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Abstract
Schrödinger operators with periodic (possibly complex-valued) potentials and discrete
periodic operators (possibly with complex-valued entries) are considered, and in both
cases the computational spectral problem is investigated: namely, under what condi-
tions can a ‘one-size-fits-all’ algorithm for computing their spectra be devised? It is
shown that for periodic banded matrices this can be done, as well as for Schrödinger
operators with periodic potentials that are sufficiently smooth. In both cases imple-
mentable algorithms are provided, along with examples. For certain Schrödinger
operators whose potentials may diverge at a single point (but are otherwise well-
behaved) it is shown that there does not exist such an algorithm, though it is shown
that the computation is possible if one allows for two successive limits.
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1 Introduction andmain results

We study the computational spectral problem for periodic discrete operators, act-
ing in �2(Z), as well as Schrödinger operators with periodic potentials acting in
L2(Rd). We show that it is possible to compute their respective spectra as limits
of finite-dimensional approximations. However, in the Schrödinger case this becomes
impossible if the potential is allowed to be discontinuous at a single point (but other-
wise it is smooth). More precisely, we prove:

Theorem 1.1 (Periodic bandedmatrices)Let B(�2(Z)) denote the set of bounded oper-
ators on �2(Z) and let {ei }i∈Z be a basis for �2(Z). Let �per ⊂ B(�2(Z)) be the class
of banded, periodic operators with respect to the basis {ei }i∈Z and �

per
N ,b the subset of

matrices with period N and bandwidth b. Then

(i) there exists an algorithm that can compute the spectrum σ(A) of any A ∈ �per

as the limit of a sequence computable approximations;
(ii) there exists an algorithm that can compute the spectrum σ(A) of any A ∈ �

per
N ,b

with guaranteed error bounds.
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Theorem 1.2 (Schrödinger: good case) For d ∈ N define the class of potentials

�Sch := {V : R
d → C | V is 1-periodic

and V |(0,1)d ∈ W 1,p((0, 1)d) for some p > d},

and given M > 0 and p > d define the class

�Sch
p,M := {V ∈ �Sch | ‖V ‖W 1,p((0,1)d ) ≤ M}.

Then

(i) there exists an algorithm that can compute the spectrumσ(H) of any Schrödinger
operator H = −� + V with V ∈ �Sch as the limit of a sequence computable
approximations;

(ii) moreover, for V ∈ �Sch
p,M this algorithm yields spectral inclusionwith guaranteed

error bounds;
(iii) if, in addition to belonging to �Sch

p,M the potential V is also real-valued and of
bounded variation in the sense of Hardy andKrause, then σ(H) can be computed
with full error control.

Theorem 1.3 (Schrödinger: bad case) Let x0 ∈ [0, 1] and let

�Sch
x0 := {V : R → R

∣∣ V is 1-periodic, V (x0) = 0

and V |[0,1] ∈ L2([0, 1]) ∩ C∞([0, 1] \ {x0}
)}

.

Then there does not exist an algorithm that can compute the spectrum σ(H) of any
Schrödinger operator H = −� + V with V ∈ �Sch

x0 as the limit of a sequence
computable approximations. However, there does exist an algorithm that can compute
σ(H) by taking two successive limits.

Below, inSect. 2,wegiveprecise definitions ofwhat an ‘algorithm’ is,what information
is available to it, how it computes, and hencewhatwemeanwhenwe say ‘computable’.
Informally, Theorems 1.1 and 1.2 imply that these computations can be performed
numerically. In fact, we provide actual algorithms which can access the matrix entries
(in Theorem 1.1) and pointwise evaluations of the potential (in Theorem 1.2). This
should be contrasted with Theorem 1.3 which implies that it is impossible to devise an
algorithm that can compute the spectrum of any Schrödinger operator with a potential
belonging to �Sch

x0 . We prove this by contradiction: assuming the existence of such
an algorithm, we explicitly construct a potential V ∈ �Sch

x0 for which this algorithm
would fail in its attempt to compute the spectrum.

These statements are nontrivial. The existence of a ‘one-size-fits-all’ algorithm as
in Theorems 1.1 and 1.2 is not obvious: while there are techniques for computing
the spectrum of a given operator in each of the above cases—these are indeed well-
studied problems—here we prove the existence of a single algorithm (which can be
coded) that can handle any input from the given class, without any additional a priori
information. Moreover, in the cases of�per

N ,b and�Sch
p,M there are even guaranteed error
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bounds. In particular, even when only finitely many values of the potential are known
to the algorithm, it can still produce an approximation, which contains the original
spectrum up to a known error. Conversely, the non-existence result of Theorem 1.3
is also not obvious: we prove that regardless of what operations are allowed, as long
as the algorithm can only read a finite amount of information at each iteration, there
will necessarily be a potential for which the computation will fail. In the spirit of the
Solvability Complexity Theory (see a brief discussion below in Subsection 1.1, with
more details in Sect. 2) we show that if one allows for two successive limits (which
cannot be collapsed to a single limit), the computation is possible. Note that although
the class of potentials �Sch

x0 allows for a blowup near x0, all potentials in this class
are integrable over compact sets, and so x0 is still a regular point for the differential
equation [10, footnote, p.67]; elsewhere the potentials are even more well-behaved.

1.1 The solvability complexity index hierarchy

Our exploration of the spectral computational problem—for both discrete and
Schrödinger operators—continues a line of research initiated by Hansen in [21] and
then further expanded in [4,5]. This sequence of papers established the so-called Solv-
abilityComplexity Index (SCI)Hierarchy,which is a classificationof the computational
complexity of problems that cannot be computed in finite time, only approximated.
This theory is motivated by the following general questions:

What are the limitations of computers, and can they be quantified? Do there always
exist algorithms to approximate any problem?

Consider, for instance, the problem of computing the spectrum σ(A) of an operator
A ∈ B(�2(N)) (B(�2(N)) is the set of bounded linear operators on �2(N)). Any such A
can be represented as an infinite matrix. A computer, however, will never have access
to the entire matrix: it will always only ‘see’ finitely many entries of this matrix, and
will only be able to perform finitely many operations, leading to some approximation
σn(A). In this level of abstraction, can anything be said about the distance of σn(A)

from σ(A)? Can we always devise an approximation procedure that will guarantee
the convergence of σn(A) to σ(A) for any A ∈ B(�2(N))?

The papers [4,21] prove the following remarkable result: there will always be some
M ∈ B(�2(N)) for which σn(M) will not converge to σ(M) in any metric. This does
not depend on any specific properties of the approximation procedure, as long as it is
a procedure that mimics a computer: it can only read a finite amount of information
and it works in a consistent manner. However, it is shown that if one allows several
successive limits this problem becomes tractable: there does exist an algorithm σn,m,k

such that

lim
n→∞ lim

m→∞ lim
k→∞ σn,m,k(A) = σ(A), ∀A ∈ B(�2(N)),

and these limits cannot be exchanged and cannot be collapsed. The parameters
n,m, k ∈ N are related to how the matrix representation of A is read by the com-
puter and to the size of some thresholds arising in the computation of singular values
of the resulting finite sections. This algorithm is given explicitly.
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In this case, we say that the above problem has an SCI value of 3, since 3 successive
limits are required. It turns out that if we were to repeat the above discussion with
B(�2(N)) replaced by the set of selfadjoint operators in B(�2(N)) then the indexwould
be 2, and if it were replaced by the set of compact operators in B(�2(N)) then the index
would be 1. Of course, this raises the following fundamental question: what does it
mean for an algorithm to require several limits? Naturally, a numerical analyst might
answer this question differently to, say, a theoretical computer scientist. However the
mathematical fact remains: some computations cannot be carried out using a single-
limit approximation procedure.

The precise definitions relevant to this theory (for instance, a definition of what an
algorithm is) are provided in the detailed discussion in Sect. 2. This classification can
even be refined further, to account for algorithms that can perform a computation with
known error bounds. The following classes of problems can be defined:

�k : For k ≥ 2, �k is the class of problems that require at most k − 1 successive
limits to solve, i.e. the class of problems that have an SCI value of at most k−1.
Problems in �1 can be solved in one limit with known error bounds.

�k : For all k ∈ N, �k ⊂ �k+1 is the class of problems in �k+1 that can be
approximated from “below” with known error bounds.

�k : For all k ∈ N, �k ⊂ �k+1 is the class of problems in �k+1 that can be
approximated from “above” with known error bounds.

By an approximation from “above” (resp. “below”) we mean that the output of the
algorithm is a superset (resp. subset) of the object we are computing (this clearly
requires that this object and its approximations belong to a certain topological space).
It can also be shown that for k ∈ {1, 2, 3} we have �k = �k ∩�k .

Previous results: In [4] the spectral computational problems for both B(�2(N)) and
for Schrödinger operators were addressed. Some of the results shown there include

approximating σ(A) for A ∈ B(�2(N)) ∈ �3 \�3

approximating σ(A) for A ∈ {B ∈ B(�2(N)) | B is selfadjoint} ∈ �2 \ �2

approximating σ(A)for A ∈ {B ∈ B(�2(N)) | B is banded} ∈ �2 \ �2

approximating σ(−� + V )for V boundedwith known BV bounds1 ∈ �2 \ �1.

New results: Theorems 1.1, 1.2 and 1.3 respectively imply that

approximating σ(A) for A ∈ �per ∈ �2

approximating σ(A) for A ∈ �
per
N ,b ∈ �1

approximating σ(−� + V ) for V ∈ �Sch ∈ �2

approximating σ(−� + V ) for V ∈ �Sch
p,M ∈ �1

approximating σ(−� + V ) for V ∈ �Sch
p,M and V real-valued ∈ �1

approximating σ(−� + V ) for V ∈ �Sch
x0 ∈ �3 \ �2.

1 ∗These known BV bounds mean that for any R > 0 one has a priori knowledge of the total variation of
V on the ball BR of radius R centered at the origin.
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Remark 1.4 We point out that showing that a problem belongs to �1, �1 or �1 is
significant, as it shows that the computation can be done with certain guaranteed error
bounds.

We finally note that recent years have seen a flurry of activity in this direction with
many results classifying various problems within the SCI Hierarchy. We point out
[11,12] where some of the theory of spectral computations has been further developed;
[32] where this has been applied to certain classes of unbounded operators; [2] where
solutions of PDEs were considered; [6,7] where we considered resonance problems;
and [13] where the authors give further examples of how to perform certain spectral
computations with error bounds.

1.2 Periodic operators

Schrödinger equations with periodic potentials have been the subject of study since the
earliest days of quantummechanics, perhapsmost famously for theBethe-Sommerfeld
Conjecture [37], which states that the number of gaps in the essential spectrum is finite
in dimensions≥ 2. After more than seventy years this conjecture was finally proved in
complete generality for Schrödinger operators inR

d by Parnovski [27]. In dimensions
2 and 3 the conjecture had already been proved by Popov and Skriganov [28] and
Skriganov [36] respectively, and in dimension 4 by Helffer and Mohamed [22].

Beyond these results in mathematical analysis, since the 1990s interest in periodic
problems has grown rapidly in the applied analysis and computational mathematics
literature, partly driven by models of photonic crystals. These models are typically
based on time-harmonic Maxwell equations or upon second order elliptic equations
with periodic coefficients. Figotin and Kuchment [16–18] give particularly thorough
analyses of some of these models, showing that already in these cases with piecewise
constant coefficients the associated operators may possess an arbitrarily large number
of spectral gaps.

For a periodic problem with some particular coefficients, often the first question of
interest is whether it has any spectral gaps at all. Numerical methods may be used to
obtain some preliminary evidence, and are almost always based on the Floquet-Bloch
decomposition. The fact that the coefficients are often only piecewise continuous
requires substantial effort to be given to adaptive meshing, see Giani and Graham
[19], although the continuous variation of the quasi-momentum over the Brillouin
zone means that some of the effort can be recycled from one quasi-momentum to
the next. Despite the substantial computational cost, Floquet-Bloch techniques can
sometimes be used to go beyond preliminary evidence, and have been combined with
interval arithmetic to obtain algorithms which yield computer-assisted proofs of exis-
tence of spectral gaps for a wide class of problems with coefficients expressed in terms
of elementary functions, seeHoang, Plum andWieners [23]. The literature for periodic
problemswhich are not self-adjoint is much less extensive. For theODE case, thework
of Rofe-Beketov [31] is generally the starting point for any research on this topic.

The discrete case encompasses numerous different directions of research. Typical
examples are Toeplitz and Laurent operators [20] or Jacobi operators [38]. Another
direction that has gained a great deal of attention in the last two decades is that of
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periodic discrete Schrödinger operators and generalizations thereof. A particular type
known as almost Mathieu operator has been shown to exhibit rich spectral behavior
(e.g. the spectrum can be a set of non-integer Hausdorff dimension, cf. [1,24]). Beyond
this, the literature pertaining to operators that are either not tri-diagonal or not self-
adjoint is limited. The best starting point would be the book of Trefethen and Embree
[39].

Organization of the paper

In Sect. 2 we give a brief introduction to the main ideas of the SCI theory. Sections 3,
4 and 5 are dedicated to the proofs of Theorems 1.1, 1.2 and 1.3, respectively. Finally,
in Sect. 6 we provide some numerical examples.

2 The solvability complexity index hierarchy

The Solvability Complexity Index (SCI) and the SCI Hierarchy provide a uni-
fied approach for understanding just how “difficult” it is to approximate infinite-
dimensional problems (such as computing spectra) starting from finite-dimensional
approximations.We start by setting the scenewith a concrete example before providing
precise abstract definitions.

