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Summary

Fog computing is an intermediate infrastructure between edge devices (e.g., Internet
of Things) and cloud systems that is used to reduce latency in real-time applications.
An application can be composed of a collection of virtual functions, between which
dependency constraints can be captured in a Service Function Chain (SFC). Vir-
tual functions within an SFC can be executed at different geo-distributed locations.
However, virtual functions are prone to failure and often do not complete within a
deadline. This results in function reallocation to other nodes within the infrastructure;
causing delays, potential data loss during functionmigration, and increased costs.We
proposed Greedy Nominator Heuristic (GNH) to address these issues. GNH is based
on redundant deployment and failure tracking of virtual functions. GNH places repli-
cas of each function at multiple locations—taking account of expected completion
time, failure risk, and cost. We make use of a MapReduce-based mechanism, where
Mappers find suitable locations in parallel, and a Reducer then ranks these locations.
Our results show that GNH reduces latency by up to 68%, and is more cost effec-
tive than other approaches which rely on state-of-the-art optimization algorithms to
allocate replicas.
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1 INTRODUCTION

Computational offloading is often used to overcome the resource limitations of IoT devices by migrating the application towards
the cloud. Cloud computing provides a salable, cost-effective, and easy-to-use platform for storing and processing data. While
IoT devices often rely on cloud platforms, cloud platforms do not satisfy one important requirement of many IoT applications:
low latency actions1. In other words, by the time data are transferred from an IoT device to the cloud, they may be obsolete and
the opportunity to act on those data may be gone2.
Fog computing extends the cloud computing model to consider the needs of processing time-sensitive data at the edge of the

network, near the location in which it was generated2. Fog infrastructure can therefore enable applications to act on IoT data
within milliseconds. Moreover, a hybrid IoT-Fog-Cloud model can send selected data to the cloud and thus provide IoT appli-
cations with more computing power for executing non-time-sennsitive parts of applications, such as offline data processing1.
Therefore, IoT-Fog-Cloud infrastructure provides numerous advantages for instance low latency, high reliability and enhanced
Quality of Service (QoS).
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(a) Examples of input-output data dependencies (b) SFC allocation processes in the Fog and Cloud

FIGURE 1 Abstract service function chaining (SFC) and a scenario of SFC deployment

An application in the IoT-Fog-Cloud ecosystem is composed of sub-applications called virtual functions which can be dis-
tributed for execution across available infrastructure. However, determining where virtual functions should be executed is
challenging and must consider not only application requirements, but also utilization of infrastructure and the need to avoid
bottlenecks that may delay the entire IoT applicaiton.
Virtual functions can be network services or application-specific services. Common examples include firewall (FW), parental

control (PC), and video optimizer (VO) applications. These functions are typically combined, in some order, to form an appli-
cation, known as a Service Function Chain (SFC)3. SFC have been defined by the Internet Engineering Task Force (IETF) as
RFC7665. Figure 1b shows a video streaming application combining the FW, PC, and VO functions. An SFC can take several
forms based on data dependencies (e.g., Figure 1a). Edge device requests are dynamically deployed in IoT-Fog-Cloud infras-
tructure, where each function can be located on a fog node or Virtual Machine/container hosted on the cloud. Service function
chaining enables the creation of composite (network) services that comprise an ordered set of functions that must be applied
to packets and/or frames. These functions are triggered based on packet classification as they pass through the function chain.
Each service function is referenced using an identifier that is unique within an SFC domain. There are a number of overlaps
between an SFC and a workflow, both involve: (i) aggregating functions and services; (ii) ensuring data dependencies are main-
tained; and (iii) deploying services across one or more physical nodes. A key difference is the level at which deployment of such
functions is supported.
The unique nature of SFCs and IoT-Fog-Cloud infrastructure leads to various complications that do not arise in traditional

systems, many of which negatively affect the Quality of Service (QoS) of a SFC in IoT-Fog-Cloud infrastructure. We specif-
ically consider three such challenges: (i) nodes may be unreliable and therefore functions may fail or be unable to meet their
deadlines when deployed to these nodes; (ii) the IoT-Fog-Cloud infrastructure can dynamically change when locations are added
or removed; and (iii) the search space of possible deployment locations can be large and costly to explore.
In this paper, we consider an SFC architecture in an IoT-fog-cloud ecosystem, where fog devices request to host service

functions via a controller fog node. Such a node determines the placement of virtual functions and the number of function
replicas needed given the failure rate of the nodes. We propose a scalable decision-making algorithm, called Greedy Nominator
Heuristic (GNH), to identify the “best” deployment locations. The main contributions of this paper are as follows.

• We formulate the application deployment problem in the IoT-Fog-Cloud infrastructure as an Integer Linear Programming
(ILP) problem.

• We explore tradeoffs between cost and performance when deploying replica functions.
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• We propose Greedy Nominator Heuristic (GNH) to search for locations that optimize delay, risk, and cost.

• We implement GNH in the MapReduce framework4, using Parsl5 to place single/multiple replicas of each function at
multiple locations.

• We validate GNH via simulation where location characteristics are generated randomly (e.g., availability and latency).

Our results show that GNH is scalable in terms of location search, and also mitigates the effects of a single point of failure
in managing virtual functions placement. The rest of the paper is organized as follows. Section 2 reviews the related work.
Section 3 describes the systemmodel and defines the problemwe aim to solve. Section 4 proposes the distributed GNH algorithm
for placing IoT applications in the IoT-Fog-Cloud infrastructure. Section 6 validates the performance of the GNH algorithm
experimentally and Section 7 concludes the paper.

2 CONTEXT & RELATEDWORK

This section provides the context for this work, and outlines related efforts on developing edge-based computational clusters.
The increasing availability of low-cost devices (e.g. Raspberry Pi) has made it cost-effective to build and deploy distributed
environments.

2.1 Single-Board Clusters
A number of efforts focus on implementing computational clusters composed of single-board computers (SBCs):(i) using Rasp-
berry Pi and the Python programming language6,7,8,9; (ii) Message Passing Interface (MPI) and SSH connections to securely
communicate between SBC nodes. In addition to Raspberry Pi and Python, researchers have used Arduinos and C++ to
implement an application that collects data from sensors embedded in IoT devices9.
Mollava et al.6 study fault tolerance mechanisms for a cluster of SBCs, which are composed of four Raspberry Pi nodes.

