The Thermal Agitated Phase Transitions on the Ti₃₂ Nanocluster: a Molecular Dynamics Simulation Study

Tshegofatso M. Phaahla[®], Alexey A. Sokol[®], Charles R.A. Catlow^{a,e}, Scott M. Woodley^e, Phuti E. Ngoepe[®] and Hasani R. Chauke^{a,*}

^aMaterials Modelling Centre, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa. ^bUniversity College London, Kathleen Lonsdale Materials Chemistry, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, United Kingdom.

Received 16 April 2020, revised 2 August 2021, accepted 29 September 2021.

ABSTRACT

Molecular dynamics simulations were performed to investigate the stability with respect to increasing the simulated temperature from 300 to 2400 K of an isolated cluster composed of 32 titanium atoms. The interatomic interactions were modelled using Gupta potentials as implemented within the classical molecular dynamics simulation software DL_POLY. The radial distribution functions (RDF), diffusion coefficient, and density profiles were examined to study the structural changes as a function of temperature. It was found that the Ti_{32} nanocluster exhibits temperature structural transition. The icosahedron and pentagonal bi-pyramid structures were found to be the most dominant building block fragments. Deformation of the nanocluster was also measured by diffusion coefficient, and it was found that the Ti_{32} are mobile above the bulk melting point. The phase transitions from solid to liquid have been identified by a simple jump in the total energy curve, with the predicted melting temperature near the bulk melting point (1941.15 K). As expected, the RDF's and density profile peaks decrease with increasing temperature.

KEYWORDS

Molecular dynamics, titanium cluster, radial distribution functions, diffusion coefficient, mean square displacement.

1. Introduction

Transition metal nanoclusters have attracted extensive investigation over the past decades due to their unique properties, which lie somewhere between those of bulk and single-particle species.¹ They have many fascinating potential uses, including quantum computers or quantum dots, light-emitting diodes, chemical sensors and photochemical applications such as flat-panel displays.²⁻³

Supported nanoclusters are also widely used in catalysis as a large percentage of a nanocluster's metal atoms lie on the surface, and the configurations and electronic properties of surface atoms may differ substantially from those of the bulk.⁴ Moreover, the thermodynamics and other properties near the melting points of metallic nanoclusters are typically very different from those observed for corresponding bulk phases, thus also driving both theoretical and experimental interest in nanoclusters.^{5–9}

For many years, theoretical studies have been used to predict structural properties and reactivity of nanoclusters or nanoparticles, including the reduced heats of formation,^{10,11} surface premelting,¹² size dependence of melting temperatures,¹³ and solid-liquid like phases.^{6,14} These predictions on the behaviour of the nanoclusters have also been confirmed using experiments.^{15,16} It was further reported that the melting point strongly depends on the cluster size. However, clusters of smaller sizes do not show pronounced melting temperatures.¹⁵ Moreover, classical molecular dynamics (MD) simulation¹⁷ was found to be both a reliable and a standard approach used to study the phase transition of the materials. The interest in applying this approach was to gain insight into the thermal stability and melting behaviour of clusters.

* To whom correspondence should be addressed. E-mail: hasani.chauke@ul.ac.za Employing MD, Wang *et al.*¹⁸ and Cleveland *et al.*¹⁹ investigated the melting behaviour of clusters and nanowires, focusing first on the melting temperature, thermal stability and mechanical properties during the melting process; secondly, on the structural evolutions and mechanical properties during heating; and thirdly on the variation of structural characteristics and size effects with temperature. Cleveland *et al.*¹⁹ reported a low temperature structural solid-solid transition, from the optimal structural motif to icosahedral structures, as a precursor to melting temperature for nanoclusters. Moreover, a much earlier investigation of Borel²⁰ reported that the melting temperature decreases with decreasing diameter of the nanoclusters. Similarly, Wang *et al.*¹⁸ found a structural transition within titanium nanowires below the melting point.

In addition to identifying the melting temperature of nanoclusters, some of the main findings include the broadening of the melting transition and the appearance of a characteristic S-shaped loop in the caloric curve.^{21,22,23} Other studies used the potential energy distribution of atoms in nanoclusters to explain many phenomena related to the phase transition of nanoclusters. Lee *et al.*¹³ found a new type of premelting mechanism in the Pd₁₉ nanocluster. However, Breaux *et al.*^{24,25} reported that Ga_n⁺ nanoclusters (n = 17, 20, 30–50, 55) melt at temperatures ranging from 500–800 K and bulk Ga melting at a mere 303 K.

We have previously investigated the structural evolution of Ti_n (n = 2–32) ground state nanoclusters and the evolution of their electronic structure.²⁶ The ground state configurations were predicted using an evolutionary algorithm to find low energy local minima on the energy landscape defined by interatomic potentials. The atomic configurations were subsequently refined using an electronic structure approach.

The chosen global optimization was implemented within the

ISSN 0379-4350 Online / ©2021 South African Chemical Institute / http://saci.co.za/journal DOI: https://doi.org/10.17159/0379-4350/2021/v74a4

Knowledge Led Master Code (KLMC),²⁷ which calls external codes GULP²⁸ and FHI-aims²⁹ in order to evaluate the energy and locally optimize the configurations.

This study focuses on the characteristics of ground-state configuration predicted for the Ti_{32} nanocluster using molecular dynamic simulation. Ti_{32} nanocluster is formed by four interpenetrating pentagonal fragments.²⁶ It was also revealed that the 32 atom titanium nanocluster resembles a low-temperature hcp α -Ti. This structure was deduced from the predicted binding energy data as the cluster evolved towards the bulk system. In the next section, we outline the technique employed to simulate the melting behaviour of the Ti_{32} nanocluster. In section 3, we discuss the effect of temperature on the electronic and structural evolution of the 32-atom titanium nanocluster.

2. Methodology

The initial atomic configuration was taken from our previous study,²⁶ where a genetic algorithm was employed to predict the ground state for Ti₃₂. The energy landscape explored in our earlier work is defined by a combination of a Born-Mayer two-body and Embedded atom method (EAM) interatomic potentials.²⁶ To properly simulate the thermodynamic properties of the Ti₃₂ nanocluster, the EAM and the Born-Mayer interatomic potentials reported by Lazauskas *et al.*²⁶ were incorporated together to express the total internal energy of pure metals in terms of Gupta potentials.³⁰ Based on the second moment approximation of tight-binding theory, the Gupta potential and ion-ion interaction are described by an electronic band and a repulsive term. The total potential of system N atoms located at positions is expressed as follows:

$$U = \sum_{i=1}^{N} \left\{ \sum_{j \neq i} \operatorname{Aexp}\left[-p\left(\frac{r_{ij}}{d}\right) - 1 \right] - \sqrt{\sum_{j \neq i} \zeta^{2} \exp\left[-2 q\left(\frac{r_{ij}}{d} - 1\right) \right]} \right\}$$
(1)

where the first term represents repulsive many-body and the second term represents the attractive many-body. In this approach, both terms are introduced in the exponential form,³¹ where d is the first-neighbour distance, ζ is an affective overlap integral between the electronic orbitals of the neighbouring atom, q and p control the decay of the exponential function related to bulk elastic constants.³² The MD simulations (heat-ing/melting process) were performed in the NVT canonical ensemble. The nanocluster was confined in a cubic unit cell (at fixed lattice parameter, a=b=c=50 Å) with periodic boundary conditions applied in the x, y, z directions implemented within DL_POLY software.³³

The temperature T was controlled by the Nose Hoover thermostat³⁴ with a relaxation time of 0.001 ps. The time integration of the equation of motion was performed using the velocity Verlet leapfrog algorithm.³³ The interatomic interactions were truncated at the cutoff radius of 4 Å.

One independent MD run was performed for 23 fixed temperatures, with 300 K as our lowest chosen temperature and 2400 K our highest. A run time of 300 ps was employed to equilibrate the cluster before collecting data for 600 ps.

3. Results and Discussion

3.1. Temperature Effect on the Ti₃₂ Nanocluster

The minimum energy cluster for Ti_{32} is presented in Fig. 1. The snapshots of the thermally agitated Ti_{32} nanocluster are analyzed in detail to gain more insights regarding structural transition as a function of temperature (T). Note that the (Ti_{32}) nanocluster shows various geometrical configurations as the temperature is increased. The dominant configurations are a triangular bi-pyramid (Ti_5), an octahedron (Ti_6), a pentagonal bi-pyramid (Ti_7), an icosahedron (Ti_{13}) and interpenetrating icosahedra (Ti_{19}), as shown in Fig. 1.

The temperature dependence of the equilibrium cluster structure for Ti_{32} is shown in Fig. 2 (see supplementary information). It was found that the configurational transitions involve distortion or displacement of atoms in the Ti_{32} nanocluster as the temperature increases. The distortion of the Ti_{32} nanocluster becomes more frequent from lower temperatures and increasingly severe with increasing temperature. The structural transients are shown in different colour coding as the structure of T_{32} nanocluster changes as a function of temperature.

The initial configuration starts as interpenetrating icosahedra, where one of the icosahedra is replaced with an icositetrahedra geometry. The transient at 300 K has two interpenetrating icosahedral units (maroon) with two pentagonal bi-pyramids (green and blue). As the temperature increases, the atomic displacement about the initial positions increases and leads to a change in the morphology of the nanocluster at 400 K to a Ti₁₉ unit (red) interpenetrating with two pentagonal bi-pyramids, Ti₇ (blue and lime-green), added on the sides of the Ti₁₉. This change may be attributed to atoms in a solid that undergo vibrations about the equilibrium position, leading to distortions of crystal nanocluster.35 The transition of the nanocluster at 500 K is observed to have Ti₂₀ (blue) polyhedron interpenetrating with icosahedron (gold), triangular bi-pyramid (violet) and an atom (red) connecting the triangular pyramidal and icosahedral units or nanoclusters. At 600 K, the nanocluster transitions to a Ti_{19} (gold) polyhedron interpenetrating with a Z13 Frank Casper polyhedron Ti₁₄ (blue) and a triangular bi-pyramid (limegreen). The effect of thermal agitation at 700 K changes the Ti₃₂ morphology into two interpenetrating Ti₁₉ (gold and blue) polyhedra with a triangular unit connected to the Ti₁₉ polyhedron described by the blue colour. At 800 K, the two Z12 Frank Kasper polyhedral Ti₁₃ (green and blue) form the transient unit interconnected to pentagonal bi-pyramid (lime-green), triangular unit (violet) and an atom (red). The Ti₁₃ nanocluster (maroon) was observed to coexist with four pentagonal bi-pyramids (blue, green, and gold) at 900 K. Two interpenetrating icosahedra (lime-green and blue) complemented by tetra-capped atoms (violet and maroon) on the sides are found to be the transient for 1000 K. The transition occurring at 1100 K leads to two icosahedra connected by dimers (black and lime-green).