2.1 Informal discussion and examples

Consider the set � = B(�2(N)) of all bounded operators on �2(N). Let {ei }i∈N be the
canonical basis. Then any element A ∈ � is represented by an infinite matrix. Denote
by 	 the set of all entries in this matrix. Then one could ask:

Forany A ∈ �, is it possible to compute its spectrum σ(A) as the limit of a sequence
of computations 
n , where each 
n has access to only finitely many elements of 	

and can only perform finitely many arithmetic computations?
Needless to say, the whole point here is that the algorithms 
n are not tailored for

this specific element A: they are meant to be able to handle any element A ∈ �. The
convergence of 
n(A) to σ(A) is made precise by realizing them as elements of the
metric spaceM = (cl(C), d) which comprises all closed subsets of C endowed with
an appropriate metric d (such as the Hausdorff metric).

In [21], Hansen showed that it is possible to compute σ(A) for any A ∈ � as above.
However, rather than having algorithms 
n with a single index n ∈ N, three indices
were required, satisfying σ(A) = limn3→∞ limn2→∞ limn1→∞ 
n1,n2,n3(A). The
algorithms
n1,n2,n3 are given explicitly, and can be implemented numerically (though
this raises a philosophical question aboutwhat itmeans to take successive limits numer-
ically). In [4] it was proved that this is optimal: this computation cannot be performed
with fewer than 3 limits, and hence we say that this problem has an SCI value of 3.

The SCI value strongly depends on �: intuitively, if � contains fewer elements,
then devising a ‘one-size-fits-all’ algorithm should be easier. Indeed, if one considers
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�sa := {A ∈ � | A is selfadjoint} then the SCI value reduces to 2 and for �cpt :=
{A ∈ � | A is compact} it further reduces to 1.

The classification into SCI values can be further refined into a classification that
takes into account error bounds. This is the so-called SCIHierarchywhichwe describe
below.

2.2 Definitions

We formalize the foregoing example with precise definitions:

Definition 2.1 (Computational problem) A computational problem is a quadruple
(�,	,�,M), where

(i) � is a set, called the primary set,
(ii) 	 is a set of complex-valued functions on �, called the evaluation set,
(iii) M is a metric space,
(iv) � : � → M is a map, called the problem function.

Remark 2.2 In this paper it is often clear what M,	 and � are, and the important
element is the primary set �. In this case we may abuse notation and refer to � alone
as the computational problem.

Definition 2.3 (Arithmetic algorithm)Let (�,	,�,M) be a computational problem.
An arithmetic algorithm is a map 
 : � → M such that for each T ∈ � there exists
a finite subset 	
(T ) ⊂ 	 such that

(i) the action of 
 on T depends only on { f (T )} f ∈	
(T ),
(ii) for every S ∈ �with f (T ) = f (S) for all f ∈ 	
(T ) one has	
(S) = 	
(T ),
(iii) the action of 
 on T consists of performing only finitely many arithmetic oper-

ations on { f (T )} f ∈	
(T ).

Definition 2.4 (Towerof arithmetic algorithms) Let (�,	,�,M)be a computational
problem. A tower of algorithms of height k for � is a family 
n1,n2,...,nk : � → M
of arithmetic algorithms such that for all T ∈ �

�(T ) = lim
nk→∞ · · · lim

n1→∞
n1,n2,...,nk (T ).

Definition 2.5 (SCI) A computational problem (�,	,�,M) is said to have a Solv-
ability Complexity Index (SCI) of k if k is the smallest integer for which there exists
a tower of algorithms of height k for �. If a computational problem has solvability
complexity index k, we write

SCI(�,	,�,M) = k.

If there exists a family {
n}n∈N of arithmetic algorithms and N1 ∈ N such that � =

N1 then we define SCI(�,	,�,M) = 0.

Definition 2.6 (The SCI Hierarchy) The SCI Hierarchy is a hierarchy {�k}k∈N0 of
classes of computational problems (�,	,�,M), where each �k is defined as the
collection of all computational problems satisfying:
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(�,	,�,M) ∈ �0 ⇐⇒ SCI(�,	,�,M) = 0,

(�,	,�,M) ∈ �k+1 ⇐⇒ SCI(�,	,�,M) ≤ k, k ∈ N,

with the special class�1 defined as the class of all computational problems in�2 with
a convergence rate:

(�,	,�,M) ∈ �1 ⇐⇒ ∃{
n}n∈N, ∃εn ↓ 0 s.t. ∀T ∈ �, d(
n(T ),�(T )) ≤ εn .

Hence we have that �0 ⊂ �1 ⊂ �2 ⊂ · · ·
When the metric space M has certain ordering properties, one can define further

classes that take into account convergence from below/above and associated error
bounds. In order to not burden the reader with unnecessary definitions, we provide the
definition that is relevant to the cases where M is the space of closed (and bounded)
subsets of R

d together with the Attouch-Wets (Hausdorff) distance (definitions of
which can be found in Appendix A). These are the cases of relevance to us. A more
comprehensive and abstract definition can be found in [4].

Definition 2.7 (The SCI Hierarchy (Attouch-Wets/Hausdorff metric)) Consider the
setup in Definition 2.6 assuming further that M = (cl(Rd), d) where d = dAW or
d = dH. Then for k ∈ N we can define the following subsets of �k+1:

�k =
{
(�,	,�,M) ∈ �k+1 | ∃{
n1,...,nk } s.t. ∀T ∈ �, ∃{Xnk (T )} ⊂ M, s.t.

lim
nk→∞ · · · lim

n1→∞
n1,...,nk (T ) = �(T )&
n1,...,nk (T ) ⊂ Xnk (T )

& d
(
Xnk (T ),�(T )

) ≤ εnk

}
,

�k =
{
(�,	,�,M) ∈ �k+1 | ∃{
n1,...,nk } s.t. ∀T ∈ �, ∃{Xnk (T )} ⊂ M, s.t.

lim
nk→∞ · · · lim

n1→∞
n1,...,nk (T ) = �(T ) & �(T ) ⊂ Xnk (T )

& d
(
Xnk (T ), lim

nk−1→∞ · · · lim
n1→∞
n1,...,nk (T )

)
≤ εnk

}
.

Σk Πk

Δk+1 = {SCI ≤ k}

Δk

Fig. 1 The SCI Hierarchy for k ∈ {1, 2, 3}
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It can be shown that �k = �k ∩�k for k ∈ {1, 2, 3}, see Fig. 1. We refer to [4] for a
detailed treatise.

3 Banded periodic matrices

We begin by studying periodic banded matrices, which can be regarded as a natural
simplification of periodic Schrödinger operators (indeed, our treatment covers the case
of discrete Schrödinger operators). In fact, our method of proof in either case is very
similar, but turns out to be considerably simpler in the discrete case and therefore
provides a good starting point for our analysis.

In this section we prove Theorem 1.1. We do this by defining an explicit algorithm
and show that its output converges to the desired spectrum. The two computational
problems we consider only differ in the primary set �, and are as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

� = �per or �
per
N ,b

M = ({K ⊂ C | K compact}, dH
)

	 = {� � A �→ 〈ei , Ae j 〉 | i, j ∈ Z}
� : � → M; A �→ σ(A),

(3.1)

where {ei }i∈Z denotes the canonical basis of �2(Z) and dH denotes the Hausdorff
distance. We remind the reader that �

per
N ,b is the class of operators on �2(Z) whose

canonicalmatrix representation has bandwidth b (i.e. Ai j = 0 ∀|i− j | > b) andwhose
matrix entries repeat periodically along the diagonals with period N (here N , b ∈ N).
Clearly, every A ∈ �

per
N ,b defines a bounded operator on �2(Z). Note that �per =

⋃
N ,b∈N �

per
N ,b is the class of operators on �2(Z)whose canonical matrix representation

is banded and whose matrix entries repeat periodically along the diagonals. In the
language of the Solvability Complexity Index, the three parts of Theorem 1.1 can be
expressed as follows:

• Part (i) amounts to proving that the computational problem for �per has an SCI
value of 1 (or, equivalently, it belongs to �2).

• Part (ii) amounts to showing that the computational problem for �
per
N ,b belongs

to �1, i.e. it can be approximated with explicit error bounds; this is restated as
Theorem 3.3 below.

Remark 3.1 We note that the Hausdorff distance is only defined for non-empty sets,
and it is finite only if the sets are bounded. Hence it is important to observe that for
any A ∈ �per, the set σ(A) is both non-empty and bounded. Indeed, boundedness
of the spectrum follows immediately from boundedness of A, while non-emptyness
follows from the Floquet-Bloch theory described in Sect. 3.2. We discuss the metrics
used in this paper in Appendix A.
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Example 3.2 The class �
per
N ,1 contains all Jacobi-type matrices of the form

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

. . .
. . .

. . .

c0 a0 b0 0
c1 a1 b1

. . .
. . .

. . .

cN−1 aN−1 bN−1
0 c0 a0 b0

. . .
. . .

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ �
per
N ,1. (3.2)

3.1 Proof of Theorem 1.1(i)

To prove Theorem 1.1(i) we assume to be known Theorem 1.1(ii). Theorem 1.1(ii)
can be restated in the language of the SCI Hierarchy as follows:

Theorem 3.3 For any fixed N , b ∈ N the computational problem for �
per
N ,b can be

solved in one limit with explicit error bounds, i.e.
(
�

per
N ,b,	,�,M

) ∈ �1.

The proof of this theorem is contained in Subsection 3.4 below, after some prepara-
tory work. First, however, we prove Theorem 1.1(i):

Proof (Proof of Theorem 1.1(i)) By Theorem 3.3, for every N ∈ N there exists a
family of algorithms {
(N )

n }n∈N, such that 

(N )
n (B) → σ(B) as n → +∞ for any

B ∈ �
per
N ,b. Now, let A = (ai j )i, j∈Z ∈ �per and define a new family {
n}n∈N by the

following pseudocode.

Pseudocode 1: Definition of {
n}n∈N on �per

(H) for n ∈ N do
For i ∈ {−n, . . . , n} define di := (ai,i−n , ai,i−n+1, . . . , ai,i , . . . , ai,i+n−1, ai,i+n)

if ∃p < n s.t. di+p = di ∀i ∈ {p, . . . , n − p} then
N := min{p | d•+p = d•}

else
N := n

Define Bn := (bi j )i, j∈Z, where

{
(bi,i−n , . . . , bi,i , . . . , bi,i+n) := d(i mod N ) for i ∈ Z

bi j := 0 otherwise

Define 
n(A) := 

(N )
n (Bn)

To clarify the meaning of di we note that in Example 3.2 one would have di =
(. . . , 0, ci , ai , bi , 0, . . . ). Loosely speaking, Pseudocode 1 first takes a finite section
of A, searches it for periodic repetitions, and then defines a matrix Bn ∈ �

per
N ,b by

periodic extension, to which 

(N )
n can be applied. Because A is banded and periodic,

this routine will eventually find its period: there exists n0 ∈ N such that for all n > n0,
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N (as defined in the routine) is equal to the period of A and Bn ≡ A. Hence, for n > n0
we have 
n(A) = 


(N )
n (Bn) = 


(N )
n (A) → σ(A) as n → +∞, by the properties of



(N )
n .
Finally, note that every line of Pseudocode 1 can be executed with finitely many

algebraic operations on the matrix elements of A. ��
The following subsections are devoted to the proof of Theorem 3.3. The proof is
constructive, i.e. we will provide an explicit algorithm that computes the spectrum of
any given operator A ∈ �

per
N ,b with explicit error bounds.

3.2 Floquet-Bloch transform

Let N be as in the statement of Theorem 3.3. Given a vector x = (xn)n∈Z ∈ �2(Z)

and given θ ∈ [0, 2π ], define

(Uθ x)n := (2π)−
1
2
∑

k∈Z
xn+kN e

−ıθ(k+ n
N ). (3.3)

We also introduce the symbol �2per(N ) to denote the space of all N -periodic sequences

(yk)k∈Z, together with the norm ‖y‖2
�2per(N )

=∑N−1
k=0 |yk |2. Note that �2per(N ) is canon-

ically isomorphic to the Euclidean space R
N . The following lemma is easily proved

by direct computation.

Lemma 3.4 (Properties ofUθ )ThemapUθ defined in (3.3) has the followingproperties.

(i) For any x ∈ �2(Z), Uθ x is N-periodic, that is Uθ : �2(Z) → �2per(N );
(ii) The map

U : �2(Z) →
∫ ⊕

[0,2π ]
�2per(N ) dθ

x �→ (Uθ x)θ∈[0,2π ]

is unitary;
(iii) The inverse U−1 is given by

(U−1y)n = (2π)−
1
2

∫ 2π

0
yn(θ)eın

θ
N dθ.

Proof This is standard, and the proof is omitted. ��

3.3 Transform and properties of A ∈ Äper
N,b

The N -periodicity of A ∈ �
per
N ,b along diagonals is equivalent to the identity

Am,n = Am+kN ,n+kN for all m, n, k ∈ Z. (3.4)
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Lemma 3.5 For any A ∈ �
per
N ,b, y ∈ �2per(N ) and θ ∈ [0, 2π ], define (A(θ)y)n =

∑
j∈Z eıθ

j−n
N Anj y j . Then one has

U AU−1 =
∫ ⊕

[0,2π ]
A(θ) dθ.

Proof A straightforward calculation (which we leave to the reader) shows that
(Uθ Ax)n = (A(θ)Uθ x)n for n ∈ Z and x ∈ �2(Z). The assertion now follows from
the invertibility of U . ��

Remark 3.6 Observe that (A(θ)y)n = (A(θ)y)n+kN for any k ∈ Z so that A(θ)y ∈
�2per(N ). Hence, A(θ) is an operator �2per(N ) → �2per(N ), which can be expressed as

an N × N matrix. Note, however, that the numbers e−ıθ n− j
N Anj are not the matrix

elements of A(θ) with respect to any basis. Indeed, �2per(N ) is finite-dimensional,

while e−ıθ n− j
N Anj (n, j ∈ Z) are infinitely many numbers.

