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We consider a specific form of domain invasion that is an abstraction of pancreatic tissue eliminating pre-
cancerous mutant cells through juxtacrine signalling. The model is explored discretely, continuously,
stochastically and deterministically, highlighting unforeseen nonlinear dependencies on the dimension
of the solution domain. Specifically, stochastically simulated populations invade with a dimension depen-
dent wave speed that can be over twice as fast as their deterministic analogues. Although the wave speed
can be analytically derived in the cases of small domains, the probabilistic state space grows exponen-
tially and, thus, we use numeric simulation and curve fitting to predict limiting dynamics.
� 2022 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

All cells in a tissue compete for survival (Alberts et al. (2004)).
Normally, this competition is regulated by homeostasis (Brown
et al. (2017); Qiu et al. (2019); Picco et al. (2019)), however, as
new cells develop and divide from old cells mutations can start
to appear due to incorrect replication of DNA (Boland and
Ricciardiello (1999)). These mutations can lead to cancerous cells
and change the balance of competition and other processes
between the mutant cells and the surrounding healthy tissue
Hogan et al. (2009); Hill et al. (2021); Kajita et al. (2010);
Porazinski et al. (2016); Vishwakarma and Piddini (2020).

Although huge numbers of potential incorrect mutations occur
throughout life, cancer is a relatively rare event (Boland and
Ricciardiello (1999); Brown et al. (2017); Vishwakarma and
Piddini (2020)). This rarity does not appear to stem from the pos-
sibility that cells replicate with high fidelity, leading to few muta-
tions occurring, rather epithelial tissues possess the ability to
‘sense’ defective cells harbouring genetic mutations and, via dis-
tinct processes, eliminate mutant cells and prevent disease (Pray
(2008)).

Our focus is on modelling and investigating a mechanism of
boundary-based cell elimination that is consistent with how pan-
creatic tissue repairs itself upon being seeded with mutant cells
that express oncogenic Kras proteins. Kras proteins control many
cellular functions including cell proliferation and cell survival;
mutations in KRAS are key driver mutations in pancreatic cancer
tumour formation (Hill et al. (2021)).

We recently described cell competition in adult mouse pancreas
tissues in vivo (Hill et al. (2021)). Using red fluorescent protein
(RFP) reporters we traced cells in tissues over time showing that
the amount of RFP in tissues significantly decreases when mutant
cells are present in tissues in low numbers (see Fig. 1). In contrast,
RFP levels remain constant in wild type tissues over the same time
course, indicating that Kras mutant cells are not lost via normal tis-
sue turnover/homeostasis. We conclude that Kras mutant cells
compete with normal cells for space and survival in epithelial
tissues.
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Fig. 1. Red fluorescent protein (RFP) highlighting genomic DNA in mouse pancreas tissue labelling recombined cells in the mouse pancreas. The images are taken at 35 days
post-induction (a) represents healthy tissue, whilst (b) represents mutated tissue. There is a clear reduction in the amount of RFP present in the mutated tissue indicating that
the healthy cells are eradicating the Kras mutant cells. The scale bar represents 100lm. See (Hill et al. (2021)) for further experimental details.
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The mutant patches were not seen to contain any internal elim-
ination, only ragged boundaries, which suggests there is no long
range signalling. Further, research has identified an evolutionarily
conserved role of EphA2 receptor tyrosine kinase as an essential
regulator of mutant cell elimination (Hill et al. (2021); Porazinski
et al. (2016); Hill and Hogan (2019)). In general, EphA2 is activated
by membrane-bound ligands, leading to bidirectional cell–cell sig-
nalling. Specifically, we observed that cell–cell adhesions at
normal-mutant cell–cell boundaries decrease prior to mutant cell
loss. Indeed, if we knock-out EphA2 receptor tyrosine kinase in tis-
sues, Kras mutant cells are retained. Although, additional research
is required to determine the molecular mechanisms of EphA2 sig-
nalling in vivo, we have in vitro data to show that direct cell–cell
interactions between normal and mutant cells are required to acti-
vate EphA2 signalling and promote mutant cell elimination (Hill
et al. (2021); Porazinski et al. (2016); Hill and Hogan (2019)). This
data justifies the role of local juxtacrine signalling and that normal
cells mobilise to eliminate mutant cells from tissues, occupying
space created as mutant cells are eliminated.

In simple epithelial models, normal cells mobilise via cell
migration (Porazinski et al. (2016)); however, cell translocation is
unlikely in adult pancreas tissues, rather, we show that normal
cells, directly adjacent to mutant cells, increase in cell volume, sug-
gesting normal neighbours expand in cell size. A similar phe-
nomenon is described in post mitotic tissues in Drosophila
melanogaster (Tamori and Deng (2013)).

To model this invasion by elimination we will use an Eden-type
process (Eden (1961); Wolf and Kertész (1987); Kertesz and Wolf
(1988)). Specifically, whenever a wild-type cell and a mutant cell
are next to each other the wild-type cell is able to expel the mutant
through growing into the space that was previously inhabited by
the mutant cell (see Fig. 2). We note that many invasion and elim-
ination models exist with various levels of analytical understand-
ing (Debabrata (2004)). However, most other models include
random walk space jumps, as well as interactions (Callaghan
et al. (2006); Clifford and Sudbury (1973); Woolley et al. (2014)),
whereas we only consider elimination as the means of invasion,
because the pancreas cells were not observed to move in such a
way.

Our interest in modelling this system is to extract the invasion
time scale of healthy cells eliminating mutant cells. Specifically,
from modelling this dynamic stochastically we observe that the
2

averaged system generates a Fisher-like wave of wild type cells
expelling mutant cells. Moreover, in one dimension, we are able
to derive a continuous differential equation that provides a macro-
scopic mean-field limit of the averaged stochastic simulations,
which is tractable to standard travelling wave analysis. Thus, we
are able to derive an algebraic correction to account for the scaling
between the deterministic and stochastic invasion rates.

However, extending these ideas to two-dimensions is not as
simple as the standard Fisher wave analysis (Belmonte-Beitia
et al. (2013)). Specifically, although the stochastic wave front still
appears to travel with a constant speed and with an approximately
fixed shape the stochastic invasion waves travel faster than the
analogous deterministic model and we are unable to derive a sim-
ilar scaling. Critically, the wave speed can still be extracted through
numerical fitting. Hence, we investigate this system of dynamics to
understand how the second dimension influences the invasion
wave speed in the stochastic simulations. In turn, understanding
this relationship will enable us to derive a scaling term that will
allow us to correct for the differences between the stochastic and
deterministic limits.

It should be noted that this process can be viewed through
alternative frameworks, such as Moran processes (Moran (1958);
Whigham and Dick (2008)), voter models (Holley and Liggett
(1975); Bramson and Griffeath (1980); Klein et al. (2008)), birth–
death processes (Jörg et al. (2021); Klein et al. (2007)) and
rooted-tree approximations (Hall and Siebert (2021)). Our interest
in wave speed would then be interpreted as an extinction time
scale and there are many techniques within these fields to extract
such time scales. Although these other formalisms may be just as
applicable, the authors’ skills align with using an Eden formulation
(Eden (1961)), which provides an interpretable basis for the cellu-
lar agents and offers clarity when comparing the stochastic equa-
tions to their deterministic analogues.

This paper is purposefully written to provide a clear introduc-
tion to the diverse modelling techniques of stochastic and deter-
ministic modelling, theory and simulation. Each approach allows
us to view the problem in a different way and by combining all
of the strengths we can provide a more complete understanding
of the underlying dynamics and the biological application. Indeed,
this work offers a pedagogical demonstration of how different
techniques and fields should be considered complementary, rather
than conflicting. However, none of the frameworks are new and we



Fig. 2. Schematic diagrams illustrating (a) the domain geometry and (b) the interaction dynamics. The colour and W and M labels indicate where each population is present.
Namely, if square ði; jÞ is green then Wi;j ¼ 1 (and Mi;j ¼ 0), whereas if the square is red then Mi;j ¼ 1 (and Wi;j ¼ 0).
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suggest (Erban et al. (2007); van Kampen (2007); Murray (2003a))
as a more complete introduction to the field of linking determinis-
tic and stochastic systems.

Due to the diverse audience that the work may interest we offer
a roadmap for the rest of the article, highlighting the sections that
new users may want to revise, whilst allowing more advanced
users to easily target the information that they require. Firstly,
we recommend everyone read Section 2, as we present our theo-
retical and numerical framework of modelling the invasion
dynamic. Namely, we approach this problem using spatially dis-
crete stochastic simulations and analysis to match the microscopic
features of the experimental problem of discrete cell elimination.
Further, by using various scaling laws, we are able to derive deter-
ministic continuum equations that match the averaged stochastic
simulations.

We then suggest that the more novice and advanced readers
separate in Section 3. Specifically sections 3.1 and 3.2 are aimed
at new users of stochastic and deterministic techniques as they
develop our intuition regarding the invasion wave’s dependence
on dimension by first starting with one dimension, where the
3

problem is tractable and can be solved explicitly. This is in compar-
ison to when we extend to higher dimensions where we depend
more on simulation and curve fitting to understand the limiting
dynamics of large stochastic systems. The more advanced reader
may want to skip directly to Section 3.2.3, where the results of
these sections are collected with those of large two-dimensional
grids.

Finally, all readers may be interested in Section 4, where we
apply our model to data from Kras mutant expulsion experiments.
We demonstrate that not only is the mechanism consistent with
the data but we are also able to parameterise the rate at which
healthy and mutant cells interact. All codes and data are available
at https://github.com/ThomasEWoolley/domain_invasion.
2. Model

We consider a rectangular domain made up of a discretised grid
of nl � nw (nl;nw 2 N) squares of side width Dx. The length and
width of the domain are then l ¼ nlDx and w ¼ nwDx, respectively.

https://github.com/ThomasEWoolley/domain_invasion
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Each grid site is centred at ðði� 1=2ÞDx; ðj� 1=2ÞDxÞ for 1 6 i 6 nl

and 1 6 j 6 nw (see Fig. 2a).
These grid sites contain the cellular populations and, thus, each

square can contain either a wild-type cell, Wi;j, or a mutant cell,
Mi;j, but not both. Further, because initially no grid square is empty
then no grid square can ever be empty, because this would indicate
a hole, or tear, in the tissue. Thus, all grid sites contain exactly one
of the populations.

We assume that the populations interact stochastically through
a simple competition dynamic. Namely, whenever a wild-type cell
orthogonally borders a mutant cell then at a rate r the wild-type
cell will expel the mutant cell from its grid site and replace it with
a new wild-type cell that is birthed in its place (see Fig. 2b). For
1 < i < nl and 1 < j < nw this interaction can be written as
ðinvasion from the leftÞ Wi�1;j þMi;j !r Wi�1;j þWi;j;ð1Þ
ðinvasion from the rightÞ Wiþ1;j þMi;j !r Wiþ1;j þWi;j;ð2Þ

ðinvasion from belowÞ Wi;j�1 þMi;j !r Wi;j�1 þWi;j;ð3Þ
ðinvasion from aboveÞ Wi;jþ1 þMi;j !r Wi;jþ1 þWi;j:ð4Þ
To close the system fully we must also define what happens to the
cells on the boundary, as well as an initial condition.