Their approach proposes a mechanism to prevent data loss by replicating SBCs. In another effort, six Raspberry Pi workers
are controlled by a coordinating Virtual Machine (VM)7, to support process cross-correlation similarity analysis in parallel.
Misbahuddin et al.9 proposed an IoT e-health system to support Electroencephalography (EEG), Electrocardiogram (ECG)
analysis, and temperature sensors which monitor the well being of patients in a hospital. Raspberry Pi and Arduino are used in
the system to support data analysis. Similarly, researchers have studied the power consumption, hardware cost, and performance
of an RPiCluster composed of 32 Raspberry Pi nodes8. The RPiCluster is used to solve 900MMonte Carlo simulation iterations.
Results show that increasing the number of nodes reduces the time to completion. Considering a greater number of nodes in
a cluster, researchers have designed an affordable cloud infrastructure with 300 SBCs to offer cloud services10. The system
consisted of a monitoring panel, supporting automatic service provisioning and online access to acquired resources using a
centralized manager. A 22-node SBC11 was implemented to study the possibility of developing an edge-based system to run
MapReduce. This system demonstrates a low-cost cluster with each node supporting 1GB of RAM that runs Apache Spark.
However, it was found that tasks must consume less than 62.4% of a node’s memory, otherwise they would fail to complete
successfully.
Morabito12 compared SBC variants for edge computing applications, comprised of Raspberry Pi and Odroid hardware. The

paper shows that Raspberry Pi devices are better in terms of power consumption. However, Odroid devices outperformRaspberry
Pi when using a container-based (Docker) OS-level virtualization.
MapReduce has been used by a number of researchers for processing large volumes of data in SBCs clusters13,14,15,11. Srini-

vasan et al.14 used Hadoop to run the MapReduce programming model on a Raspberry Pi3 cluster with 10 nodes. Nodes run
“speeded up robust features” (SURF) to extract features from an image. The authors compared performance between the cluster
and a single desktop computer (with Intel I5-4440 CPU and 8GB RAM) and in the case of a large dataset, the SBC cluster has
20% better performance than the desktop computer. However, if the dataset size is reduced to 12.5% of the original, the desktop
computer provides better performance. Using a 20 Raspberry Pi cluster for robotics applications, Qureshi et al.13 increased the
operating speed of an SBC (using over-clocked CPUs from 700MHz to 1GHz) to analyse images. At 700MHz, Hadoop execu-
tion takes between 100ms to one second, for a data size range between 3MB to 300MB. The overclocked (1GHz) model finishes
the tasks within 100ms on any data size between 3MB to 300MB. Other similar approaches include the system by Kaewkasi et
al.11 focusing on the development of a lower-power Hadoop cluster for processing Wikipedia articles. Scolati et al.15 proposed
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containerized clustered SBCs architecture that runs Apache Spark and processes data generated by IoT devices. The system uses
8 Raspberry Pi B2 nodes, three that collect data, four that process this data, and a single node that controls the data processing.
Unlike related work14, this architecture takes advantage of in-memory data storage (provided by Apache Spark) to reduce I/O
delay causes by moving data from disk to memory.

2.2 System Dependability and Service Availability
A system that can be categorized as trustworthy and dependable must cope with any failures that occur during operation, and
reduce the impact of the failure on hosted services and applications16. These failures can be attributed to abnormal behavior,
such as a denial-of-service (DoS) attack, or may be caused by increases in traffic or workload during normal operation. Various
proposed solutions17,18,19,20,21 focus on detecting failure and recovering processing nodes (e.g., a fog node). However, simply
recovering a node does not ensure the completion of a service or application hosted on the node, this is especially relevant in the
context of a service function chain (SFC). On the other hand, there are a number of research projects that monitor application
completion time, and propose mechanisms that either prevent application failure or additional delay22,23,24,25.
Having highly available services on any SFC architecture is an essential requirement. Recovery from service failure in an SFC

deployment should be quick, to meet low-latency requirements. Redundancy mechanisms such as duplicating service functions
would fulfill availability requirement26. For example, researchers27,28 have studied SFC failure caused by processing node or
network link failures. Service functions generally have a backup that can be instantiated in different locations. This backup
provides a redundant deployment, supporting switching to the backup deployment as a recovery strategy. Dinh et al.30 proposed
an algorithm based on the priority level of service functions, and deployment redundancy is modelled as a cost minimization
problem. In a cloud infrastructure, Scholler et al.31 proposed a resilience mechanism based on duplicating the service function
deployment to guarantee availability; OpenStack is used to develop the prototype.
The redundancy allocation problem in SFC infrastructure has also been investigated29, where a particle swarm optimization

(PSO) algorithm was used for redundant deployment of SFC in cellular Long-Term Evolution (LTE) networks. Several research
efforts focus on minimizing makespan using a PSO approach in Cloud environments. For example, PSO-based dynamic schedul-
ing32 focuses on maximizing utilization and minimizing makespan in the cloud. DNCPSO is a PSO-based approach that reduces
makespan during graph deployment in a cloud-edge environment. Shahid et al.33 proposed a decentralized autonomous PSO
algorithm that can be used to support load balancing in geo-distributed systems. It focuses on minimizing execution cost along
with balancing the workload between cloud and edge resources. The global criterion method34 utilizes scalarization, i.e., a math-
ematical function that maps two vectors to a single value, to capture the similarity between a solution and the ideal solution.
A multi-objective optimizer can utilize the global criterion to rank solutions. For example, Euclidean distance35,36,37 measures
the distance between two points (which represents a solution and the ideal solution) in the Euclidean space. Whereas, Cosine
Similarity38 measures the cosine of the angle between the two vectors solutions. Some researchers39,40 have proposed their own
similarity measures to rank the best solution from a set of solutions. Our approaches makes use of Parsl to split IoT applications
dynamically across fog and cloud resources. The multiple executors and pilot-job oriented mechanism used in Parsl can support
dynamic deployment of functions across a number of different endpoints, two key aspects that can be used to differentiate this
work from other efforts. We also propose a novel approach for dynamic (and redundant) SFC allocation management, where the
number of replicas is determined based on the overall impact of service functions on the execution of an application.