As noted earlier, we have �2per(N ) ∼= R
N . The identification can be made via the basis

eper1 = (. . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
N entries

, 1, 0, . . . )

eper2 = (. . . , 0, 0, 1, 0, . . . , 0︸ ︷︷ ︸
N entries

, 1 . . . )

...

i.e. (epern ) j = δ( j mod N ), n for n ∈ {0, . . . , N − 1} (Kronecker symbol). In this basis,
the matrix elements of A(θ) become

A(θ)mn =
〈
eperm , A(θ)epern

〉
�2per(N )

=
N−1∑

k=0

δ(k mod N ),m

∑

j∈Z
eıθ

j−k
N Ak jδ( j mod N ), n

=
∑

j∈Z

N−1∑

k=0

δk,me
ıθ j−k

N Ak jδ( j mod N ), n

123



J. Ben-Artzi et al.

=
∑

j∈Z
eıθ

j−m
N Amjδ( j mod N ), n

=
∑

j ′∈Z
eıθ

j ′N+n−m
N Am, j ′N+n

= eıθ
n−m
N
∑

j ′∈Z
eıθ j

′
Am, j ′N+n . (3.5)

Note that the sum in the last line is actually finite, because A is banded. Indeed, if the
band width of A is less than the period, then the sum over j ′ in (3.5) contains only
one term.

Example 3.7 If A is a matrix with N = 1, i.e. A is a Laurent operator, then formula
(3.5) yields a scalar function of θ given by

A(θ) =
∑

j∈Z
eıθ j A0, j .

Writing z := eıθ , we see that A(θ) = ∑ j∈Z z j A0, j is given by the symbol of the
Laurent operator. We thus recover the classical result that the spectrum of a Laurent
operator is given by the image of the unit circle under its symbol (cf. [39, Th. 7.1]).

Example 3.8 If A is tri-diagonal and N = 5 (cf. (3.2)), the formula above gives

A(θ) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

a0 b0eı
θ
5 0 0 c0e−ı θ5

c1e−ı θ5 a1 b1eı
θ
5 0 0

0 c2e−ı θ5 a2 b2eı
θ
5 0

0 0 c3e−ı θ5 a3 b3eı
θ
5

b4eı
θ
5 0 0 c4e−ı θ5 a4

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

Next, we establish some elementary facts about the spectrum of a periodic operator.
By standard results about the Floquet-Bloch transform, we have

σ(A) =
⋃

θ∈[0,2π ]
σ(A(θ))

for all A ∈ �
per
N ,b. Thus, an algorithm may be devised by determining the zeros of

the map z �→ det(A(θ) − z I ), θ ∈ [0, 2π ]. To this end, note that by definition of the
determinant, one has

det(A(θ) − z I ) =
N∑

n=0

pn(θ)zn,
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where the coefficient functions pn(θ) are polynomials in the matrix entries A(θ)mn

and hence analytic and periodic in θ . Hence they are bounded:

∃C > 0 : |pn(θ)| ≤ C ∀θ ∈ [0, 2π ], ∀n ∈ {0, . . . , N }.

Moreover, pN (θ) ≡ 1.

Lemma 3.9 Let A ∈ �
per
N ,b and R > 0. For any z, w ∈ C with |z|, |w| ≤ R and

θ, ϑ ∈ [0, 2π ] one has
| det(A(θ) − z I ) − det(A(ϑ) − w I )|
≤ N

N
2 +2((2b + 1)‖A‖∞ + R

)N
(2b + 1)2‖A‖∞(|z − w| + |θ − ϑ |),

where we note that ‖A‖∞ = max{|Ai j | | i, j ∈ Z} can be computed in finitely many
steps.

Proof Denote BR := {z ∈ C | |z| ≤ R}. From the mean value theorem it follows that
for any differentiable function f : BR × [0, 2π ] → C one has

| f (z, θ) − f (w, ϑ)| ≤ ‖∇ f ‖L∞(BR×[0,2π ])
(|z − w| + |θ − ϑ |).

Hence to prove the claim it is enough to bound ‖∇ f ‖L∞(BR)×[0,2π ] for f (z, θ) =
det(A(θ) − z I ). This follows from the Jacobi formula: for any square matrix M one
has

∂ det(M)

∂Mi j
= cof(M)i j ,

where cof(M) denotes the cofactor matrix of M . Hence,

∂

∂z
det(A(θ)− z I ) =

N−1∑

i, j=0

cof(A(θ)− z I )i j (−δi j ),

∂

∂θ
det(A(θ)− z I ) =

N−1∑

i, j=0

cof(A(θ)− z I )i j
∂A(θ)i j

∂θ
.

Using Hadamard’s inequality to bound the cofactor matrix, we obtain the bounds

∣∣∣
∂

∂z
det(A(θ) − z I )

∣∣∣ ≤ N
N
2 +1‖A(θ) − z I‖N∞

≤ N
N
2 +1((2b + 1)‖A‖∞ + R

)N
, (3.6)

∣∣∣
∂

∂θ
det(A(θ) − z I )

∣∣∣ ≤ N
N
2 +2‖A(θ) − z I‖N∞‖∂θ A(θ)‖∞

≤ N
N
2 +2((2b + 1)‖A‖∞ + R

)N‖∂θ A(θ)‖∞
≤ N

N
2 +2((2b + 1)‖A‖∞ + R

)N
(2b + 1)2‖A‖∞, (3.7)
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where the last two lines follow from the explicit formula (3.5). The bounds (3.6) and
(3.7) imply

max{|∂θ f |, |∂z f |} ≤ N
N
2 +2((2b + 1)‖A‖∞ + R

)N
(2b + 1)2‖A‖∞

and the claim follows. ��

3.4 Proof of Theorem 1.1(ii)

We can finally prove Theorem 1.1(ii) which was restated equivalently as Theorem
3.3. First, we define the family of algorithms {
n}n∈N, where each of them maps

n : �per

N ,b → M (we recall thatM is the space of all compact subsets of C endowed

with the Hausdorff metric). It is easy to see that for any A ∈ �
per
N ,b one has ‖A‖�2→�2 ≤

RA :=∑N
j=1
∑b

k=−b |A jk | (this follows from Young’s inequality), a quantity which
can be computed in finitely many steps. Therefore, if we denote BRA := {z ∈ C | |z| ≤
RA}, the a priori inclusion σ(A) ⊂ BRA holds true for any A ∈ �

per
N ,b.

Definition 3.10 (N , b-Periodic Matrix Algorithm) Let A ∈ �
per
N ,b and for n ∈ N, let

�n =
(
θ

(n)
1 , . . . , θ

(n)
n
)
be a linear spacing of [0, 2π ] and let Ln := 1

n (Z + ıZ) ∩ BRA

be a finite lattice with spacing n−1. Then we define


n(A) :=
n⋃

i=1

{
z ∈ Ln

∣∣ ∣∣ det
(
A(θ

(n)
i ) − z I

)∣∣ ≤ n−
1
2

}
. (3.8)

Remark 3.11 We emphasize that (3.8) can be computed in finitely many arithmetic
operations on the matrix elements of A. Indeed, computing the radius RA consists of
a finite sequence of multiplications and additions, as does the computation of each of
the determinants det(A(θ

(n)

i ) − z) for z, θ (n)

i in the finite sets Ln , �n .

Proof of Theorem 3.3 (equiv. Theorem 1.1(ii)) The proof has two steps.

Step 1: σ(A) is approximated from above by 
n(A). For any set K ⊂ C we denote
by Bδ(K ) the δ-neighborhood of K .

Let z ∈ σ(A). Then |z| ≤ ‖A‖�2→�2 ≤ RA and there exists θ ∈ [0, 2π ] such that
det(A(θ)− z I ) = 0. Choose zn ∈ Ln such that |z− zn| ≤ n−1 and θn ∈ �n such that
|θ − θn| ≤ n−1. Applying Lemma 3.9 we obtain the bound

| det(A(θn) − zn I )| ≤ N
N
2 +2((2b + 1)‖A‖∞ + RA

)N
(2b + 1)2‖A‖∞

× (|z − zn| + |θ − θn|)
≤ 2

n
N

N
2 +2((2b + 1)‖A‖∞ + RA

)N
(2b + 1)2‖A‖∞.
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This inequality implies that zn ∈ 
n(A) as soon as 2n−1N
N
2 +2((2b + 1)‖A‖∞ +

RA
)N

(2b + 1)2‖A‖∞ ≤ n− 1
2 , or equivalently,

n >
(
2N

N
2 +2((2b + 1)‖A‖∞ + RA

)N
(2b + 1)2‖A‖∞

)2
. (3.9)

Note that the right-hand side of (3.9) is computable in finitely many arithmetic opera-
tions if N and b are known a priori. Since |z− zn| ≤ n−1 by construction, this shows

that σ(A) ⊂ B 1
n
(
n(A)) for n > (2N

N
2 +2((2b+1)‖A‖∞+ RA

)N
(2b+1)2‖A‖∞)2.

Step 2: σ(A) is approximated from below by 
n(A). Next we prove that 
n(A) ⊂
Bδ(σ (A)) for n large enough. We first note that, since det(z I − A(θ)) is a polynomial
in z, it can be factored to take the form

det(z I − A(θ)) =
N∏

i=1

(z − zi (θ)), (3.10)

where zi (θ) are the zeros of z �→ det(z I − A(θ)) (note that for a characteristic
polynomial the coefficient of the leading order term is always 1). From (3.10) we
obtain the bound

| det(z I − A(θ))| =
N∏

i=1

|z − zi (θ)| ≥ dist(z, σ (A))N . (3.11)

Let zn ∈ 
n(A) be an arbitrary sequence. Then, by definition, | det(zn I − A(θn))| ≤
n− 1

2 for some θn ∈ �n . From (3.11) we conclude that

dist(zn, σ (A))N ≤ | det(zn I − A(θn))| ≤ n−
1
2

and thus zn ∈ Bn−1/2N (σ (A)) for all n ∈ N. This concludes step 2.

Together, steps 1 and 2 imply that for any given δ > 0 one has both 
n(A) ⊂
Bδ(σ (A)) and σ(A) ⊂ Bδ(
n(A)) provided that

n > max

{
δ−2N ,

(
2N

N
2 +2((2b + 1)‖A‖∞ + RA

)N
(2b + 1)2‖A‖∞

)2}
. (3.12)

Since the right-hand side of (3.12) is computable from N , b and the matrix elements of
A in finitely many arithmetic operations, we conclude that the computational problem
is in �1. ��
Example 3.12 The algorithm from Definition 3.10 can easily be implemented in Mat-
lab. An example calculation with bandwidth b = 1, N = 5 and A of the form (3.2)
with
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0 2

−2

0

2

n = 25 :

0 2

−2

0

2

n = 50 :

0 2

−2

0

2

n = 100 :

Fig. 2 Output of 
n(A) in the complex plane for different values of n

(ai ) = (1, 0, 1, 0, 2)

(bi ) = (−1,−2, 1, 3ı,−5)

(ci ) = (2ı,−3ı, 2ı, 0, ı)

yields the following output in the complex plane. Note that the output is a set of points
on a discrete grid in the complex plane and hence the output looks ‘fat’. As n is taken
larger this set of points dwindles to just those points that lie in an ever decreasing
neighborhood of the true spectrum.

The Matlab implementation that produced Fig. 2 is available online at https://github.
com/frank-roesler/TriSpec.

4 Schrödinger operators with periodic potentials

In this section we prove Theorem 1.2 regarding the spectrum of Schrödinger operators
H = −� + V with periodic potentials V : R

d → C. Again, this is done by defining
an explicit algorithm. We shall consider three computational problems which only
differ in their primary set �, and are as follows (primary sets are defined immediately
below):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

� = �Sch or �Sch
p or �Sch

p,M

M = ({K ⊂ C | K closed}, dAW
)

	 = {V �→ V (x) | x ∈ R
d}

� : � → M; V �→ σ(−�+ V ),

where −� + V is meant to be defined on L2(Rd) with domain H2(Rd), and dAW
denotes the Attouch-Wets metric, which is a generalization of the Hausdorff metric
for the case of sets which may be unbounded (see Appendix A for a brief discussion).
Note that the spectrum σ(−� + V ) is always non-empty in this case, so taking this
metric makes sense. For p > d and M > 0, the primary sets are defined as follows:
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�Sch
p := {V : R

d → C | V is 1-periodic and V |(0,1)d ∈ W 1,p((0, 1)d)},
�Sch :=

⋃

p>d

�Sch
p ,

�Sch
p,M := {V ∈ �Sch

p | ‖V ‖W 1,p((0,1)d ) ≤ M}.

Note that by Morrey’s inequality, every V ∈ �Sch
p is continuous, and so the evalu-

ation set 	 which comprises point evaluations of V , is well-defined. In the language
of the Solvability Complexity Index, the three parts of Theorem 1.2 can be expressed
as follows:

• Part (i) amounts to proving that the computational problem for �Sch has an SCI
value of 1 (or, equivalently, it belongs to �2).

• Part (ii) amounts to showing that the computational problem for �Sch
p,M belongs to

�1, i.e. it can be approximated from above with explicit error bounds.
• Part (iii) amounts to showing that the computational problem for potentials that are
real-valued and in �Sch

p,M belongs to �1, i.e. it can be approximated with explicit
error bounds.

The proof of Theorem 1.2 is contained in Subsection 4.3, and it relies on the
following weaker theorem:

Theorem 4.1 The computational problem for �Sch
p can be solved in one limit:

SCI(�Sch
p ) = 1 (equivalently, �Sch

p ∈ �2).