Furthermore, for higher thermal agitation, these fragmentation patterns reveal the existence of a stable building block,

Figure 1 Nanoclusters generated from the previous study.²⁶ (Ti_5 as triangular bipyramid, Ti_6 as octahedron, Ti_7 as pentagonal bi-pyramid, Ti_{13} as icosahedron, Ti_{19} as interpenetrating icosahedra and Ti_{32} as four interpenetrating bi-pyramidal pentagonal fragments.)

Africa-UK Partnership for the Computer-aided Development of Sustainable Catalysts

T.M. Phaahla, A.A. Sokol, C.R.A. Catlow, S.M. Woodley, P.E. Ngoepe and H.R. Chauke, S. Afr. J. Chem., 2021, Volume **74** (Special Edition), 17–22, https://journals.sabinet.co.za/content/journal/chem/.

Figure 2 Ti_{32} cluster showing a change in the morphology with increasing temperature. Subunits with different colour shades represent the structural evolution.

namely an icosahedron, or interpenetrating pentagonal bipyramid. At 1200, the coexistence of three-pentagonal bi-pyramid (blue, black and maroon) and triangular unit connecting all the penta-shaped units or nanoclusters with a dimer (lime-green) connecting the blue, maroon and black penta-shaped units. The transient observed for 1300 K comprises two icosahedral polyhedra (blue and lime-green) connected by six atoms. However, at 1400 K, the two interpenetrating icosahedra (blue and green) are found to coexist with a triangular bi-pyramid unit as well as a complementing dimer connecting the other fragments.

The structural transformation precursor at 1500 K is found to be two icosahedral fragments (lime-green and blue) connected by the hexagonal ring (violet, lime-green and black) or triangular bi-pyramid (violet) with an atom (black) connecting the icosahedra and triangular bi-pyramid. Furthermore, the structural transition for 1600 K, shown in Fig. 3 (see supplementary information), is noted to be two icosahedral isomers connected by triangular bi-pyramid shaped nanocluster (violet) and triangular unit (black). At 1700 K, two interpenetrating icosahedra (blue and violet) capped on top of one of the icosahedral configurations (lime-green) with an atom (black) was observed. The transient for 1800 K is found to be the icosahedron (maroon) bi-pentagonal bi-pyramid (blue and green) with tetra-coordinated capping atoms (black) completing the structure.

At 1900 K, the nanocluster transitions into three interpenetrat-

Figure 3 Transients showing a change in morphology from 1600–2400 K. Subunits with different colour shades represent the structural evolution.

ing icosahedra capped by an atom (black), which can also be seen as four interpenetrating pentagonal bi-pyramids (lime-green, gold, blue and red) with a triangular unit (maroon) capping the top of the pentagonal bi-pyramid (lime-green) and three further single complementing atoms (black). However, at 1941.15 K, which is the melting temperature for bulk titanium,^{36,37} the structural transition is observed to have two interpenetrating icosahedra (blue and green) capped by a pentagonal bi-pyramid (maroon) with one (grey) capping atom completing the structure. At 2000 K, three hexagonal rings (black, blue and red) coexisting with pentagonal bi-pyramid (lime-green) and additional atoms (grey) were observed.

This transition did not follow the same pattern with icosahedral dominated configurations, and the behaviour might be attributed to the configuration having a higher symmetry structure. Furthermore, at 2100 K, five octahedral isomers (lime-green, blue and violet) coexisting with eight atoms (gold and green) were observed. The 2200 K structural transition is observed to be two interpenetrating hexagonal rings (blue and black) coexisting with a pentagonal ring (maroon) and the surrounding atoms (grey). The same is observed where the nanocluster did not follow the pentagonal dominated pattern. At 2300 K and 2400 K, the thermal agitated structural transitions are to hexagonal and pentagonal shaped unit dominated configurations (blue, lime-green, violet and gold), whereas 2400 K forms a hexagonal ring (maroon) and triangular unit dominated transition. As discussed below, above 2000 K, there is appreciable atomic mobility confirming the molten state.

3.1.1. Heating and Cooling for Ti₃₂ Cluster

The melting transition of the cluster from a rigid or solid form in which atoms merely oscillate about the equilibrium structure to a liquid or fluid form characterized by atoms leaving their equilibrium basins and finding new ones with new equilibrium positions is spread over a range of temperatures from 300-2400 K. Figure 4a shows the energy varying smoothly with temperature up to 2000 K where it depicts a jump in the total energy closer to the melting temperature of bulk Ti. Thus, this behaviour may be ascribed to a solid-liquid phase transition that is in excellent agreement with the melting point of bulk Ti (1941.15 K).³⁶ This positive deviation from linearity in the total energy may be attributed to the tendency of the nanocluster undergoing surface melting.³⁸

The most striking feature of these results is that the maximum

in the total energy occurs at a temperature above the bulk melting point. In addition, there have been theoretical reports that small nanoclusters have elevated melting temperatures.^{39,40}

Upon cooling, the cluster undergoes a liquid-solid transition. The nanocluster energies become lower from 600–300 K, 1000 K, 1400 K, 1900 K and 2000 K, suggesting the formation of a new stable configuration. There are cooling energies higher than heating energies observed at 800 K, 1500 K, 1700 K, 2100 K, 2200 K and 2300 K, respectively, suggesting the transition to less stable configurations. The solid-liquid and liquid-solid transition have similar energies at 700 K, 900 K, 1100–1300 K, 1600 K, 1800 K and 1941.15 K suggesting similar configurations. A weak hysteresis was observed at 2000 K, suggesting a phase change accompanied by the formation of new geometry. The melting-quenching cycle discloses that it is easier for the nanocluster to go from the solid-liquid phase than the liquid-solid phase, as observed from the total energy data.

In the case of the configuration energy in Fig. 4b, it is observed that at temperatures 300–700 K, the energy is constant, followed by a dip at 800 K, which results in a lower energy nanocluster compared to other temperatures. However, a sudden jump in the energy from 800–1000 K, is followed by the linear increase from 1000–1200 K. Furthermore, a stepwise increase in energies at temperatures from 1300–2300 K is observed, with an abrupt jump in the energy at 1941.15 K that is higher than other temperatures (1900 K and 2000 K). The abrupt jump may be attributed to the phase transition of the nanocluster from a solid phase to a liquid phase.

3.1.2. The Diffusion Coefficient for Ti₃₂

Figure 5 shows the diffusivity, which was calculated from the means square displacement at increasing temperature. The figure depicts no movement of atoms at temperatures lower than 1941.15 K, where the diffusivity reverts to zero. At 2000 K, the atoms appear to have a noticeable movement followed by a diffusivity jump at 2100 K, which might indicate the transition of the nanocluster from solid phase to liquid phase.

These observed transitions are justifiable since the melting temperature for Ti bulk is 1941.15 K which is closer to 2100 K. It is also noticed that as the cluster changes its shape, the diffusivity reverts to zero until the melting temperature is reached. This behaviour may be due to nanocluster transforming into a liquid phase and consequently resulting in surface melting. Similar behaviour was noted for Pd-Pt clusters.³⁵ Their transition

Figure 4 The (a) total energy (heating and cooling) and (b) configuration energy for Ti_{32} cluster in the temperature range 300–2400 K. The melting temperature (1941.15 K) is considered to allow direct comparison of Ti_{32} nanocluster.

Africa–UK Partnership for the Computer-aided Development of Sustainable Catalysts T.M. Phaahla, A.A. Sokol, C.R.A. Catlow, S.M. Woodley, P.E. Ngoepe and H.R. Chauke, *S. Afr. J. Chem.*, 2021, Volume **74** (Special Edition), 17–22, <https://journals.sabinet.co.za/content/journal/chem/>.

Figure 5 The diffusion coefficient for the $Ti_{\rm 32}$ cluster showing phase changes at temperatures above the bulk Ti melting.

temperature was observed to be in the temperature range 800–1200 K, corresponding to the surface melting stage.

However, both Pd and Pt diffusion coefficients tended to increase with temperature whilst a decline is observed in this study. The decline behaviour might be due to differences in atomic sizes and the number of atoms in the cluster.

3.1.3. Radial Distribution Function and Density Profiles for the Ti₃₂ Cluster

In Fig. 6a, the RDFs and the atomic distribution curves against temperature are shown. The 300 K peak shows that the nanocluster has a well-ordered structure.

However, as the temperature increases, the peaks become broader and decrease, indicating a phase change. The reduction in the probability of the peaks may be ascribed to nanocluster changing phases or fragments, which at some point will transition from a solid phase to a liquid phase at an elevated temperature near or above the melting point. This observation is in line with previous reports.^{41,42} The reduction in the sharpness of the peaks is indicative of the reduced crystallinity of the nanocluster, which results in the production of new configurations. Thus, representing the evolution of the nanocluster during heating.

In the case of the density profile plot (Fig. 6b), the atomic distribution of Ti_{32} nanocluster along the axis at different temperatures shows various trends. At lower temperatures, the distinct

peaks indicate the solid-like features, where atoms have higher distribution at a certain distance from the centre. This plot depicts overlap of the peaks at 300 K and 800 K. suggesting that the nanocluster is still in its solid form. However, from 1400–1941.15 K, the peaks are observed to decrease and overlap, indicating minor thermally agitated changes in the system, i.e. the nanocluster is still in a solid phase.

Furthermore, it becomes easier to observe the changes along the Z (A) axis. As the temperature increases, the peaks become broader, decreasing the peak size due to uniformly distributed atoms in the liquid phase at elevated temperatures. Moreover, at 2000 K, which is beyond the bulk melting temperature, atomic distribution becomes extensively shorter, and the new peaks emerging allude to a liquid phase formation.

4. Summary and Conclusion

The molecular dynamics (MD) simulations were carried out to investigate the characteristics of the ground state configuration predicted for the Ti_{32} nanocluster. The thermal agitation shows the dominance of icosahedra, and pentagonal bipyramid geometries below 2000 K. As the temperature increases, the ordering of configurations or isomers changes are noticeable by a change in the morphology of the cluster at 400 K. We also observed a jump in the potential energy at 2000 K which is closer to the melting temperature of bulk Ti suggesting a transition from a solid phase to a liquid phase. The maxima in the potential energy occur at a temperature above bulk melting. However, upon cooling, the nanocluster is mostly solid below the melting temperature. We notice a weak hysteresis at 2000 K due to the structural changes as we cool the temperature.