3 SFC CONTROL ARCHITECTURE

In our proposed SFC Control Architecture, locations are processing nodes that host service functions. They are either Virtual
Machines (VMs) in the cloud or Fog Nodes (FNs). Locations receive requests to execute service functions from a controller
node which is responsible for managing SFC placement. Controllers manage communications between locations, and monitor
their capabilities, availability, and SFC operations. However, updating a controller with the infrastructure’s status and searching
optimal locations to deploy functions can be a time consuming, error prone process. Consequently, the decision-making overhead
is divided between workers, that is, the FNs that support a controller to acquire the current status of the infrastructure and find
optimal locations, as illustrated in Figure 2.
Controllers make use of Parsl5—a Python library for parallel programming. Parsl has a DataFlow Kernel (DFK) that orches-

trates the execution of individual Python functions on geo-distributed locations. Further, the DFK manages data dependencies
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between an SFC’s service functions. This is achieved by defining functions that are annotated with a decorator (@python_app)
to indicate that they can be executed on asynchronously and on remote computing resources (i.e., locations). Annotating Python
functions in this way declares these functions as Parsl apps, and they return objects, referred to as AppFutures, in lieu of imme-
diate results. Figure 3 shows a simplified SFC (without redundancy) that is executed using Parsl—where Parsl apps are the
service functions. The locations are declared in the ‘@python_app’ decorators as Parsl executors. In the figure, two locations,
‘Fog Node 1’ and ‘Virtual Machine’, are specified and indicate that these apps will execute on FW and PC, respectively. Within
every Parsl app, Parsl imports a Python module that has the program logic associated with the service function, for example,
FW and PC in this instance. Next, it passes ‘input’ to the ‘run’ method of the imported service function module, and assigns the
result to the ‘output’ variable. The returned ‘output’ in both FW and PC are passed to VO as illustrated in Figure 1b.

3.1 Usage Scenario
This section illustrates a scenario of application placement in the IoT-Fog-Cloud, as shown in Figure 1b. The application is
composed of three functions: FW, PC, and VO. FW and PC are independent of on another, but VO depends on the outputs of FW
and PC. FW blocks any traffic intended to harm the end-user, where PC filters any multimedia content deemed inappropriate
for the intended user based on a number of pre-defined filtering rules. VO enhances the video stream by caching fragments of
video content ‘near’ to the end user.
A user device (e.g., a smart phone) may request application functions from controller Fog Node (FN) in an SFC, then the

controller places these functions across locations in the infrastructure. Since the VO depends on FW and PC, the application can
experience delays if either FW or PC fail. Therefore, FW and PC must have higher redundancy than OV, as shown in Figure 2,
to save the time of redeployment in case of failure. This is based on the observation that functions that occur earlier in an SFC
are more significant, as their failure will cause an effect downstream in the SFC pipeline. Having greater redundancy at the early
stages of the pipeline is likely to provide greater benefits to avoid delays at subsequent stages in the SFC.

3.2 System Model
The controller receives an application (i.e., SFC) as a graphA = (F ,D), where F is a set of functions, F = {f 1

1 , f
2
2 , . . . , f

i
j}, and

D is a set of pairs representing dependencies between functions, D = {(f 1
1 , f

1
2 ),… , (f i−1j−1, f

i
j )}. The sequence in A is i, where

j is a function type identifier (ID). The sequence number i and set D indicate the dependency between SFC functions, in which
the function with index i is dependent on the outputs of functions i − 1 if (f i−1, f i) ∈ D. For example, in Figure 1b, PC, FW
,and VO represent functions that have an ordering in their execution: PC and FW need to execute before VO. The SFC therefore
can be specified as:({f 1

1 , f
1
2 , f

2
3 }, {(f

1
1 , f

2
3 ), (f

1
2 , f

2
3 )}), and f

2
3 is dependent on the output of f 1

1 and f 1
2 . Table 1 summarizes

the associated resource and application properties.
Every function has execution requirements, qj,p, qj,m, and qj,w, which represent process, memory, and storage, respectively,

needed to execute function f ij . Set L represents all locations that are registered with the controller, and xij,k is an auxiliary
variable that indicates execution of f ij on lk, where lk ∈ L (i.e., f ij placed in lk). pk, mk,wk, and bk are the available resources at
location lk (i.e., the process handling capacity, memory, storage, and bandwidth respectively). Processor usage and delay (i.e.,
between the controller and lk), are represented as uk and dk, respectively. Table 2 summarizes decision outcomes and mapping
result variables.

3.3 Estimating Completion Time
The system minimizes the end-to-end latency by attempting to reduce the delay between controller fog node and deployment
locations. Moreover, it estimates the time to process every function at a locations as follows:
Network delay between lk and controller, that is, dk, is the round-trip time to lk. The average package size generated by Parsl

during the SSH connection between controller and lk is considered in dk calculation.
Processing time of f ij in lk depends on f

i
j processing requirement (qj,p) and lk’s processing speed (pk). The total time to place

f ij in lk, (Tj,k), including transmission and processing as defined:

Tj,k = dk +
qj,p
pk

(1)
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FIGURE 2 Redundant Deployment of application A in the Fog and Cloud

FIGURE 3 SFC from the scenario shown in Figure 1b implemented with Parsl. The ‘executors’ argument in the function
decorator specify the location that runs service function.

A path in an SFC placement is a sequential execution of service functions, e = {T1,1, T2,1,… Tj,k} defined in a graph. A path
time in an SFC placement is the sum of all execution time in the path,

∑

Tj,k where Tj,k ∈ e. Also, E is the set of all paths in
an SFC.
The longest path (M) is measured based on the longest time from the placement of the first service function to the end of

the last service function within all SFC paths. The longest path is equivalent to the makespan of the SFC and should satisfy
constraints in formula 8.