Note that this theorem is evidently weaker than Theorem 1.2(i) as the class of
potentials �Sch

p considered here is a strict subset of the class �Sch = ⋃p>d �Sch
p

considered in Theorem 1.2(i). The proof is constructive, i.e. we provide an explicit
algorithm that computes the spectrum of any given operator with V ∈ �Sch

p . Note
that this problem is fundamentally different from the discrete problem (3.1) where
we could directly access the matrix elements of the (discrete) operator. Instead, the
evaluation set 	 gives access to the point values of the potential. Hence our task is
to construct a sequence of algorithms {
n}n∈N, such that each 
n computes its output
from finitely many point evaluations of V using finitely many algebraic operations.

The proof of Theorem 4.1 is contained in Subsection 4.2. Prior to that, Subsection
4.1 contains several technical estimates needed to prove convergence of the algorithm.

4.1 Estimating and approximating the potential

This section uses well-known facts about the Floquet-Bloch transform, which we
gather in Appendix B. The critical step is to compute approximations to the spectrum
σ(−� + V ) using only finitely many pointwise evaluations of V . This is done using
the Floquet-Bloch transform in conjunction with the Birman-Schwinger principle.
The approximate potential is defined in (4.8) and the critical error bound is stated in
Lemma 4.6.
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4.1.1 A Birman-Schwinger principle for H(�)

It shall be convenient for us to characterize the eigenvalues using the well-known
Birman-Schwinger principle [8,33]. This principle requires a decomposition, which
we choose as follows. Let p > d, V ∈ �Sch

p , θ ∈ [0, 2π ]d and let H(θ) be the
corresponding Floquet-Bloch operator as in (B.1). Expanding the operator square,
H(θ) can be written as

H(θ) = −�− 2ıθ · ∇ + |θ |2 + V .

Let us choose the following decomposition of H(θ). We define

H0 := −�+ 1, dom(H0) = H2
per

(
(0, 1)d

)
, (4.1a)

B(θ) := −2ıθ · ∇ + |θ |2 − 1+ V , dom(B(θ)) = H1
per

(
(0, 1)d

)
. (4.1b)

Next we derive an operator identity that characterizes λ ∈ σ(H(θ)) \ σ(H0) as
those points for which 1 ∈ σ(K(λ)), for a certain compact operatorK(λ). Clearly one
has H(θ) = H0+B(θ). The auxiliary constant 1, which is added in H0 and subtracted
again in B(θ) was chosen for convenience, so that H0 becomes a positive invertible
operator. Note that B(θ) is relatively compact with respect to H0. For λ /∈ σ(H0) one
has

λ − H0 − B(θ) = H
1
2
0

(
I − H

− 1
2

0 B(θ)(λ− H0)
−1H

1
2
0

)
H
− 1

2
0 (λ− H0),

where I denotes the identity operator on L2((0, 1)d) It follows that λ− H0 − B(θ) is
invertible if and only if I − H−1/2

0 B(θ)(λ− H0)
−1H

1/2
0 is invertible, and in that case

(λ− H0 − B(θ))−1 = (λ− H0)
−1H

1
2
0

(
I − H

− 1
2

0 B(θ)H
1
2
0 (λ− H0)

−1)−1
H
− 1

2
0 .

This identity implies that

λ ∈ C \ σ(H0) is in σ(H(θ)) ⇔ 1 ∈ σ
(
H
− 1

2
0 B(θ)H

1
2
0 (λ − H0)

−1).

4.1.2 Schatten class estimates

We now study the analytic operator valued function

K (λ, θ) := H
− 1

2
0 B(θ)H

1
2
0 (λ− H0)

−1.

We choose a Fourier basis for L2((0, 1)d), that is, we choose a numbering N � j �→
k j ∈ 2πZ

d such that |k j | is monotonically increasing with j and set

e j := eık j ·x .
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We note that e j ∈ dom(H(θ)) for all θ and ‖e j‖L2((0,1)d ) = 1 for all j ∈ N. In this

basis, the operators H
1/2
0 , H0 and θ · ∇ are all diagonal and one has

H
1/2
0 = diag

(
(1+ |k j |2)1/2

)
(4.2)

λ− H0 = diag
(
λ− 1− |k j |2

)

−2ıθ · ∇ = diag(2 θ · k j ). (4.3)

Therefore, we have

H
− 1

2
0 (−2ıθ · ∇)H

1
2
0 (λ− H0)

−1 = diag

(
2 θ · k j

λ− 1− |k j |2
)

.

Now the following lemma is easily proved.

Lemma 4.2 (Schatten bound for K ) For every s > d the operator K (λ, θ) belongs to
the Schatten class Cs and one has

‖K (λ, θ)‖Cs ≤
(
2

π
|θ | + 2

π

∥∥|θ |2 − 1+ V
∥∥
)
Cλ

(
1− d

s

)− 1
s

,

where Cλ := sup j∈N
∣∣1− λ−1

|k j |2
∣∣−1

and ‖ · ‖ denotes the L2 operator norm.

Proof Let λ ∈ C \ σ(H0) and note that Cλ < +∞ by our choice of λ. Observe that
simple geometric considerations lead to the bound

|k j | ≥ π j
1
d .

Then one has

∣∣∣∣
2 θ · k j

λ− 1− |k j |2
∣∣∣∣ ≤ 2

|θ ||k j |
|λ − 1− |k j |2|

≤ 2Cλ|θ ||k j |−1

≤ 2

π
Cλ|θ | j− 1

d . (4.4)

Hence the characteristic numbers of H
− 1

2
0 (−2ıθ · ∇)H

1
2
0 (λ − H0)

−1 are bounded by
2
π
Cλ|θ | j− 1

d and thus one has

H
− 1

2
0 (−2ıθ · ∇)H

1
2
0 (λ − H0)

−1 ∈ Cs for any s > d
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and

∥∥H
− 1

2
0 (−2ıθ · ∇)H

1
2
0 (λ− H0)

−1
∥∥Cs ≤

2

π
Cλ|θ |
( ∞∑

j=1

j−
s
d

) 1
s

≤ 2

π
Cλ|θ |
(
1− d

s

)− 1
s

. (4.5)

Next we turn to the potential term in K (λ, θ), that is, the operator H−1/2
0

(|θ |2 − 1 +
V
)
H

1/2
0 (λ−H0)

−1. This is easily treated by the ideal property of Cs , since the operator
|θ |2 − 1+ V is bounded. Indeed, we have for every s > d

∥∥H−1/2
0

(|θ |2 − 1+ V
)
H

1/2
0 (λ− H0)

−1
∥∥Cs

≤ ∥∥H−1/2
0

∥∥∥∥|θ |2 − 1+ V
∥∥∥∥H

1/2
0 (λ− H0)

−1
∥∥Cs

≤ ∥∥|θ |2 − 1+ V
∥∥ 2
π
Cλ

(
1− d

s

)− 1
s

, (4.6)

where the last line follows from a similar calculation to (4.4) and the fact that
‖H−1/2

0 ‖ = 1 (this follows from the matrix representation (4.2) and the fact that
k1 = 0). ��

Lemma 4.3 (Lipschitz continuity of K ) For every s > d and λ,μ ∈ C \ σ(H0),
θ, ϑ ∈ [0, 2π ]d one has

‖K (λ, θ)− K (μ, ϑ)‖Cs ≤ 8d
1
2Cλ

(
1− d

s

)− 1
s (|θ − ϑ | + cVCμ|λ− μ|),

where Cλ is defined as in Lemma 4.2 and cV = 1
2 + πd

1
2 + (4πd

1
2 )−1‖V − 1‖∞.

Proof First, note that

B(θ) − B(ϑ) = −2ı(θ − ϑ) · ∇ + (θ + ϑ) · (θ − ϑ). (4.7)

Using (4.7) together with the resolvent identity for (λ− H0)
−1 one obtains

K (λ, θ) − K (μ, ϑ) = H
− 1

2
0 (−2ı(θ − ϑ) · ∇ + (θ + ϑ) · (θ − ϑ))H

1
2
0 (λ − H0)

−1

+ H
− 1

2
0 B(ϑ)H

1
2
0 (λ− μ)(λ − H0)

−1(μ− H0)
−1

= (θ − ϑ) · (−2ı∇ + θ + ϑ)(λ− H0)
−1

+ (λ− μ)K (λ, ϑ)(μ− H0)
−1.
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Taking norms in Cs and using the estimates from the proof of Lemma 4.2 (and in
particular (4.5)) we obtain the bound

‖K (λ, θ)− K (μ, ϑ)‖Cs ≤ |θ − ϑ |∥∥(−2ı∇ + θ + ϑ)(λ− H0)
−1
∥∥Cs

+ |λ− μ|∥∥K (λ, ϑ)
∥∥Cs
∥∥(μ− H0)

−1
∥∥

≤ |θ − ϑ | 2
π
Cλ|θ + ϑ |

(
1− d

s

)− 1
s

+ |λ− μ|∥∥K (λ, ϑ)
∥∥CsCμ.

Finally, applying Lemma 4.2 and using |θ + ϑ | ≤ 4πd
1
2 we obtain

‖K (λ, θ) − K (μ, ϑ)‖Cs ≤ |θ − ϑ |8Cλd
1
2

(
1− d

s

)− 1
s

+ |λ − μ|
(
4d

1
2 + 8πd + 2

π
‖V − 1‖

)
CλCμ

(
1− d

s

)− 1
s

≤ 8d
1
2Cλ

(
1− d

s

)− 1
s

(
|θ − ϑ | +

(
1

2
+ πd

1
2 + (4πd

1
2 )−1‖V − 1‖

)
Cμ|λ − μ|

)
.

This concludes the proof. ��
While Lemma 4.3 gives precise information about the dependence of the Lipschitz

constant of K on all parameters, it will be useful for us to have a bound which is less
precise but more explicit (and manifestly computable).

Corollary 4.4 Let s > d and δ, R > 0. Then for any θ, ϑ ∈ [0, 2π ]d and λ,μ ∈ C

such that |λ− (1+ |k j |2)|, |μ− (1+ |k j |2)| > δ for all j and |λ|, |μ| < R one has

‖K (λ, θ) − K (μ, ϑ)‖Cs ≤ δ−248R2 sd

s − d

3p − d

p − d
×

(
1+ ‖V ‖W 1,p((0,1)d )

)(|θ − ϑ | + |λ− μ|),

Proof This follows immediately from Lemma 4.3 via rather crude estimates, noting
that Cλ ≤ Rδ−1 and ‖V ‖∞ ≤ 3p−d

p−d ‖V ‖W 1,p((0,1)d ) (cf. [9, Ch. 9.3]). ��

4.1.3 Approximation of the potential

Next we study the matrix representation of the potential V in the Fourier basis {e j } j∈N
and its approximations. First, we observe that in the Fourier basis {e j } j∈N one has

〈e j , Vem〉 = V̂km−k j
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where V̂k denote the Fourier coefficients of V . Indeed, a direct calculation gives

〈e j , Vem〉 =
∫

(0,1)d
eık j ·x V (x)eıkm ·x dx =

∫

(0,1)d
V (x)eı(km−k j )·x dx = V̂km−k j .

Now, we want to build a computable, finite size approximation of the matrix (Vjm) =
(〈e j , Vem〉). We start by approximating the Fourier coefficients V̂k .

Lemma 4.5 Let n ∈ N and define the lattice In := {mn |m = 0, . . . , n−1}d ⊂ (0, 1)d .
For every f ∈ W 1,p((0, 1)d), p > d, one has

∣∣∣∣∣∣
n−d
∑

ξ∈In
f (ξ)−

∫

(0,1)d
f (x) dx

∣∣∣∣∣∣
≤ 2n−1+d/p

1− d/p
‖∇ f ‖L p((0,1)d )

Proof The proof is a standard application of Morrey’s inequality (cf. (28) in the proof

of [9, Th. 9.12]), which implies that | f (x)− f (ξ)| ≤ 2n−1+d/p

1−d/p
‖∇ f ‖L p((0,1)d ) for x in

the cube (0, 1
n )d + ξ . Details are left to the reader. ��

Let us introduce the approximate Fourier coefficients for k ∈ 2πZ
d and n ∈ N,

V̂ appr,n
k := n−d

∑

ξ∈In
V (ξ)eık·ξ . (4.8)

Note that the V̂ appr,n
k can be computed in finitelymany operations from the information

provided in 	. Lemma 4.5 applied to the function f (x) = V (x)eık·x leads to the error
estimate

∣∣∣V̂ appr,n
k − V̂k

∣∣∣ ≤ 2n−1+d/p

1− d/p
‖∇(Veık·x )‖L p((0,1)d )

≤ 2n−1+d/p

1− d/p

(‖∇V eık·x‖L p((0,1)d ) + ‖V∇eık·x‖L p((0,1)d )

)

= 2n−1+d/p

1− d/p

(‖∇V ‖L p((0,1)d ) + |k| ‖V ‖L p((0,1)d )

)

≤ 2n−1+d/p

1− d/p
(1+ |k|)‖V ‖W 1,p((0,1)d ) (4.9)

Next, we define the approximate potential matrix

V appr,n := (V̂ appr,n
km−k j

)
m, j∈N.

We remark that the approximated potential matrix cannot be computed in finitelymany
algebraic operations from the point values of V , because it has infinitely many entries.
This issue will be addressed next.
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Lemma 4.6 (Main Error Bound) For N ∈ N let HN = Span{e1, . . . , eN } and let
PN : L2((0, 1)d) → HN be the orthogonal projection. Moreover, define

K appr
n (λ, θ) := H

− 1
2

0

(− 2ıθ · ∇ + |θ |2 − 1+ V appr,n)H
1
2
0 (λ − H0)

−1.