Multiple types of interactions could be defined on the bound-
ary. The simplest being interactions only occur between squares
that are physically next to each other, thus, making the boundary
a zero-flux (or homogeneous Neumann) condition. Alternatively,
we could consider periodic boundary conditions on one, or more,
sets of opposite boundaries.

An illustrative example of the invasion dynamics can be seen in
Fig. 2b. Specifically, we see a 3� 3 grid with wild-type cells occu-
pying all spaces except the centre and top-right square. If we were
to consider the zero-flux boundary conditions as specified above
then probabilistically the centre square is more likely to be
expelled first as it has four neighbours, whereas the top-right
square only has two. However, if opposite boundaries are identi-
fied under periodic boundary conditions then both mutant cells
would have four wild-type neighbours that could invade them.

Here, to allow for ease of analysis, we apply periodic boundary
conditions to the top and bottom boundaries only such that popu-
lations with indices ði;1Þ interact with populations with indices
ði;nwÞ in exactly the same ways as defined in Eqs. (3) and (4), mu-
tatis mutandis. However we briefly consider zero-flux conditions on
all boundaries in Section 3.3.
Fig. 3. Mapping between the (right) one- and (left) tw
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2.1. Simulation

2.1.1. Propensities and stoichiometric matrices
We intend to approach this problem both deterministically and

stochastically. Deterministically, we will see that we can either
simulate a large network of coupled ordinary differential equations
(ODEs), or a single partial differential equation (PDE). These differ-
ential equations will be simulated using either ode45, or pdepe

from Matlab 2019B, as required (Coleman (2013); Stanoyevitch
(2005)).

To simulate the system stochastically we use a standard
Stochastic Simulation Algorithm as introduced by (Gillespie
(1976); Gillespie (1977); Gillespie (2007); Woolley et al. (2011);
Woolley et al. (2011); Abdennur (2022)). This uses two compo-

nents: the stoichiometric matrix, m, whose ith row informs us as

to how the populations are updated once the ith reaction occurs;

and the propensity vector, g, whose ith element is the rate at which

the ith reaction occurs.
Firstly, we define a one-dimensional population vector, W , that

flattens the two-dimensional space of populations, namely, the
wild-type population is specified by

WT ¼ ðW1;1;W1;2; . . . ;W1;nw ;W2;1;W2;2; . . . ;W2;nw ; . . . ;Wnl ;nw Þ;
¼ ðW1;W2; . . . ;Wnwnl Þ;

where we introduce Wi as a one-dimensional indexed population,
which is equivalent to Wdi=nwe;i mod nw , where
imod nw 2 f1;2; . . . ;nwg and dxe is the ceiling function of x, namely,
the largest integer that is larger than, or equal to x (see Fig. 3).
Equally, Wi;j maps to W ði�1Þnwþj. Finally, the mutant population vec-
tor would be defined by M ¼ 1�W , as specified by the conserva-
tion relation.

Next we define the stoichiometric vectors, which represent the
change in population that happens whenever one of reactions (1)-
(4) occurs. Firstly, because of the periodic boundary conditions on
the top and bottom, every grid space has a neighbour above and
below them. Hence, there is always the possibility of the grid cell
changing from Wi ¼ 0 to Wi ¼ 1 (depending on its current state
and neighbours). Thus, we define the above, mAi, and below, mBi, inva-
sion stoichiometric vectors to be mAi ¼ 1i ¼ mBi; 1 6 i 6 nlnw where 1i

is a vector of size nlnw � 1 which is full of zeros except in the ith posi-
tion where there is a one. Explicitly, because every grid cell can be

invaded from above, or below, the ith above, or below, reaction occurs

due to a mutant cell in the ith grid square being displaced by a wild-
type cell from above, or below, invading its space, thus, increasing the
o-dimensional indexing structure of the grid sites.
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wild-type population by one in the ith grid square. The stoichiometric
matrices, mA and mB, of these two interactions are constructed as a
matrix whose rows are the mAi and mBi vectors, respectively. Thus,
mA ¼ I ¼ mB, where I is the identity matrix of size nlnw � nlnw.

The stoichiometric matrices for the left, mL, and the right, mR, inva-
sion actions are similarly defined. However, we have to account for
the zero-flux conditions on the left and right boundaries. Namely,
there is no invasion from the left in the first column and, equally,
there is no invasion from the right in the last column. Thus,

ð5Þ

where IL a matrix of size nlnw � nwðnl � 1Þ that can be generated by
removing the first nw rows from I since the invasion from the left
does not occur for the first nw elements of W . Similarly,

ð6Þ

where IR a matrix of size nlnw � nwðnl � 1Þ that can be generated by
removing the last nw rows from I since the invasion from the right
does not occur for the last nw elements of W .

Next, we need to define the propensity vectors for each reac-
tion. The probabilistic reaction rate for each interaction is derived
by applying the Law of Mass Action (Guldberg and Waage (1879))
to Eqs. (1)–(4). The above and below invasion propensity vectors,

gA and gB, respectively, are once again simple to state, the ith ele-
ments are ½gA�i ¼ rWiþ1 mod nwnl ð1�WiÞ and
½gB�i ¼ rWi�1 mod nwnl ð1�WiÞ.

To define the left and right invasion propensity vectors, gL and
gR, respectively, we construct ½gL�iþnw

¼ rWið1�Wiþnw Þ and
½gR�i ¼ rWiþnw ð1�WiÞ for 1 6 i 6 nwðnl � 1Þ. Finally, we collect all
of these individual terms together. Namely,

m ¼

mL

mR

mB

mA

2
6664

3
7775; and g ¼

gL

gR

gB

gA

2
6664

3
7775 ð7Þ

are the total stoichiometric matrix and the total propensity vector,
respectively.

2.1.2. Stochastic simulation algorithm
Having defined the propensity functions and stoichiometric

matrices we can apply a standard Gillespie algorithm to simulate
the system (Gillespie (1976); Gillespie (1977); Gillespie (2007);
Woolley et al. (2011); Woolley et al. (2011)). Due to the stochasticity
of the system any two simulations are likely to be different. However,
the Gillespie algorithm is a Monte Carlo procedure that allows us to
generate hundreds of simulations, which provide an ensemble of
possible outcomes that are statistically accurate in their distribution.

The algorithm is as follows:

1. Initialise a start time, t ¼ 0, a final time, tf , and an initial condi-
tion, W ¼ W0;
5

2. Calculate the propensity vector, g, and its sum

s ¼ P4nlnw�2nw
k¼1 ½g�k;

3. Generate two uniformly random numbers, r1 and r2, from the
interval [0,1];

4. Calculate
s ¼ 1
s
ln

1
r1

� �

and find the smallest m 2 N such that

1
s

Xm
k¼1

½g�k > r2;

5. Update t :¼ t þ s and W :¼ W þ mm;
6. Repeat lines (2)-(5) until either s ¼ 0 or t P tf at which point

the simulation is stopped and the recordings of t and W are
returned.

Finally, we note that because we are simulating each reaction
explicitly this can result in large final data sets if every time step
is recorded. However, we know that there are, on average, going
to be 1=r reactions per time unit. Since we are going to be fixing
r ¼ 1 we can normalise the trajectory to lie upon an integer time
grid. Namely, although we update the system every s steps as spec-
ified in the algorithm, we only record the state at times
t ¼ 0;1; . . . ; tf . This sub-sampling reduces the population output,
whilst providing an accurate representation of the solution trajec-
tory over an easily manipulable time grid. Equally, having the sim-
ulations on a common time discretisation allows easy extraction of
averages. In the simulations presented here the final time point is
taken to be large enough to ensure that all mutant cells are elimi-
nated, thus, s ¼ 0 since no more reactions can occur.

3. Results

3.1. One dimension, nw ¼ 1

We begin by understanding the simplest case of the system as
we fix the domain to be one compartment wide i.e. nw ¼ 1. This
greatly simplifies the theory and the numerics as we do not have
to consider invasions from above, or below. Further, we can analyt-
ically approach the system and write down the evolution equation
for the probability of a state of the system, PðW; tÞ, using the
Chemical Master Equation (CME) (Jahnke and Huisinga (2007);
Woolley (2011); van Kampen (2007); Schumacher et al. (2013);
Picco et al. (2018)). The Chemical Master Equation is a rigorous
framework, which allows us to turn reaction schema Eqs. (1)–(4)
into an ODE that defines the evolution of the probability distribu-
tion function, PðW; tÞ : f0;1gnl � ½0; tf � ! ½0;1�.

Normally, the CME is not tractable due to it being a high dimen-
sional and highly non-linear equation. However, even in the case
that we cannot derive P directly we can use the SSA, as defined
in Section 2.1, since the ensemble distribution of the SSA trajecto-
ries converge to P. In the current case, where we will be able to
derive the solution, we will be able to demonstrate the comparison
between simulation and theory.

To aid the readability of the CME are going to abuse notation
slightly and suppress any variable that is not changed, namely to talk

about the changes to the ith population of W we simply discuss Wi.
Equally, we explicitly assume that P is only defined when each of
the Wi are equal to 0 or 1. For any value not equal to these P ¼ 0.
Further Wi is only defined for 1 6 i 6 nl and, thus, Wi ¼ 0 for any i
outsideof this range. Fromtheseassumptionswecanspecify theCME,



rate of change of
probability of
being in a state

W

¼

probability we
reach state W by
invading a box
from the left

�

probability we are
in state W and
another invasion

from the left occurs

þ

probability we
reach state W by
invading a box
from the right

�

probability we are
in state W and
another invasion

from the right occurs

;
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which is interpreted mathematically to be

_PðW ; tÞ ¼
Xnl
i¼1

rWi�1WiPðWi � 1Þ �
Xnl
i¼1

rWi�1ð1�WiÞPðWiÞ

þ
Xnl
i¼1

rWiþ1WiPðWi � 1Þ �
Xnl
i¼1

rWiþ1ð1�WiÞPðWiÞ;

¼
Xnl
i¼1

rðWi�1 þWiþ1ÞðWiPðWi � 1Þ � ð1�WiÞPðWiÞÞ: ð8Þ

For clarity we explicitly derive the CME in the case of nl ¼ 3. Thus,
we have three populations W ¼ W1;W2;W3ð Þ and because there
are 2 possible states for wild-type population (Wi ¼ 0 or 1) there
are 8 possible states overall. Thus, in this case, Eq. (8) actually rep-
resents the system

_Pð0;0;0Þ ¼0; ð9Þ
_Pð0;0;1Þ ¼ � rPð0;0;1Þ; ð10Þ
_Pð0;1;0Þ ¼ � 2rPð0;1;0Þ; ð11Þ
_Pð1;0;0Þ ¼ � rPð1;0;0Þ; ð12Þ
_Pð0;1;1Þ ¼rPð0;0;1Þ � rPð0;1;1Þ þ rPð0;1; 0Þ; ð13Þ
_Pð1;1;0Þ ¼rPð1;0;0Þ � rPð1;1;0Þ þ rPð0;1; 0Þ; ð14Þ
_Pð1;0;1Þ ¼ � 2rPð1;0;1Þ; ð15Þ
_Pð1;1;1Þ ¼rPð0;1;1Þ þ 2rPð1;0;1Þ þ rPð1;1;0Þ: ð16Þ
Fig. 4. Illustrating the transitions between states using a cube. States that can
transition to one another are linked with black lines and the arrows demonstrate
the direction of transition. Further, the lines are labelled with the transition rates.
Critically, ð0;0;0Þ cannot be transitioned to, or from, because there are no
populations to begin the invasion. Equally, the invasion dynamic only allows
invasion to neighbouring cells, thus, (0,0,1) cannot transition to (1,0,1). Any
transitions that cannot happen are illustrated as light grey. The only transitions that
are possible, due to the chosen initial condition (1,0,0), are highlighted in green.
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Because we are only dealing with three compartments and, thus,
three dimensions, we can further illustrate this problem by repre-
senting these transition on the edges of a cube (see Fig. 4).