As a consequence, the cooling transition occurs close to the melting temperature with the nanocluster, which is equivalent to the initial one. The diffusion coefficient results suggest no movement of atoms at temperatures below 1941.15 K; thus, the diffusivity reverts to zero. A noticeable vibration is observed above 2000 K, resulting in a jump in diffusivity at 2100 K. The RDFs shows the peaks decreasing with increasing temperature, and the density profiles reveal the melting temperature behaviour beyond bulk melting temperature, where atomic distribution becomes broader and shorter, and the new peaks emerging.

Acknowledgements

The work was carried out at the Materials Modelling Centre,

Figure 6 (a) Radial distribution functions (RDF) and (b) the atomic distribution of Ti_{32} nanocluster along a Cartesian coordinate (z) at different temperatures.

Special Edition: Research Article:

T.M. Phaahla, A.A. Sokol, C.R.A. Catlow, S.M. Woodley, P.E. Ngoepe and H.R. Chauke, S. Afr. J. Chem., 2021, Volume **74** (Special Edition), 17–22, .

the University of Limpopo, in collaboration with the University College London, the UCL Faraday high performance computing and the Centre for High-Performance Computing (CHPC) in South Africa. We also acknowledge the support from the South African Research Chair Initiative of the Department of Science and Technology, the National Research Foundation and the Royal Society Advanced Fellowship Newton Grant (NA140447).

Supplementary Material

Supplementary information is provided in the online supplement.

[§]ORCID iDs

T.M. Phaahla: A.A. Sokol: C.R.A. Catlow: S.M. Woodley: P.E. Ngoepe: H.R. Chauke: orcid.org/0000-0002-0878-2532
orcid.org/0000-0003-0178-1147
orcid.org/0000-0002-1341-1541
orcid.org/0000-0003-3418-9043
orcid.org/0000-0003-0523-5602
orcid.org/0000-0003-2603-5941

References

- 1 J.D. Aiken III, Y Lin, R.G. Finke and J. Mol, A perspective on nanocluster catalysis: polyoxoanion and $(n-C_4H_9)_4N^+$ stabilized Ir(0)~300 nanocluster 'soluble heterogeneous catalysts', *J. Mol. Catal. A: Chem.*, 1996, **114**, 29–51.
- 2 U. Simon, G. Schon and G. Schmid, The application of Au⁵⁵ clusters as quantum dots, *Angew. Chem. Int. Ed. Engl.*, 1993, **32**, 250–254.
- 3 V.L. Colvin, M.C. Schlamp and A.P. Alivisatos, Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer, *Nature*, 1994, **370**, 354.
- 4 R. Pool, Clusters: Strange morsels of matter: when metals or semiconductors are shrunk down to clumps only 10 or 100 atoms in size, they become a "totally new class of materials" with potentially valuable applications, *Science*, 1990, **248**, 1186.
- 5 M. Schmidt, R. Kusche, W. Kronmuller, B. Von Issendorff and H. Haberland, experimental determination of the melting point and heat capacity for a free cluster of 139 sodium atoms, *Phys. Rev. Lett.*, 1997, **79**, 99.
- 6 F. Ercolessi, W. Andreoni and E. Tosatti, Melting of small gold particles: mechanism and size effects, *Phys. Rev. Lett.*, 1991, **66**, 911.
- 7 M. Schmidt, K. Kusche, B.V. Issendorff and H. Haberland, Irregular variations in the melting point of size-selected atomic clusters, *Nature*, 1998, **393**, 238.
- 8 K.F. Peters, J.B. Cohen and Y.-W. Chung, Melting of Pb nanocrystals, *Phys. Rev. B*, 1998, **57** 13430.
- 9 R.R. Couchman, The Lindemann hypothesis and the size dependence of melting temperatures. II, *Philos. Mag. A*, 1979, **40**, 637.
- 10 S.C. Hendy and B.D. Hall, Molecular-dynamics simulations of lead clusters, *Phys. Rev. B*, 2001, **64**, 085425.
- 11 P. Labastie and R.L. Whetten, Statistical thermodynamics of the cluster solid-liquid transition, *Phys. Rev. Lett.*, 1990, **65**, 1567.
- 12 F. Calvo and R. Spiegelman, Mechanisms of phase transitions in sodium clusters: From molecular to bulk behavior, J. Chem. Phys., 2000, 112, 2888.
- 13 J.Y. Lee, E.K. Lee and R.M. Nieminem, Effect of potential energy distribution on the melting of clusters, *Phys. Rev. Lett.*, 2001, **86**, 999.
- 14 D.J. Wales and R.S. Berry, Freezing, melting, spinodals, and clusters, J. Chem. Phys., 1990, 92, 4473.
- 15 M. Schmidt, J. Donges, Th. Hippler and H. Haberland, Influence of energy and entropy on the melting of sodium clusters, *Phys. Rev. Lett.*, 2003, **90**, 103401.
- 16 M. Schmidt and H. Haberland, Phase transitions in clusters, C. R. Physique, 2002, **3**, 327.

- 17 Y.G. Chushak and L.S. Bartell, Melting and freezing of gold nanoclusters, J. Phys. Chem. B, 2001, 105, 11605.
- 18 B. Wang, G. Wang, X. Chen and J. Zhao, Melting behavior of ultrathin titanium nanowires, *Phys. Rev. B*, 2003, **67**, 193403.
- 19 C.L. Cleveland, W.D. Luedtke and U. Landman, Melting of gold clusters, *Phys. Rev. B*, 1999, **60**, 5065–5077.
- 20 J.P. Borel, Thermodynamical size effect and the structure of metallic clusters, *Surf. Sci.*, 1981, **106**, 1.
- 21 J. Bovin, R. Wallenbreg and D. Smith, Imaging of atomic clouds outside the surfaces of gold crystals by electron microscopy, *Nature*, 1985, 47, 317.
- 22 J. Luo, U. Landman and J. Jortner, 1987, *Physics and Chemistry of Small Clusters* (P. Jena, B.K. Rao and S.N. Khanna, eds.), Plenum, New York, USA, p. 201.
- 23 T.P. Martin, Alkali halide clusters and microcrystals, J. Phys. Rep., 1983, 95, 167.
- 24 G. Breaux, D. Hillman, C Neal., R. Benirschke and M. Jarrold, Gallium Cluster "Magic Melters", J. Am. Chem. Soc., 2004, **126**, 8628.
- 25 G. Breaux, B. Cao and M.F. Jarrold, Second-order phase transitions in amorphous gallium clusters, J. Phys. Chem. B, 2005, **109**, 16575.
- 26 T. Lazauskas, A.A. Sokol, J. Buckeridge, C.R.A Catlow., S.G.E.T. Escher, M.R. Farrow, D. Mora-Fonz, V.W. Blum, T.M. Phaahla, H.R. Chauke, P.E. Ngoepe and S.M. Woodley, Thermodynamically accessible titanium clusters $Ti_{N'}$ N = 2–32, *Phys. Chem. Chem. Phys.*, 2018, 20, 13962–13973.
- 27 S.M. Woodley, Knowledge Led master code search for atomic and electronic structures of LaF₃ nanoclusters on hybrid rigid ion–shell model–DFT landscapes, *J. Phys. Chem. C.*, 2013, **117**, 24003–24014.
- 28 J.D. Gale and A.L. Rohl, The General Utility Lattice Program (GULP), Mol. Simul., 2003, 29, 291–341.
- 29 V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler, Ab initio molecular simulations with numeric atomcentered orbitals, *Comp. Phys.*, 2009, **180**, 2175–2196.
- 30 R.P. Gupta, Lattice relaxation at a metal surface, *Phys. Rev. B*, 1981, **23**, 6265.
- 31 F. Cleri and V. Rosato, Tight-binding potentials for transition metals and alloys, *Phys. Rev. B*, 1993, **48**, 22.
- 32 D. Tomanek, A.A. Aligia and C.A. Balseiro, Calculation of elastic strain and electronic effects on surface segregation, *Phys. Rev. B*, 1985, **32**, 5051.
- 33 Official DL_POLY_4 website at: https://www.scd.stfc.ac.uk/Pages/DL_POLY.aspx
- 34 W. Hoover, Canonical dynamics: equilibrium phase-space distributions, *Phys. Rev. A*, 1985, **31**, 1695–1697.
- 35 S.K.R.S. Sankaranarayanan, V.R. Bhethanabotla and J. Babu, Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters, *Phys. Rev. B*, 2005, **71**, 195415.
- 36 M.C. Steele and R.A. Hein, Superconductivity of titanium, *Phys. Rev.*, 1953, **92**, 243–247.
- 37 C. Kittel, 2004, *Introduction to Solid State Physics*, 8th edn., John Wiley & Sons, New York, USA.
- 38 Y. Qi, T. Çağin, W.L. Johnson and W.A. Goddard, Melting and crystallization in Ni nanoclusters: the mesoscale regime, *J. Chem. Phys.*, 2001, 115, 385.
- 39 C. Majumder, V. Kumar, H. Mizuseki and Y. Kawazoe, Small clusters of tin: atomic structures, energetics, and fragmentation behavior, *Phys. Rev. B*, 2001, **64**, 233405.
- 40 K. Joshi, D.G. Kanhere and S.A. Blundell, Abnormally high melting temperature of the Sn₁₀ cluster, *Phys. Rev. B*, 2002, 66, 155329.
- 41 A.S. Barnard, Modelling of nanoparticles: approaches to morphology and evolution, J. Rep. Prog. Phys., 2010, 73, 086502.
- 42 S.L. Gafner, L.V. Redel and Y.Y. Gafner, Simulation of the processes of structuring of copper nanoclusters in terms of the tight-binding potential J. Exp. Theor., 2009, 108, 784–799.

Supplementary material to:

T.M. Phaahla, A.A. Sokol, C.R.A. Catlow, S.M. Woodley, P.E. Ngoepe and H.R. Chauke,

The Thermal Agitated Phase Transitions on the $Ti_{_{32}}$ Nanocluster: a Molecular Dynamics Simulation Study,

S. Afr. J. Chem., 2021, 74 (Special Edition), 17–22.

Supplementary information, S. Afr. J. Chem.

The thermal agitated phase transitions on the Ti₃₂ nanocluster: A molecular dynamics simulation study

Tshegofatso M. Phaahla^{1,}, Alexey A. Sokol², Charles R. A. Catlow^{2,1}, Scott M. Woodley², Phuti E. Ngoepe¹, and Hasani R. Chauke¹

¹ Materials Modelling Centre, University of Limpopo, Private Bag x1106, Sovenga 0727, South Africa.