Then for every s > d one has

∥∥K (λ, θ)− PN K
appr
n (λ, θ)PN

∥∥Cs

≤ Cλ

(
C1
s,d |θ |N

1
s− 1

d + C2
s,p,d

N 1+ 1
d

n1−
d
p

‖V ‖W 1,p((0,1)d )

+ C3
s,d N

1
s− 1

d

(∣∣|θ |2 − 1
∣∣+ ‖V ‖L∞((0,1)d )

))
,

where we recall that Cλ = sup j∈N
∣∣1 − λ−1

|k j |2
∣∣−1

and C1
s,d , C

2
s,p,d , C

3
s,d are explicit

constants independent of n, N , λ, θ .

Proof Again, we denote by ‖ · ‖ the L2(Rd) operator norm in this proof. We first treat
the θ · ∇ term. By Eqs. (4.2)–(4.3) we have

H
− 1

2
0 (−2ıθ · ∇)H

1
2
0 (λ − H0)

−1 − PN H
− 1

2
0 (−2ıθ · ∇)H

1
2
0 (λ− H0)

−1PN

= diag

(
2 θ · k j

λ − 1− |k j |2 ; j > N

)

and by (4.4) we can estimate the above as

∥∥∥∥diag
(

2 θ · k j
λ − 1− |k j |2 ; j > N

)∥∥∥∥
Cs
≤ 2

π
|θ |Cλ

( ∞∑

j=N+1

j−
s
d

) 1
s

≤ 2

π
|θ |Cλ

(∫ ∞

N
t−

s
d dt

) 1
s

≤ 2

π
|θ |Cλ

(
N− s

d+1

s
d − 1

) 1
s

= 2|θ |Cλ

π( sd − 1)
1
s

N− 1
d+ 1

s . (4.10)

To estimate the next term, we denoteWn := |θ |2−1+V appr,n andW := |θ |2−1+V

for brevity, and note that the diagonal operators H
− 1

2
0 and (λ− H0)

−1 commute with

PN . Thus we have PN H
− 1

2
0 WnH

1
2
0 (λ − H0)

−1PN = H
− 1

2
0 PNWnPN H

1
2
0 (λ − H0)

−1.
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Then we calculate

∥∥H
− 1

2
0

(
W − PNWnPN

)
H

1
2
0 (λ − H0)

−1
∥∥Cs

≤ ∥∥H− 1
2

0

(
W − PNW PN

)
H

1
2
0 (λ − H0)

−1
∥∥Cs

+ ∥∥H− 1
2

0 PN
(
W −Wn

)
PN H

1
2
0 (λ − H0)

−1
∥∥Cs

≤ ∥∥H− 1
2

0

(
W − PNW PN

)
H

1
2
0 (λ − H0)

−1
∥∥Cs

+ ∥∥H− 1
2

0 PN
(
V − V appr,n)PN H

1
2
0 (λ − H0)

−1
∥∥Cs . (4.11)

Let us first consider the second term on the right-hand side of (4.11).

∥∥H
− 1

2
0 PN
(
V−V appr,n)PN H

1
2
0 (λ− H0)

−1
∥∥Cs

≤ ∥∥H− 1
2

0

∥∥∥∥PN
(
V − V appr,n)PN

∥∥∥∥H
1
2
0 (λ− H0)

−1
∥∥Cs

≤ 2

π
Cλ

(
1− d

s

)− 1
s ∥∥PN
(
V − V appr,n)PN

∥∥

≤ 2

π
Cλ

(
1− d

s

)− 1
s
N
2n

d
p−1

1− d
p

(
1+ sup

j≤N
|k j |
)‖V ‖W 1,p((0,1)d )

≤ 2

π
Cλ

(
1− d

s

)− 1
s
N
2n

d
p−1

1− d
p

(
1+ πd

1
2 N

1
d
)‖V ‖W 1,p((0,1)d )

where the fourth line follows from (4.9), with a similar calculation as in (4.6). To
simplify notation, we collect all constants independent of λ, n, N into one and write

∥∥H
− 1

2
0 PN

(
V−V appr,n)PN H

1
2
0 (λ− H0)

−1
∥∥Cs ≤ CλC

2
s,p,d

N 1+1/d

n1−d/p
‖V ‖W 1,p((0,1)d )

(4.12)

Next we turn to the first term on the right-hand side of (4.11). We add and subtract
PNW and use the triangle inequality to obtain

∥∥H
− 1

2
0

(
W − PNW PN

)
H

1
2
0 (λ− H0)

−1
∥∥Cs

≤ ∥∥H− 1
2

0

(
W − PNW

)
H

1
2
0 (λ − H0)

−1
∥∥Cs

+ ∥∥H− 1
2

0

(
PNW − PNW PN

)
H

1
2
0 (λ − H0)

−1
∥∥Cs
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= ∥∥H− 1
2

0 (I − PN )WH
1
2
0 (λ − H0)

−1
∥∥Cs

+ ∥∥H− 1
2

0 PNW (I − PN )H
1
2
0 (λ− H0)

−1
∥∥Cs

≤ ∥∥H− 1
2

0 (I − PN )
∥∥Cs
∥∥H

1
2
0 (λ − H0)

−1
∥∥‖W‖

+ ∥∥H− 1
2

0

∥∥∥∥(I − PN )H
1
2
0 (λ− H0)

−1
∥∥Cs‖W‖.

Nextwenote that, by (4.2)–(4.3),‖H− 1
2

0 ‖ = 1 and‖H
1
2
0 (λ−H0)

−1‖ ≤ 2Cλ. Therefore

∥∥H
− 1

2
0

(
W − PNW PN

)
H

1
2
0 (λ− H0)

−1
∥∥Cs

≤
(
2Cλ

∥∥H
− 1

2
0 (I − PN )

∥∥Cs +
∥∥(I − PN )H

1
2
0 (λ− H0)

−1
∥∥Cs
)
‖W‖. (4.13)

Finally, we employ (4.2)–(4.3) again to estimate the finite section error in (4.13). A
straightforward calculation shows that

∥∥H
− 1

2
0 (I − PN )

∥∥Cs ≤ π−1 N
1
s− 1

d

( sd − 1)1/s
,

∥∥(I − PN )H
1
2
0 (λ− H0)

−1
∥∥Cs ≤

2

π
Cλ

N
1
s− 1

d

( sd − 1)1/s
.

Using these bounds in (4.13), we finally obtain the error estimate

∥∥H
− 1

2
0

(
W − PNW PN

)
H

1
2
0 (λ− H0)

−1
∥∥Cs

≤ 4CλN
1
s− 1

d

π( sd − 1)1/s
‖W‖

≤ 4CλN
1
s− 1

d

π( sd − 1)1/s

(∣∣|θ |2 − 1
∣∣+ ‖V ‖L∞((0,1)d )

)
. (4.14)

Combining (4.10), (4.12) and (4.14) yields the assertion with constants

C1
s,d =

2

π( sd − 1)
1
s

,

C2
s,p,d =

2

π

(
1− d

s

)− 1
s 2

1− d
p

(
1+ πd1/2

)
,

C3
s,d =

4

π( sd − 1)1/s
. ��
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4.2 Proof of Theorem 4.1

In this section we construct an algorithm 
N (V ), which approximates σ(−� + V )

as N → ∞. The output of 
N consists of two parts 
z
n and 
̃z

n , which we call
algorithmic components.We first recall a result on Lipschitz continuity of perturbation
determinants.

Theorem 4.7 ( [35, Thm. 6.5]) For m ∈ N, denote by detm the perturbation determi-
nant on Cm (cf. [14, Sec. XI.9]). Then there exists a constant cm such that

| detm(I − A) − detm(I − B)| ≤ ecm (1+‖A‖Cm+‖B‖Cm )‖A − B‖Cm
for all A, B ∈ Cm. Moreover, one has cm ≤ e(2+ log(m)).

Next, we define

Definition 4.8 (First algorithmic component) Let p > d, V ∈ �Sch
p and z0 ∈ C. For

N ∈ N let �N = (θ(N )
1 , . . . , θ

(N )
N

)
be a linearly spaced lattice in [0, 2π ]d and let

LN := 1
N (Z + ıZ) ∩ Qz0 , where Qz0 :=

{
z ∈ C
∣∣ | Im(z − z0)|, |Re(z − z0)| ≤ 1

2

}
.

Then we let n(N ) := N �α�, with α = 1+2d−1−p−1

1−p−1d
, 2 and define



z0
N (V ) :=

N⋃

i=1

{
z ∈ LN

∣∣ ∣∣ det�p�
(
I − PN K

appr
n(N )

(
z, θ(N )

i

)
PN
)∣∣ ≤ N−( 1

2d− 1
2p )
}

.

(4.15)

Note that for every N ∈ N, 

z0
N (V ) can be computed from the information in 	

using finitely many algebraic operations (recall in particular the approximated Fourier
coefficients (4.8)). Therefore, every 


z0
N defines an arithmetic algorithm in the sense

of Definition 2.3.

Proposition 4.9 (Convergence of first algorithmic component) Let z0 ∈ C and let
V ∈ �Sch

p . The following statements hold.

(i) For any sequence zN ∈ 

z0
N (V ) with zN → z ∈ Qz0 \

⋃
j (1 + |k j |2) one has

z ∈ σ(−� + V ).
(ii) For any z ∈ (σ(−� + V ) ∩ Qz0

) \⋃ j (1+ |k j |2) there exists a sequence zN ∈


z0
N (V ) with zN → z as N →+∞.

(iii) Let V ∈ �Sch
p,M. For any given ε, δ > 0 one has

(
σ(−�+ V ) ∩ Qz0

) \
Bδ

(⋃
j (1+ |k j |2)

) ⊂ Bε(

z0
N (V )) as soon as N > max{ε−1, Nδ,z0}, where

Nδ,z0 =
[
CLip

δ,z0
+ G(|z0| + 1)δ−1

] 2
1/p+1/d (4.16)

and CLip
δ,z0

, G are explicit constants, which can be computed in finitely many
operations from z0, δ, s, p, d and the a priori bound M for ‖V ‖W 1,p .

2 The exponent α is chosen such that N1+1/d/n1−d/p ≤ N 1/p−1/d (cf. Lemma (4.6)).
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We defer the proof of Proposition 4.9 to Appendix C. The algorithmic component 
z0
N

defined in (4.15) on its own is not sufficient to prove Theorem 4.1, because it does not
approximate any eigenvalues lying in the set

⋃
j (1+ |k j |2). This is ultimately due to

the decomposition (4.1) into H0 and B(θ). In order to solve this issue, we define a
second algorithmic component based on a different decomposition. We define

H̃0 := −�+ 2, dom(H̃0) = H2
per

(
(0, 1)d

)
(4.17a)

B̃(θ) := −2ıθ · ∇ + |θ |2 − 2+ V , dom(B̃(θ)) = H1
per

(
(0, 1)d

)
. (4.17b)

Then, obviously, H̃0 + B̃(θ) = H(θ) and by the same calculation as in Sect. 4.1.1,

λ ∈ C \ σ(H̃0) is in σ(H(θ)) ⇔ 1 ∈ σ
(
H̃
− 1

2
0 B̃(θ)H̃

1
2
0 (λ − H̃0)

−1).

Moreover, we have σ(H̃0) =⋃ j (2+ |k j |2) and
Lemma 4.10 One has

σ(H0) ∩ σ(H̃0) = ∅.

Proof The assertion is equivalent to the equation 2 + (2π)2
∑d

i=1 ñ
2
i = 1 +

(2π)2
∑d

i=1 n
2
i having no solutions for any integers ni , ñi , which becomes 1 =

(2π)2
∑d

i=1(n
2
i − ñ2i ). Clearly the right-hand side of the last equation is always irra-

tional or zero, while the left hand side is always nonzero rational. Thus no solution
exists. ��
Subsection 4.1 and Proposition 4.9 carry over trivially to the decomposition H̃0, B̃(θ).
Analogously to (4.15) we define the new algorithm

Definition 4.11 (Second algorithmic component) Let p > d, V ∈ �Sch
p and z0 ∈ C.

For N ∈ N let �N = (θ(N )
1 , . . . , θ

(N )
N

)
be a linearly spaced lattice in [0, 2π ]d and let

LN := 1
N (Z + ıZ) ∩ Qz0 , where Qz0 :=

{
z ∈ C
∣∣ | Im(z − z0)|, |Re(z − z0)| ≤ 1

2

}
.

Then we choose n(N ) := N �α� (with α as in Definition 4.8) and define


̃
z0
N (V ) :=

N⋃

i=1

{
z ∈ LN

∣∣ ∣∣ det�p�
(
I − PN K̃

appr
n(N )

(
z, θ(N )

i

)
PN
)∣∣ ≤ N−( 1

2d− 1
2p )
}

,

(4.18)

where now

K̃ appr
n (λ, θ) := H̃

− 1
2

0

(− 2ıθ · ∇ + |θ |2 − 2+ V appr,n)H̃
1
2
0 (λ− H̃0)

−1.

From the proofs in Subsection 4.1 and Proposition 4.9 we immediately obtain the
following convergence result.
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Proposition 4.12 (Convergence of second algorithmic component) Let z0 ∈ C and let
V ∈ �Sch

p . The following statements hold.

(i) For any sequence zN ∈ 
̃
z0
N (V ) with zN → z ∈ Qz0 \

⋃
j (2 + |k j |2) one has

z ∈ σ(−� + V ).
(ii) For any z ∈ (σ(−� + V ) ∩ Qz0

) \⋃ j (2+ |k j |2) there exists a sequence zN ∈

̃
z0
N (V ) with zN → z as N →+∞.