Almurshed, Rana 7

RESOURCE PROPERTIES
Symbol Description
L Locations set all locations that are controlled by controller
lk Locations k, lk ∈ L
pk lk’s CPU processing power, instruction per second
mk lk’s available memory, in bytes
wk lk’s available storage, in bytes
dk Delay to lk, Millisecond
bk lk’s available bandwidth in percentage
uk lk’s processor usage in percentage

APPLICATION PROPERTIES
Symbol Description
A Application, consist of SFC which is (F ,D)
F functions in A which is {f 1

1 , f
2
2 , ..., f

i
j}

D Dependencies between A’s functions, which is {(f 1
1 , f

1
1 )… (f i−1j−1, f

i
j )}

n Number of sequence in A
f ij Service function of i-th in execution and has type j
qj,p The number of instruction needed for fj , integer value
qj,m The memory needed for fj , in bytes
qj,w The storage needed for fj , in bytes

TABLE 1

DECISION OUTCOMES
Symbol Description
xj,k Auxiliary variable indicate that f ij is executed in lk value is 0 or 1
yj,k Auxiliary variable indicate that Tj,k is part of the longest path value is 0 or 1
ok Auxiliary variable indicate that lk is obtained by A value is 0 or 1

DECISION SUPPORT VARIABLE AND FUNCTIONS
Symbol Description
Tj,k Time to send and process fj in lk
E The set of all placed paths of A
Riskj,k Risk of executing fj in location lk
MaxReplicasi,j The maximum possible replicas for f ij is integer
m Constant adjust maximum possible replica is m + 1 is intege
rk Loss probability, the number of failures per allocations
M The path with longest time elapses in A,M = {T1,1, T2,1,… Ti,j},M ∈ E

TABLE 2

3.4 Application redundancy and cost
The controller avoids allocating a function to a location that has a high risk of failure. The risk of placing a function at a specific
location is specified as: Risk of allocating f ij in lk, i.e., Riskj,k, is failure/loss probability times the impact of failure (Tj,k).
Loss impact is Tj,k, as it is the time of the first f ij ’s allocation that failed to complete on time Tj,k, results in reallocation. Loss
probability, i.e., rk, is the number of failures per allocations, and is derived from historical lk failure data, hence Riskj,k =
rk × Tj,k. Even after calculating the risk, there are chances of reallocating a failed function. Thus, the system deploys replicas
of the function to avoid losing time in case of failure. The redundancy of application uses a “funnel-shape” of replicated
functions, as illustrated in Figure 4a. The initially executed functions (i.e., at an early stage in the SFC) have the maximum
replicas,MaxReplicasi,j . This value decreases as we progress through an application composed of n functions, as illustrated
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(a) Replicas number decreases to the end of A, creating
funnel-shaped (b) Relation between n and m ofMaxReplicasi,j

FIGURE 4MaxReplicasi,j Controlling the number of replicas in an SFC

conceptually in Figure 4b. The constant m adjustsMaxReplicasi,j , andMaxReplicasi,j does not exceed m + 1. Formula 2 is
used to calculateMaxReplicasi,j . The replication strategy is based on the observation that functions that occur at an early stage
of the SFC should have higher priority (in terms of resilience), as inability to complete these successfully will cause failure
downstream in the SFC. Consequently the number of replicas follow the funnel shape illustrated in Figure 4b, where the actual
number of replicas are based on the observed failure rate.

MaxReplicasj,i = 1 + ⌈(1 − i
n + 1

)m⌉ (2)

The Cost of deploying application A is controlled by tracking the locations obtained by A in variable ok, Table 2 summarizes
the decision support variables.

3.5 Problem Formulation
The main goal of this paper is to provide SFC placement aiming to minimize overall application time, deployment cost, and risk
of application failure (to maximize availability). We formulate the optimization problem as follows:

MIN C and MIN R and MIN O (3)

C =
∑

j∈F

∑

k∈L
Tj,k ⋅ yj,k ⋅ xj,k (4) R =

∑

j∈F

∑

k∈L
Riskj,k ⋅ xj,k (5) O =

∑

k∈L
ok (6)

Where objective function C (formula 4) is the total completion time, and objective function R (formula 5) is the total risk
of application A completing successfully. The number of locations used to execute A, including redundancy, is represented by
objective function O (formula 6)
Subject to

MaxReplicai,j ≥
∑

k∈L
xij,k, j ∈ F , 1 ≤ i ≤ n (7)

∑

Tj,k∈M
Tj,k ⋅ yj,k ⋅ xj,k ≥

∑

Tj,k∈P
Tj,k ⋅ xj,k,M ∈ E, P ∈ E (8)
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Algorithm 1Mapper receives L and f ij and ReturnMapperResult of sizeMaxReplicasi,j
1: classMAPPER
2: methodMAP (L; f ij )
3: count← 0
4: for all lk ∈ L do
5: result ← ED(lk, f ij )
6: if count < MaxReplicasi,j then
7: MaxHeap.PUSH(⟨result; lk⟩)
8: count← count + 1
9: else
10: if MaxHeap.PEAK() > ⟨result; lk⟩ then
11: MaxHeap.PUSH-POP(⟨result; lk⟩)
12: MapperResult ←MaxHeap
13: returnMapperResult

wk − qj,r ≥ 0 (9)

mk − qj,m ≥ 0 (10)

uk ⋅ x
i
j,k < 1.0 (11)

bk ⋅ x
i
j,k < 1.0 (12)

xij,k − ok ≥ 0,∀j ∈ F (13)

n ≥ 1 (14)

m < |L| (15)

4 GREEDY NOMINATOR HURISTIC (GNH)

The key idea of our proposed optimization algorithm (GNH) is to search for optimal solutions for every function in an application
which results in finding the optimal deployment for the application. The GNH uses MapReduce to identify potential locations,
where the search space is divided between workers (i.e., Mappers) whose result is sent to the Reducer (i.e., control fog node) to
decide the overall optimal locations for redundant deployment. The components used to realise GNH are as follows:
A similarity function is used to compare the general solution to an ideal solution34. Usually, it is a norm function, for example,

Euclidean distance is 2-norm. For all functions, lideal is the location that has zero execution time and no risk, and no additional
locations obtained byA, i.e.,Oideal, and is also represented as point (0, 0, Oideal). GNH uses Euclidean Distance (EDj,k), shown
in formula 16 in the Mapper to compare lk with lideal†. A number of other measures may also be used to perform similarity
comparison, such as applying fuzzy metrics that capture a degree of membership. Our implementation can be generalised and
extended to use other measures also, as the distance measure can be application- and context-dependent.