² University College London, Kathleen Lonsdale Materials Chemistry, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, United Kingdom

E-mail: Corresponding.hasani.chauke@ul.ac.za

TABLE OF CONTENTS

- 1. Lattice geometry and ionic positions for Ti₃₂ at 300 K.
- 2. Lattice geometry and ionic positions for Ti₃₂ at 400 K.
- 3. Lattice geometry and ionic positions for Ti_{32} at 500 K.
- 4. Lattice geometry and ionic positions for Ti₃₂ at 600 K.
- 5. Lattice geometry and ionic positions for Ti_{32} at 700 K.
- $6. \ \ Lattice geometry and ionic positions for Ti_{32} at 800 \ K.$
- 7. Lattice geometry and ionic positions for Ti_{32} at 900 K.
- 8. Lattice geometry and ionic positions for Ti_{32} at 1000 K.
- 9. Lattice geometry and ionic positions for Ti_{32} at 1100 K.
- 10. Lattice geometry and ionic positions for Ti_{32} at 1200 K.
- 11. Lattice geometry and ionic positions for Ti_{32} at 1300 K.
- 12. Lattice geometry and ionic positions for Ti_{32} at 1400 K. 13. Lattice geometry and ionic positions for Ti_{32} at 1500 K.
- 14. Lattice geometry and ionic positions for T_{132} at 1600 K.
- 15. Lattice geometry and ionic positions for Ti_{32} at 1700 K.
- 16. Lattice geometry and ionic positions for T_{132} at 1800 K.
- 17. Lattice geometry and ionic positions for T_{132} at 1900 K.
- 18. Lattice geometry and ionic positions for Ti₃₂ at 1941.15 K.
- 19. Lattice geometry and ionic positions for Ti₃₂ at 2000 K.
- 20. Lattice geometry and ionic positions for Ti₃₂ at 2100 K.
- 21. Lattice geometry and ionic positions for Ti₃₂ at 2200 K.
- 22. Lattice geometry and ionic positions for Ti₃₂ at 2300 K.
- 23. Lattice geometry and ionic positions for Ti₃₂ at 2400 K.

1. Lattice geometry and ionic positions for Ti_{32} at 300 K.

	50.000000000	0.00000	00000	0.0000000000
	0.0000000000	50.00000	00000	0.0000000000
	0.0000000000	0.000000	0000	50.0000000000
Ti	-4.54666545	1.74008362	1.4962	26329
Ti	-4.74260780	0.83178665	-0.943	63262
Ti	-3.93857361	3.56455838	-0.778	47782
Ti	-3.44661830	-0.58587495	0.968	84685
Ti	-2.86438705	3.64574343	1.9722	24577
Ti	-1.86628293	1.17602400	2.4575	51194
Ti	-1.45731630	4.82527912	-0.079	61654
Ti	-2.22244554	1.73076495	-0.134	62636
Ti	-3.29633106	1.66934408	-2.965	71585
Ti	-2.70980713	-0.88948005	-1.648	99221
Ti	-1.56272073	3.48356872	-2.406	35320
Ti	-0.18918204	3.31514708	2.011	51072
Ti	-0.79635752	-0.62136586	0.245	74287
Ti	1.23391571	5.14361754	0.5523	37043
Ti	0.34551076	2.76665599	-0.555	71768
Ti	-0.96920349	1.91855838	-4.654	49581
Ti	0.47842810	5.20014434	-1.9740	50115
Ti	-0.66291296	0.83355581	-2.209	00978
Ti	0.80102965	0.79761610	1.5892	25932
Ti	-1.78031608	-0.57955159	-4.128	12922
Ti	-0.01979110	-1.72291643	-2.098	62714
Ti	1.19405491	2.60081483	-3.0689	91562
Ti	2.52784968	2.88427990	1.3529	94614
Ti	1.70964301	-1.77567569	0.1730	51538
Ti	1.85758286	0.58270254	-0.9330	50122
Ti	2.87137486	3.73030728	-1.342	10858
Ti	1.18976486	0.10448976	-3.9768	88516
Ti	2.64850135	-1.60545951	-2.489	13107
Ti	3.39159575	0.08627286	1.4789	96064
Ti	3.62493641	1.13163737	-2.8694	48315
Ti	4.47836651	1.84410858	-0.272	56971
Ti	4.38206540	-0.75346386	-0.724	60533

2. Lattice geometry and ionic positions for $Ti_{32} \mbox{ at } 400 \mbox{ K}.$

	50.00000000	0 0.00000	00000	0.0000000000
	0.0000000000	50.00000	00000	0.0000000000
	0.0000000000	0.000000	0000	50.0000000000
Ti	-4.15034675	0.81071942	1.079	19770
Ti	-1.66498732	0.72058195	2.926	53810
Ti	-2.45450665	-1.68340147	2.222	78357
Ti	-3.16925349	2.76521789	-0.610	44415
Ti	-3.61481680	-1.63718299	-0.187	759115
Ti	-3.97418679	0.51697644	-1.793	43332
Ti	-0.88507568	-2.34006679	-0.128	333933
Ti	-1.67664904	0.35608167	0.150	71520
Ti	-2.28010480	2.99242155	1.886	12808
Ti	-2.00267641	5.17635460	0.094	84103
Ti	0.34958697	-0.91309648	1.800	15064
Ti	-1.93118552	-1.10138853	-2.299	017785
Ti	-1.38178230	4.23215078	-2.436	63289
Ti	0.79077896	-1.67053897	-2.404	69297
Ti	0.83650568	0.40394662	-0.771	67824
Ti	0.65827303	1.69156423	2.033	94484
Ti	1.86980041	-2.21002146	-0.004	47775
Ti	-0.56320497	2.83184160	-0.157	52934
Ti	-1.25735267	1.40461851	-2.329	74064
Ti	0.02512697	4.60266125	1.766	64904
Ti	0.62213888	5.28989713	-0.730	34548
Ti	2.92963720	0.43077655	0.906	37029
Ti	-0.42254849	-0.02188247	-4.404	77325
Ti	0.95352590	5.30016120	-3.483	96169
Ti	1.19677610	3.03773620	-2.094	87277
Ti	3.38094235	-0.71642148	-1.768	74337
Ti	2.26385327	3.25908085	0.466	97717
Ti	3.23544667	4.71321769	-1.858	44637
Ti	-0.16794330	2.70319041	-4.526	09440
Ti	3.55638698	1.94293068	-1.596	35121
Ti	1.86191522	0.82195192	-3.473	68339
Ti	2.72902711	3.36319485	-4.229	30796

3. Lattice geometry and ionic positions for $Ti_{32} \mbox{ at } 500 \mbox{ K}.$

	50.0000000000	0.00000	00000	0.0000000000
	0.0000000000	50.00000	00000	0.0000000000
	0.0000000000	0.000000	00000	50.0000000000
Ti	0.431972	-0.224854	-3.5422	.67
Ti	2.897534	-1.520845	-2.3439	75
Ti	2.658995	1.249110	-3.1121	18
Ti	0.226155	-2.493015	-2.0132	.82
Ti	0.655416	2.207507	-4.8688	25
Ti	-1.980367	1.361883	-3.9332	.04
Ti	4.297407	0.732940	-1.0270	29
Ti	1.357897	-0.084555	-0.7955	66
Ti	3.550624	-1.163240	0.6024	70
Ti	1.742918	-2.930926	0.0663	39
Ti	2.783841	1.335689	1.3124	94
Ti	-0.983798	4.100081	-3.6337	21
Ti	-1.477891	0.210078	-1.2089	08
Ti	1.858316	4.003276	-3.2307	42
Ti	0.268102	2.104423	-2.2134	50
Ti	0.944222	1.644117	3.1969	59
Ti	2.545788	2.872452	-0.7661	02
Ti	-0.026863	1.830855	0.5307	83
Ti	-3.686531	3.581806	-3.2167	39
Ti	1.134331	-0.772075	1.8647	85
Ti	-0.765159	-1.877976	0.4334	11
Ti	0.993396	3.983696	1.6323	97
Ti	-2.501292	5.505766	-1.8130	20
Ti	-4.109502	1.346860	-1.6787	'18
Ti	-2.021363	2.889233	-1.4083	89
Ti	0.256397	4.624318	-1.1101	52
Ti	-1.358791	0.224656	2.2362	67
Ti	-3.377079	-0.774116	0.3183	41
Ti	-4.390863	3.832885	-0.6570	41
Ti	-1.406292	2.861327	2.7852	19
Ti	-1.820761	4.519904	0.8208	69
Ti	-3.033658	1.892015	0.8168	93

4. Lattice geometry and ionic positions for Ti_{32} at 600 K.

	50.00000000	0.00000	00000	0.000000000	0
	0.00000000000000	50.00000	00000	0.000000000	0
	0.00000000000000	0.000000	0000	50.000000000	0
Ti	4.29359883	1.41865620	-2.443	12250	
Ti	4.25121065	-0.11030434	-0.219	56876	
Ti	3.23051587	2.56783029	0.097	83292	
Ti	3.32596181	-1.21450902	-2.708	86218	
Ti	2.25411930	3.23122101	-2.584	24074	
Ti	2.06023180	0.92910484	-4.157	00882	
Ti	2.23913248	5.00285209	-0.569	37434	
Ti	1.93729541	0.75032928	-1.444	84538	
Ti	1.95515088	0.56996537	1.405	02599	
Ti	2.07215402	-1.78170234	-0.134	97883	
Ti	1.26716669	3.37942879	2.041	86801	
Ti	0.34490949	3.17257792	-4.430	47323	
Ti	0.58473629	-1.39753514	-2.665	85423	
Ti	-0.05253500	4.91451513	-2.086	28202	
Ti	0.36587451	2.77837526	-0.384	78443	
Ti	-0.65138587	1.04470602	1.916	64676	
Ti	-0.13385767	5.59165962	0.583	98321	
Ti	-0.11506535	-0.15920164	-0.282	11572	
Ti	-0.39679602	1.33649691	-2.670	71054	
Ti	0.11896375	-1.71340798	1.929	69935	
Ti	-0.58409531	-2.78214534	-0.390	17163	
Ti	-1.61182069	3.53770840	1.788	50290	
Ti	-2.00457520	3.44850494	-3.097	35809	
Ti	-2.25097746	-1.08551531	-1.921	62247	
Ti	-2.08857228	1.72666164	-0.545	48517	
Ti	-2.39332938	4.45752146	-0.706	82576	
Ti	-3.26463352	1.11225781	1.995	51349	
Ti	-2.43689156	-1.16166572	0.865	48435	
Ti	-3.30636616	1.01332173	-3.136	14690	
Ti	-4.39204480	3.06181250	0.591	26314	
Ti	-4.54774613	2.99201908	-1.987	57706	
Ti	-4.40722865	0.44173393	-0.604	43321	