Fig. 4 and Eqs. (9)-(16) clearly illustrate the long term dynamics
of the underlying description. Namely, since we are considering an
invasive form of dynamic the only states that are steady are the
wild-type extinct state, ð0;0;0Þ, and the wild-type dominated
state, ð1;1;1Þ. Further, Fig. 4 demonstrates that ð0;0;0Þ is unstable,
whilst ð1;1;1Þ is stable, in the sense that any valid non-zero per-
turbation to at least one of the populations in the state ð0;0;0Þ will
cause the system to converge to ð1;1;1Þ. Equally, any perturbation
to ð1;1;1Þ that eradicates some, but not all, of the wild-type loca-
tions will tend back to ð1;1;1Þ.

Due to the linearity of Eqs. (9)-(16) we can solve the system
explicitly. Specifically, if the initial conditions for the probabilities
of being in a state i are pi where i 2 fð0;0;0Þ; . . . ; ð1;1;1Þg;
0 6 pi 6 1 and

P
ipi ¼ 1 then

Pð0;0;0Þ ¼pð0;0;0Þ; ð17Þ
Pð0;0;1Þ ¼pð0;0;1Þ expð�rtÞ; ð18Þ
Pð0;1;0Þ ¼pð0;1;0Þ expð�2rtÞ; ð19Þ
Pð1;0;0Þ ¼pð1;0;0Þ expð�rtÞ; ð20Þ
Pð0;1;1Þ ¼ðrtpð0;0;1Þ þ pð0;1;0Þ þ pð0;1;1ÞÞ

expð�rtÞ � pð0;1;0Þ expð�2rtÞ; ð21Þ
Pð1;1;0Þ ¼ðrtpð1;0;0Þ þ pð0;1;0Þ þ pð1;1;0ÞÞ

expð�rtÞ � pð0;1;0Þ expð�2rtÞ; ð22Þ
Pð1;0;1Þ ¼pð1;0;1Þ expð�2rtÞ; ð23Þ
Pð1;1;1Þ ¼ ðpð0;1;0Þ � pð1;0;1ÞÞ expð�2rtÞ

�ððpð0;0;1Þ þ pð1;0;0ÞÞrt þ pð0;0;1Þ
þ2pð0;1;0Þ þ pð1;0;0Þ þ pð0;1;1Þ þ pð1;1;0ÞÞ expð�rtÞ
þ1� pð0;0;0Þ:

ð24Þ

We specifically want to consider the case of an infection wave trav-
elling along the domain. Thus, the initial conditions are zero, except
for pð1;0;0Þ ¼ 1. In this case the solutions simplify to

0¼Pð0;0;0Þ¼Pð0;0;1Þ¼Pð0;1;0Þ¼Pð0;1;1Þ¼Pð1;0;1Þ; ð25Þ
Pð1;0;0Þ¼expð�rtÞ; ð26Þ
Pð1;1;0Þ¼rtexpð�rtÞ; ð27Þ
Pð1;1;1Þ¼1�ðrtþ1Þexpð�rtÞ: ð28Þ

These solutions are compared with approximations derived from
their stochastic averages in Fig. 5. As we can see we get an excellent
comparison between the different solution methods.

Although the we could solve the general CME form, Eq. (8), with
an arbitrary initial condition, extending the analysis is cumber-
some and does not provide insight (see Eqs. (9)-(16)). Thus, we
focus on solving the one-dimensional system under the specific
initial condition of Pðð1;0; . . . ;0Þ;0Þ ¼ 1 and all other states having
zero probability. This further simplifies the possible transitions



Fig. 5. Calculating P in three different ways. The colour of the lines determine the state that is being considered, i.e. red is (1,0,0), blue is (1,1,0) and black is (1,1,1). The style
of the line determines how P is being calculated. The solid lines are the numerical solutions of Eqs. (9)-(16), the diamonds are the analytical solutions Eqs. (25)–(28) and the
dashed lines with error bars represents the mean and standard errors, respectively, of 1000 stochastic simulations. In all simulations r ¼ 1.

Fig. 6. Calculating P two different ways. The colour of the lines determine the state that is being considered. The style of the line determines how P is being calculated. The
solid line is the analytical solution of Eqs. (33) and (34) and the dashed lines with error bars represents the mean and standard errors, respectively, of 1000 stochastic
simulations. In all simulations r ¼ 1 and nl ¼ 10.
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that can be observed, namely, the evolution must follow the course
of

ð1;0; . . . ;0Þ ! ð1;1;0; . . . ;0Þ ! . . . ! ð1;1; . . . ;1i;0; . . . ;0Þ
! . . . ! ð1;1; . . . ;1Þ; ð29Þ

where ð1;1; . . . ;1i;0; . . . ;0Þ is the state that has ones filling the first i
spaces and zeros thereafter. Hence, we only need to consider the
evolution of the probabilities of nl states, rather than 2nl states.

To simplify the algebra exposition we define
Pi ¼ Pðð1;1; . . . ;1i;0; . . . ;0Þ; tÞ. Explicitly, Pi is the probability that
the system is in a state where the wild-type cells occupy all sites

up to and including the ith and the mutant cells occupy all sites
iþ 1 to nl. This simplification allows us to derive the following
set of equations for these states,

_P1 ¼� rP1; ð30Þ
_Pi ¼rPi�1 � rPi; for i ¼ 2; . . . ; nl � 1; ð31Þ
_Pnl ¼rPnl�1; ð32Þ
7

and note that any state not in the transition chain (29) has proba-
bility zero for all time. Using induction, we find that system Eqs.
(30)-(32) is completely solvable,

Pi ¼ ðrtÞi�1

ði� 1Þ! e
�rt i ¼ 1; . . . ;nl � 1; ð33Þ

Pnw ¼1�
Xnl�1

i¼1

Pj: ð34Þ

Solutions (33) and (34) are compared with their stochastically aver-
aged estimates in Fig. 6, where we set nl ¼ 10.

Having demonstrated that the analytical derivation of P pro-
vides a excellent approximation for the averaged solutions of the
chemical master equation we consider the invasion characteristics
of the population. Specifically, knowingP allows us to evaluate the
average occupancy of compartment i; hWii for all i ¼ 1; . . . ;nw and
t P 0. Namely,

hWii ¼
X
W

wiPðWi ¼ wiÞ; ð35Þ



Fig. 7. Simulating the invasion of a one-dimensional space of nl ¼ 100 compartments. (a) is the theoretical solution as derived from Eq. (36) and (b) is the stochastically
simulated analogue averaged over 100 simulations. The colour bar illustrates the mean occupancy, hWii, of each compartment, i. The black line, bðtÞ, tracks the compartment
at which the occupancy first breaches hWii ¼ 0:5. The discrete derivative of the black line in (b) (see Eq. (39)) is illustrated in (c). Throughout all simulations r ¼ 1.

T.E. Woolley, W. Hill and C. Hogan Journal of Theoretical Biology 538 (2022) 111024
¼
Xnl
j¼i

Pj;

¼ 1�
Xnl�1

j¼1

Pj þ
Xnl�1

j¼i

Pj;

¼ 1� e�rt
Xi�1

j¼1

ðrtÞj�1

ðj�1Þ! :

ð36Þ
Critically, hWii can be interpreted as the probability of finding the ith

compartment occupied by a member of the wild-type, W, popula-
tion. Since the wild-type cells dominate the interaction we would
expect hWii ¼ 1;8i, eventually, which is confirmed by Eq. (36).

In Fig. 7 we compare theory and simulation once again. Criti-
cally, we plot hWii as a two-dimensional simulation, varying time
along the x-axis and i along the y-axis. The colour bar then repre-
sents the value of hWii. Specifically, Eq. (36) is illustrated in Fig. 7a,
which can be compared with the stochastically derived averaged
results Fig. 7b. Not only do we observe the excellent comparison,
but we also notice that the W population appears to invade with
a constant wave speed. This is evidenced by the approximately
8

constant gradient of the black line in Fig. 7b, which tracks the point
at which the occupancy probability breaches 1/2 (see Fig. 7c).

To derive the wave speed we consider the time at which the ith

compartment is most likely to be invaded. This is the time at which
Pi is maximal (see Fig. 6), i.e. when _Pi ¼ 0, which implies the inva-
sion occurs most likely when

Pi ¼Pi�1; ð37Þ
) ðrtÞi�1

ði�1Þ! ¼ ðrtÞi�2

ði�2Þ! ;

) t ¼ i�1
r :

ð38Þ

Thus, the invasion time scale is proportional to the compartment’s
location with wave speed given by r. This matches the approximate
wave speed data illustrated in Fig. 7c, which has been derived from
Fig. 7b. Namely, the black line, bðtÞ, in Fig. 7b tracks the first spatial
location at which hWii P 0:5, Fig. 7c then illustrates the discrete
derivative of the line. Explicitly this is defined to be the average gra-
dient of bðtÞ, i.e.
DxðtÞ
Dt

¼ bðt þ 1Þ � bðt � 1Þ
2

: ð39Þ
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Fig. 7c shows that whilst the population is far away from the
last compartment, i ¼ nl (i.e. t < 100) the gradient of bðtÞ in
Fig. 7b is approximately equal to r ¼ 1. Moreover, as the popula-
tion fills the domain the wave speed drops to zero, which is seen
in Fig. 7c at around t � 100.