EDj,k =
√

(0 − Tj,k)2 + (0 − Riskj,k)2 + (Oideal − Ok)2 (16)
Max-heap is a complete binary tree that is used to store the Mapper(s) and Reducer results. The root of the tree has the

maximum value in the tree, and the value decreases as we move to lower levels in the tree. Max-heap is ofMaxReplicai,j size,
where each node has key-value pair ⟨key; value⟩ (e.g., ⟨result; lk⟩ in algorithm 1). The key is the EDj,k result, whereas the
location is the value.
Mappers apply the EDj,k function to all locations, and then store them in Max-heap ofMaxReplicai,j size. Max-heap order

is based on the key (i.e., EDj,k result), not the values (i.e., locations). Every Mapper keeps a local record of the locations they
monitor, and the records are results of monitoring the computing resources and the network connections linking these locations.

†Oideal is simply the number of locations that executed the previous functions in A. Therefore, Ok in the next function is equal to Oideal or Oideal incremented by one.
The incremented value is multiplied by a weight to have a higher impact on EDj,k
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Algorithm 2 Reducer receivesMapperResult and Return MAXHEAP of sizeMaxReplicasi,j
1: class REDUCER
2: method REDUCE (MapperResult)
3: count← 0
4: for all ⟨key; value⟩ ∈MapperResult do
5: if count < MaxReplicasi,j then
6: MaxHeap.PUSH(⟨key; value⟩)
7: count← count + 1
8: else
9: if MaxHeap.PEAK() > ⟨key; value⟩ then
10: MaxHeap.PUSH-POP(⟨key; value⟩)
11: returnMaxHeap

FIGURE 5 Each Mapper has a group of locations to monitor, each group has its color (green, red and yellow). The final
Max-heap has a variety of node’s color, due to them coming from different Mappers

The Reducer receives results from every Mapper, concatenates them, and applies a Max-heap push-pop function to each
location in the Mappers’ results. Finally, the Mappers’ results are reduced in a single Max-heap that has the locations (in the
value of ⟨key; value⟩ in algorithm 2) to deploy the current function, i.e., f ij in the requested application A.
The system has a controller that plays the role of a reducer, whereas workers in Figure 2 are Mappers. In Figure 5, Mappers

monitor network performance and available computing resources at specific locations. Moreover, the system nominates locations
to execute service functions. Whereas, the Reducer chooses from the nominated locations to place redundant function instances.
This is achieved by running MapReduce using Parsl.
Both Mapper and Reducer algorithms 1 and 2 use similar search mechanisms: they loop through the search space and update

Max-heap. However, the difference is that Mappers apply the EDj,k function (line 5 of algorithm 1), then compare the result
with the worst location within the Max-heap, that is, the peak or root of the tree. Both algorithms initialize Max-heap tree of
MaxReplicasi,j size (lines 2-8 in algorithm 1 and lines 2-7 in algorithm 2). Inside the for loop (line 4 in algorithm 1 and 2)
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FIGURE 6 The same virtual function’s execution at a location showing completion time for three different arrival times.

Names Definitions
Failure A period of time where a location freezes and does not respond
Recovery Restoring after freezing, i.e, failure
MTTF The time after recovery to location’s failure
MTTR The duration of time were a locaiton restoring after failure
MTBF Period of time between two failures
MTBF-clock A location’s clock that runs from Failure to Failure and is divided into 2 Periods, MTTF and MTTR
Execution time The time to run function in an location
Waiting time The time where functions waits the location to recover

TABLE 3 Failure mode definitions

the new results (result in mapper, and key in reducer) are compared with the peak of the Max-heap, if the result is less then the
peak, then the new result replaces the Max-heap.

5 FAILURE MODEL

The section describes the failure model we used in this work, specifying when failure and recovery events happen at each
processing node (or location). We model and use location failure to validate GNH performance; however, we do not consider
software errors, which may be caused by a faulty service function implementation, in this model.
Failure of a processing node is the period during which a location does not respond to user commands. This lack of response

adds additional delay, until the node is restored—specified as the recovery time. The time to discover the next failure is the Mean
Time To Failure (MTTF) and time period until the node is restored is the Mean Time To Recovery (MTTR). The sum ofMTTF
and MTTR is the mean time between two failuresMTBF.
Every location has a repeating timer, referred to as MTBF-clock, that indicates when requests arrive at a location MTTF or

MTTR. This method (algorithm 3) defines whether the allocation location has failed or succeeded. It uses a predefined clock
(line 3 in algorithm 3). This mechanism helps to track MTBF, where the MTBF-clock resets to zero and starts measuring a
newMTBF time interval. Further,MTBF-clock starts withMTTF periods followed byMTTR. Hence, MTBF-clock of a chosen
location tracks the current localMTBF time. Table 3 summaries the failure model used in this work. Figure 6 illustrates service
functions that have been submitted over three different periods of MTBF-clock. If a request arrives within MTTF period and
is not interrupted (i.e., does not overlap/fall during the MTTR period), then the location will process the function within the
expected execution time, otherwise the execution must wait until MTTR period passes to execute the service function.
Algorithm 3 (line 2 and 3) calculate theMTBF and the remaining period to the next cycle, MTBFREMAIN. ARRTIME is the

timestamp at which a request arrives. If a request arrived within MTTF, then the method checks MTTF has sufficient time to
execute the requested function, EXECTIME, otherwise it is considered a failure (if statement in line 4). The method determines
the COMPLETIONTIME of the function (line 6-12).
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FIGURE 7 The structure of the random generated records

Algorithm 3
1: method FINISHINGTIME ( MTTF, MTTR, EXECTIME, ARRTIME )
2: MTBF = MTTF + MTTR
3: MTBFREMAIN = ARRTIME % MTBF
4: if MTBFREMAIN < MTTF AND |MTTF-MTBFREMAIN| ≥ EXECTIME then
5: ALLOCSTAT = TRUE
6: if ALLCSTAT then
7: COMPLETIONTIME = EXECTIME + ARRTIME
8: else
9: if MTTF ≥ EXECTIME then
10: COMPLETIONTIME = ARRTIME + EXECTIME + |MTTF-MTBFREMAIN| )
11: else
12: COMPLETIONTIME = ∞
13: return ALLCSTAT, COMPLETIONTIME

