cal Information Science, 24(2), 189–212, doi:10.1080/13658810802549154.

Van Dijk, A., L. J. Renzullo, and M. Rodell (2011), Use of Gravity Recovery and Climate Experiment
terrestrial water storage retrievals to evaluate model estimates by the Australian water resources
assessment system, Water Resources Research, 47(11), doi:10.1029/2011WR010714.

Van Dijk, A. I., J. Schellekens, M. Yebra, H. E. Beck, L. J. Renzullo, A. Weerts, and G. Donchyts
(2018), Global 5 km resolution estimates of secondary evaporation including irrigation through
satellite data assimilation, Hydrology and Earth System Sciences, 22(9), 4959–4980, doi:
10.5194/hess-22-4959-2018.

Van Dijk, A. I. J. M. (2010), The Australian Water Resources Assessment System: Technical 901
Report 3, Landscape model (version 0.5) Technical Description, CSIRO, Water for a Healthy
Country National Research Flagship.

Van Dijk, A. I. J. M., L. J. Renzullo, Y. Wada, and P. Tregoning (2014), A global water cycle reanalysis
(2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-
model ensemble, Hydrology and Earth System Sciences, 18(8), 2955–2973, doi:10.5194/hess-18-
2955-2014.

Van Dyk, D. A., and X. Jiao (2015), Metropolis-Hastings within partially collapsed
Gibbs samplers, Journal of Computational and Graphical Statistics, 24(2), 301–327, doi:
10.1080/10618600.2014.930041.

Van Dyk, D. A., and T. Park (2008), Partially collapsed Gibbs samplers: Theory and methods, Journal
of the American Statistical Association, 103(482), 790–796, doi:10.1198/016214508000000409.

Van Ravenzwaaij, D., P. Cassey, and S. D. Brown (2018), A simple introduction to Markov Chain
Monte–Carlo sampling, Psychonomic bulletin & review, 25(1), 143–154, doi:10.3758/s13423-016-
1015-8.

Velicogna, I., T. Sutterley, and M. Van Den Broeke (2014), Regional acceleration in ice mass loss
from greenland and antarctica using grace time-variable gravity data, Geophysical Research Letters,
41(22), 8130–8137, doi:10.1002/2014GL061052.

Von Storch, H., and F. W. Zwiers (2001), Statistical analysis in climate research, Cambridge university
press.

Voss, K. A., J. S. Famiglietti, M. Lo, C. De Linage, M. Rodell, and S. C. Swenson (2013), Groundwater
depletion in the Middle East from GRACE with implications for transboundary water manage-
ment in the Tigris-Euphrates-Western Iran region, Water resources research, 49(2), 904–914,
doi:10.1002/wrcr.20078.



References 191

Vrugt, J. A., C. J. ter Braak, C. G. Diks, and G. Schoups (2013), Hydrologic data assimilation using
particle Markov chain Monte Carlo simulation: Theory, concepts and applications, Advances in
Water Resources, 51, 457–478, doi:10.1016/j.advwatres.2012.04.002.

Wada, Y., D. Wisser, and M. Bierkens (2014), Global modeling of withdrawal, allocation and
consumptive use of surface water and groundwater resources, Earth System Dynamics Discussions,
5(1), 15–40, doi:10.5194/esdd-4-355-2013.

Wahr, J., and S. Zhong (2012), Computations of the viscoelastic response of a 3-D compressible
Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada,
Geophysical Journal International, 192(2), 557–572, doi:10.1093/gji/ggs030.

Wahr, J., M. Molenaar, and F. Bryan (1998), Time variability of the Earth’s gravity field: Hydrological
and oceanic effects and their possible detection using GRACE, Journal of Geophysical Research:
Solid Earth, 103(B12), 30,205–30,229, doi:10.1029/98JB02844.

Wahr, J., S. Swenson, and I. Velicogna (2006), Accuracy of GRACE mass estimates, Geophysical
Research Letters, 33(6), doi:10.1029/2005GL025305.

Wang, H., P. Wu, and Z. Wang (2006), An approach for spherical harmonic analysis of non-smooth
data, Computers and geosciences, 32(10), 1654–1668, doi:10.1016/j.cageo.2006.03.004.

Watkins, M. M., D. N. Wiese, D.-N. Yuan, C. Boening, and F. W. Landerer (2015), Improved methods
for observing earth’s time variable mass distribution with grace using spherical cap mascons,
Journal of Geophysical Research: Solid Earth, 120(4), 2648–2671, doi:10.1002/2014JB011547.

Weedon, G. P., G. Balsamo, N. Bellouin, S. Gomes, M. J. Best, and P. Viterbo (2014), The WFDEI
meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim
reanalysis data, Water Resources Research, 50(9), 7505–7514, doi:10.1002/2014WR015638.

Weerts, A. H., and G. Y. El Serafy (2006), Particle filtering and ensemble Kalman filtering for state
updating with hydrological conceptual rainfall-runoff models, Water resources research, 42(9),
doi:10.1029/2005WR004093.

Werth, S., A. Güntner, R. Schmidt, and J. Kusche (2009), Evaluation of GRACE filter tools
from a hydrological perspective, Geophysical Journal International, 179(3), 1499–1515, doi:
10.1111/j.1365-246X.2009.04355.x.

Winter, T. C., J. W. Harvey, O. L. Franke, and W. M. Alley (1998), Ground water and surface water:
a single resource, vol. 1139, US geological Survey.

Xiao, R., X. He, Y. Zhang, V. G. Ferreira, and L. Chang (2015), Monitoring groundwater variations
from satellite gravimetry and hydrological models: A comparison with in-situ measurements in the
mid-atlantic region of the United States, Remote Sensing, 7(1), 686–703, doi:10.3390/rs70100686.