Manipulating equations (30)-(32) and equation (35) we are able
to see that

_hW1i ¼ 0; hW1ð0Þi ¼ 1; ð40Þ
_hWii ¼ �rDx

hWii � hWi�1i
Dx

: ð41Þ
Fig. 8. Comparing travelling waves from multiple descriptions of domain invasion, over
described in Section 2.1 (averaged over 1000 simulations), (a, middle) presents the sim
simulated solution of PDE (44). In all case the domain is [0,300] and the space has been di
c, is noted. The wave speed was derived as in Fig. 7, namely, the point at which each wav
approximate the gradient. These gradients are then averaged to produce a single value es
red, blue and black define the time points t ¼ 50, 100, and 150, respectively. The style r
circles are the advection formulation, Eqs. (40) and (41), and the dotted lines are the so

9

Taking the limit of Dx ! 0 (i.e. discrete space tending to continuous
space) and assuming r scales as to ensure c ¼ rDx remains finite
then we are able to derive the following advection equation with
Dirichlet boundary conditions,

hWðx;0Þi ¼ 0; hWð0; tÞi ¼ 1; ð42Þ
@hWi
@t

þ c
@hWi
@x

¼ 0: ð43Þ

This well-known equation translates solutions at a speed c, which
supports our intuition that the discretised case should equally con-
multiple scales. (a, left) presents the average dynamics of the stochastic invasion as
ulated solution of the advection system, Eqs. (40) and (41), (a,right) presents the
scretised into nl ¼ 300 compartments of size Dx ¼ 1. On each figure the wave speed,
e is equal to a 1/2 is tracked over the simulation and a discrete derivative is taken to
timate. (b) compares the three descriptions at three specific time points. The colours
epresents the simulation, namely, the solid lines are the stochastic simulations, the
lutions to (44). Parameters are Dx ¼ 1; r ¼ 1 and q ¼ 1=

ffiffiffi
8

p
.
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tain a travelling wave solution travelling with wave speed, c ¼ r,
when Dx ¼ 1.

We now suppose that there were no correlations between the
grid sites and so we can use hWiWji ¼ hWjihWii. This is of course
an incorrect assumption, but we will find it useful going forward.
To highlight that we are now solving an approximate problem
we use the variable xi instead of hWii and q instead of r. In this
case we can model the invasion dynamic from first principles as
a solution to,

_xi ¼ qðxi�1 þxiþ1Þð1�xiÞ;
¼ qðxi�1 � 2xi þxiþ1Þð1�xiÞ þ 2qxið1�xiÞ;
¼ qDx2 ðxi�1�2xiþxiþ1Þ

Dx2 ð1�xiÞ þ 2qxið1�xiÞ: ð44Þ
If we abuse our notion of limits further we can see that Eq. (44) is a
discretised form of the PDE

@x
@t

¼ Dð1�xÞ @
2x
@x2

þ 2Rxð1�xÞ;

xð0; tÞ ¼ 1;
@x
@x

ðL; tÞ ¼ 0; xðx;0Þ ¼ 0; ð46Þ

where L is the length of the domain. To truly make this equivalence
we would need D ¼ qDx2 and R ¼ q to both be non-trivial and finite
as Dx ! 0, which is impossible. However, although not rigorous in
the limit we are able to learn about the discrete system through
comparison arguments. Namely, we can check a posteriori the intu-
ition gained from understanding Eq. (45) will approximately hold in
the case of small, but finite, Dx, where qDx2 and q both make sense.
The question is then how big can Dx be and there still be an approx-
imate comparison between the solution of Eq. (45) and the original
discrete invasion problem?

We now notice that Eq. (45) is similar to the form of Fisher’s
equation, with a non-linear diffusion coefficient. Using standard
travelling frame coordinate changes and stability arguments (i.e.
x � � expðkðx� ctÞÞ, with 0 < j�j � 1) (Murray (2003b)) we can
show that if Eq. (45) presents a travelling wave then its wave speed
satisfies the inequality c P

ffiffiffiffiffiffiffiffiffi
8DR

p
¼

ffiffiffi
8

p
qDx.

Comparing this to the original formulation, we know from Eq.
(38) that the stochastic wave travels with speed c ¼ rDx. Thus, if
our tower of assumptions is to hold then q 6 r=

ffiffiffi
8

p
. Further, at least

in the case where the wave front is sharp, we would expect that the
inequality would be close to equality. In the case of near equality
we observe the this means the stochastic rate of reaction, r has
to be scaled by a factor 1=

ffiffiffi
8

p
to be equivalent to its deterministic

counter-part q, i.e. the deterministic reaction rate is slower than its
stochastic analogue, which is observed in Fig. 8.

Fig. 8 compares our multiple solution approaches. Specifically,
we compare the average of 1000 stochastic simulations; a solution
to the discretised advection formulation, Eqs. (40) and (41); and a
solution to the discretised PDE formulation, Eq. (44). Immediately,
we observe that Fig. 8a shows that all solutions compare favour-
ably over long times, in that the wave front moves at a constant
rate and each simulation provides a wave speed of c � 1.

However Fig. 8b provides a different way of observing the wave
fronts, which highlights the differences between the waves.
Namely, we present isolated profiles from each solution method
at three different time points. Here we see that although the point
hWii ¼ 1=2 ¼ xi is approximately consistent between the simula-
tions (highlighting the comparable wave speeds across the simula-
tion methods) the shape of the wave fronts differ between the
solution methods. Specifically, the stochastic and advection solu-
tions tend to spread out, whilst the PDE solution retains a sharp
transition profile. These similarities and differences are to be
10
expected because the advection equation as derived in Eqs. (40)
and (41), is an exact formulation of the mean of the stochastic sim-
ulation. Hence we expect these two simulation approaches to
match well. However, the discretised PDE approach of (44) ignores
the covariances between neighbouring grid points. Explicitly, we
are ignoring second order and higher moments, assuming that
each population is independent of its neighbours. Thus, although
it can provide an accurate prediction for the mid point of the wave,
it cannot provide a good approximation for the spread of the wave
because these ignored higher order moments would account for
understanding of terms such as variance, skewness, etc. Hence,
we conclude that although the discretised PDE provides good wave
speed data, it also provides poor wave shape data.

Finally, we comment on the wave speeds and the accompanying
parameterisation. As mentioned above, the advection equation is
an exact transport equation with wave speed c ¼ 1, which is repro-
duced in the simulation (middle of Fig. 8a). This approximately
matches the derived wave speed from the stochastic solution
c ¼ 1:003. However, as predicted by the theory above, even though
we have accounted for the factor of q ¼ r=

ffiffiffi
8

p
in the simulations,

the wave speed calculated from the discretised PDE simulation is
slightly faster than expected, c ¼ 1:038. Even though this is only
3.5% faster than the stochastic simulation over the long time sim-
ulation of Fig. 8 we are able to see that the discretised PDE wave
starts to pull ahead (see the red curves in Fig. 8b in particular).
Thus, even though we have used a number of approximations to
be able to compare the deterministic PDE and stochastic simula-
tion, we conclude that these approximations hold well enough
for standard travelling wave speed analysis to provide excellent
insight into discrete stochastic simulations.
3.2. Two dimensions

The second dimension greatly increases the complexity of the
system. Theoretically, the problem is fairly simple: we are able to
write down a closed system of ODEs modelling the CME, which
completely defines the occupation probabilities and therefore we
can derive the speed of invasion. Further, all of the ODEs are linear,
thus, solving them is trivial. However, as we will show, the number
of equations that are required to be solved grow exponentially,
even after symmetries have been removed. For example consider-
ing a relatively small 4� 10 grid would require us to remove the
symmetries from 24�9 � 1 � 1012 equations and subsequently
solve a similar order of coupled ODEs.

One positive feature about the ODE system’s structure is that
we do not have to solve all equations simultaneously, the solution
can be generated sequentially. Namely, as we saw in Section 3.1,
the ODE for Pð1;1;1Þ linearly depended only on the probabilities
of Pð1;1;1Þ and Pð1;1;0Þ. Similarly, the ODE for Pð1;1;0Þ linearly
depended on Pð1;1;0Þ and Pð1;0;0Þ. Finally, the ODE for Pð1;0;0Þ
only depends on Pð1;0;0Þ. Hence, by reversing these observations,
deriving the closed form solution of Pð1;0;0Þ allows us to immedi-
ately derive the closed form solution of Pð1;1;0Þ. Equally, in sim-
ple two dimensional cases the integrations can be solved in such an
inductive manner (see Fig. 9). Critically, because of the sequential
nature of the solution dependence, not even parallel processing
can help speed up the computation.

Moreover, even if we were able to solve algebraically solve 1012

ODEs, the sheer number of solutions would be ungainly and not
provide any real insight. Thus, we gain what insights we can from
small two-dimensional grids, growing the second dimension in a
consecutive fashion until we must rely on stochastic simulation
to provide the rest of the picture.



Fig. 9. Schematic diagrams presenting how each state feeds into the calculation of
the probability of the next state. Namely, each matrix represents a possible state
that a simulation on a 2� 3 grid could achieve. To calculate the probability of being
in specific state we must calculate the probability of all states that are possible
precursors (denoted by the arrows). The full set of possible states are shown in (a)
whilst symmetries have been removed in (b).
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3.2.1. Grid size 2� nl

We begin by considering a domain that is two grid squares wide
and nl long. The possible states of this grid will be represented by a
binary 2� nl matrix where the ones represent spaces occupied by
the wild type cells and zeros represent mutant spaces. To cement
our intuition let us first consider a small grid of six squares, when
nl ¼ 3.

Fig. 9a illustrates all possible states that our system can inhabit.
Firstly, we note that, because of the initial condition and invasive
dynamic we are considering (e.g. remember that the top and bot-
tom of the domain are periodic), any possible state must have a
contiguous set of ones in the matrix, e.g.

P
1 0 1
1 0 0

� �
¼ 0:

Further, we note that due to the symmetry of the initial condition
the probabilities will also contain a number of symmetries. Namely,
the solutions are independent of matrix reflections. For example, in
the 2� 3 case we are considering in Fig. 9

P
1 1 0
1 0 0

� �
¼ P

1 0 0
1 1 0

� �
:

Table 1
Table of total number of states that have to be considered in a 2� nl solution domain. In a
that the index is nl � 1 and not nl because the first column of the domain is specified by the
region of ones (third row) and from this we remove any states that have a reflection and
required to be solved to provide a complete analytical solution.

Domain length, nl

Total number of states, 22�ðnl�1Þ

Number of states with contiguous 1s, CðnlÞ
Number of unique contiguous states up to reflection and cyclic symmetries, Uðnl

11
Alongside the reflection symmetries that can be removed, we can
also remove cyclic permutations of the matrix rows because the
boundary conditions of the domain are periodic. In the case
domains of the size 2� nl the reflection symmetries are the same
as the cyclic permutations, however, in grids of length nw P 3 these
two symmetries will be different. For example

P

1 1 0
1 0 0
1 0 0

0
B@

1
CA ¼ P

1 0 0
1 1 0
1 0 0

0
B@

1
CA ¼ P

1 0 0
1 0 0
1 1 0

0
B@

1
CA:

By using the contiguous and symmetry arguments stated above we
can reduce the number of ODEs that we need to solve. Such a reduc-
tion can be seen in Fig. 9, where although there are 22�3 ¼ 64 pos-
sible 2� 3 binary matrices there are only 11 matrices that satisfy
the initial condition and have a contiguous group of ones as seen
in Fig. 9a. We then use the symmetry arguments to further reduce
the number of states we need to consider to only the 7 states illus-
trated in Fig. 9b.