5. Lattice geometry and ionic positions for Ti_{32} at 700 K.

	50.00000000	0.00000	00000	0.0000000000
	0.000000000	50.00000	00000	0.0000000000
	0.000000000	0.000000 0	0000	50.000000000
Ti	2.94256387	1.64989933	1.4306	57445
Ti	1.99100525	-0.80108794	2.509	90522
Ti	1.13739957	4.22237711	1.6556	62647
Ti	1.27351528	-2.67696880	0.659	91985
Ti	3.49051221	3.65609936	-0.277	77744
Ti	1.84843300	-1.44242403	-2.003	44207
Ti	3.54863679	-1.10329939	0.344	83776
Ti	1.15596676	0.02147128	0.1900	03386
Ti	0.29660268	1.47842336	2.3502	24399
Ti	-0.65753648	-1.15206630	1.862	21756
Ti	0.81393962	2.79464934	-0.420	54729
Ti	2.39183002	0.41720303	-3.8002	25914
Ti	-0.68025708	-1.66139698	-1.109	02421
Ti	3.11286234	1.08862291	-1.232	54045
Ti	0.13866430	0.97291539	-2.322	30677
Ti	-2.62644125	0.73234310	2.451	75281
Ti	1.62811720	5.25752493	-1.1802	24726
Ti	-1.34002912	0.76561992	0.121	52141
Ti	-0.23311436	-0.94957804	-4.061	45482
Ti	-3.14811501	-1.11818834	0.375	88329
Ti	-2.68239931	0.05171042	-2.341	33097
Ti	-1.69792149	3.15089396	1.342	74860
Ti	2.20605423	2.98359309	-2.916	84122
Ti	-1.97875015	1.95530405	-4.087	13711
Ti	-1.84074687	2.73253805	-1.388	49236
Ti	-0.93012841	5.13040268	-0.496	63162
Ti	-3.96184430	1.53726770	0.123	51731
Ti	-4.36482209	2.38093427	-2.501	49547
Ti	-0.10348232	4.09118343	-3.090	08667
Ti	-3.69808332	4.25213183	-0.275	30976
Ti	-2.80397515	4.68185459	-3.025	78447
Ti	0.43464433	1.97332006	-4.844	19536

6. Lattice geometry and ionic positions for Ti_{32} at 800 K.

	50.00000000	0.000000	00000	0.0000000000
	0.0000000000	50.00000	00000	0.0000000000
	0.00000000000000	0.000000	0000	50.0000000000
Ti	-0.52136975	-2.93398761	-1.343	05914
Ti	-1.62217820	-1.15158052	-3.037	88326
Ti	0.03637871	-0.56328421	-0.089	50942
Ti	1.28103170	-1.18327619	-2.247	20958
Ti	-2.50878749	-0.92734153	-0.464	35149
Ti	1.70403779	-2.57576437	0.225	51719
Ti	-0.93482801	-2.79235319	1.312	24332
Ti	-0.50066413	1.00204248	-2.196	97235
Ti	-1.92657528	1.25404474	-4.550	23118
Ti	0.56656198	0.13733766	-4.548	58979
Ti	-4.09669857	0.97238275	0.838	80664
Ti	2.99784873	1.76436881	1.8916	53210
Ti	2.47499938	1.33086999	-2.688	09948
Ti	1.66983131	-0.63472883	2.019	52919
Ti	1.30546897	1.66252941	-0.1622	21594
Ti	-3.05255496	1.26194614	-2.100	72389
Ti	-2.43222944	2.39201102	2.297	02410
Ti	-0.11551544	3.51635791	-1.376	97404
Ti	3.16410079	-0.22357860	-0.248	89119
Ti	-2.32739921	3.67524186	-2.847	97828
Ti	0.28146894	2.71426904	-4.049	86375
Ti	-3.38372905	3.57618380	-0.176	88177
Ti	0.29190906	1.63228662	2.3324	14983
Ti	2.25022506	3.98218979	-2.404	01393
Ti	-1.52400583	1.71508347	0.0404	40262
Ti	-1.67769808	-0.22224897	2.042	12585
Ti	-1.89994532	5.70940292	-1.244	85561
Ti	-0.12040828	5.25267707	-3.339	16893
Ti	3.89635511	2.47964237	-0.5994	49246
Ti	-0.63811076	4.25537321	1.0752	23937
Ti	2.11516016	4.08209773	0.6200)9789
Ti	0.91042085	5.91307861	-0.934	02448

7. Lattice geometry and ionic positions for Ti_{32} at 900 K.

	50.000000000	0.00000	00000	0.0000000000
	0.0000000000	50.00000	00000	0.0000000000
	0.0000000000	0.000000	0000	50.0000000000
Ti	-3.22996327	0.60239816	-1.402	96004
Ti	-1.04883704	4.20218064	0.682	27035
Ti	-1.84030362	0.48660635	-3.642	266440
Ti	1.63142563	3.93566179	1.831	43631
Ti	-3.28606210	2.80719242	-3.122	233180
Ti	-3.48210412	3.30667391	-0.533	68342
Ti	0.15639020	-1.87514308	-3.426	61313
Ti	-1.99012339	1.53539678	0.694	03349
Ti	-3.26001328	3.15090480	2.392	54881
Ti	-0.51051023	2.19884396	2.881	05484
Ti	-4.56727418	0.80953351	1.214	28263
Ti	-1.04379139	2.99134215	-4.517	65070
Ti	0.75037985	1.94445231	0.366	87243
Ti	0.00118490	-2.39364355	-0.274	01413
Ti	-0.38556957	-0.04690457	-1.320)15894
Ti	-2.60916537	0.48172604	3.124	04671
Ti	-2.05978383	-1.89461569	-1.938	376591
Ti	2.04885609	1.60303943	-1.750	46146
Ti	-1.41452278	4.88010930	-2.225	56448
Ti	2.16179901	1.25318001	2.582	30814
Ti	3.48075161	2.51507952	0.414	67994
Ti	-2.38980031	-1.09498221	0.689	96465
Ti	0.70432320	0.79305477	-3.970	20842
Ti	1.19872725	4.34400053	-0.934	48605
Ti	-0.86495946	2.42719587	-1.736	524700
Ti	2.17727724	-0.38756730	0.082	64209
Ti	-0.11743893	-0.28998539	1.759	66624
Ti	4.62302582	0.91900711	-1.650	37781
Ti	1.24338778	3.46228236	-3.543	09950
Ti	2.51459856	-0.79026951	-2.512	250685
Ti	3.28686672	1.47828883	-4.000	02807
Ti	3.78432974	3.71823415	-2.170	00639

8. Lattice geometry and ionic positions for Ti_{32} at 1000 K.

	50.000000000	0.00000	00000	0.0000000000
	0.0000000000	50.00000	00000	0.0000000000
	0.0000000000	0.000000	0000	50.0000000000
Ti	0.71983952	1.54236427	-4.3374	14936
Ti	3.04082485	-0.43410389	-1.051	50172
Ti	1.12219514	-2.46730775	-0.2414	43506
Ti	2.57989018	3.31090161	-4.0133	35977
Ti	-1.60442292	2.86940159	-4.592	38115
Ti	-0.01976401	5.44788204	-0.686	91106
Ti	0.74507634	1.00711282	2.2032	29608
Ti	1.70955732	1.78555077	-1.9749	91140
Ti	-0.97653286	-1.91871064	-1.908	14120
Ti	-3.58784265	2.80126782	2.2745	53060
Ti	0.97876500	-0.78357510	-2.960	88287
Ti	4.26007668	2.24465001	-1.9936	52096
Ti	-1.48213106	0.24785127	-3.560	06427
Ti	0.45548462	-0.04312178	-0.380	84233
Ti	-3.39271051	2.05353022	-3.058	03191
Ti	-3.91697168	0.18980307	1.4060	06071
Ti	3.26951151	0.53150142	-3.7652	20628
Ti	-1.65986930	1.44648807	0.7905	57499
Ti	2.56149189	4.24092203	-1.2359	96715
Ti	0.42878918	-1.73735168	2.2891	11122
Ti	-1.85952457	0.28482548	3.0670)4141
Ti	-1.63741926	-1.22923504	0.699	58493
Ti	3.18339835	1.92435005	0.4228	80213
Ti	-3.75911370	2.66044463	-0.5792	26630
Ti	-0.91689248	2.29807767	-1.7832	20148
Ti	0.39439738	4.50847049	-3.1635	55104
Ti	-0.96601102	3.02977444	2.9338	39238
Ti	-2.29782611	4.63884834	-2.287	08503
Ti	-3.10366386	0.02645222	-1.102	19431
Ti	-2.05289735	4.24546053	0.6648	35012
Ti	0.74911502	3.11696319	0.4420	6530
Ti	2.69828111	-0.76621482	1.5261	17291

9. Lattice geometry and ionic positions for Ti_{32} at 1100 K.

	50.000000000	0.00000	00000	0.0000000000
	0.0000000000	50.00000	00000	0.0000000000
	0.0000000000	0.000000	0000	50.0000000000
Ti	-1.10116610	2.51277279	-3.098	73473
Ti	-0.71768472	-0.06902173	-3.146	57944
Ti	-2.75171575	-0.91827436	-1.095	506641
Ti	1.35340181	1.32677274	-4.208	27225
Ti	3.54822441	3.32229705	-4.555	66754
Ti	-1.07901968	0.89299191	3.687	01495
Ti	3.58704658	1.50692572	-1.999	54380
Ti	-2.73663077	3.62179580	-1.237	58972
Ti	-3.43600701	1.21683142	-2.578	94897
Ti	-2.04115954	2.64850008	1.532	82095
Ti	-1.42536518	-2.67411746	1.041	70785
Ti	-0.66635778	5.10925197	-2.752	06240
Ti	-4.23438170	1.24115361	0.079	28708
Ti	2.67789668	3.24414445	-0.088	57145
Ti	1.61494237	3.60038252	-2.596	60965
Ti	-2.24930555	-1.45080805	3.607	41074
Ti	0.03981925	-0.89450330	-0.657	01925
Ti	-4.00322185	0.85133094	2.776	64902
Ti	-2.04289442	-0.05804546	1.284	10017
Ti	2.04483285	-2.47479569	0.404	48154
Ti	1.82346792	5.75245436	-1.030	79216
Ti	0.48859664	1.44358002	1.482	30585
Ti	2.06513443	-0.86243721	-2.377	53511
Ti	-0.16666897	3.75639200	-0.429	57167
Ti	1.00255808	1.48316247	-1.416	03751
Ti	2.12052925	5.73668983	-3.947	65070
Ti	-4.13293113	-1.53165196	1.290	47307
Ti	2.54824756	0.19034793	0.166	11722
Ti	4.08558071	4.64983554	-2.288	84249
Ti	0.33044392	-1.26092030	2.172	62547
Ti	-1.54373405	1.33626205	-0.828	16981
Ti	0.66062250	3.82397369	-5.147	75071