(iii) Let V ∈ �Sch
p,M. For any given ε, δ > 0 one has

(
σ(−�+ V ) ∩ Qz0

) \
Bδ

(⋃
j (2 + |k j |2)

) ⊂ Bε(
̃
z0
N (V )) as soon as N > max{ε−1, Nδ,z0}, where

Nδ,z0 was defined in (4.16).

Armedwith the algorithmic components (4.15) and (4.18), we are finally able to define
the main algorithm:

Definition 4.13 (Main Algorithm) Let p > d, V ∈ �Sch
p , and choose a numbering

{Z j } j∈N of Z + ıZ such that |Zi | ≤ |Z j | for i ≤ j . For N ∈ N define


N (V ) :=
N⋃

i=1

(


Zi
N (V ) ∪ 
̃

Zi
N (V )
)
.

Combining Propositions 4.9 and 4.12, we can complete the proof of Theorem 4.1:

Proof (Proof of Theorem 4.1) Let p > d. For any V ∈ �Sch
p we need to show that

dAW
(

N (V ), σ (−�+ V )

)→ 0.

Indeed, by Propositions 4.9 and 4.12, the following holds

(a) For any sequence zN ∈ 
N (V ) with zN → z ∈ C one has z ∈ σ(−� + V ).
(b) For any z ∈ σ(−� + V ) there exists a sequence zN ∈ 
N (V ) with zN → z as

N →+∞.

Attouch-Wets convergence now follows from a standard argument, cf. [32, Prop. 2.8].
��

4.3 Proof of Theorem 1.2

We can finally prove Theorem 1.2.

Proof Proof of part (i) The a priori knowledge of p can be removed by slightly
modifying the algorithmic components (4.15) and (4.18). An algorithm that achieves
SCI = 1 is obtained bymodifying the determinant threshold in (4.15) and (4.18). If the

cutoff N−( 1
2d− 1

2p ) is replacedby log(N )−1 and thediscretizationwidthn(N ) = N �α� is
replaced by n(N ) := eN , the proof of Propositions 4.9 and 4.12 is valid independently
of the value of p (cf. Eq. (C.3)).

Proof of part (ii). Fix R > 0. According to our choice of numbering {Zi }i∈N
we have |Zi | > R for all i > 4R2 and thus BR(0) ⊂ ⋃i≤4R2 QZi . Let δR =
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1
2 min
{|x − y| ∣∣ x ∈ σ(H0), y ∈ σ(H̃0), |x |, |y| ≤ R

}
, which is greater than 0 by

Lemma 4.10. This choice implies that removing δR-neighborhoods of the free spectra
does not actually restrict our domain of computation:

(BR(0) \ BδR (σ (H0))) ∪ (BR(0) \ BδR (σ (H̃0))) = BR(0)

for all R > 0. Now let ε > 0. By Propositions 4.9(iii) and 4.12(iii) we have

σ(−� + V ) ∩ BR(0) ⊂ Bε(
N (V )) (4.19)

as soon as N > max{4R2, ε−1, NR}, where NR = max{NδR ,Zi | i ≤ 4R2} (recall
Nδ,z from (4.16)). We recall that

• the lower bound 4R2 ensures that BR(0) is covered by the search regions QZi ;
• the lower bound ε−1 ensures that for every z ∈ σ(−�+ V ) there exists zN ∈ LN

with |z − zN | < ε;
• the lower bound NR ensures that zN ∈ 
N (V ).

To conclude the proof of part (ii) (i.e., that �Sch
p,M ∈ �1), we need a set Xk as in Defi-

nition 2.7. To this end, for V ∈ �Sch
p,M and k ∈ N, choose N (k) := max{4k2, 2k, Nk}

and define

Xk := B2−k (
N (k)(V )) ∪ (C \ Bk(0)).

Then by the definition of the Attouch-Wets distance dAW (cf. Definition A.2) one has

dAW(
N (k)(V ), Xk) =
∞∑

n=1

2−n min

{
1 , sup

p∈C
|p|<n

∣∣∣∣ inf
a∈
N (k)(V )

|a − p| − inf
b∈Xk

|b − p|
∣∣∣∣

}

≤
k∑

n=1

2−n min

{
1 , sup

p∈C
|p|<k

∣∣∣∣ inf
a∈
N (k)(V )

|a − p| − inf
b∈Xk

|b − p|
∣∣∣∣

}

+
∞∑

n=k+1

2−n

≤ 2−k
k∑

n=1

2−n + 2−k

≤ 2−k+1

where the third line follows from the definition of Xk . Moreover, by (4.19) (with
ε = 2−k and R = k) we have

σ(−�+ V ) ⊂ Xk

for all k ∈ N. These facts, together with step (i) imply �Sch
p,M ∈ �1.
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Proof of part (iii). A previous result (cf. [4, Th. 8.3]) implies that {V ∈
�Sch

p,M | V real-valued} ∈ �1. Combined with Theorem 1.2(ii) and [4, Prop. 6.15]
we obtain

{V ∈ �Sch
p,M | V real-valued} ∈ �1,

i.e. if the potential is periodic and real-valued, the spectrum can be computed with full
error control. ��
Remark 4.14 In view of Theorems 3.3 and 4.1 it is natural to ask whether one might
have�Sch

p,M ∈ �1 (and therefore�Sch
p,M ∈ �1). This is indeed a nontrivial open problem.

Recalling the proof of Theorem 3.3 (in particular (3.11)), the error bound for the
approximation “from below” used the fact that det(z I − A(θ)) is a polynomial. In
the proof of Theorem 4.1 on the other hand, the function det�p�(I − K (z, θ)), whose
zeros must be approximated, is only known to be analytic. Obtaining�1 classification
amounts to obtaining explicit upper bounds on the width of the zeros of this analytic
function. These cannot be deduced in any straightforward way from the values of the
potential V .

5 Sometimes two limits are necessary

In Sect. 2 we described a complicated construction called towers of algorithms, where
more than one successive limit is required to correctly perform certain computations.
In this section we exhibit this phenomenon first hand: we prove Theorem 1.3 which
is rephrased in the language of SCI as Theorem 5.1 below. This theorem shows that
there exists a class of potentials (which are less smooth, yet can be evaluated at any
point) for which there do not exist algorithms that can approximate the associated
spectral problem in a single limit. That is, SCI > 1. We are able, though, to construct
an arithmetic algorithm which converges by taking two successive limits. That is,
SCI = 2. This class contains potentials which are allowed to have a singularity at a
single point x0 ∈ (0, 1), but are otherwise smooth:

�Sch
x0 := {V : R → R

∣∣ V is 1-periodic, V (x0) = 0 and

V |[0,1] ∈ L2([0, 1]) ∩ C∞([0, 1] \ {x0}
)}

.

We emphasize that �Sch
x0 contains only real-valued functions and that the pointwise

evaluation V �→ V (x) is well-defined for all x ∈ R. Moreover, we remark that by [29,
Th. XIII.96] the Schrödinger operator −� + V is well-defined and selfadjoint with
domain H2(R). We shall therefore consider the computational problem
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

� = �Sch
x0

M = ({K ⊂ C | K closed}, dAW
)

	 = {V �→ V (x) | x ∈ R
d}

� : � → M; V �→ σ(−∂2x + V ),

(5.1)

and shall prove

Theorem 5.1 The computational problem (5.1) has SCI = 2 (equivalently, it belongs
to �3 \ �2).

The proof of Theorem 5.1 has two parts. To prove SCI ≤ 2 we construct an explicit
tower of algorithms that computes the spectrum in two limits (cf. Definition 2.4).
The proof of SCI > 1 is by contradiction. We assume the existence of a sequence
{
n}n∈N with 
n(V ) → σ(−∂2x + V ) for every V ∈ �Sch

x0 and via a diagonal process
construct a potential V ∈ �Sch

x0 such that 
n(V ) � σ(−∂2x + V ), yielding the desired
contradiction.

5.1 Lemmas

We first collect some technical lemmas that will be necessary for the proof.

Lemma 5.2 Denote by W (H) the numerical range of an operator H. Let V ∈ �Sch
x0 .

There exists δ > 0 such that inf W (−∂2x + V ) ≥ − 1
4 whenever ‖V ‖L1([0,1]) < δ.

Proof Choose a partition of unity {χi }i∈Z such that supp(χi ) ⊂ [i − 1, i + 1] and
supi∈Z ‖χi‖W 1,∞ < +∞. Then for any φ ∈ C∞

0 (R) we have

∫

R

V (x)|φ(x)|2 dx =
∑

i∈Z

∫

R

V (x)χi (x)|φ(x)|2 dx

=
∑

i∈Z

∫ i+1

i−1
V (x)χi (x)|φ(x)|2 dx

=
∑

i∈Z

∫ 1

−1
V (x)χi (x − i)|φ(x − i)|2 dx,

where the last line follows from periodicity of V . Moreover, we have

∣∣∣∣

∫ 1

−1
V (x)χi (x − i)|φ(x − i)|2 dx

∣∣∣∣ ≤ ‖V ‖L1([−1,1])
∥∥χi (· − i)|φ(· − i)|2∥∥L∞([−1,1])

≤ C‖V ‖L1([0,1])
∥∥χi (· − i)|φ(· − i)|2∥∥W 1,1([−1,1])

≤ C‖V ‖L1([0,1])‖χi‖W 1,∞‖φ(· − i)‖2H1([−1,1]),
(5.2)
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where the second line follows from the Sobolev embedding W 1,1 ↪→ L∞ (cf. [9, Th.
8.8]) and the third follows by the product rule and Hölder’s inequality. Summing (5.2)
over i we obtain

∣∣∣∣

∫

R

V (x)|φ(x)|2 dx
∣∣∣∣ ≤ C‖V ‖L1([0,1])

∑

i∈Z
‖χi‖W 1,∞‖φ(· − i)‖2H1([−1,1])

≤ 2C‖V ‖L1([0,1])
(
sup
i∈Z

‖χi‖W 1,∞
)
‖φ‖2H1(R)

≤ C ′‖V ‖L1([0,1])‖φ‖2H1(R)
, (5.3)

where C ′ = 2C supi∈Z ‖χi‖W 1,∞ is finite by choice of the functions χi . Turning to
the numerical range, we have for φ ∈ C∞

0 (R)

〈(−∂2x + V )φ, φ〉L2(R) =
∫

R

(
|φ′|2 + V |φ|2

)
dx

≥ ‖φ′‖2L2(R)
− C ′‖V ‖L1([0,1])‖φ‖2H1(R)

= (1− C ′‖V ‖L1([0,1]))‖φ′‖2L2(R)
− C ′‖V ‖L1([0,1])‖φ‖2L2(R)

,

where the second line follows from (5.3). Finally, let δ := (4C ′)−1. Then if
‖V ‖L1([0,1]) < δ one has

〈(−∂2x + V )φ, φ〉L2(R) ≥
3

4
‖φ′‖2L2(R)

− 1

4
‖φ‖2L2(R)

≥ −1

4
‖φ‖2L2(R)

and the proof is complete. ��
Lemma 5.3 For h > 0, q1, q2 ∈ [0, 1] with 0 < q1 < q2 < 1, define the periodic step
function

Vh,q1,q2(x) =
{
−h x ∈ [q1, q2]
0 x ∈ ([0, 1] \ [q1, q2]).

Then for every Ṽ ∈ �Sch
x0 with Ṽ ≤ 0 one has

inf W
(− ∂2x + Ṽ + Vh,q1,q2

) ≤ −(q2 − q1)h.

Proof Define the sequence of test functions

φn(x) =

⎧
⎪⎨

⎪⎩

1√
2n

x ∈ [−n, n]
linear to 0 x ∈ [−n − 1,−n) ∪ (n, n + 1]
0 otherwise.
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We note that ‖φn‖L2(R) → 1 as n →+∞. Then if Ṽ ∈ �Sch
x0 with Ṽ ≤ 0 we have

〈(−∂2x + V )φn, φn〉L2(R) =
∫

R

|φ′
n|2 dx +

∫

R

(Ṽ + Vh,q1,q2)|φn|2 dx

≤
∫

R

|φ′
n|2 dx +

∫

R

Vh,q1,q2 |φn|2 dx

≤
∫ −n

−n−1

1

2n
dx +
∫ n+1

n

1

2n
dx −

n∑

i=−n

∫

[q1,q2]+i

h

2n
dx

= 1

n
− (q2 − q1)h.

The assertion follows by letting n →+∞. ��

The next lemma is needed to construct the tower of algorithms that will compute the
spectrum of elements in �Sch

x0 .

Lemma 5.4 Let V ∈ �Sch
x0 and for n ∈ N let ρn ∈ W 1,∞(R) be a periodic function

such that

ρn(x) =
{
0 x ∈⋃k∈Z(k − 1

n , k + 1
n )

1 x ∈ R \⋃k∈Z(k − 2
n , k + 2

n ),
(5.4)

then one has σ(−∂2x + ρnV ) → σ(−∂2x + V ) in Attouch-Wets distance.