6 EVALUATION

We evaluate GHN via a based on a Raspberry Pi deployment platform. The simulation dynamically generates requests and varies
the number of functions in an SFC (from 1 to 20). It also varies the availability and failure profile of resources using a clock
mechanism that is divided into two periods: (i) a failure event (MTTR), and (ii) normal resource operation (MTTF). We create
several simulation scenarios and compare GNH with random allocation and PSO-based approaches.
The simulation generates records that contain application request arrival time and computing requirements. Records are passed

to GNH, and the allocation decision is evaluated by applying the FINISHINGTIME method as shown in algorithm 3. Location
records include computational attributes, such as, capability, capacity, delay and available resources. The location generator
chooses specifications randomly from Table 6 and Table 7. Figure 7 shows the structure of the records that hold this randomly
generated data. All CPU usage and the available resources (e.g., available memory) are frequently and randomly updated to
simulate system behaviour. Failure rate is updated every time the FINSHINGTIME (in algorithm 3) returns the allocation state,
ALLCSTAT. MTTR and MTTF are constants, and do not change after initialization.Application requests are generated with
unique IDs and chained service functions thenmap them toArrival Time. Arrival times, capturing generated application requests,
are uniformly distributed over a single day. This simulates data streams coming to a single controller in the fog infrastructure.
Applications are SFCs and can vary in length from 1 to 20 chained virtual functions.
Output of the FINISHINGTIME method determines allocation state, whether a failure has occurred and the actual finishing

time of service functions. Service function failure in GNH occurs if all its redundant deployed instances (i.e. replicas for a single
function) fail to complete within the estimated time.

6.1 Experiment Setup
Wegenerate 10million application requests distributed uniformly over a 24 hour period. Requests are sent in order of their arrival
time to a controlling fog node, which is responsible for 100 locations in the IoT-Fog-Cloud ecosystem. 20% of the computing
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Variable Number/Rangs
Application requests 10,000
SFC length (1-20)
Location 100
FNs 80
VMs 20
FN’s Latency (21 - 50 ms)
VM’s Latency (50 - 300 ms)
FN MTTF (10 - 30 ms)
FN MTTR (5 - 15 ms)
VM MTTF (30 - 300 ms)
VM MTTR (2 - 10 ms)

TABLE 4 The simulation parameters are chosen randomly from these ranges.

Service requirements Max Value
CPU 2,000,000
Memory 6MB
Storage 5MB

TABLE 5Maximum computational resource requirements of the generated functions

resources are virtual machine (VMs) in a cloud data centre, and the remainder are Fog Nodes (FNs) in the fog infrastructure.
We do not consider SFCs with more than 20 functions in this experiment.
During the GNH evaluation, we assume that application placement is undertaken over unreliable infrastructure, where failure

occurs frequently. Moreover, the MTTF of locations can range between 10ms and 300ms and MTTR between 2ms and 15ms.
Table 4 and Table 5 summarizes the parameters used in the experiments. These parameter ranges are based onmeasured values in
a distributed environment consisting of Raspberry Pi nodes connected to a gateway machine over aWireless (Wifi) network. The
experiments are used to evaluate the behaviour and the accuracy of the placement decisions under different network latencies.
Moreover, in case of additional delay, the controller will not reallocate the application or functions (in this experiment). This is
done to measure the additional delay associated with the placement of the GNH.
We compare GNH to two other approaches based on random allocation and a Particle Swarm Optimization (PSO).
We consider random allocation with and without replicas. The first algorithm Rand, places each service function in an SFC

randomly by the controlling fog node. The second algorithm is the same as Rand but with replicas RP, which alters the number
of replicas based on Algorithm 2.
We choose PSO due to the similarity between GNH and PSO, where a population of candidate solutions are generated and

then a decision is made about the best solution out of those candidate solutions (by announcing a winner in GNH or the global
best in PSO). One PSO-based algorithm deploys applications with two replicas (RPSO) and the other (PSO) deploys services
functions without replicas.

6.2 Results
The heat map in Figure 8 shows application completion times. We see that 61.18% of GNH allocations take less than 100
milliseconds (ms). Whereas 29.78% and 5.45% of applications finished within 101ms-200ms and 201ms-300ms, respectively.
The 29.78% applications that have longer completion times are due to the application having longer chained service functions.
Around 1.37% of the applications fail to complete with low delay. Compared toGNH, Particle SwarmOptimizationwith Replicas
(RPSO) completed most of its applications within 300-600 ms. This is because RPSO takes more time to decide where to
deploy applications; the PSO-based decision-making process takes 200-300 ms before deploying the application (Table 8) with
5 particles and 50 iterations. Particle Swarm Optimization without replica (PSO) did not perform well compared to either GNH
or RPSO. Around half of the applications failed to complete on time, and 25% of the deployed applications completed between
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Version CPU Core(s) Memory Storage Network Interface Speed
RPi 3 Model A+ 1.4 GHz 4 256 MB 512 MB 8 GB 16 GB 32 GB 300 Mbps
RPi 1 Model B 700 MHz 1 256 MB 512 MB 8 GB 16 GB 32 GB 100 Mbps
RPi 1 Model B+ 700 MHz 1 256 MB 512 MB 8 GB 16 GB 32 GB 100 Mbps
RPi 2 Model B 900 MHz 4 1 GB 8 GB 16 GB 32 GB 100 Mbps
RPi 3 Model B 1.2 GHz 4 1 GB 8 GB 16 GB 32 GB 100 Mbps 300 Mbps
RPi 3 Model B+ 1.4 GHz 4 1 GB 8 GB 16 GB 32 GB 300 Mbps 1000 Mbps
RPi 4 Model B 1.5 GHz 4 1 GB 2 GB 4 GB 8 GB 16 GB 32 GB 300 Mbps 1000 Mbps
RPi Zero W 1 GHz 1 512 MB 8 GB 16 GB 32 GB 300 Mbps

