
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/146125/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

George, David, Xie, Xianghua, Lai, Yukun and Tam, Gary K.L. 2022. A deep learning driven active
framework for segmentation of large 3D shape collections. Computer-Aided Design 144 , 103179.

10.1016/j.cad.2021.103179 

Publishers page: https://doi.org/10.1016/j.cad.2021.103179 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



A Deep Learning Driven Active Framework for Segmentation of Large 3D Shape
Collections

D. Georgea, X. Xiea, Y.-K. Laib, G.K.L. Tama

aDepartment of Computer Science, Swansea University, United Kingdom
b School of Computer Science and Informatics, Cardiff University, United Kingdom

Abstract

High-level shape understanding and technique evaluation on large repositories of 3D shapes often benefit from additional infor-
mation known about the shapes. One example of such information is the semantic segmentation of a shape into functional or
meaningful parts. Generating accurate segmentations with meaningful segment boundaries is, however, a costly process, typically
requiring large amounts of user time to achieve high-quality results. In this paper we propose an active learning framework for large
dataset segmentation, which iteratively provides the user with new predictions by training new models based on already segmented
shapes. Our proposed pipeline consists of three components. First, we propose a fast and accurate feature-based deep learning
model to provide dataset-wide segmentation predictions. Second, we develop an information theory measure to estimate the predic-
tion quality and for ordering subsequent fast and meaningful shape selection. Our experiments show that such suggestive ordering
helps to reduce users’ time and effort, produce high-quality predictions, and construct a model that generalizes well. Lastly, we
provide interactive segmentation refinement tools, helping the user quickly correct any prediction errors. We show that our frame-
work is more accurate and in general more efficient than the state-of-the-art for large dataset segmentation, while also providing
consistent segment boundaries.
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1. Introduction1

Segmented datasets have already been shown incredibly use-2

ful for many applications, including shape matching [1], re-3

trieval [2] and modeling [3]. Semantic labels are also useful4

for shape understanding and abstraction [4], and shape pars-5

ing and partial shape recovery [5]. Shape segmentation tech-6

niques often benefit the most from such fully labeled datasets.7

Supervised techniques require ground truth labels to train seg-8

mentation classifiers [6], and both supervised and unsupervised9

techniques need ground truth labels to evaluate their methods10

[7]. While existing works have shown good efforts and results11

[8, 9, 10], clear ground truth inconsistencies still exist [11].12

This means both existing and new techniques could perform13

better with higher quality ground truth segmentations.14

Generating high-quality segmentations for shape datasets is15

a time-consuming and interaction-heavy task. Smaller datasets,16

with only small numbers of inconsistencies or errors may be17

manageable through manual effort [12, 7]. Massive datasets18

would take a great amount of user effort however [13]. Fur-19

ther, these massive datasets typically consist of non-manifold20

(multiple components, holes, zero thickness, etc.) and low-21

resolution shapes. These shapes are very difficult to process22

in segmentation pipelines. Recent works employ point cloud23

projection [14, 9], or further KD-connected point cloud pro-24

jection [15]. While these are viable techniques, there may25

be information loss when using point clouds, e.g., connectiv-26

ity and topology of the shape. Without these, certain reliable27

features are much harder to compute or are inaccurate when28

computed (e.g., Shape Diameter Function (SDF) [16], Geodesic29

Distance). Although connectivity can be re-established (e.g.,30

through K Nearest Neighbors, assuming the resolution of the31

point cloud is high enough), thin regions of the shape could be32

wrongly connected, leading to undesirable connections. More33

recently, there are increasing interests to use mesh-based rep-34

resentations to develop robust CNN techniques [17, 18]. For35

this reason, in our proposed pipeline, we largely focus on in-36

put meshes. We further show that by re-meshing these non-37

manifold 3D models into manifold meshes, our pipeline can38

handle very large datasets very well.39

Previous works that generate ground truth segmentations for40

large datasets typically focus on active learning approaches,41

where a user has some control over the system and influences42

the decisions in some way. [19] first used an unsupervised43

co-segmentation algorithm, where the user interactively selects44

pairs of parts between shapes to connect or disconnect. [14]45

used a supervised algorithm to label a single part at a time.46

Users are asked to paint two 2D views of a 3D shape. A learning47

model is trained based on the painted regions and similar shapes48

(according to global shape descriptors) are evaluated on that49

model. However, these techniques can only provide a coarse50

segmentation and output segmentations may have errors. Fur-51

ther, [14] requires one part to be labeled at a time, so datasets52

with high numbers of parts will take longer and more iterations53

to label. Here, we developed an active framework which allows54

full shape segmentation of a shape dataset, to ensure good seg-55
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mentation quality and it scales well with the number of parts in56