Proof A Neumann series argument shows that

(−∂2x + ρnV − z)−1 − (−∂2x + V − z)−1 =
∞∑

m=1

(
(ρn − 1)V (−∂2x + V − z)−1)m,

(5.5)

where z /∈ R and the right hand side is defined whenever ‖(ρn − 1)V (−∂2x + V −
z)−1‖L2→L2 < 1. We will prove that the right hand side of (5.5) converges to 0 in the
norm resolvent sense. To this end let u ∈ L2(R) and compute

∥∥∥(ρn − 1)V (−∂2x + V − z)−1u
∥∥∥
2

L2(R)

=
∞∑

k=−∞

∥∥∥(ρn − 1)V (−∂2x + V − z)−1u
∥∥∥
2

L2([k,k+1])
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≤
∞∑

k=−∞
‖(ρn − 1)V ‖2L2([k,k+1])

∥∥∥(−∂2x + V − z)−1u
∥∥∥
2

L∞([k,k+1])

= ‖(ρn − 1)V ‖2L2([0,1])
∞∑

k=−∞

∥∥∥(−∂2x + V − z)−1u
∥∥∥
2

L∞([k,k+1])

≤ C ‖(ρn − 1)V ‖2L2([0,1])
∞∑

k=−∞

∥∥∥(−∂2x + V − z)−1u
∥∥∥
2

H1([k,k+1])

= C ‖(ρn − 1)V ‖2L2([0,1])
∥∥∥(−∂2x + V − z)−1u

∥∥∥
2

H1(R)

= C ‖(ρn − 1)V ‖2L2([0,1])
∥∥∥(−∂2x + V − z)−1

∥∥∥
2

L2(R)→H1(R)
‖u‖2L2(R)

, (5.6)

where Hölder’s inequality was used in the third line, periodicity of (ρn − 1)V was
used in the fourth line and the Sobolev embedding H1(R) ↪→ L∞(R) was used in the
fifth line. Combining Eqs. (5.5) and (5.6) we find that

∥∥(−∂2x + ρnV − z)−1 − (−∂2x + V − z)−1
∥∥
L2(R)→L2(R)

≤ C
∞∑

m=1

‖(ρn − 1)V ‖mL2([0,1])
∥∥∥(−∂2x + V − z)−1

∥∥∥
m

L2(R)→H1(R)
,

for alln > N large enough such that ‖(ρn−1)V ‖L2([0,1]) < ‖(−∂2x+V−z)−1‖−1
L2→H1 .

Since V ∈ L2([0, 1]) we know that ‖(ρn − 1)V ‖L2([0,1]) → 0, hence such N must
exist. For n > N the geometric series gives

∥∥(−∂2x + ρnV − z)−1 − (−∂2x + V − z)−1
∥∥
L2(R)→L2(R)

≤ C
qn

1− qn
,

with qn = ‖(ρn−1)V ‖L2([0,1])‖(−∂2x+V−z)−1‖L2→H1 , which immediately implies
norm resolvent convergence. Finally, an application of [30, Thms. VIII.23-24] yields
the desired spectral convergence. ��

5.2 Proof of Theorem 5.1

We are now ready to prove Theorem 5.1.

Step 1: Construction of an adversarial potential V . Assume for contradiction that

there exists a sequence of algorithms {
n}n∈N such that for any V ∈ �Sch
x0 , 
n(V ) →

σ(−∂2x + V ) as n → +∞. We now describe a process that defines an “adversarial”
potential V for which the sequence {
n}n∈N will necessarily fail.

We begin with an example construction that illustrates how a potential can be
obtained that “fools” 
n for a single n. This construction is then iterated below to
obtain a potential whose spectrum is not approximated by the entire sequence {
n}n∈N.
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0 1

0

−h1

Sketch of V1:

0 1

0

−h1

Sketch of Ṽ1:

0 1

0

−h1

−h2

Sketch of V2:

0 1

0

−h1

−h2

Sketch of Ṽ2:

Fig. 3 Sketch the first few iterations Vk , Ṽk . The red dots represent the points xi , which represent the
information in 	
n

For the sake of definiteness we make the arbitrary choice x0 := 1
4 , though the proof

does not depend on this choice. Moreover, we note that by Hölder’s inequality one has
‖ f ‖L1([0,1]) ≤ ‖ f ‖L2([0,1]) for all f ∈ L2([0, 1]).

With the notation from Lemma 5.3, let V1 be the periodic square well potential
Vh1,0,1/2 with h1 > 0 chosen such that inf W (−∂2x + V1) ≤ −1. Because −∂2x + V
is selfadjoint, this implies that inf σ(−∂2x + V1) ≤ −1. Our assumptions about 
n

imply that there exists n1 ∈ N such that inf Re(
n(V )) < − 1
2 for all n ≥ n1. By

the definition of an algorithm (Definition 2.3), 
n1(V ) depends only on finitely many
elements of	, i.e. finitelymany point values V (xi ), i ∈ {1, . . . ,mn1}.Wemay assume
without loss of generality that the sets {x1, . . . , xmn } are growing with n.

For later reference, let ρ be a smooth, compactly supported function on R such that

ρ(0) = 1

supp(ρ1) ⊂
(− 1

4 ,
1
4

)
.

Next, define a new potential Ṽ1 by “thinning out” V1 around the points xi . More
concretely, let δ > 0 (to be determined later) and define l1 := min

{|xi − x j |
∣∣ i, j ∈

{0, . . . ,mn1}, xi #= x j
}
(note that the point x0 appears in the definition of l1) and let

Ṽ1(x) := V1(x)

mn1∑

i=1

ρ

(
x

δl1
− xi

)
.

Then by construction we have ‖Ṽ1‖L2([0,1]) ≤
∑mn1

i=1 h1
√

δl1 ≤ mn1h1
√

δ. Next,

apply Lemma 5.2 and choose δ such that inf W (−∂2x + Ṽ1) ≥ − 1
4 (and hence
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inf σ(−∂2x + Ṽ1) ≥ − 1
4 ). Note that we have Ṽ1(xi ) = V1(xi ) for all i ∈ {0, . . . ,mn1}.

Hence by consistency of algorithmswe have
n1(Ṽ1) = 
n1(V1).We have constructed
a smooth potential such that

inf Re(
n(Ṽ1)) < −1

2

inf σ(−∂2x + Ṽ1) > −1

4

and thus dAW
(

n1(Ṽ1), σ (−∂2x+Ṽ1)

) ≥ 1
4 .We remark that Ṽ1 ≡ 0 in a neighbourhood

of x0.
The constructions outlined above define an iterative process that yields a sequence

of smooth potentials {Vk}k∈N and {Ṽk}k∈N (see Fig. 3). We outline the details below.
Fix η > 0 to be determined later and initialize Ṽ0 ≡ 0.

• Let 2 ≤ k ∈ N and suppose that Ṽk−1 has already been defined.
• Choose an interval I = (x0 − ε, x0 + ε) on which Ṽk ≡ 0 and let Vk := Ṽk−1 +

Vhk ,x0−ε,x0+ε, where hk is chosen such that inf W (−∂2x + Vk) ≤ −1 (cf. Lemma
5.3).

• Choose nk large enough such that inf Re(
nk (Vk)) < − 1
2 . Then 
nk (Vk) depends

only on finitely many point values x1, . . . , xmnk
.

• Let lk := min
{|xi − x j |

∣∣ i, j ∈ {0, . . . ,mnk }, xi #= x j
}
and define a “thinned

out” potential Ṽk by

Ṽk(x) := Ṽk−1(x) + Vhk ,x0−ε,x0+ε(x)

mnk∑

i=1

ρ

(
x

δlk
− xi

)
.

Then ‖Ṽk‖L2([0,1]) ≤ ‖Ṽk−1‖L2([0,1]) + mnk hk
√

δ.

• Choose 0 < δ <
(

η

2kmnk hk

)2
such that inf W (−∂2x + Ṽk) > − 1

4 .

• It follows that 
nk (Ṽk) = 
nk (Vk) and thus dAW
(

nk (Ṽk), σ (−∂2x + Ṽk)

) ≥ 1
4 .• Moreover, we have by construction

‖Ṽk‖L2([0,1]) ≤ η

k∑

j=0

2− j (5.7)

and there exists an interval (x0 − ε′, x0 + ε′) on which Ṽk ≡ 0.

This process defines a sequence of potentials {Ṽk}k∈N such that for a subsequence
{nk}k∈N one has

lim inf
k→+∞ dAW

(

nk (Ṽk), σ (−∂2x + Ṽk)

) ≥ 1

4
. (5.8)
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Next we show that the sequence Ṽk converges pointwise to a function V η ∈ L2([0, 1]),
which is smooth on [0, 1] \ {x0}. By construction, for every ε > 0, sequence
{Ṽk |[0,1]\(x0−ε,x0+ε)}k∈N is eventually constant. Combined with the fact that Ṽk(x0) =
0 for all k, this implies that {Ṽk}k∈N converges pointwise to a function V η on [0, 1].
Because for every ε > 0 there exists k ∈ N such that V η|[0,1]\(x0−ε,x0+ε) =
Ṽk |[0,1]\(x0−ε,x0+ε), we have that V η is smooth on [0, 1] \ {x0}. Finally, by (5.7) for
any ε > 0 there exists k ∈ N such that

‖V η‖L2([0,1]\(x0−ε,x0+ε)) = ‖Ṽk‖L2([0,1]\(x0−ε,x0+ε))

≤ η

k∑

j=0

2− j

≤ 2η.

Letting ε → 0 we conclude by monotone convergence that V η ∈ L2([0, 1]) and
consequently V η ∈ �Sch

x0 . Moreover, the inequality ‖V η‖L2([0,1]) ≤ 2η allows us to
use Lemma 5.2 and choose η > 0 small enough that

inf W (−∂2x + V η) = inf σ(−∂2x + V η) ≥ −1

4
. (5.9)

To conclude the proof we note that for any k ∈ N we have V η(xi ) = Ṽk(xi ) for all
i ∈ {1, . . . ,mnk } and by consistency of algorithms we have


nk (V
η) = 
nk (Ṽk) (5.10)

and thus inf Re(
nk (V
η)) ≤ − 1

2 . Combining eqs. (5.8), (5.9) and (5.10) we conclude
that

lim inf
k→+∞ dAW

(

nk (V

η), σ (−∂2x + V η)
) ≥ 1

4
.

Consequently, the sequence 
n(V η) cannot converge to σ(−∂2x +V η) and the desired
contradiction follows, proving that SCI(�Sch

x0 ) ≥ 2.

Step 2: Construction of tower of algorithms. We conclude the proof of Theorem 5.1

by showing SCI(�Sch
x0 ) ≤ 2. To this end, choose a function ρn as in (5.4) change this,

if we change the ρn above, whose values are explicitly computable (e.g. piecewise
linear) and define the mapping


m,n : �Sch
x0 → M


m,n(V ) = 
m(ρnV ),

where 
m denotes the algorithm from Definition 4.13. Note that 
m(ρnV ) is well-
defined because ρnV ∈ W 1,∞(R) for every n ∈ N. Applying Theorem 1.2 and
Lemma 5.4 we immediately find
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lim
n→+∞ lim

m→+∞
m,n(V ) = lim
n→+∞ lim

m→+∞
m(ρnV )

= lim
n→+∞ σ(−∂2x + ρnV )

= σ(−∂2x + V ),

where all limits are taken in Attouch-Wets distance. This completes the proof. ��
Note that the two limits in Step 2 above cannot be swapped, because it is unclear

how 
m(ρnV ) behaves when ρnV converges to a non-smooth function.

6 Numerical results

To illustrate our abstract results, we implemented a version of the algorithm from
Definition 4.13 in one dimension in Matlab. In this section we show the results of this
implementation and compare them against known abstract and numerical results.

In order to obtain an implementation with adequate performance, we fixed a box
Q in the complex plane and then computed the quantity

⋃

θ∈ 1
N Z∩[0,2π ]

{
z ∈ 1

N
(Z + ıZ) ∩ Q

∣∣ ∣∣ det
(
I − PN K

appr
n
(
z, θ
)
PN
)∣∣ ≤ C

}
,

Pseudocode 2: Compute Spectrum
Fix N , n ∈ N, C > 0, z0 ∈ C;
Define lattice LN ⊂ C;
Define lattice �N ⊂ [0, 2π ];
Initialize spectrum σ := {};
Compute Fourier coefficients V̂ appr,n

k (cf. (4.8)) for k
2π ∈ {−N , . . . , N };

Define potential matrix V appr,n := (V̂ appr,n
k−k′
)
k,k′∈{−2πN ,...,2πN };

Set H := diag
(
(1+ |k|2)1/2, −N ≤ k

2π ≤ N
)
;

for θ ∈ �N do
B0 := diag(2θk + |θ |2 − z0, −N ≤ k

2π ≤ N );

for z ∈ Ln do
R := diag

(
(z − z0 − |k|2)−1, −N ≤ k

2π ≤ N
)
;

K := (B0 + H−1 · V appr,n · H) · R;
D := det

(
I(2N+1)×(2N+1) + K

)
;

if |D| < C then
σ := σ ∪ {z};

end

end

end
return σ
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Fig. 4 Spectral approximation in C for the Mathieu operator for μ ∈ {10, 10ı, 5+ 5ı}. Parameter values:
N = 200, z0 = 45, n = 50, C = 2 · 10−5

where the numbers N , n, C were treated as independent parameters. Moreover, the
spectral shift, which was chosen to be 1 in (4.1) and 2 in (4.17) can be fixed to be any
point z0 outside the box Q. The routine is illustrated in Pseudocode 2.

The actual Matlab implementation of Pseudocode 2 is available on https://github.
com/frank-roesler/PeriodicSpectra.

6.1 Implementation in one dimension. TheMathieu equation

We consider theMathieu equation

−u′′(x) + μ cos(2πx)u(x) = λu(x), (6.1)

whereμ ∈ C is a constant and λ denotes the spectral parameter. This equation was first
studied in [25] in the context of vibrating membranes and has been studied extensively
since (see [26,Ch. 5] for a discussion). Figure 4 shows the output of our implementation
for various values of μ.