TABLE 6 variety of raspberry pi (RPi) models choose from

Version CPU Core(s) Memory Storage Network Interface Speed Max NICs
VM 1 2.35 GHz 3.35 GHz 2 8 GB 50 GB 1000 Mbps 2
VM 2 2.35 GHz 3.35 GHz 4 16 GB 100 GB 2000 Mbps 2
VM 3 2.35 GHz 3.35 GHz 8 32 GB 200 GB 2000 Mbps 4
VM 4 2.35 GHz 3.35 GHz 16 64 GB 400 GB 2000 Mbps 8
VM 5 2.35 GHz 3.35 GHz 32 128 GB 800 GB 16000 Mbps 8

TABLE 7 Possible Virtual Machines (VMs ) that are chosen from

No Replicas (seconds) With 2 Replicas (seconds)
XXXXXXXXXXX#particles

#iteration 50 100 200 400 50 100 200 400

5 0.238 0.486 1.002 1.985 0.343 0.611 1.255 2.442
10 0.849 1.698 3.397 6.802 0.972 1.953 3.884 7.665
20 3.110 6.166 12.332 24.717 3.349 6.670 13.323 26.709
40 11.910 23.855 47.010 93.905 12.548 24.900 49.874 99.550

TABLE 8 Comparing PSO performance - SFC length is 10

300-600 ms. Increasing the number of particles also increases the chances of converging to the global optimum. However, more
particles and iterations will increase execution time, as shown in Table 8. For example, in a Raspberry Pi 3B+, 10 particles with
250 iterations can increase the failure rate from 38.83% to 33%. However, it will take between 3.5 to 4.5 seconds to complete
the 250 situations.
Using RP, 74.56% applications completed in less than 200ms. Approximately 16.4% of applications can be allocated to faster

locations, if the RP was aware of location completion times. Therefore, even though the replica-based strategy mitigates failure,
on its own it will not guarantee an optimal completion time. Finally, since Rand does not use replicas, it is more prone to failure
when compared toGNH and RP. More than 70% of Rand allocations finished in the order of seconds not milliseconds. However,
23% of the Rand applications finished faster than RPSO and PSO because it also takes time to decided on the allocations.
Figure 9 shows the average completion time of applications and their execution time. GNH on average completes the

application request in less than 200ms. Whereas RP has an average completion time of around 600ms.
Table 9 shows the failure percentage for each algorithm. When using GNH there is less than 4% failure rate, whereas when

using RP 18% of the allocated applications fail to complete within the expected time. With Rand we see approximately 24% of
the allocated applications succeed in the expected time. Comparing to Rand, PSO enhanced the success rate by 11.86%, whereas
RPSO decreases the failure rate by 49.18%.
Finally, we show theCost of application deployment of RP,GNH, and RPSO in hex-bins and bar-charts in Figures 10 and 11,

respectively. GNH has a maximum of 5 locations used per application. Despite the number of service functions, it has only one
extra location than theMaxReplicasi,j of the first function in the SFCs. Even though Rand usesMaxReplicasi,j to determine
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FIGURE 8 heat-map shows applications completion time

FIGURE 9 Algorithm comparison: completion time in seconds

the number of replicas, 50 locations can be used for a single application deployment, and around 40% exceeded 20 locations
for an application. This occurs because Rand does not save locations that have been used for previously executed functions
within the same SFC. RPSO on average uses around 9 locations per application and mostly uses 1.5 times the SFC length of the
application.
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FIGURE 10 Average cost – based on the number of locations used

FIGURE 11 Hex-bins shows the relations between SFC length with the number of locations

FIGURE 12 Benchmarking performance of Parsl using different execution models both on local and remote nodes to compute
Pi to increasing decimal places.
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Algorithm Failure rate
GNH 3.5%
RP 18.00%
RPSO 38.83%
PSO 67.35%
Rand 76.41%

TABLE 9 Failure Percentage (on average) in each algorithm

6.3 Parsl Performance on Fog Node
In this section we benchmark Parsl performance using fog nodes deployed over a Raspberry Pi3 model B+ device (with 1.4GHz
64-bit quad-core ARM Cortex-A53 CPU, and 1GB RAM), connected over a WiFi network. The average response time for
the controller is 0.47ms (minimum latency 0.4ms, maximum latency 0.65ms). The controller is also a Raspberry Pi3 model
B+ device. We consider both the ThreadPoolExecutor and HighThroughputExecutor Parsl executors (where executors are the
method via which service functions are executed).
The HighThroughputExecutor allows service function execution, concurrently within local (localHtex) or remote (remote-

Htex) machines using Python processes. ThreadPoolExecutor uses multiple threads on a single local node (localTP). In this
experiment, we created a Paramiko script to SSH to a Raspberry Pi and run service functions, and the script was run using
the ThreadPoolExecutor (paramikoTP) to connect it to Parsl. We also executed the targeted service function without Parsl
(LocalNOParsl), to compare its execution time on the Raspberry Pi. Moreover, we observed that multiple controllers access-
ing a single Raspberry Pi using remoteHtex negatively affected performance, unlike paramikoTP. Therefore, in this experiment
we used a single controller, running the spigot algorithm remotely using remoteHtex and paramikoTP. We used the spigot
algorithm41 as a service function that evaluates performance using the different execution models. This service function aims
to calculate the value of �, where the user specifies the number of decimal places required (varied from 10 to 10,000 decimal
place accuracy in this experiment).
Figure 12 shows the time to complete the spigot algorithm using the different execution methods. The x-axis shows the input

size and the y-axis shows the completion time. LocalNOParsl and paramikoTP are almost identical and take around 6.26 seconds
for the former and 6.66 seconds for the latter. LocalNOParsl exhibits marginally better performance as it does not use a network
to send the output. The next set of experiments using localHtex and remoteHtex show similar results. remoteHtex has a delay
of 0.3 seconds when it reaches 10,000 digits. Even though the localTP does not use the network it has the worst completion
time, which exceeds 15 seconds to calculate � to 10,000 decimal places. Although remoteHtex runs on a Raspberry Pi, there is
an opportunity to achieve faster completion time, similar to paramikoTP. A possible solution is to design a lightWeight parsl
executor that is similar to paramikoTP, which allowsmultiple controllers to access the same Raspberry Pi, and has a performance
comparable to execute service functions through a normal SSH connection.