the dataset.57

One of the challenges when developing an active framework58

for segmentation is minimizing user interactions while maxi-59

mizing segmentation quality. To balance the quality and speed,60

we utilize a deep learning model for segmentation predictions.61

In general, deep learning models can take a long time to train,62

and typically require a large amount of training data. To re-63

solve these, we propose to use a small Convolutional Neural64

Network (CNN), using two 2D histogram features as input. The65

features have been shown useful in previous work [6, 8] and fit66

the CNN paradigm as 2D histograms are like images. Our ar-67

chitecture allows for quick model training and we also adopt an68

ensemble based learning scheme [20] to help generalize with69

reduced available training data. In our experiments we com-70

pare to other feature-based CNN techniques. We show that our71

model can perform better than existing fast techniques, with re-72

sults comparable to the state-of-the-art.73

Another difficulty of an active learning framework is the ex-74

ploration and analysis of model predicted results. It often takes75

a long time for users to choose the next 3D model to segment,76

and there are no ground truth data to compare the predictions77

for ranking. We thus use entropy, a measure of uncertainty, to78

define a ranking measure without needing ground truth segmen-79

tations. This ranking measure provides a meaningful ordering80

of the predicted segment labels in an interactive tabular view.81

This allows users to see which shapes the deep learning model82

segmented well or struggled with. Our experiments show that83

by selecting poorly segmented 3D models with respect to the84

ranking measure, it reduces both time and interactions required85

to segment the whole dataset.86

Lastly, another problem we observed in existing active87

frameworks (e.g., [14]) is that they do not allow quick boundary88

refinement. When there are slight errors in the output segmen-89

tation, users will likely discard the results, leading to extra man-90

ual effort and longer interaction time. With this observation, we91

propose an interactive segmentation refinement algorithm that92

takes the current segmentation and information about the shape93

(e.g., angle and thickness) to refine the segmentation bound-94

aries. This algorithm can quickly provide high-quality segmen-95

tations while greatly reducing interactions and time required to96

refine a shape.97

Our proposed framework has been demonstrated to work98

well on public datasets (including PSB, COSEG), and also on99

re-meshed datasets from ShapeNet, which contains thousands100

of shapes.101

Contributions. To summarize, the main contribution of this102

work is to develop the first deep learning driven active frame-103

work for segmentation of large 3D shape collections. The fo-104

cus is to maintain accurate and meaningful segment boundaries,105

while keeping human effort and time to a minimum. Our active106

learning framework consists of several key components:107

� First, we show and evaluate a novel deep learning pipeline108

for shape segmentation which is relatively fast and accurate,109

and is suitable for active learning purpose.110

� Second, we use an information-theoretical metric for order-111

ing the prediction of shape segmentation when ground truth112

data is not available. The metric is designed for our segmen-113

tation tasks. Users can still flexibly choose next shape to114

annotate through our interface. Our extensive experiments115

show that the ordering can help reduce total segmentation116

efforts and time.117

� Third, we develop a useful technique for interactive seg-118

mentation refinement, which takes into account the segmen-119

tation boundaries and thickness of shapes. Our experiments120

show that it can help users to quickly improve segmentation121

boundaries, reducing effort and time.122

We will also release the source codes of our tools for the com-123

munity, and provide new and more accurate ground truth seg-124

mentation for some existing datasets1.125

In the following, Section 2 discusses the existing work for126

segmentation, feature extraction and entropy in geometry pro-127

cessing. In Section 3, we briefly overview our active learning128

framework. Section 4 discusses the details of the three novel129

subsystems. We further discuss our framework interface and130

flow in Section 5 before outlining our experiments and showing131

their results in Section 6. Finally, in Section 7 we conclude and132

discuss possible future work.133

2. Related Work134

This work relates to several research areas. We summarize135

the literature with respect to shape features, shape segmenta-136

tion, active learning in image analysis, active learning in shape137

analysis, and use of entropy in graphics processing.138

Shape Features and Their Uses. Much of the existing work139

in shape segmentation is driven by features. These can be de-140

fined per face, per vertex, per patch (a cluster of faces), or even141

per shape. These features are designed for different purposes,142

and many have been successfully applied in mesh segmenta-143

tion. Per-face features include, SDF [16] which estimates the144

thickness of a shape at a given face, Conformal Factor (CF) [21]145

which computes a position invariant representation of the cur-146

vature of non-rigid shapes and Spin Images (SI) which capture147

the surface information around a face using a 2D histogram.148

Recent work has also adapted image based features to the 3D149

domain. One notable example is Shape Context (SC) [22]150

which is a 3D shape descriptor to encode both curvature and151

geodesic distance distributions in a 2D histogram [6]. How-152

ever, there are limitations to how useful a feature can be on153