10. Lattice geometry and ionic positions for Ti_{32} at 1200 K.

	50.000000000	0.00000	00000	0.0000000000
	0.0000000000	50.00000	00000	0.0000000000
	0.0000000000	0.000000	0000	50.0000000000
Ti	-3.24994521	-2.29358213	0.184	57825
Ti	-0.07733300	4.30548945	-3.400	84304
Ti	-1.32328876	2.05756170	1.738	66155
Ti	-0.72899120	0.80254119	-1.875	06096
Ti	0.75059424	1.34458696	0.2212	27903
Ti	-1.18996287	-1.77154529	-1.944	20488
Ti	-2.41889544	2.44336569	-3.370	10598
Ti	3.79253372	0.87152226	-3.600	60572
Ti	-4.19504149	0.18364144	0.949	03729
Ti	-2.69833438	-1.35595344	2.645	19023
Ti	-0.60339485	3.29565492	-0.963	97467
Ti	-1.45516907	-0.15145359	-4.179	16099
Ti	2.64879154	3.56721322	-3.993	37839
Ti	3.17556464	0.11421514	-1.042	33542
Ti	-2.31562991	4.52187230	0.917	97809
Ti	1.30129129	-0.46286039	-3.220	26086
Ti	-2.98436291	2.26670182	-0.437	39274
Ti	-1.65302524	-0.20353860	0.385	38538
Ti	0.32140246	4.33926089	1.206	65127
Ti	-0.62801968	-2.81786109	1.287	40325
Ti	1.75477273	4.60130562	-1.308	01220
Ti	-3.38855983	0.18031895	-1.869	76740
Ti	1.65224765	2.08968402	-2.177	49931
Ti	-0.67513007	5.90648495	-0.893	49989
Ti	2.70268603	0.11443077	1.620	94006
Ti	1.38611890	2.31261115	2.742	87463
Ti	0.08879315	-0.33751845	2.434	26578
Ti	0.95119183	-1.29325621	-0.385	17678
Ti	0.54034805	1.87482876	-4.471	65403
Ti	-2.80304919	4.79755528	-1.821	83287
Ti	2.88540303	2.78869267	0.491	52020
Ti	4.09949457	2.98130343	-1.827	02076

11. Lattice geometry and ionic positions for Ti_{32} at 1300 K.

	50.000000000	0.00000	00000	0.0000000000
	0.0000000000	50.00000	00000	0.0000000000
	0.0000000000	0.000000	0000	50.0000000000
Ti	-2.14023985	2.35584763	-3.166	80627
Ti	1.42132756	-0.60227100	1.536	01269
Ti	-2.94429809	-2.30919996	0.999	66712
Ti	-2.39214659	1.56865126	3.7420	01568
Ti	-0.57721432	-0.96212111	-0.173	28831
Ti	-4.01279510	2.12691615	-0.695	27723
Ti	1.05363918	1.39807770	-0.422	76145
Ti	-5.04694538	-0.36687692	0.489	61219
Ti	2.69431733	3.74616808	-1.057	11377
Ti	-4.58104829	1.70081752	2.274	13665
Ti	-0.17889041	0.51127668	-2.757	88683
Ti	2.08716807	-0.82900202	-1.582	09540
Ti	-2.80997609	-0.11008548	-1.734	99433
Ti	0.31734266	3.33716690	-2.240	55346
Ti	-1.38486355	2.09956798	-0.652	66394
Ti	0.59091760	2.36830974	-4.868	89379
Ti	0.07274551	1.45912254	2.1526	63610
Ti	-3.77868975	-0.88424633	3.068	67354
Ti	-1.99454242	4.57400742	-1.517	09890
Ti	2.47121438	2.68502166	1.6939	99889
Ti	4.43936799	0.07826240	-3.062	96060
Ti	-0.74816154	4.61863866	-4.102	47913
Ti	4.71786262	2.58959858	-2.701	62117
Ti	2.35075410	1.62506415	-2.9330	09854
Ti	3.58098495	2.30750835	-5.221	53180
Ti	1.93800104	-0.42817406	-4.653	89219
Ti	3.82740011	1.23525397	-0.453	58763
Ti	0.18683103	3.88626630	0.4553	35281
Ti	-2.23323927	3.26421770	1.856′	72834
Ti	-2.49009812	0.56584639	1.096	16741
Ti	-1.05298897	-0.96332773	2.735	54369
Ti	2.27936433	4.42697025	-4.057	96225

12. Lattice geometry and ionic positions for Ti_{32} at 1400 K.

	50.00000000	0.00000	00000	0.0000000000
	0.0000000000	50.00000	00000	0.0000000000
	0.0000000000	0.000000	0000	50.000000000
Ti	2.04567109	4.62404136	-3.155	56015
Ti	-2.40844808	3.29059112	2.082	18676
Ti	2.09245054	-0.19806638	-3.424	84706
Ti	2.10071023	-0.60853241	-0.835	37513
Ti	3.48389637	1.41570666	0.3664	18480
Ti	-0.29029794	3.99438662	0.995	58104
Ti	-0.72897762	-0.59267823	0.119	65627
Ti	4.34674700	0.50361935	-2.238	80683
Ti	-0.03637733	-1.70052218	-2.390	49032
Ti	-2.12340792	1.81217523	-0.025	49767
Ti	3.59602071	2.56851869	-4.1920	08774
Ti	-1.48249586	0.57998585	2.436	75874
Ti	-3.33479074	-0.88521241	0.913	11690
Ti	2.10891804	4.21256991	-0.0914	46371
Ti	-2.53665409	2.46309045	-2.594	87170
Ti	0.85259401	-2.83232676	0.1570	06875
Ti	-0.06880155	3.42120501	-1.645	50189
Ti	0.40910331	5.96735000	-1.351	69931
Ti	1.18908076	-0.80305628	1.926	16220
Ti	0.85333906	2.46589692	-4.2528	85244
Ti	-1.25622731	-2.36452617	1.993	91252
Ti	-4.37916909	3.41471410	-0.116	63065
Ti	-2.51240571	-0.60174441	-1.922	19830
Ti	-0.02027526	0.82694033	-1.928	98266
Ti	-1.16253269	4.74592676	-3.591	69569
Ti	-4.64602356	0.91323883	-0.733	21852
Ti	2.21469557	2.14363092	-1.910	00775
Ti	4.55212176	3.33067882	-1.834	94234
Ti	-2.10914616	4.94203233	-0.692	12737
Ti	-1.82964299	-2.89699972	-0.665	64214
Ti	-4.14683293	1.30189180	2.009	96883
Ti	0.89025912	1.61874725	0.6374	18068

13. Lattice geometry and ionic positions for Ti_{32} at 1500 K.

	50.00000000	0.000000	00000	0.0000000000
	0.0000000000	50.00000	00000	0.0000000000
	0.0000000000	0.000000	0000	50.000000000
Ti	-2.27607051	6.65628630	-1.2889	94540
Ti	-0.77314793	2.36553055	-2.2564	9551
Ti	2.62750668	-0.04405092	-2.2144	2525
Ti	2.78911408	-0.14272941	2.4958	3016
Ti	-2.27341289	4.64548915	-3.3815	6794
Ti	0.40917868	0.26122250	-3.7303	5839
Ti	2.64269200	1.54525732	-4.3305	9998
Ti	-0.98542374	-1.44790425	0.4544	1938
Ti	-2.01945058	2.21833258	-4.5228	35249
Ti	4.30066655	-0.75343502	0.0847	5329
Ti	1.77036986	2.73037575	-2.1886	8869
Ti	-2.17780346	3.96984985	-0.6616	64957
Ti	2.79324119	1.51004990	0.0200	1613
Ti	0.62600922	-1.92656843	2.6443	1148
Ti	0.07866114	0.92427587	2.0811	6704
Ti	0.61833892	-3.71470312	0.4922	3052
Ti	-0.76567399	5.72624371	0.9666	7314
Ti	2.99212083	-2.71618869	1.6751	7354
Ti	0.37884589	0.48732877	-0.9686	6767
Ti	-2.07450993	1.09208116	0.4376	8859
Ti	-3.45245964	2.17159969	-2.3303	0325
Ti	-4.48131561	2.73152040	0.2529	8750
Ti	1.59895467	-1.07438406	0.2645	6475
Ti	0.54511265	3.24261517	-4.6661	9758
Ti	0.22445026	4.96006417	-1.5995	4121
Ti	-4.61406916	5.12448543	-1.3445	6859
Ti	0.58548779	-1.94272393	-2.0460	01630
Ti	3.04795974	-2.78920354	-1.1031	1445
Ti	-1.50880588	3.19217231	1.9371	0954
Ti	0.43264195	2.99646357	0.1456	8052
Ti	-3.50154541	5.13700465	1.1759	4463
Ti	-1.89456264	-0.06308408	-2.4505	57982