Yang, F., J. Kusche, E. Forootan, and R. Rietbroek (2017), Passive-ocean radial basis function
approach to improve temporal gravity recovery from GRACE observations, Journal of Geophysical
Research: Solid Earth, 122(8), 6875–6892, doi:10.1002/2016JB013633.

Zaitchik, B. F., M. Rodell, and R. H. Reichle (2008), Assimilation of GRACE terrestrial water storage
data into a land surface model: Results for the Mississippi River basin, Journal of Hydrometeorology,
9(3), 535–548, doi:10.1175/2007JHM951.1.

Zhang, Y.-K., and K. Schilling (2006), Increasing streamflow and baseflow in Mississippi River
since the 1940 s: Effect of land use change, Journal of Hydrology, 324(1-4), 412–422, doi:
10.1016/j.jhydrol.2005.09.033.



192 References

Zhang, Z., B. Chao, J. Chen, and C. Wilson (2015), Terrestrial water storage anomalies of Yangtze
River Basin droughts observed by GRACE and connections with ENSO, Global and Planetary
Change, 126, 35–45, doi:10.1016/j.gloplacha.2015.01.002.

Zhao, M., I. Velicogna, and J. S. Kimball (2017a), Satellite observations of regional drought severity
in the continental United States using GRACE-based terrestrial water storage changes, Journal of
Climate, 30(16), 6297–6308, doi:10.1175/JCLI-D-16-0458.1.

Zhao, M., I. Velicogna, and J. S. Kimball (2017b), A global gridded dataset of grace drought severity
index for 2002–14: Comparison with pdsi and spei and a case study of the australia millennium
drought, Journal of Hydrometeorology, 18(8), 2117–2129, doi:10.1175/JHM-D-16-0182.1.

Zheng, H., D. Barta, and X. Zhang (2014), Lesson learned from adaptation response to Devils
Lake flooding in North Dakota, USA, Regional environmental change, 14(1), 185–194, doi:
10.1007/s10113-013-0474-y.

Zotov, L., and C. Shum (2010), Multichannel singular spectrum analysis of the gravity field data from
grace satellites, in AIP Conference Proceedings, vol. 1206, pp. 473–479, American Institute of
Physics, doi:10.1063/1.3292557.



Appendix A

A.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA, Lorenz, 1956) is a statistical decomposition technique that is
widely used to extract dominant modes of multivariate data sets based on the eigenvalue decomposition
of their auto-covariance matrix. The PCA approach is applied in this study follows the implementation
in (Forootan and Kusche, 2012, chapter 3), which allows us to extract orthogonal spatial and temporal
components that capture the dominant variability in GRACE TWS, hydrological model outputs, and
the DMDA-derived separated water storage estimates. Therefore, PCA can be used as a tool to
compare various aspects of the available data.

The PCA is applied on the available time-variable fields after removing their temporal mean. The t× s
data matrix Y is used to store either TWS or individual water storage values, where t represents the
number of time epochs and s stands for the number of grid points. In our study, Y contains 122 rows
(t = 122 months) and 33 columns (s = 33 basins). The solution to the PCA is defined by expanding
Y as:

Y = PĒT
, (A.1)

where Ē contains the spatially orthogonal vectors (Empirical Othogonal Functions, i.e., EOFs),
associated with temporally uncorrelated time series, known as Principal Components (PCs), and
stored in the column of matrix P. Thus, Ē contains the unit-norm eigenvectors e1,e2, ...,em of the
covariance matrix CY = E{YT Y} in its columns (ĒĒT

= I), which are arranged with respect to the
magnitude of the corresponding singular-values λ1,λ2, ...,λm, in which λ1 > λ2 > ... > λm, and m is
the maximum number of singular-values corresponding to the covariance matrix CY , i.e., 33 in our
implementation. Similar to equation (A.1), the data matrix Y can also be decomposed by the Singular
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Value Decomposition (SVD) method as:

Y = P̄ΛĒT
, (A.2)

where P̄ contains normalized PCs, i.e. P̄P̄T
= I, and Λ is diagonal and holds the singular values λ

ordered according to their magnitude. The solution to the PCA problem therefore requires the use of
classic algebraic methods to find the singular-values and their corresponding singular vectors of CY

(see the computational aspects in Golub and Van Loan, 2012). The total variance of the data matrix Y
can be derived by summing the square of singular values, i.e., ∑λi

2, i = 1, ...33. The i’th PCA-derived
orthogonal model is computed as

Yi = P̄iΛiĒ
T
i , (A.3)

which represents 100×λi
2/∑λi

2, i = 1, ...33 percent of the total variance in Y.

A.2 Independent Component Analysis (ICA)

ICA is a higher (than second) order statistical decomposition technique, which incorporates statistical
moments of available data samples in its computational procedure to derive empirical components
that are statistically as independent as possible. The ICA technique that is applied here follows the
formulation of Forootan and Kusche (2012, 2013), in which the ICA is a rotated extension of the
Principal Component Analysis (PCA, Forootan, 2014, chapter 3). For this, an orthogonal rotation
matrix R is computed in an optimization procedure, which can be used to rotate the PCA’s orthogonal
components make them as statistically as independent as possible. The ICA decomposition of the
data matrix X can be formulated as:

X = PRRT ĒT
, (A.4)

where PR and ER are rotated components and always only one of them is independent. For the
temporal ICA technique, columns of PR, and for the Spatial ICA method, columns of ER are
statistically as independent as possible (details of the Temporal and Spatial ICA techniques and the
approach to estimate R can be found in Forootan, 2014, chapter 4).
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