Table 1 illustrates the minimum (and maximum) number of
equations that we would need to solve as the domain grows longer.
Critically, as we see from Table 1, and its plotting in Fig. 10, even
though we are able to dramatically reduce the number of equa-
tions we need to consider, the number still grows exponentially
(note the logarithmic scale on the y-axis).

Investigating, the patterns presented in Table 1 we find that
they are well-known to be related to self-avoiding random walks
on grids (Sloane and Plouffe (1995); Courant and Robbins
(1996)). Further, we can derive the following recursion relations

CðnlÞ ¼2Cðnl � 1Þ þ Cðnl � 2Þ þ 2; Cð1Þ ¼ 1;Cð2Þ ¼ 4; ð47Þ
UðnlÞ ¼2Uðnl � 1Þ þ Uðnl � 2Þ þ 3� nl; Uð1Þ ¼ 1;Uð2Þ ¼ 3; ð48Þ
which can be solved explicitly as

CðnlÞ ¼ 2�
ffiffiffi
2

p

4
1�

ffiffiffi
2

p� �nl þ 2þ
ffiffiffi
2

p

4
1þ

ffiffiffi
2

p� �nl � 1; ð49Þ

UðnlÞ ¼ 2�
ffiffiffi
2

p

8
1�

ffiffiffi
2

p� �nl þ 2þ
ffiffiffi
2

p

8
1þ

ffiffiffi
2

p� �nl þ nl � 1
2

; ð50Þ

which concretely defines the exponential growth. Although know-
ing howmany equations there are going to be helps us to know that
we have enumerated all possible states, it does not help us derive
the accompanying ODEs, nor solve them. Thus, we rely on numeri-
cal algorithms to derive the required equations.

Specifically, the ODE system for the 2� 3 grid is

_P
1 0 0
1 0 0

� �
¼ �2P

1 0 0
1 0 0

� �
; ð51Þ

_P
1 0 0
1 1 0

� �
¼ P

1 0 0
1 0 0

� �
� 4P

1 0 0
1 1 0

� �
; ð52Þ

_P
1 0 0
1 1 1

� �
¼ P

1 0 0
1 1 0

� �
� 5P

1 0 0
1 1 1

� �
; ð53Þ

_P
1 1 0
1 1 0

� �
¼ 6P

1 0 0
1 1 0

� �
� 2P

1 1 0
1 1 0

� �
; ð54Þ
domain of length nl we have to check 22�ðnl�1Þ possible states (first row of table). Note
initial condition. From these states we only select those states that have a contiguous
cyclic symmetries. Thus, the fourth row specifies exactly how many ODEs would be

1 2 3 4 5 6 7 8 9 10
1 4 16 64 256 1024 4096 16384 65536 262144

1 4 11 28 69 168 407 984 2377 5740
Þ 1 3 7 16 37 87 207 496 1193 2875



Fig. 10. Plot of the data (hollow circles) from Table 1 and the accompanying algebraic solutions of Eqs. (49) and (50) (continuous lines).
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_P
1 0 1
1 1 1

� �
¼ 2P

1 0 0
1 1 1

� �
� 4P

1 0 1
1 1 1

� �
; ð55Þ

_P
1 1 0
1 1 1

� �
¼ P

1 1 0
1 1 0

� �
þ 3P

1 0 0
1 1 1

� �
� 3P

1 1 0
1 1 1

� �
; ð56Þ

_P
1 1 1
1 1 1

� �
¼ 8P

1 0 1
1 1 1

� �
þ 6P

1 1 0
1 1 1

� �
; ð57Þ

where the initial condition for each ODE is zero, except Eq. (51),
which has initial probability one and we have set r ¼ 1, or alterna-
tively, scaled the time (t # rt) to remove this extra complicating
factor. The solutions of Eqs. (51)-(57) are

P1 ¼ P
1 0 0
1 0 0

� �
¼ expð�2tÞ; ð58Þ

P2 ¼ P
1 0 0
1 1 0

� �
¼ expð�2tÞ � expð�4tÞ

2
; ð59Þ

P3 ¼ P
1 0 0
1 1 1

� �
¼ expð�2tÞ

6
� expð�4tÞ

2
þ expð�5tÞ

3
; ð60Þ

P4 ¼ P
1 1 0
1 1 0

� �
¼ 3t � 3

2

� �
expð�2tÞ þ 3expð�4tÞ

2
; ð61Þ

P5 ¼ P
1 0 1
1 1 1

� �
¼ expð�2tÞ

6
þ 1

2
� t

� �
expð�4tÞ � 2 expð�5tÞ

3
; ð62Þ

P6 ¼ P
1 1 0
1 1 1

� �
¼ 3t � 4ð Þ expð�2tÞ þ 9 expð�3tÞ

2
� expð�5tÞ

2
; ð63Þ
Fig. 11. Calculating Pi; i ¼ 1; . . . ;7 in two ways. The colour indicates which probability
Namely, solid lines are the solution to Eqs. (58)-(64), whilst the circles are the stochast

12
P7 ¼ P
1 1 1
1 1 1

� �
¼ 1þ 41

6
� 9t

� �
expð�2tÞ � 9expð�3tÞ

þ 2t � 1
2

� �
expð�4tÞ þ 5expð�5Þ

3
:

ð64Þ

By considering Eqs. (58)-(64), which are illustrated in Fig. 11, we
start to see the influence of the second dimension. Specifically,
because the domain is two grid points wide the transition out of
the initial condition occurs faster. Namely, when we were consider-
ing just a one-dimensional domain the probability of inhabiting the
initial condition was expð�tÞ (see Eq. (26) with r ¼ 1), whereas the
probability of inhabiting the two-dimensional initial condition is
expð�2tÞ (see Eq. (58)). This increase in rate of leaving the initial
condition is to be expected because there are now two initial cells
that can begin the invasion, rather than one.

Up to reflective symmetry the first invasion action causes the
system to transition from

1 0 0
1 0 0

� �
to

1 1 0
1 0� 0

� �
: ð65Þ

However, the asterisked entry is now surrounded by three invasion
sites (due to periodic boundary conditions), thus, the probability of
transitioning to the

1 1 0
1 1 0

� �
is being calculated (see legend) and the style represents the method of calculation.
ic solutions averaged over 1000 simulations.
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state is three times greater than transitioning to the

1 1 1
1 0 0

� �

state. Thus, although the transition from

1 0 0
1 0 0

� �
to

1 1 0
1 1 0

� �
ð66Þ

requires two transitions, rather than the one transition that it takes
to go from

1 0 0ð Þ to 1 1 0ð Þ; ð67Þ
these two-dimensional transitions actually occur faster than the
one-dimensional transitions because there are more possible routes
to create the two-dimensional transition (66) than the one-
dimensional transition (67). Thus, the two dimensional wave
invades the domain faster than the one-dimensional wave.

This idea is illustrated in Fig. 12 where we compare the one-
and two-dimensional occupancy probabilities of

Pð1;1;0Þ and P
1 1 0
1 1 0

� �
; ð68Þ

respectively. Firstly, we see that

Pð1;1;0Þ P P
1 1 0
1 1 0

� �
: ð69Þ

This makes sense because the one-dimensional system must transi-
tion through the (1,1,0), thus the integral over all time (i.e.
t 2 ð0;1Þ) must sum to one (which can be checked by integrating
Eq. (27)). Comparatively, the integral of Eq. (61) is less than one
because the system does not have to transition though this state;
there are other state options available. Specifically, the asterisked
zero in the matrix of transition (65) will eventually convert to a
one, but it may not be the second transition to happen.

For our purposes of understanding the travelling wave speed
the relative sizes of probability are irrelevant. The more important
metric is the time at which these probabilities obtain their max-
ima. As we saw in Section 3.1 the one-dimensional wave invades
the domain at a constant wave speed of c ¼ r (c ¼ 1 in the non-
dimensional case that we are considering). This can be seen in
Fig. 12 by noting that the maxima ofPð1;1;0Þ occurs at t ¼ 1, (blue
dashed line). This is in contrast to the maximum of
Fig. 12. Comparing the transient probabilities of the first invasion step. Plots of Eqs.
(27) and (61).
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P
1 1 0
1 1 0

� �
;

which occurs at t ¼ tc � 0:80 (red dashed line in Fig. 12), where tc is
the solution of

0 ¼ _P
1 1 0
1 1 0

� �
;

¼ 6ð1� tcÞ expð�2tcÞ � 6expð�4tcÞ;
) 1 ¼ ð1� tcÞ expð2tcÞ: ð70Þ

Notably, Eq. (70) is a transcendental equation, which does not have
a closed form algebraic solution (Corless et al. (1997)). However, it
should be noted that the properties of such equations have been
investigated through the use of ‘‘Lambert functions” (Mezö and
Keady (2016); Fukushima (2013)), which can also be linked to the
solution of delay differential equations Asl and Ulsoy (2000). By tak-
ing inspiration from the 1D case it may be possible to recast this
problem, more generally, as a form of discrete spatial delay.
Namely, to find the wave speed our question is generically: how
long does it take the system to evolve from the state

1 1 . . . 1 0 0 . . . 0
1 1 . . . 1 0 0 . . . 0

� �
ð71Þ

to the state

1 1 . . . 1 1 0 . . . 0
1 1 . . . 1 1 0 . . . 0

� �
? ð72Þ

However, for a very long domain, state (71) would be practically the
same as state (72). Alternatively, state (71) could be thought of as a
spatially delayed form of state (72). Whether either of these two
ideas lead to a fruitful reinterpretation of this problem has yet to
be determined and will be developed later in future work.

When working with the stochastic simulations we normalised
the stochastic trajectories such that the output times are the inte-
gers, thus, when calculating the approximate wave speed from the
data we always knew the time step over which we were measuring
a change in space. However, in this problem, we do not know the
time that an invasion step will take place, but we do know that
spatial length scale that the step occurs. Explicitly, we now esti-
mate the wave speed by cðiÞ ¼ Dx=DtðiÞ where Dx ¼ 1 is the width
of the discretised compartment and DtðiÞ ¼ ti � ti�1 where ti is the
time at which

Namely, the time at which ‘‘the probability of inhabiting the state

where all columns up to and including the ith column are ones
and all the columns after this are zero” is maximal. Additionally,
we define t1 ¼ 0.

As mentioned above, although the ability to derive the analyti-
cal formulation of this time is possible, the growth in the required
number of formulas makes the process intractable as the domain
grows (see Fig. 10). Equally, as we see from this simple case, the
equations that have to be solved are not algebraic. Thus, after alge-
braically solving all ODEs we must numerically solve for each ti.