certain shapes. Examples are that CF is susceptible on shapes154

with sharp curvature [11], SDF can fail if the shape has holes155

and geodesic distance will fail if the shape has multiple compo-156

nents. Therefore feature selection for a new technique is very157

important, as it can greatly impact the accuracy and speed. For158

these reasons, we opted to use two features for this work, SC159

and SI. Recent work has shown both features can be very use-160

ful in shape segmentation [6, 23, 11]. Further they are both 2D161

histograms, so can be generated at any scale (number of bins)162

and CNNs should work well to extract useful information.163

1
https://cs.swan.ac.uk/~csgarykl/ActiveLabeller/ActiveMeshLabeller.html
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Figure 1: Proposed Pipeline. After de�ning the input data (shapes, features and possible segment labels, Sections 4.1, 4.2), users pick some models (Section 4.3
Shape Subset Selection) and use the proposed interface and tools (Section 4.4, Patch Labeling, Painting, and Section 4.5 Interactive Boundary Re�nement (IBR)) to
annotate ground truth labels. With these ground truths, a fast deep learning model is trained. Graph-cut is applied to re�ne the predicted labels (Section 4.6 Training
and Evaluation). The results are then ordered in an interface (Section 4.7, Order and Select Subset) for users to con�rm the ground truth or further select a subset
for user-driven inspection and IBR re�nement (same interface in Sections 4.4, 4.5). The iterative active segmentation repeats until dataset is fully labeled.

Unsupervised and Supervised Shape Segmentation. The164

goal of a shape segmentation algorithm is to partition a single165

shape into meaningful parts [24, 16]. These algorithms typi-166

cally used a feature which drives the partitioning (see Features167

section), though other work also used di� erent strategies like168

�tting of primitive shapes [25]. Recently, unsupervised tech-169

niques looked into co-analysis of a set of shapes, using infor-170

mation consistent across the set to improve the �nal segmenta-171

tion [7, 26, 27, 28, 29]. However, these methods struggle with172

largely varying datasets, especially those with a low number of173

shapes per set [11]. Further, the segmentation of parts not only174

relates to the shape geometry, but also the meaning, function-175

ality and designs. All these challenges have led to the recent176

interests in supervised segmentation techniques.177

Supervised segmentation techniques rely on prior knowledge178

in order to train a model. Typically these methods use large179

pools of shape features as input and classify them according to180

segment labels [6]. Subsequent techniques further improve in181

di� erent ways, such as ranking features to �nd segment bound-182

aries [30], and training an extreme learning machine [31, 23]183

to classify the labels. However, similar to unsupervised work,184

these techniques can struggle when datasets are very diverse. To185

combat this, work using CNNs was proposed [8]. This work ar-186

ranges a pool of features as an image, and uses an image-based187

convolution network to predict face labels. However, the simple188

arrangement leads to unnecessary interference of relationships189

between features with no correlation, and [11] reduces such190

interference using 1D convolutions, leading to better results.191

Recently, several techniques have shown new and interesting192

shape segmentation methods such as point cloud segmentation193

[32, 9], kd-tree point cloud segmentation [15], projecting im-194

age segmentations to shapes [33], hierarchical segmentations195

[34] and graph CNNs [10].196

With the recent surge of new segmentation papers, each fo-197

cusing on larger datasets, there is a need for high-quality ground198

truth labels. However, currently available ground truths for199

widely used segmentation datasets have been shown to con-200

tain inconsistent and poor labels for certain shapes within the201

dataset [11]. This can impact the training performance by in-202

troducing inconsistent labels for similar samples. It can also203

impact evaluation, as inconsistencies incorrectly degrade the204

performance of a model. Due to this, we emphasize providing205

accurate, high-quality segmentations in this work.206

There is a concurrent work [35] that shares similar spirit207

as ours which produces high quality part annotations. They208

employed professionals to carry out the annotation. The �ne-209

grained part dataset further inspires more recent interests in hi-210

erarchical shape segmentation [36], and grouping and labeling211

of semantic parts [37]. Compared to [35], our work proposes an212

active learning framework that allows fast annotation of large213

datasets with the help of a machine learning model. The frame-214

work can be used for other work to complete annotations of215

large datasets. To our knowledge, it is the �rst deep learning216

driven active learning framework for segmentation of large 3D217

shape collections that aims at ground truth quality.218

Active Image Analysis. Active learning image analysis sys-219

tems have been widely explored to leverage the human user in-220

put to explore large datasets. They focus on using user input221

to aid the classi�ers by annotation (painting, strokes) or draw-222

ing bounding boxes. This has the advantage that, the user can223

see what data the classi�er is struggling with and incrementally224

provides new training data to alleviate this problem, making225

the classi�er more generalized and accurate [38, 39, 40, 41].226

We utilize this functionality in 3D segmentation by allowing227

the user to incrementally tune the output labels of our model228

to make it generalize better, while also incorporating a sorting229
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