In the case of a real-valued potential (top panel of Fig. 4) our algorithm produces the
expected band-gap structure, with one gap showing around λ = 10 and another around
λ = 40. In the case of purely imaginaryμ, the theory ofPT -symmetric operators (i.e.
operators that are invariant under simultaneous parity and time reversal) can be used
to prove abstract results about the possible shape of the spectrum [34]. A comparison
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Fig. 5 Spectral approximation with discriminant method for μ = 10ı

Fig. 6 Spectral approximation from finite difference scheme on truncated domain [−100.7, 100.7]. The
spurious eigenvalue in the gap for μ = 10 can appear for arbitrarily fine discretization

between the middle panel of Fig. 4 and [34, Fig. 2] shows agreement between the
theoretical results and the output of our algorithm. Finally, the bottom panel in Fig. 4
shows the output when μ has both a real and an imaginary part and the PT symmetry
is broken.

To further validate our results, let us focus on the PT symmetric case (μ = 10ı)
and compare them to existing results available in one dimension. Let φ1,λ, φ2,λ be two
classical solutions of (6.1) on (0, 1) with initial conditions φ1,λ(0) = 1, φ′

1,λ(0) = 0
and φ2,λ(0) = 0, φ′

2,λ(0) = 1. Then, the Hill Discriminant is defined by

D(λ) := 1

2
(φ1,λ(1) + φ′

2,λ(1))

and one can show (cf. [15]) thatλ is in the spectrumof (6.1) if and only if−1 ≤ D(λ) ≤
1. Figure 5 shows the points in C satisfying a softened version of this discriminant
inequality, computed from a Runge-Kutta approximation of φ1,λ, φ2,λ. A comparison
between Figs. 5 and 4 shows good agreement.

Finally, we note that our method is naturally immune to the common problem of
spectral pollution. By definition, spectral pollution occurs when there exist sequences
zn ∈ 
n(V ) such that {zn}n∈N has an accumulation point outside σ(−� + V ). This
effect appears in the approximation of Mathieu’s equation if a naive finite difference
scheme is used on a truncated domain (see Fig. 6). For arbitrarily fine discretization
and arbitrarily large truncated domain, the method is sensitive to small perturbations
of the domain and can yield a set which is far from the correct spectrum.

123



Universal algorithms for computing spectra...

Fig. 7 Output of the algorithm in 2 dimensions for k
2π ∈ {−10, . . . , 10}

6.2 Implementation in two dimensions

In principle, the algorithm given by Pseudocode 2 can be implemented in any space
dimension. However, in d dimensions the size of the matrix V appr,n grows like nd and
the computation quickly becomes unfeasible.

In the case d = 2 an algorithm based on Pseudocode 2 can still be implemented,
with certain modifications. A full search of the lattice LN is not feasible anymore.
Instead we implemented an algorithm that finds zeros of D successively: Having
computed a zero z0, increment θ and choose a number of points {w1, . . . , wk} and
for each i ∈ {1, . . . , k} minimize D using wi as starting point. Increment θ again
and continue. A Matlab implementation of this idea is on https://github.com/frank-
roesler/PeriodicSpectra2d.

Figure 7 shows the output of our algorithm for the potential

V (x, y) = 9 sin(2π y) + 10ı cos(2πx) sin(2π y).

Note that V has a finite Fourier expansion. This makes the matrix V appr,n sparse
and speeds up the computation. More generic potentials can only be computed with
significantly reduced accuracy.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A. The Hausdorff and Attouch-Wets distances

Since the Attouch-Wets distance is not well-known, we provide the basic definition
here, and use the opportunity to remind the reader of the Hausdorff distance as well.
For further information we refer to [3].
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Definition A.1 (Hausdorff distance for subsets of R
d ) Let A, B ⊂ R

d be two non-
empty bounded sets. Their Hausdorff distance is

dH(A, B) = max

{
sup
a∈A

inf
b∈B |a − b|, sup

b∈B
inf
a∈A |a − b|

}

= sup
p∈Rd

∣∣∣∣ infa∈A |a − p| − inf
b∈B |b − p|

∣∣∣∣ .

Definition A.2 (Attouch-Wets distance for subsets of R
d) Let A, B ⊂ R

d be two non-
empty (possibly unbounded) sets. Their Attouch-Wets distance is

dAW(A, B) =
∞∑

n=1

2−n min

{

1 , sup
p∈Rd , |p|<n

∣∣∣∣ infa∈A |a − p| − inf
b∈B |b − p|

∣∣∣∣

}

.

Note that if A, B are bounded, then dAW and dH are equivalent. Furthermore, it can
be shown (cf. [3, Ch. 3]) that

dH(An ∩ B, A ∩ B) → 0 for all B ⊂ R
d compact ⇒ dAW(An, A) → 0.

Appendix B. Floquet-Bloch transform

The Floquet-Bloch transform for Schrödinger operators with periodic potentials is
well-studied. The following lemma is a collection of results in [29] (below, S(Rd)

denotes the Schwartz space of rapidly decaying functions).

Lemma B.1 ( [29, Ch. XIII.16]) For f ∈ S(Rd) and θ ∈ [0, 2π ]d , define the map

(Uθ f )(x) := (2π)−
d
2
∑

n∈Zd

f (x + n)eıθ ·(x+n).

Then the following hold.

(i) Uθ extends uniquely to a bounded operator on L2(Rd);
(ii) For any f ∈ L2(Rd), Uθ f is 1-periodic;
(iii) The map

U : L2(Rd) →
∫ ⊕

[0,2π ]d
L2((0, 1)d) dθ

f �→ (Uθ f )θ∈[0,2π ]d

is unitary;
(iv) The inverse U−1 is given by

(U−1g)(x + n) = (2π)−
d
2

∫

[0,2π ]d
g(x, θ)e−ınθ dθ;
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(v) For H = −�+ V , V ∈ �p one has

UHU−1 =
∫ ⊕

[0,2π ]d
H(θ) dθ,

where

H(θ) = −(∇ + ıθ)2 + V ,

dom(H(θ)) = H2
per

(
(0, 1)d

) ∀θ ∈ [0, 2π ]d . (B.1)

Moreover, the map θ �→ H(θ) is analytic and

σ(H) =
⋃

θ∈[0,2π ]d
σ(H(θ)). (B.2)

The spectral identity (B.2) follows from the unitarity of U and a straightforward
calculation, noting that

⋃
θ∈[0,2π ]d σ(H(θ)) is closed by analyticity and periodicity in

θ .

Appendix C. Proof of proposition 4.9

(i) Let zN ∈ 

z0
N (V ) and assume that zN → z for some z ∈ C. We need to show that

z ∈ σ(−�+V ). Since zN ∈ 

z0
N (V ), we have det�p�

(
I − PN K

appr
n(N )(z, θiN )PN

)→ 0

for some sequence {θiN }N∈N ⊂ [0, 2π ]d . Then there exists a convergent subsequence
(again denoted by θiN ) converging to some some θ ∈ [0, 2π ]d . We first note that due
to Theorem 4.7 we have the N -independent determinant error bound

∣∣∣ det�p�
(
I − K (zN , θiN )

)− det�p�
(
I − PN K

appr
n(N )(zN , θiN )PN

)∣∣∣

≤ ∥∥K (zN , θiN ) − PN K
appr
n(N )(zN , θiN )PN

∥∥C�p�×
ec�p�(1+‖K (zN ,θiN )‖C�p�+‖K

appr
n(N )

(zN ,θiN )‖C�p� ),

(note that det�p�(I − K (zN , θiN )) is well-defined by Lemma 4.2 because p > d). We
note that the exponential factor in the last line is uniformly bounded in N by some
explicit constant cexp (cf. Lemmas 4.2 and 4.6). Using Lemma 4.6 with our choice
n(N ) = N �α� and s = p, we obtain

∣∣∣ det�p�
(
I − K (zN , θiN )

)− det�p�
(
I − PN K

appr
n(N )(zN , θiN )PN

)∣∣∣

≤ cexp CzN

(
C1

p,d |θiN |N
1
p− 1

d + C2
p,p,d N

1
p− 1

d ‖V ‖W 1,p

+ C3
p,d N

1
p− 1

d

(∣∣|θiN |2 − 1
∣∣+ ‖V ‖L∞

))
, (C.1)
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Note that each term on the right hand side has a negative power of N and therefore
tends to 0 as N → +∞. Note further that CzN = sup j∈N

∣∣1 − zN−1
|k j |2
∣∣−1 remains

bounded as N →+∞ by our assumption that z /∈⋃ j (1+ |k j |2). Therefore we have
∣∣∣ det�p�

(
I − K (zN , θiN )

)− det�p�
(
I − PN K

appr
n(N )(zN , θiN )PN

)∣∣∣→ 0 as N →+∞.

To conclude the proof of (i), if we note that continuity in (z, θ) and periodicity in θ

imply

∣∣det�p�
(
I − K (z, θ)

)∣∣ = lim
N→+∞

∣∣det�p�
(
I − K (zN , θiN )

)∣∣

≤ lim
N→+∞

∣∣∣det�p�
(
I − PN K

appr
n(N )(zN , θiN )PN

)∣∣∣

+ lim
N→+∞

∣∣∣∣ det�p�
(
I − K (zN , θiN )

)

− det�p�
(
I − PN K

appr
n(N )(zN , θiN )PN

)∣∣∣

= 0.

Hence we have 1 ∈ σ(K (z, θ)) and thus z ∈ σ(−�+ V ).
(ii) Conversely, denote H := −� + V and let z ∈ σ(H) ∩ Qz0 \

⋃
j (1 + |k j |2).

We need to show that there exists a sequence zN ∈ 

z0
N (V ) such that zN → z. In

fact, let zN ∈ LN be any sequence with |z − zN | < 1
N (such a sequence exists by the

definition of LN ). Since z ∈ σ(H) there exists θ ∈ [0, 2π ]d with z ∈ σ(H(θ)), cf.
Lemma B.1. Consequently

det�p�
(
I − K (z, θ)

) = 0.

Consider some sequence θN ∈ �N with |θN − θ | < 1
N , the existence of which is

guaranteed by the definition of �N . By Lemma 4.3 and Theorem 4.7 there exists
C > 0 with

∣∣det�p�
(
I − K (zN , θN )

)∣∣ ≤ C(|z − zN | + |θ − θN |) ≤ 2C

N
. (C.2)

Thus, using (C.2) and the main error estimate (C.1), we obtain

∣∣∣ det�p�
(
I − PN K

appr
n(N )(zN , θN )PN

)∣∣∣

≤ ∣∣det�p�
(
I − K (zN , θN )

)∣∣

+
∣∣∣∣ det�p�

(
I − PN K

appr
n(N )(zN , θN )PN

)

− det�p�
(
I − K (zN , θN )

)
∣∣∣∣
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≤ 2C

N
+ cexp CzN N

1
p− 1

d ×
(
C1

p,d |θN | + C2
p,d‖V ‖W 1,p((0,1)d )

+ C3
p,d

(∣∣|θN |2 − 1
∣∣+ ‖V ‖L∞((0,1)d )

))
.

To keep the notation simple, we collect all constants independent of N into a single
constant G = G(p, d, V ) (note that |θN | ≤ 2π

√
d for all N ). This gives

∣∣∣ det�p�
(
I − PN K

appr
n(N )(zN , θN )PN

)∣∣∣ ≤ 2C

N
+ cexp G CzN N

1
p− 1

d ≤ N−( 1
2d− 1

2p )
,

(C.3)

where the last line holds for N large enough (note that 1
2d − 1

2p > 0 by our assumption
p > d and that CzN remains bounded as N → +∞ by our assumptions on z).
Comparing (C.3) to (4.15), we see that zN ∈ 


z0
N (V ) for N large enough.

(iii) The proof is similar to that of (ii). Let z ∈ (σ(−� + V ) ∩ Qz0

) \ Bδ

(⋃
j (1+

|k j |2)
)
be an arbitrary point and let zN ∈ LN be any sequencewith |z−zN | < 1

N . Since
z ∈ σ(H) there exists θ ∈ [0, 2π ]d with z ∈ σ(H(θ)), cf. Lemma B.1. Consequently

det�p�
(
I − K (z, θ)

) = 0.

Consider some sequence θN ∈ �N with |θN − θ | < 1
N , the existence of which is

guaranteed by the definition of �N . By Corollary 4.4 and Theorem 4.7 this implies

∣∣det�p�
(
I − K (zN , θN )

)∣∣ ≤ CLip
δ,z0

(
1+ ‖V ‖W 1,p((0,1)d )

)(|θ − θN | + |z − zN |
)

≤ 2N−1CLip
δ,z0

(
1+ ‖V ‖W 1,p((0,1)d )

)

where CLip
δ,z0

= cexpδ−248(|z0| + 1)2 sd
s−d

3p−d
p−d . Turning to the finite approximation

K appr
n , this gives

∣∣∣det�p�
(
I − PN K

appr
n(N )(zN , θN )PN (zN , θN )

)∣∣∣

≤ ∣∣det�p�
(
I − K (zN , θN )

)∣∣

+ ∣∣det�p�
(
I − K (zN , θN )

)− det�p�
(
I − K appr(zN , θN )

)∣∣

≤ 2N−1CLip
δ,z0

(
1+ ‖V ‖W 1,p((0,1)d )

)+ GCzN N
1
p− 1

d

≤ 2N−1CLip
δ,z0

(
1+ ‖V ‖W 1,p((0,1)d )

)+ G(|z0| + 1)δ−1N
1
p− 1

d ,

where G denotes the explicit and computable constant introduced in step (ii) above
and we have used the bound CzN ≤ (|z0| + 1)δ−1. The condition zN ∈ 
N (V ) is thus
implied by
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2N−1CLip
δ,z0

(1+ ‖V ‖W 1,p((0,1)d )) + G(|z0| + 1)δ−1N
1
p− 1

d < N−(1/2d−1/2p),

which immediately implies the assertion, noting that |z − zN | < 1
N < ε as soon as

N > ε−1.
��
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