Specifically, in the case of nl ¼ 10 we set t1 ¼ 0 and evaluate
t2; . . . ; t9 through numerically finding the roots of eight transcen-
dental equations. Note that we do not evaluate t10, because the
final ‘full’ domain state probability does not have a local maximum
as it monotonically tends to one. The equations for ti rapidly grow
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in size, for example, the equation for t9 contains the nine even
exponential powers from expð�2tÞ to expð�18tÞ the coefficients
of which are then polynomials of up to degree seven. Presenting
such equations algebraically offers little in terms of insight into
the results, thus, we suppress the full set of equations and supply
just the first three to demonstrate the growth in complexity,
namely, t2; t3 and t4 satisfy

_P
1 0 0 0 0 . . . 0
1 0 0 0 0 . . . 0

� �
¼ 0 ¼ 6 1� t2ð Þe�2t2 � 6e�4t2 ; ð73Þ

_P
1 1 0 0 0 . . . 0
1 1 0 0 0 . . . 0

� �
¼ 0 ¼ 3t3 þ 13

16

� �
e�6t3

þ 9t3 þ 65
4

� �
e�4t3 þ �9t23 þ

95t3
4

� 273
16

� �
e�2t3 ;

ð74Þ

_P
1 1 1 0 0 . . . 0
1 1 1 0 0 . . . 0

� �
¼ 0 ¼ 7t4

3 þ 259
144

� �
e�8t4

þ 9t24
2 þ 21t4

4 þ 9
16

� �
e�6t4

þ � 27t24
4 � 87t4

2 � 1047
16

� �
e�4t4

þ �9t34 þ
177t24

4 � 983t4
12 þ 9083

144

� �
e�2t4 ;

ð75Þ
respectively. We observe that each term in the equations is a pro-
duct of a polynomial and an exponential in t. Since the exponentials
decay faster than the polynomials grow then, by inspection, we note
that we obtain a good approximation for ti in all cases by just con-
sidering the coefficients of the expð�2tÞ and expð�4tÞ terms (see
Fig. 13). Although this does offer a way to simplify the presentation
of the equations, we are already going to be evaluating them
numerically thus we evaluate the full solution, rather than the
approximation. Equally, in using the approximation we have to be
careful to take the correct root, because, as seen in Fig. 13 the
approximation has two positive roots, where the original solution
only has one positive root (as well a root at zero, which is easy to
eliminate).

From evaluating the ti as defined we can extract the wave speed
throughout the domain, which we compare against simulation
data. Namely, we simulate 1000 cases of the domain invasion algo-
rithm as specified in Section 2.1. The average of these simulations
can be seen in Fig. 14a, where we also compare the results of the
nw ¼ 2 simulations with the one-dimensional, nw ¼ 1, case. This
information is simplified in Fig. 14c, where we have averaged over
the domain length to produce a single value for the population pro-
file over the domain.

We immediately observe from Figs. 14a and 14b that, in the
nw ¼ 2 case, the invading population has been able to move further
into the domain than compared to the nw ¼ 1 case. Namely, as pre-
dicted, the invasion wave moves faster than we would have
Fig. 13. Plot of Eq. (75) (blue line) and its approximation to only the expð�2tÞ and
approximation of the root of the two curves.
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expected had we simply considered the invasion deterministically,
where we would not observe such a dimensional influence.

From the averaged simulations (see Fig. 14b) we are able to
extract the wave speed from tracking the position at which the
averaged population is approximately 0.5. Specifically, from
Fig. 14c we are able to observe that, similar to the 1D wave inva-
sion, the 2D wave invasion occurs at an approximately constant
rate (the lines are approximately straight). Equally, the gradients
of the lines tell us the wave speed of invasion. Specifically, the
nw ¼ 2 wave invades with a speed of approximately c � 1:6, which
is greater than the nw ¼ 1 case of c ¼ 1.

Finally, in Fig. 14d, we see that the simulated wave speed com-
pares favourably with the value extracted from the algebraic solu-
tions. Namely, after a period of transient behaviour the wave speed
as approximated by 1=ðti � ti�1Þ tends to 1.6 (to 1 decimal place).
Since we are using the algebraic solutions we are able to easily
generate more accuracy for this value than we would be able to
through stochastic simulation alone. Namely, to three decimal
places we can predict that c � 1:585.

Overall, this section has demonstrated that by passing into the
second dimension a stochastic invasion wave moves faster than its
one dimensional analogue. A result that would not be apparent in a
deterministic simulation. Moreover, as seen in Section 3.1,
although applying a deterministic formulation is possible to calcu-
late a wave speed, the parameter values have to be corrected care-
fully. Equally, although the wave speed may be extractable, the
transition in the wave shape would be too sharp. In the next sec-
tion we extend the width even further to see whether if the
increase in wave speed continues.

3.2.2. nw ¼ 3; 4 and 5
As seen in the last section, the number of ODEs that are required

to solve the CME entirely grows exponentially, meaning that we
can only solve the problem analytically for problems of moderate
widths. By making the domain wider the problem size will grow
quicker and, thus, our algebraic insights will have to be gained
from domains of smaller lengths. The number of contiguous,
Cðnw;nlÞ, and unique, Uðnw;nlÞ, ODEs that are required for various
values of ðnw;nlÞ are specified in Table 2. The empty spaces illus-
trate regions where deriving the equations took longer than simu-
lating 1000 of the accompanying stochastic simulations.

Critically, being able to generate fewer data points means that it
is harder to derive the recurrence relations that define C and U. For
example, from Table 2 we are only able to conjecture that Cð3;nlÞ
satisfies

Cð3;nlÞ ¼ 5Cð3;nl � 1Þ þ 3Cð3;nl � 2Þ � Cð3;nl � 3Þ þ 2;
Cð3;1Þ ¼ 1;Cð3;2Þ ¼ 8;Cð3;3Þ ¼ 45: ð76Þ
expð�4tÞ terms (black line). The red circle at t4 � 2:74 demonstrates the close



Table 2
Table of total number of states that have a contiguous region of ones, Cðnw ;nlÞ, and the number of states after reflections and cyclic symmetries have been removed, Uðnw;nlÞ. The
domain length is stated along the top and we consider nw ¼ 3;4 and 5. The gaps in the lower right of the table illustrates the region where the number of states becomes too large
to calculate within a reasonable time frame.

Domain length, nl 1 2 3 4 5 6 7 8

Cð3;nlÞ 1 8 45 250 1379 7602 41899 230924
Uð3;nlÞ 1 4 14 57 266 1353 7189 38982

Cð4;nlÞ 1 16 175 1976 22441 255072
Uð4;nlÞ 1 6 37 310 3092 33262

Cð5;nlÞ 1 32 653 14484 328785
Uð5;nlÞ 1 8 87 1553 33400

Fig. 14. Comparing invasion dynamics and deriving wave speed when nw ¼ 1 and 2 and nl ¼ 100. All simulated data has been averaged over 1000 runs and the simulations
were run until all mutant cells were eliminated. (a) Illustration of the invasion wave at a single time point, t ¼ 50, in the nw ¼ 1 (top) and nw ¼ 2 (bottom) cases. The colour
scale is the same as in Fig. 7. (b) Illustration of the same information as (a) but we have averaged the data over the domain length so we can collapse the second spatial
dimension and compare the curves directly. (c) Tracked position of the point at which hWi ¼ 0:5 over all time points. The solid lines are the simulated data and the lighter
dashed lines are least square fitted lines. The gradient of these lines are noted on the figure next to their, respective, lines. (d) Convergence of the wave speed to c � 1:6 as the
wave speed is evaluated further into the domain. The black line marks the asymptote is fixed at c ¼ 1:585, as derived from the analytical solution. The data only exists at the
integer values of i, the dashed line has been added to aid visualisation.
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We note that Eq. (76) is solvable, but the direct formula depends on
the roots of

Z3 � 3Z2 � 5Z þ 1 ¼ 0;

which, although real, require the general cubic formula to be used
and, thus, written in terms of complex conjugate pairs. Equally,
using the intuition gained from this section and Eqs. (47) and (48)
we conjecture that the recursion relations for domains of width
nw ¼ 4 and 5 will be fourth and fifth order, respectively. Thus, not
only would we need more data to fit these recurrence relations
15
the accompanying auxiliary polynomial would no longer be solv-
able in terms of radicals for nw P 5 and, so, we would have to use
numerical approximations anyway.

Fig. 15 illustrates similar information to that of Fig. 14. Namely,
we compare simulated and algebraically derived information and
inspect our ability to derive the wave speed in domains of increas-
ing width, whilst fixing the length to be 100. Firstly, from Fig. 15a
we see the two-dimensional invasion wave averaged over 1000
stochastic simulations. Specifically, as noted in Section 3.2.1, as
the domain width increases (top to bottom) we can see that the
wave travels further in the same time of t ¼ 25 units. This compar-



Fig. 15. Comparing invasion dynamics and deriving wave speed when nw ¼ 3;4 and 5 and nl ¼ 100. All simulated data has been averaged over 1000 runs and the simulations
were run until all mutant cells were eliminated. (a) Illustration of the invasion wave at a single time point t ¼ 25 in the nw ¼ 3 (top), nw ¼ 4 (middle) and nw ¼ 5 (bottom)
cases. The colour scale is the same as in Fig. 7. (b) Illustration of the same information as (a) but we have averaged the data over the domain width so we can collapse the
second spatial dimension and compare the curves directly. (c) Tracked position of the point at which hWi ¼ 0:5 over all time points. The solid lines are the simulated data and
the lighter dashed lines are least square fitted lines. The gradient and, thus, wave speed, c, is denoted for each line in the legend. (d) Convergence of the algebraically derived
wave speeds. The dots indicate the algebraically derived data, whilst the thick solid lines are least squared fits of the equation cð1� expðb1ð1� iÞÞÞ to these data points, which
has then been extrapolated. The thin horizontal lines indicate the limiting wave speeds as calculated from the gradients of the lines in (c) in the order nl ¼ 3;4 and 5, bottom
to top, respectively. The dashed black line illustrates the cð1� expðb1ð1� iÞÞÞ but c takes the upper limit from its 95% confidence interval, rather than the mean.
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ison is easier to see in Fig. 15c, where we have, once again, aver-
aged over the width to observe that the wave speed increases as
nw increases. By tracking the point at which hWi ¼ 0:5 over time
(see Fig. 15c) we can extract the wave speed for each domain
length and this data is presented in Fig. 15c.

The dots in Fig. 15c are the data derived from the 30,000–40,000
ODEs that we can solve in each of these cases. Specifically, we once
again derive an approximate wave speed using the same procedure
illustrated in Section 3.2.1. Namely, we calculate the difference in
times at which the probability of being in consecutive vertically
homogeneous state is maximal.

Critically, note that the data represented by the red, blue and
black dots extend to different lengths due to the decreased domain
size over which we can calculate them (see Table 2). Although we
are able to algebraically derive enough points in the nw ¼ 3 to see
that the wave speed curve converges, this is not true in the nw ¼ 4
and 5 case. Thus, we fit an exponentially decaying curve,

f ðiÞ ¼ cð1� expð�b1ði� 1ÞÞÞ; ð77Þ

to these cases to try and leverage the information we have as a way
of predicting the asymptotic wave speed, which we can then com-
pare with the wave speed as derived from the stochastic simula-
tions (see Fig. 15c). We note that f ð1Þ ¼ 0 and the parameters c
and b1 are interpretable in terms of the problem’s features. Namely,
c is the asymptotic wave speed after the transients have been
16
ignored (i.e. the gradient of the curves in Fig. 15c), whilst 1=b1 pro-
vides a decay length scale, which is an estimate of how long the
domain would have to be before the asymptote would be reached.