14. Lattice geometry and ionic positions for Ti_{32} at 1600 K.

	50.000000000	0.00000	00000	0.0000000000
	0.0000000000	50.00000	00000	0.0000000000
	0.0000000000	0.000000	0000	50.000000000
Ti	0.30872785	1.00205901	-2.8884	1271
Ti	1.83909784	3.60631425	-2.8525	6974
Ti	1.46656123	5.46391534	-4.5564	7656
Ti	-4.84107354	-1.29559858	0.9939	00362
Ti	2.87834848	1.02533874	-3.5860	0189
Ti	-0.22997627	-2.24750394	0.6556	58809
Ti	-2.00600360	1.55788314	-1.6522	27896
Ti	-2.13502920	4.19107727	-0.8953	32443
Ti	-2.53763026	-2.09169785	2.5238	86785
Ti	-2.95093293	-2.63220603	-0.2076	53687
Ti	-0.69465556	0.13098653	2.5755	2367
Ti	3.67754685	3.79829772	-4.6550	3064
Ti	1.86029749	-0.65960796	1.3890	7288
Ti	-0.23295166	4.73367034	0.8280	0667
Ti	-4.07436183	-0.61689407	-1.7260)3554
Ti	0.23193959	-2.45713714	3.1277	2480
Ti	0.16167873	2.94338678	-0.9590	0597
Ti	-3.59541206	0.67185517	2.8940	7043
Ti	-2.51115356	-0.12585386	0.5981	6419
Ti	-1.51432958	-0.98463235	-2.1652	29019
Ti	-0.00282363	0.25274394	-0.2671	0425
Ti	3.49406590	5.71412176	-2.6712	4202
Ti	1.16128460	2.14911072	1.4762	5720
Ti	2.40807628	1.39798452	-0.9323	0355
Ti	1.62428190	-1.22656348	-1.8148	36538
Ti	0.81639692	5.55278350	-1.5463	4072
Ti	4.36471193	2.99500704	-2.0984	8570
Ti	-0.92709359	3.64342098	-3.3265	52825
Ti	2.68282192	4.02553335	-0.1311	9246
Ti	-4.39448233	1.62343190	0.0231	5511
Ti	1.01051063	2.53720679	-5.1470	8851
Ti	-1.67533783	2.39483983	1.0377	5796

15. Lattice geometry and ionic positions for Ti_{32} at 1700 K.

	50.00000000	0 0.00000	00000	0.0000000000
	0.0000000000	50.00000	00000	0.0000000000
	0.0000000000	0.000000	0000	50.000000000
Ti	0.22133977	-0.46486036	-0.7272	0512
Ti	-1.74521920	-0.02421044	-2.5739	9156
Ti	-0.40280781	2.05916173	-1.7286	6598
Ti	-1.60990075	3.45091807	0.3649	1517
Ti	1.90263550	5.83619006	-2.8369	1113
Ti	-4.23346553	2.39485182	1.0469	8770
Ti	-2.19537762	-0.48948949	4.2122	4424
Ti	-0.51467777	4.61482181	-2.7577	9588
Ti	-3.83458426	-0.43991883	1.9133	7835
Ti	3.78023634	1.26504708	-3.4417	3300
Ti	-2.87532947	2.49386939	-2.1163	5472
Ti	2.65780406	6.56504713	-5.1978	1430
Ti	1.26514033	0.31466156	-3.1790	2568
Ti	-2.29013202	1.56103163	2.7723	8578
Ti	-0.00096650	-1.88731603	3.8591	0006
Ti	-0.72208352	2.24333437	-4.3818	5628
Ti	0.49127297	0.61908565	3.6528	4991
Ti	1.10431613	4.16135524	-0.4847	9022
Ti	3.53266769	3.80136523	-1.4186	8736
Ti	2.27038150	1.50878062	-1.0124	0538
Ti	2.17397574	2.02291499	-5.4730	4573
Ti	-2.09426103	0.83965505	0.0614	6648
Ti	1.09960270	4.48755655	-5.3277	7808
Ti	-2.22117927	-2.79681969	2.7713	2924
Ti	-0.94338177	-0.64538336	1.7985	1911
Ti	0.38293672	1.74021798	0.9848	5340
Ti	0.00899209	-2.85499666	1.1051	7572
Ti	-4.20520854	-0.10537530	-1.5019	9562
Ti	3.77328740	4.35060027	-4.4093	4920
Ti	1.69496070	-0.65074958	1.3946	6655
Ti	1.71475175	3.00237578	-3.0659	4067
Ti	-2.52262558	-1.90044891	-0.2585	54770

16. Lattice geometry and ionic positions for Ti_{32} at 1800 K.

	50.00000000	0 0.00000	00000	0.0000	000000
	0.0000000000	50.00000	00000	0.0000	000000
	0.0000000000	0.000000	0000	50.0000	000000
Ti	3.80323296	3.43989446	-2.991	44545	
Ti	0.43508932	-0.59007861	1.243	48692	
Ti	2.94941260	0.35577585	-3.441	72976	
Ti	-0.73331889	4.19733040	-0.439	60134	
Ti	-5.42603798	3.42025731	-0.314	15477	
Ti	-1.71728822	2.93464468	-2.846	70036	
Ti	2.00100553	-0.00467876	-0.922	38140	
Ti	1.19946771	2.50489047	-2.605	49732	
Ti	-0.35935678	1.60950263	-0.756	03711	
Ti	1.63368206	1.79672296	1.462	17997	
Ti	4.57631291	-1.24669168	-0.688	41687	
Ti	-4.99759445	0.75907862	-0.845	65606	
Ti	5.22280111	1.11975346	-2.394	25007	
Ti	-3.23944617	5.00183917	-0.917	71869	
Ti	-0.25442503	-1.51208708	-1.139	20281	
Ti	2.18918217	-1.97824970	-2.559	57539	
Ti	2.09199989	-2.56199088	0.273	65922	
Ti	-7.14603396	2.09431467	-1.755	78955	
Ti	-6.95125131	1.51049630	0.737	88772	
Ti	-2.90511317	3.97782094	1.653	10714	
Ti	5.93249452	3.43158216	-1.420	70830	
Ti	2.01481984	4.39311171	-1.072	49773	
Ti	3.34113123	-0.12621799	1.358	81181	
Ti	-4.32527943	2.87870296	-2.557	56641	
Ti	-2.96767245	2.32796426	-0.376	55521	
Ti	5.93720409	1.29328756	0.138	53134	
Ti	-4.13885826	1.58081325	1.683	04848	
Ti	-2.51367419	-0.15775585	0.129	53541	
Ti	3.58761427	2.22717563	-0.640	72884	
Ti	-2.51042070	0.25688678	-2.554	77413	
Ti	0.18177715	0.10903920	-3.265	78627	
Ti	-1.24835562	2.03013850	1.870	50394	

17. Lattice geometry and ionic positions for Ti_{32} at 1900 K.

	50.000000000	0.000000	00000	0.0000000000
	0.0000000000	50.00000	00000	0.0000000000
	0.0000000000	0.000000	0000	50.0000000000
Ti	0.31940411	-1.26185027	3.7925	55998
Ti	0.52279901	5.01553086	-3.772	10969
Ti	1.63617818	0.65671031	-2.0250	07403
Ti	0.10582176	1.32113433	2.3492	22812
Ti	-3.88375337	-0.92604003	1.516	74784
Ti	3.12599004	3.59144295	-2.4836	57111
Ti	0.40506843	-3.47539018	2.0247	74321
Ti	-1.35665267	-5.25872611	2.832	94983
Ti	1.94689670	2.65220195	0.0695	51864
Ti	-0.94664603	0.86898715	-3.119	76303
Ti	1.32369540	5.16586425	-0.7117	73470
Ti	-0.99479268	5.62064040	-1.4400	63627
Ti	-0.38663507	1.00544283	-0.3324	43292
Ti	0.19926370	4.41522237	-6.3024	41665
Ti	-1.35631103	3.24733604	-4.139	77687
Ti	2.70098311	4.52246986	-5.3097	79803
Ti	0.62258105	7.57249518	-2.6600)2737
Ti	-2.42181658	2.50702975	-0.9912	20268
Ti	1.51680477	2.13723001	-4.3579	98508
Ti	-0.45377311	3.60328382	0.8042	25807
Ti	0.39561720	-3.34121875	-0.603	71879
Ti	-2.24127934	-0.22080007	3.8110	06599
Ti	0.33060140	3.14784315	-2.1321	19358
Ti	-2.09200710	-3.37781526	0.7762	25279
Ti	3.09515633	6.31797442	-3.1865	54826
Ti	1.31220207	6.99741731	-5.0294	17650
Ti	-2.11520680	-2.98718575	3.7953	30282
Ti	-2.71508054	-0.38124638	-0.785	49647
Ti	-2.56611306	1.28703727	1.4006	59191
Ti	-1.27516962	-1.01138456	1.545'	74797
Ti	1.40261780	-1.04281452	0.5514	14576
Ti	-0.49334332	-1.29554895	-1.842	47278

18. Lattice geometry and ionic positions for Ti_{32} at 1941.15 K.

	50.00000000	0.00000	00000	0.0000000000
	0.0000000000000	50.00000	00000	0.0000000000
	0.00000000000000	0.000000	0000	50.0000000000
Ti	1.90087119	-3.67982871	2.4117	72697
Ti	-2.39211734	4.79787051	-0.629	59978
Ti	-3.54429929	5.96273005	-2.934	07354
Ti	-0.95932292	-2.82419881	3.137	34947
Ti	-1.06604402	2.14895515	-4.121	52407
Ti	-2.59059968	4.44332694	-5.047	15162
Ti	-2.70939754	1.97790121	0.1577	74545
Ti	-1.62437783	7.00712537	-4.519	50326
Ti	-3.24340234	2.95909168	-2.795	88507
Ti	-0.60540023	2.73158875	1.5182	20155
Ti	-0.00128007	-1.51101873	-1.417	56381
Ti	1.67537456	3.67208717	-2.8310)7986
Ti	-0.11623609	0.63175884	-0.1604	47466
Ti	-2.07031082	0.49533857	-2.0004	46463
Ti	1.22520538	-1.09793284	3.9648	39061
Ti	3.28728463	-1.37799488	2.0306	65386
Ti	2.02868320	2.31924380	-0.3526	67567
Ti	-2.10171142	-1.41183030	0.118	76167
Ti	1.79849754	1.02392995	1.8749	9697
Ti	1.95750171	-3.16354304	-0.3892	24321
Ti	0.87308308	6.26858284	-3.493	19314
Ti	-1.18027018	4.81698017	-3.1062	22409
Ti	2.36348418	-0.57545222	-0.662	90283
Ti	4.41479519	-3.60903960	0.8441	18521
Ti	-0.71969426	2.69876400	-1.625	67284
Ti	-0.57049752	-3.52925068	0.252	58439
Ti	-1.30570078	7.04042023	-1.5692	21553
Ti	0.89982383	0.87669402	-2.7419	98967
Ti	-1.27613074	-0.04364784	2.432	34712
Ti	0.41302347	4.26868815	-5.0484	43186
Ti	0.59490786	-1.51091515	1.3877	79340
Ti	0.30735800	5.26684877	-0.6403	38941

