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Abstract
We derive a general constitutive model for nematic liquid crystalline rods. Our approach
consists in reducing the three-dimensional strain-energy density of a nematic cylindrical
structure to a one-dimensional energy of a nematic rod. The reduced one-dimensional model
connects directly the optothermal stimulation to the generation of intrinsic curvature, exten-
sion, torsion, and twist, and is applicable to a wide range of liquid crystalline rods subject to
external stimuli and mechanical loads. For illustration, we obtain the shape of a clamped rod
under uniform illumination, and compute the instability of an illuminated rod under tensile
load. This general framework can be used to determine the shape and instabilities of nematic
rods with different cross-sections or different alignment of the nematic field.
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1 Introduction

Nematic elastic rods are slender, flexible structures made of liquid crystal elastomers (LCEs)
[35, 48, 65, 71, 72]. Due to their stimuli-responsive material properties, they can convert
light or heat into mechanical work, without the need for batteries, electric wires or gears
[58, 67].

Rods are filamentary structures capable of two main reversible deformations causing
large displacements, namely, bending and twist. Classically, they are modeled as long, thin
elastic bodies defined by a central curve and acted upon by external loads [3, 24, 36, 50].
An extension to anelastic rods where non-elastic deformations and changes in microstruc-
ture occur was considered in [19]. A generic one-dimensional strain energy for rod models
derived from large-strain finite elasticity was recently proposed in [4] where many related
models were also reviewed.

For a nematic rod, significant displacements can be achieved by natural deformations
caused by external stimuli. A fundamental problem is then to establish how such sponta-
neous deformation may lead to the generation of curvatures. Experimental observations for
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nematic elastomer rods that bend upon exposure to UV light were reported in [35, 72]. Rods
with an in-printed helical director field under a remotely controlled rotation were presented
in [48]. Light-controlled bending and twisting of nematic rods were investigated in [65, 71].
Theoretically, three-dimensional nematic cylinders under combined stretch and torsion were
analyzed in [17], and a nonlinear beam model for photoresponsive structures was proposed
in [30].

Light-induced shape changes in nematic solids containing photoisomerizing dye mole-
cules (namely, azobenzene mesogens) were first reported in [16], then [73]. In these ma-
terials, when photons are absorbed, the dye molecules change from straight trans- to bent
cis-isomers. This so-called Weigert’s effect mechanism [15, 29] then causes a reduction in
the nematic order. The strong dependence of photoresponses on the light polarization in
aligned monodomain and randomly disordered polydomain nematic elastomers was demon-
strated in [26]. Experimental studies showing a range of mechanical behaviors caused
by the light intensity, polarization and wavelength have been reviewed, for example, in
[1, 10, 28, 31, 38, 52, 55, 57, 59, 66, 68–70].

For ideal monodomain nematic elastomers, with the liquid crystal mesogens uniaxially
aligned throughout the material, a simple continuum model is provided by the neoclassi-
cal strain-energy function proposed in [5, 62, 63]. This is a phenomenological model based
on the molecular network theory of rubber [54]. The constitutive parameters appearing in
the neo-Hookean-type strain energy can be obtained through statistical averaging at micro-
scopic scale or derived from macroscopic shape changes at small strain [60, 61]. Here, we
adopt the neoclassical strain-energy function, and assume the isotropic phase at high tem-
perature as the reference configuration [8, 11–14], instead of the cross-linking nematic phase
[2, 5, 56, 62–64, 74]. We exploit theoretically the multiplicative decomposition of the defor-
mation gradient from the reference configuration to the current configuration into an elastic
distortion followed by a natural shape change [20, 41–44]. This multiplicative decomposi-
tion is similar to those found in the constitutive theories of thermoelasticity, elastoplasticity,
and morphoelasticity [19, 37] (see [18, 53] as well), but it is also different in the sense that
the stress-free geometric change is superposed on the elastic deformation, which is directly
applied to the reference state.

We consider the macroscopic deformation of a nematic rod as the product of a sponta-
neous deformation inducing curvatures and a finite elastic deformation preserving cylindri-
cal symmetry. We are interested in answering the following main questions:

(i) If the shape of a filamentary nematic elastomer structure is known, what is the internal
nematic stretch field created by an external stimulus?

(ii) Given the local nematic stretch field of a filamentary structure under a stimulus, what
are the intrinsic curvatures and what is the shape of a rod subject to external loads and
boundary constraint?

As we show, these questions are particularly difficult to resolve since a change of shape
also changes the position of the rod with respect to its stimulus. In particular cases, we can
decouple the two problems but in general, the two questions cannot be answered in isolation.
Our approach consists in reducing the three-dimensional (3D) strain-energy density function
of a nematic cylindrical structure to the one-dimensional (1D) energy of a nematic rod.
To achieve this, we adapt the strategy developed for morphoelastic rods in [46] (see also
[34, 45, 47, 49]), and apply the resulting model to specific scenarios leading to the formation
of rods with non-trivial intrinsic curvatures. In particular, we consider rods with square or
circular cross-section, and a nematic director uniformly aligned at a given angle relative to
the longitudinal axis [65, 71], or a helical director field [48]. In Sect. 2, the 3D neoclassical
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strain-energy function for ideal nematic elastomers is briefly reviewed. The 1D nematic rod
model is derived in Sect. 3. Examples of light-induced deformations are presented in Sect. 4.