We note that the red (nw ¼ 3) and blue (nw ¼ 4) lines fit rather
well and provide good estimations for the asymptotic wave speed.
However, we note that with only 4 data points the black fitted
curve greatly underestimates the nw ¼ 5 asymptote, being below
even the blue line. However, along with any fitting we can provide
a confidence interval for the parameters that are being used.
Specifically, in the nw ¼ 5 case the expected value of c ¼ 1:916,
but this has a 95% confidence interval of ð1:720;2:112Þ. If we
instead use the upper estimate of c ¼ 2:112 we generate the black
dashed line, which provides a much better estimate for the asymp-
totic wave speed.

Thus, as the domain grows, exponentially more ODEs would be
required to estimate the wave speed to the same precision. How-
ever, even in the case that we cannot generate enough data alge-
braically, curve fitting still offers a way to estimate the
asymptotic wave speed with fewer data points such that the
parameter values are within the 95% calculated confidence
interval.

In any case, our result here is that the speed of a stochasti-
cally invading wave does increase as the size of the width
increase. Critically, for a two-dimensional domain of width 5
the wave speed is over 2, which is over twice that of the



Fig. 16. Comparing invasion dynamics and deriving wave speed when nw 2 f1;2; . . . ;10;20; . . . ;100g. All simulated data has been averaged over 1000 runs and in all cases
nl ¼ 100. (a) Tracked position of the point at which hWi ¼ 0:5. The colour gradient transitions from light blue, nw ¼ 1, to dark blue, nw ¼ 100, with larger nw correlating with
darker colours. (b) Convergence of the algebraically derived wave speeds. The dots indicate the gradient data derived from (a). The colour of the dots correspond to the colour
of the line in (a). The thick solid line is a least squared fit of the Hill function, c1nn

w=ðb2 þ nn
wÞ.
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expected value derived from a one-dimensional case. We may
have expected the one- and two-dimensional wave speeds to
have been the same since they are in the deterministic case
and, on average, the two-dimensional stochastic system is homo-
geneous in the vertical direction.

We have now reached the limits of what we can algebraically
achieve. In the next section we depend on the stochastic simula-
tions to push our intuition to its limits.
3.2.3. Large two-dimensional grids
Figs. 14c and 15c immediately suggest a question regarding the

relationship between domain size and wave speed. Namely,
although the wave speed increases with increasing domain size,
does the wave speed converge to a limit, or does it increase with-
out bound? Answering such a question would not be possible with
the algebraic methods presented due to the exponential growth in
the ODEs required to be solved. Thus, we turn to simulation and
provide evidence, rather than a rigorous argument that the speed
does converge. However, although not rigorous, our results are still
valid and accurate because of the close alignment of theory and
simulation that was demonstrated in the earlier sections.

We generate 100 domain invasion simulations for each domain
width nw 2 f1;2; . . . ;10;20; . . . ;100g. As before we average over
Table 3
Simulated wave speed extracted from the data in Fig. 16a.

nw c as calculated from the gradient
of Fig. 16a to three decimal places
with 95% confidence intervals

1 1.001 ± 0.005
2 1.607 ± 0.010
3 1.871 ± 0.011
4 1.970 ± 0.011
5 2.095 ± 0.013
6 2.168 ± 0.018
7 2.188 ± 0.013
8 2.245 ± 0.014
9 2.256 ± 0.013

10 2.279 ± 0.017
20 2.338 ± 0.016
30 2.387 ± 0.018
40 2.376 ± 0.020
50 2.385 ± 0.018
60 2.402 ± 0.021
70 2.396 ± 0.021
80 2.380 ± 0.021
90 2.379 ± 0.019

100 2.392 ± 0.020
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the simulations and the domain width and track the front of the
wave at the point where hWi ¼ 0:5. This data is observed in
Fig. 16a, where the colour of the lines forms a smooth gradient
from light blue, nw ¼ 1, to dark blue, nw ¼ 100. For each stochastic
data line in Fig. 16a we fit a least squares straight line through the
data and extract the gradient, stated explicitly in Table 3 and plot-
ted in Fig. 16b. The colour of the points in Fig. 16b matches the col-
our of the data in Fig. 16a, from which the point was derived.

The wave speed data, as plotted in Fig. 16b, illustrates the evi-
dence that the wave speed appears to converge to approximately
2.39. To confirm this we fitted a Hill function of the form

HðnwÞ ¼ c1nn1
w

b2 þ nn2
w
: ð78Þ

If n1 > n2 then we would expect the a wave speed to continue to
grow as the domain length increases. The fitting suggests that, to
three decimal places, n1 ¼ 1:416 and n2 ¼ 1:414, which suggests
that even if the wave speed does grow it grows extremely slowly
with domain length. Specifically, to an excellent approximation
n1 � n2 and, so, upon refitting Hill function (78) assuming
n1 ¼ n2 ¼ n we find that c1 ¼ 2:40; b2 ¼ 1:36 and n ¼ 1:40, thus
limnw!1c � c1 ¼ 2:40.

Using the same ideas as in Section 3.1 we can compare this dis-
crete two-dimensional wave to the continuous and deterministic
analogue, where covariances are ignored. Namely, for 1 6 i 6 nl

and 1 6 j 6 nw the approximate discrete equation for the mean

h _Wi;ji ¼ rhðWi�1;j þWi;jþ1 þWi;j�1 þWiþ1;jÞð1�WiÞi;
can be manipulated into a form that compares with a discretisation
of

@x
@t

¼ Dð1�xÞr2xþ 4Rxð1�xÞ; ð79Þ

xð0; y; tÞ ¼ 1;
@x
@x

ðLx; y; tÞ ¼ 0; xðx;0; tÞ
¼ xðx; Ly; tÞ; xðx; y;0Þ ¼ 0; ð80Þ

on the square domain 0; Lx½ � � 0; Ly
	 


, where R is the deterministic
transition rate and D ¼ RDx2 is, once again, interpreted as approxi-
mation for small but finite Dx.

Critically, it should be noted that although we have been devel-
oping our intuition through comparing our knowledge with spa-
tially extended form of Fisher’s equation, here we see that our
invasion dynamic is fundamentally different in higher dimensions.
Namely, in Eq. (79) we have to account for a coefficient of 4, rather
than the coefficient of 2 that appears in the one-dimensional case



Fig. 17. Comparing deterministic and stochastic invasion dynamics. (a) A simulated wave profile on a domain of size ½0;100� � ½0;100� at time t ¼ 20. (top) Average of 100
stochastic simulations with r ¼ 1 and Dx ¼ 1. (bottom) Solution to discretised PDE Eq. (79) with R ¼ 0:545. (b) Tracked position of the point at which hWi ¼ 0:5 ¼ x.
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of Eq. (45). This is in contrast with Fisher’s equation, where the
kinetic term is the same in all dimensions. Further, in three dimen-
sions, this coefficient would be 6 for a cubic lattice, suggesting that
the dependence of wave speed on dimension is exaggerated fur-
ther in higher dimensions. Namely, we would expect the invasion
wave to be even faster in three dimensions.

Assuming that standard Fisher wave analysis works as equally
well as in Section 3.1 we derive that if there is a travelling wave
then its speed c must satisfy the inequality c P 4RDx. If we are
to match the limiting stochastic wave speed, where Dx ¼ 1 and
c ¼ 2:4r, then we would then need to satisfy R 6 3r=5.

In one dimension we demonstrated that the simulations sug-
gest that the derived inequality is approximately an equality, i.e.
q � r=

ffiffiffi
8

p
, within the tolerances of noise. However, in the two-

dimensional case simulations suggest that the inequality is strict.
Specifically, to provide a deterministic invasion wave that matches
the stochastic wave, with r ¼ 1 (see Fig. 17a) we ran a parameter
optimisation on R and found that R ¼ 0:543 (to 3 decimal places),
which produces a deterministic simulation wave speed of
c ¼ 2:391 and we observe that R ¼ 0:543 < 3r=5 ¼ 0:6, thus, satis-
fying the derived wave speed inequality.

We finish this section by highlighting the results that we have
presented. Firstly, although the infection wave speed does increase
with a growth in the width, there does appear to be a limiting wave
speed of approximately 2.4. Further, the stochastic and determin-
istic formulations can once again be compared approximately, such
that intuition from analytic theory from the deterministic theory
approximately holds for the stochastic simulations. Critically, this
highlights that a deterministic modelling approach to modelling
cancer elimination requires subtle scaling to match the
individual-level cellular activity.
Fig. 18. Comparing (a) stochastic and (b) deterministic simulations under zero-flux bo
bottom simulations are on a grid of width nw ¼ 100. The black lines mark the positions
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3.3. Influence of boundary conditions

Another unexpected feature that arose through comparing our
invasion dynamic to that of Fisher’s equations was the influence
of periodic versus no flux Neumann boundary conditions. Specifi-
cally, in the Fisher wave case a zero-flux boundary condition is a
sub-symmetry of periodic boundary conditions. Thus, if we start
with an initial condition that is homogeneous in the y-direction
then the solution is the same under both sets of boundary condi-
tions. However, this is not true in our domain invasion case.

The periodic boundary conditions, assumed up until now, have
allowed the invasion to occur through the top and bottom borders.
Zero-flux boundary conditions stop this from occurring, meaning
that the boundary cells can only be invaded from one side, i.e. only
from below on the top boundary, or only from above on the bottom
boundary. This reduces the probability of invasion when compared
to the middle cells that can be invaded from all directions.

On converting to zero-flux boundary conditions (see Fig. 18) we
find that, in both the stochastic and deterministic simulations, the
wave front is no longer homogeneous across the y-direction. The
edges of the wave lag behind the front. This is most notable in
the top figures of Fig. 18 as the width of these grids are nw ¼ 10
and, thus, much smaller than the figures on the bottom, which
are simulated on grids of width nw ¼ 100. Moreover, the stochastic
nature of the wave front in Fig. 18a appears to amplify the hetero-
geneity of the wave front along the y-axis as we can observe that
the black line in the bottom figure of Fig. 18a, which represents
the front of the stochastic simulation is more curved than its deter-
ministic analogue (bottom image of Fig. 18b), where the hetero-
geneity is restricted to within a boundary layer of the edges.

Similar to the periodic boundary condition simulations in Sec-
tion 3.2 the wave speed of the front in the stochastic simulations
undary conditions. The top simulations are on a grid of width nw ¼ 10, whilst the
at which the (stochastic, or deterministic) density is 0.5.
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is faster on domains of larger width than on thinner domains.
Explicitly, the simulations in Fig. 18 are all run to 20 time units
and, in the stochastic simulations of Fig. 18a the wave fronts in
the simulations on the bottom are all slightly further ahead of
the wave fronts in the top simulations, because the bottom domain
is wider than the top domain. However, in the deterministic simu-
lations of Fig. 18b, the wave fronts are approximately at the same
location.