19. Lattice geometry and ionic positions for Ti_{32} at 2000 K.

	50.00000000	0 0.00000	00000	0.0000000000
	0.0000000000	50.00000	00000	0.0000000000
	0.0000000000	0.000000	0000	50.0000000000
Ti	1.52050722	-1.20109972	1.290	03469
Ti	5.07163847	1.68205488	-0.8204	41216
Ti	1.95364933	-2.68916844	-2.820	71077
Ti	-2.56187883	-1.00074438	-1.564	08223
Ti	2.76310454	1.18109195	0.4054	12348
Ti	3.15236748	-0.76694933	-1.459	20741
Ti	1.20713192	4.62394776	-3.026	37820
Ti	-4.77525292	1.22962567	-2.174	96589
Ti	2.51362359	2.38729886	-1.851	16159
Ti	-1.33653318	-0.72532225	0.650	90468
Ti	-0.07441413	3.28850250	-1.043	58302
Ti	0.76047534	0.45188978	-0.9432	23912
Ti	-2.80616046	2.88683200	-3.221	09629
Ti	1.58609225	5.22651431	-0.481	15169
Ti	1.68432818	3.39738282	1.2494	40603
Ti	-5.30117412	0.42098659	2.380	61779
Ti	-4.26730427	-0.58637454	0.251	90925
Ti	2.36151331	3.05654525	-4.508	51012
Ti	-3.59650415	2.08602767	1.1294	43190
Ti	3.72570586	4.91423702	-2.818	37209
Ti	-3.91020164	-2.12431772	2.374	37055
Ti	-3.95251478	3.61158862	-0.934	55380
Ti	-2.48398255	0.23370783	2.569	76025
Ti	-0.02670070	1.51439641	1.624	73880
Ti	0.20235002	1.59717891	-3.317	63916
Ti	-5.98811980	1.72689721	-0.092	01773
Ti	0.49693339	-2.08973919	-0.749	71287
Ti	-1.81846406	4.12385479	0.727	63746
Ti	2.50973815	0.40943792	-3.912	08567
Ti	4.25225808	4.14520353	-0.294	17846
Ti	4.83626817	2.63665623	-3.377	87666
Ti	-2.03537898	1.42513044	-1.199	32181

20. Lattice geometry and ionic positions for Ti_{32} at 2100 K.

	50.00000000	0.00000	00000	0.0000000000
	0.000000000	50.00000	00000	0.0000000000
	0.000000000	0.000000 0	0000	50.0000000000
Ti	1.95425996	-1.53934485	-3.022	70161
Ti	2.57417095	-0.08209874	1.7764	48621
Ti	3.82709799	-2.58466259	1.0069	96054
Ti	3.19742165	2.61187919	1.4736	51879
Ti	2.67725159	-1.02006122	-0.758	12675
Ti	3.82929286	1.52861162	-1.1598	30446
Ti	-5.71347681	3.61371395	-0.500	89199
Ti	-3.15014219	5.13896618	-4.317	90786
Ti	0.98343653	-3.33791890	-0.9182	24886
Ti	2.47557826	4.46770602	-0.7337	75590
Ti	-3.66868094	1.72944332	-0.418	97863
Ti	0.11530629	0.80805752	-2.4333	33153
Ti	-4.72361156	2.59625259	-2.7602	29466
Ti	-5.08957555	2.46195384	2.0010)1959
Ti	-2.72422776	-0.89928723	-0.436	70694
Ti	-4.86831920	5.10765046	-2.723	67391
Ti	5.10095858	-1.88481794	-1.582	03642
Ti	4.78750893	-0.17319935	0.5158	81081
Ti	3.30075257	-3.72024680	-2.075	83569
Ti	1.22537736	3.23330697	-2.5697	77840
Ti	1.34997264	1.69746665	-0.3325	53240
Ti	0.00326769	-0.72491868	-0.003	95349
Ti	-1.77445290	5.80100981	-2.249	95052
Ti	1.01008046	4.23474656	1.8213	30138
Ti	0.02751895	4.55092281	-0.507	11478
Ti	-2.60681233	0.41669784	-2.731	39827
Ti	-0.70971740	-1.85607670	-2.356	80874
Ti	-3.29262761	4.81370642	-0.401	69263
Ti	-1.89890276	3.07456353	-2.768	94133
Ti	-1.16012491	1.99573667	-0.532	64641
Ti	-1.52439478	3.55713790	1.6813	36009
Ti	0.12891417	1.45637652	2.0645	53291

21. Lattice geometry and ionic positions for Ti_{32} at 2200 K.

	50.000000000	0.000000	0000	0.0000000000	
	0.0000000000	50.000000	0000	0.0000000000	
	0.0000000000	0.0000000	0000	50.0000000000	
Ti	15.17694595	12.28030204	19.00	113839	
Ti	10.77186367	10.56844640	17.00	039658	
Ti	12.89548441	18.17038072	17.32	182090	
Ti	13.29415259	12.63758982	12.82	071943	
Ti	10.72878037	15.61971545	21.73	165821	
Ti	13.36112496	11.54356370	20.95	030571	
Ti	13.38686866	10.90352685	15.10	944975	
Ti	10.52964675	14.56568189	18.99	195819	
Ti	10.59200921	12.96200331	21.72	465883	
Ti	13.13048546	15.59108689	15.49	300724	
Ti	11.54264356	13.46516966	14.61	001668	
Ti	10.88867326	15.83568318	14.22	602440	
Ti	13.20414299	16.84968728	20.75	505680	
Ti	12.07646406	8.96058682	18.603	327225	
Ti	13.06360646	11.07355997	17.69	427972	
Ti	10.86110999	17.65529660	19.93	145772	
Ti	14.73305741	14.76223041	17.36	542519	
Ti	10.29742311	16.08693749	16.94	815194	
Ti	12.58393286	13.43396822	16.92	914512	
Ti	12.69309953	15.86239656	18.10	596107	
Ti	10.62733455	18.28810246	15.14	779057	
Ti	15.11401361	17.08579630	16.38	056171	
Ti	15.71183839	13.05265749	22.04	647383	
Ti	14.86206862	13.13196803	14.90	911480	
Ti	15.53298375	15.47133300	19.94	413075	
Ti	7.47873195	16.17665500	17.475	533531	
Ti	11.22255950	12.02944573	19.19	218746	
Ti	9.29470503	13.18882494	16.371	121206	
Ti	13.43484789	14.11105021	20.00	376312	
Ti	13.71473619	14.78645366	22.61	011876	
Ti	11.63450633	9.81043922	21.127	729384	
Ti	11.22325966	11.11273407	13.52	209179	

22. Lattice geometry and ionic positions for Ti_{32} at 2300 K.

	50.000000000	0.00000	00000	0.0000000000
	0.0000000000	50.00000	00000	0.0000000000
	0.0000000000	0.000000	0000	50.0000000000
Ti	-2.88206330	1.23859922	-1.196	61742
Ti	-0.90052964	-1.91380674	1.670	57149
Ti	2.48103754	3.00074503	-2.292	27809
Ti	0.60252428	4.46840189	-4.093	39670
Ti	-1.56085627	-1.86236224	-0.907	736412
Ti	-0.31645468	2.30874574	-2.148	59575
Ti	1.32743799	-2.39674467	0.125	50111
Ti	-2.50430851	4.82515309	1.939	25428
Ti	-1.13032845	0.28825237	-3.891	33345
Ti	-0.97283151	2.72539701	-5.025	60675
Ti	-1.61116796	4.58721296	-2.554	85691
Ti	0.56773460	4.92960788	1.485	48482
Ti	3.42959771	-0.08882420	-3.102	89029
Ti	-1.28299391	3.20812289	0.119	66189
Ti	0.92407239	-1.77059411	-4.411	72018
Ti	0.63413029	4.95326081	-1.386	81681
Ti	-2.24684362	0.73884205	2.025	39621
Ti	1.50344596	1.37772645	-4.105	26342
Ti	-3.86848022	4.17786339	-1.113	48511
Ti	2.06443211	1.91744854	3.539	92198
Ti	-4.03149240	2.55426421	1.112	19141
Ti	2.74029695	-0.15248290	2.222	97901
Ti	1.36535737	2.79739627	0.521	02374
Ti	0.25287198	-0.17555557	3.712	26856
Ti	2.99914145	-2.54801853	-1.986	94930
Ti	0.61384140	-0.39385775	-2.187	79135
Ti	2.61501209	0.35965190	-0.721	51042
Ti	0.03931858	-3.59356287	-2.551	43877
Ti	0.17496046	0.11840275	0.715	94807
Ti	-0.50473126	2.74611323	2.615	75668
Ti	-3.15093734	2.55478593	-3.700	73128
Ti	-1.70809333	6.09308935	-0.383	33499

23. Lattice geometry and ionic positions for Ti_{32} at 2400 K.

	50.0000000000	0.000000	0000	0.0000000000)
	0.0000000000	50.000000	0000	0.0000000000)
	0.0000000000	0.0000000	0000	50.000000000)
Ti	-20.89617835	14.26363588	-21.28	528833	
Ti	-13.27304327	8.90971657	-19.357	99602	
Ti	-18.99122224	14.49472705	-18.464	473089	
Ti	-20.85738323	13.45212287	-23.77	369397	
Ti	-19.56448613	12.03043406	-17.33	927863	
Ti	-19.19194791	12.31211883	-20.080	080634	
Ti	-19.27483409	14.16463143	-15.47	524033	
Ti	-14.87828027	11.21300929	-17.31	115377	
Ti	-17.29771800	10.16658595	-21.478	863410	
Ti	-16.01228387	14.39541866	-19.36	399669	
Ti	-21.90314167	12.93153566	-18.71	165935	
Ti	-17.28983380	16.30241771	-17.350	038004	
Ti	-13.51572443	10.69884261	-21.428	862407	
Ti	-15.72318109	12.31513733	-22.21	781654	
Ti	-18.14896820	14.69665817	-21.22	319757	
Ti	-14.48670484	15.73898669	-15.79	938808	
Ti	-17.90800677	16.79206961	-19.60	847566	
Ti	-14.99898818	8.68406769	-21.108	56587	
Ti	-14.75569359	6.60251189	-19.614	34294	
Ti	-18.81247255	12.36103947	-22.72	178891	
Ti	-16.09815233	9.14575238	-19.041	35546	
Ti	-22.17277824	11.64158103	-22.55	883961	
Ti	-16.48532225	11.87635667	-19.57	961291	
Ti	-14.84651297	17.09976598	-18.09	152058	
Ti	-16.60851169	13.53688234	-16.46	031017	
Ti	-13.88774897	14.01560831	-17.52	778676	
Ti	-12.90644284	7.25200457	-21.854	27411	
Ti	-17.66755965	7.54840945	-20.836	23678	
Ti	-21.00869177	16.27026029	-19.14	888527	
Ti	-21.49559567	14.64813122	-17.06	336590	
Ti	-13.78254926	12.20178613	-19.17	745017	
Ti	-19.59694117	9.31106757	-20.901	32607	