6.4 GNH Performance
In this section we evaluate the speed of GNH in decision making. Both the controller and workers (i.e., reducer and mappers)
are Raspberry Pi 3 models B+. We tested the algorithm in two search space one with 1,000 locations, and another with 100,000
locations. Since Parsl allows decisions to be processed in parallel, we evaluate speed with a single service function. We also
considered locality of data, whether they are on disk (in a file) or in memory.
As can be seen in Figure 13, the time to make a decision is not affected by the number of replicas. This is due to the efficiency

of the Max-heap operations which reduce the time to compare locations.
With less than 1000 location, adding a new mapper to the GNH can increase the performance from 2% to 15%. Moreover,

dividing the search space into 10 disjoint spaces, in which each mapper has 100 locations, can speed up decisions to about 48%
when data are stored in a file on disk. However, if the data are already in memory it is faster by about 35%.
When 100,000 locations are considered the decision-making overhead has a more significant impact. Every added mapper

can boost the performance from 10% to 45 %. Moreover, 10 mappers in the GNH is faster than single mapper by 88%.
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FIGURE 13 GNH Performence

Every time we add a mapper the performance improves by 10-14%. Until we add the 5th mapper the performance exceeds
15%. Addining additional mappers continues to improve performance. For example, 6 mappers outperform 5 mappers by 20%,
7 mappers outperform 6 mappers by around 25%, and 10 mappers outperform 9 mappers by 47%.
Loading a file with 1000 locations to memory takes between 8ms and 23ms. Therefore, keeping the data in memory can boost

the decision-making speed by up to 40%. However, loading data from files to mappers will not take much time if there are fewer
than 100 locations. On the other hand, with 100,000 locations a single mapper can take 1.25 seconds to load the locations to
memory, dividing them between 10 Mappers reduces it to 100ms.
Files with less than 100 locations are easily loaded in memory with minimal delay. Therefore, it would be better to divide the

locations recorded into files that can be loaded to the memory concurrently on a separate thread while the mappers do partial
decision.
Another solution can be to make partial decisions within the mappers during the periodical update for all service functions

and then ranking them in max-heaps; each max-heap ranks locations by single service function. The partial decision will be
passed to the reducer which will decide from the pre-processed partial decisions. This solution saves time, especially with large
search space, since the reducer will not wait for mappers to produce results. However, this solution will need an adjustment to
the MapReduce implementation, for example, the Mapper will only calculate a similarity function for the time and risk, but the
number of locations per application is done by Reducer.

6.5 Comparing GNH with other approaches
Hmaity et al.27 proposed an approach that chooses two nodes for deployment—primary and back up—where functions are
deployed to primary nodes, and redeployed to back up nodes in case of failure. However, this approach has two issues, real-
location increases delay, as well as the obvious limitation if both of the chosen nodes fail to complete. Under a high failure
rate situation, increasing the number of replicas will reduce the failure rate and outperform a state-of-the-art approach with two
replicas running simultaneously.
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Beck et al.28 used breadth-first to search for an SFC placement, and in case of deadlock, they use backtracking to avoid
deadlocks. Nevertheless, as there is no redundant allocations, there is an overhead for reallocation, also, the highly influential
functions in the chain, i.e., the first in the sequence, are randomly placed.
Chantre et al.29 used classic particle swarm optimization (PSO) to redundantly deploy SFCs, where particles move around in

the search-space (simulating social behaviour of swarms) to search for optimal placement. PSO is a stochastic approach, which
is suitable for a large search space. However, due to non-determinism, it cannot guarantee optimality. For example, 38.83% of
RPSO’s applications failed to complete in time; while only 3.5% failed when using GNH (Table 9). Additionally, the algorithm
needs stopping criteria, such as, maximum number of iterations, which can result in long execution times which increase the
end-to-end latency.
GNH varies the number of replicas based on the impact of specific service functions on the SFC completion time, and replicas

are all deployed at the same time. It finds the replicas by dividing process nodes, and searching each in parallel to speed up the
process. Moreover, the optimal allocation (i.e., local optimum) is guaranteed since all nodes are covered and ranked. GNH is
deterministic, which means with the same environmental condition and the same input it will generate the same output.

7 CONCLUSION

The Service Function Chain (SFC) model is increasingly being used to deploy functions across the Fog-Cloud environment.
Fog nodes can be in close proximity to a user, and may have lower capabilities than cloud nodes. We consider a variety of
different types of fog and cloud resources, and explore how these resources can be used as “locations" to host service functions.
We make use of Parsl (a Python-based parallel programming library) to manage dataflow within a SFC, propose the Greedy
Nominator Heuristic (GNH), using the Map-Reduce paradigm, to reduce end-to-end latency across an SFC. GNH applies two
key strategies: (i) avoiding placement of functions on unstable computing resources, that is, resources that historically have
demonstrated a high failure rate; and (ii) deploy functions across multiple locations, using a replication strategy that takes into
account the location of the function in the SFC. Functions that occur at an early stage of the SFC have a greater replication
factor, as executing these functions successfully has an impact on completion of dependent functions further down the SFC.
We conducted a simulation-based evaluation of this work using parameters based on a Raspberry Pi deployment platform.

The simulation is used to: (i) dynamically generate requests and vary the number of functions in an SFC (from 1 to 20); (ii) vary
the availability and failure profile of resources using a clock mechanism that aligns resource unavailability with request arrival
rate (using Mean-time-to-Failure and Mean-time-to-Recovery metrics). We create a number of possible simulation scenarios to
compare GNHwith two random placement algorithms, one with replicated placement of functions. On unreliable infrastructure,
our results show that with the two strategies (i.e., redundancy and failure tracking), the system is able to reduce function execution
latency by up to 68.38% compared to a redundancy only strategy. Moreover, the GNH redundancy is also shown to be cost-
effective compared to a random redundant deployment.
However, our current solution does not support the decoupling of physical-virtual layers in the fog; the virtual system layer

provides flexibility in managing the infrastructure. Moreover, the user needs a way to define applications easily. Our future work
includes (i) investigating the use of parallelism to improve optimization, for example, particle swarm and genetic algorithms for
a single-board computer; and (ii) considering user-defined requirements to service functions placement, such as, taking account
of security tags or hardware requirements (e.g., use of a GPU).
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