We do not attempt to make analytic progress in understanding
this situation as it is fraught with difficulties. For example, even
without considering the combinatorial explosion of ODEs, defining
what a wave front is in this case would require explicit care, which
is outside the scope of the current article. However, we present this
as a point of interest and the source of future work.
4. Application to Kras mutant elimination

Now that we better understand the influence of dimension on
the speed of invasion, we apply this model to our Kras mutant data.
Experimental data was generated by tracing the fate of fluores-
cently labelled KrasG12D mutant cells in murine pancreas tissues
over time (Hill et al. (2021)). We use a genetically engineered
mouse model of pancreatic cancer (Pdx-1CreERLSL--
KrasG12D=þ;Rosa26LSL�RFP; (Hingorani et al. (2003))). By administer-
ing a single low dose of tamoxifen, we induced KrasG12D (and
RFP) expression in low numbers of cells in an otherwise healthy
Fig. 19. Example simulation of Kras mutant cells (red) being eliminated by healthy cells (
length 90. The stochastic invasion dynamics are then simulated causing the square to de
the evolving normalised population area fraction. Namely, the green and red grid spaces a
the red line starts at 902=1002 ¼ 0:81.
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epithelium, allowing us to study normal-mutant cell–cell interac-
tions in vivo. By measuring the amount of RFP fluorescence in tis-
sues at 7 days post tamoxifen induction, we found that a single low
dose induced transgene expression in approximately 25% of the tis-
sue, with RFP-labelled cell clusters varying across a range of sizes
(Hill et al. (2021)). Based on previous research (Hogan et al.
(2009); Porazinski et al. (2016)), we hypothesised that KrasG12D
cells compete with normal cells for space and survival in tissues
and elimination of mutant cells would occur over protracted time
points (Morton et al. (2010)). We chose 35 days post tamoxifen
induction as an end point and compared the amount of RFP (fluo-
rescence and genomic DNA) in tissues harvested at this time point,
to 7-day data. This analysis revealed a significant decrease in the
amount of RFP in KrasG12D-expressing tissues at 35-days com-
pared to 7-days post induction, indicating that KrasG12D cells
are eliminated from tissues over this time period (see Fig. 1).

Specifically, we initially assume that the mutant cells form
approximately square patches of different side length. The reason
we are using initial square patches is because, as we will see later,
the density scales as the inverse of the patch size, suggesting that
initially the patches are highly regular shapes. It should be noted
that other regular shapes where chosen (see (Hill et al. (2021))
for the circular case), but these did not significantly change the
results.

Fig. 19a illustrates a single stochastic simulation with a square
initial condition of side length 90. Due to the healthy cells domi-
nating the interaction we see the mutant patch size decreases over
green). The domain is a 100� 100 grid we start with a square initial condition of side
grade over time (in arbitrary units), as shown left to right in (a). In (b) we illustrate
re tallied and normalised by the domain size of 1002. Since the mutant area is square



Fig. 20. Modelling results and comparative data for the density and size of Kras mutant cell patches within healthy pancreatic tissue. Note the logarithmic scales. The star
arpoints and error bars represent the 7- and 35-day data, as taken from (Hill et al. (2021)). The blue and red dashed lines are equations of the form (81), which were fitted to
the 7- and 35-day data sets, respectively. The blue circles are sampled from the blue dashed line and used as an initial condition for the invasion dynamics. The parameter r
was then optimised so that the model output data (red circles) were the closest match to the red star points.
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time, left to right. However, we also observe the influence of
stochasticity. Namely, the square symmetry of the initial condition
is not maintained during the expulsion of the cancerous cells.
Moreover, after approximately 20 time units, the mutant cells
are completely wiped out (see Fig. 19b).

The experimental set-up focused on peppering healthy pancre-
atic tissue with patches of cells that over expressed the protein
KrasG12D. Such cells are thought to be precancerous and, hence,
the body tries to eliminate them from the tissue. Amongst other
statistics that were taken, the size and density of the Kras mutant
patches were taken at 7 and 35 days (blue and red stars with error
bars in Fig. 20, respectively).

A power law of the form

patch density ¼ aðpatch sizeÞb ð81Þ
was fitted to these data. For the 7 day data a ¼ 2436; b ¼ �1:07 and
R2 ¼ 0:993, where R2 is a goodness of fit statistic known as the coef-
ficient of determination. The R2 value measures the proportion of
the variance in the dependent variable (patch density) that is pre-
dicted by the independent variable (patch size). Specifically,
R2 ¼ 1 indicates a perfect fit between data and regression curve,
whilst the value reduces as the fit becomes worse (Glantz and
Slinker (2012)). For the 35 day data a ¼ 480; b ¼ �0:948 and
R2 ¼ 0:972. These power laws are indicated as blue and red dashed
lines on Fig. 20.

The power law line for 7 days was used as an initial condition.
Specifically, we defined a grid square to be 1lm2 and sampled
along this initial distribution to choose initial patch sizes, with
the correct patch density (blue circles in Fig. 20). Namely, we used
18 square patches of side length 15, 21, 25, 31, . . ., 81, 85, 95. Each
mutant patch was assumed to be surrounded by healthy cells (as in
Fig. 19) and our stochastic invasion dynamics were applied to the
system of healthy and mutant cells. Namely, any mutant cell that
was orthogonally adjacent to a healthy cell was eliminated at a rate
proportional to the number of its healthy neighbours, with coeffi-
20
cient r. As the stochastic simulations ran the size of the patches
reduced, causing the blue point to shift left. Finally, the 35-day
data can be used to provide a least squares best fit value of

r ¼ 0:115lm�1day�1. Consequently, from Fig. 20 we see that our
suggested boundary elimination mechanism is consistent with
the Kras mutant data.
5. Conclusions

Motivated by the pancreas’ ability to eliminate precancerous
cells we have developed and investigated a discrete form of
domain invasion that is consistent with experimental data. Criti-
cally, this boundary elimination mechanism is parameterised by
only one variable r, which scales time. Thus, r can be simply scaled
out of the mathematical analysis and parameterised exactly via
data over two time points, as seen in Section 4. Fitting this time
scale allows us to estimate the rate at which healthy cells can clear
cancerous patches. Specifically, in the case that mutant cells on the
perimeter have approximately the same number of healthy cell
neighbours we can say that approximately 10% of the mutant cells
that are on the perimeter will be eliminated per day.

Our study is consistent with the idea that KrasG12D cells are
outcompeted from healthy pancreas tissue and competition is
tumour preventative (Hill et al. (2021)). However, mutations in
the oncogene KRas (KRasG12D): drive the most common form of
pancreatic ductal adenocarcinoma (PDAC); are detected in > 90%
of human tumours (Kleeff et al. (2016)); and are required at all
stages of PDAC (Collins et al. (2012)). This work indicates that
KrasG12D cells must first overrule competition signals (via unde-
fined mechanisms) to initiate and drive pancreatic cancer. Cell
competition is a complex process, regulated by multiple mecha-
nisms that are context dependent (Morata (2021); Bowling et al.
(2019)). Future studies will be required to determine factors that
impact on the rate at which pancreas tissues clear mutant cells
from tissues. It is plausible that exogenous factors (e.g. inflamma-
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tion, aging) would negatively impact on mutant cell clearance,
increasing the number of oncogenic niches in tissues and disease
risk. A better understanding of the biology underlying how mutant
cells expand in pancreas tissues will underpin the development of
new and improved early detection cancer strategies.

Beyond the biological interpretation the mathematical analysis
has demonstrated a number of issues that arise from comparing
stochastic and deterministic modelling approaches (Woolley
et al. (2012); Woolley et al. (2011)). Specifically, a stochastically
invading wave can move more than two times faster than its deter-
ministic analogue if the two models where parameterised with the
same interaction rate values. This insight stems from the two
results from the paper. Firstly, unless parameters are altered with
increasing width, the deterministic wave speed would not change
for wider domains. Secondly, in the stochastic setting we have cal-
culated that as the two-dimensional domain width grows the wave
speed tends to 2.4 times the wave speed of the one-dimensional
case. Thus, if a deterministic simulation was parameterised using
one-dimensional information, but applied to the two-
dimensional case then it would predict a wave that was much
slower that its stochastic analogue.

Further we have also seen that assumptions of dimension can
play a critical role in model definition. Namely, we have seen that
the speed of invasion is directly linked to a domain’s dimension,
thus, we must be careful in our abstraction of a domain because
one-dimensional, pseudo-one-dimensional and two-dimensional
domains can act very differently in the stochastic setting, when
compared to their deterministic analogues.

These mathematical insights are particularly pertinent in the
case of periodic boundary conditions, which are often used in con-
junction with small domains in order to make the small domain
mimic the action of being embedded in a larger domain, without
simulating the larger field (Woolley (2017); Woolley et al.
(2017); Maini and Woolley (2019); Woolley et al. (2017)). We have
illustrated that care should be taken to fully justify biological sys-
tem abstraction to ensure that assumptions on dimension and
boundary conditions are not severely influencing the results.

Future directions for the mathematical theory are clear in terms
of extending this analysis to different boundary conditions, as sug-
gested in Section 3.3, or extending the solution space to the third
(or even higher) dimension. Critically, our work suggests that inva-
sion waves in higher dimensions may even be faster than currently
expected. However, higher dimensions would greatly slow down
the stochastic simulations meaning that we would only be able
to investigate small cubic grid sizes. Moreover, even in the two-
dimensional case, there are still questions to be answered, e.g.
how does the wave speed depend on initial condition density
and order? Namely, a set of mutant cells diluted amongst wild-
type cells will be eliminated much more quickly than if those cells
are in a one-dimensional line.

As highlighted in the introduction there are potential alterna-
tive frameworks to view and extend this work (Moran (1958);
Holley and Liggett (1975); Klein et al. (2007)). It is possible that
these different frameworks would allow us an easier route to
extract the dependency of the wave speed on the initial density
and order (Chopp et al. (2003); Parsons et al. (2008); Antal and
Scheuring (2006)). Future work could focus on comparing results
of these different techniques with the approach presented here.
Our hope is that old techniques may be repurposed to answer
questions in different fields.

Finally, we note that, although mechanistic, the model is still
phenomenological, in that it provides a simple model of juxtacrine
signalling. Therefore we suggest that future experimental work be
focused on understanding the signalling pathways between
healthy and Kras mutant cells, because, at the moment, we can
only specify what is happening in the healthy case (i.e.mutant cells
21
are expelled). As yet, we do not understand what causes this sig-
nalling to fail, which, in turn, allows the Kras mutant cells to colo-
nise the pancreas, leading to cancer.
Codes and data

All codes and data are available at https://github.com/
ThomasEWoolley/domain_invasion.
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