2 A Continuum Model for Ideal Nematic Elastomers

To describe an ideal nematic LCE, we assume the following strain-energy density function
[20, 40–44],

W(nc)(F,n) = W(A), (1)

where F represents the deformation gradient from the isotropic state, n is a unit vector,
known as the director, for the orientation of the nematic field, and W(A) denotes the strain-
energy density of the isotropic polymer network, depending only on the (local) elastic de-
formation tensor A. The tensors F and A are related through the identity

F = GA, (2)

where

G = a−1/6I + (
a1/3 − a−1/6

)
n ⊗ n, (3)

is the ‘spontaneous’ deformation tensor defining a change of frame of reference from the
isotropic phase to a nematic phase. Here, we assume the existence of an isotropic phase that
can be reached from a suitably imprinted defect field in the original fabrication process. The
exact conditions under which such an intermediary configuration can be mapped to a stress-
free reference configuration that is isotropic has been discussed in the general framework of
anelasticity in [18]. In (3), a > 0 represents a temperature-dependent stretch parameter, ⊗
denotes the tensor product of two vectors, and I = diag(1,1,1) is the second-order identity
tensor.

3 The Nematic Rod Model

Our goal is to devise a 1D model for a slender nematic solid which is sufficiently long and
thin so that it can be approximated by a rod equation. For the derivation of the constitutive
equations applicable to nematic rods, we rely on the following conditions assumed a priori:

(R1) For the undeformed 3D structure, the dimension in one direction (the axial length) is
much larger than in the orthogonal directions (the cross-sectional length scales);

(R2) Any curvature-inducing deformation is of the same order of magnitude as the aspect
ratio between the cross-sectional dimensions and the axial length.

These kinematic assumptions from the classic rod theory [32] are appropriate for filamen-
tary nematic solids, and allow to reduce the dimensionality of the problem, which can be
useful in analytical treatments and numerical simulations. Henceforth, we proceed in a sim-
ilar manner as in [46] where morphoelastic rods were modeled. Apart from the different
order of the multiplicative decomposition between elastic growth and LCE theories, we also
bear in mind that, unlike in morphoelasticity, the natural deformation tensor for LCEs is
always symmetric, i.e., G = GT , where T denotes the transpose operator, and this tensor
changes if the nematic director rotates. In addition, as LCEs are generally incompressible,
their deformations are isochoric, and in particular, det G = 1.
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3.1 Model Reduction

We consider a circular cylinder occupying a domain � = S × [0,L] ∈ R
3 in the reference

configuration, with Cartesian coordinates (X,Y,Z) ∈ �, where

S(Z) =
{
(X,Y )

∣
∣∣
∣

∫

S(Z)

XdX =
∫

S(Z)

YdY =
∫

S(Z)

XYdXdY = 0

}
, Z ∈ [0,L], (4)

are cross-sections with centroids at Z ∈ [0,L]. In a Cartesian coordinate system, each mate-
rial point (X,Y,Z) ∈ � is identified with its position given by the vector Xe1 + Y e2 + Ze3,
where (e1, e2, e3) is the usual right-handed orthonormal basis.

We assume that the typical length scale �(Z) of every individual cross-section divided by
the rod’s length L is of order O(ε), where 0 < ε � 1, and that its shape is a slowly varying
function of Z, so that, locally, the structure is cylindrical. We define the scaled section

S(Z) = {(x, y) | X = εx, Y = εy, (X,Y ) ∈ S(Z) } . (5)

The potential energy takes the form

E = ε2
∫ L

0

{∫

S(Z)

[W (A) − p (det A − 1)] dxdy

}
dZ, (6)

where W(A) is the elastic strain-energy function on which the nematic strain energy
W(nc)(F,n) is based, and p (det A − 1) enforces the incompressibility condition det A = 1.

We analyze deformations that map a right circular cylinder, with the longitudinal axis
(centerline) in the Z-direction, to a filamentary body with the centerline r(Z), and set a lo-
cal director basis (d1(Z),d2(Z),d3(Z)), such that r′(Z) = (1 + εξ)d3(Z), where ′ denotes
differentiation with respect to Z, and ξ is the small axial (longitudinal) strain. We define the
Darboux curvature vector

u = u1d1 + u2d2 + u3d3, (7)

to describe the evolution of the director basis along the filament, satisfying

d′
i (Z) = (1 + εξ)u × di , i = 1,2,3, (8)

where × is the usual vector product.
A finite elastic deformation of the cylindrical body from the reference configuration B0

to the current configuration B is then described in terms of its centerline and director basis
by the following one-to-one, orientation-preserving mapping χ : � →R

3,

χ(X,Y,Z) = r(Z) +
3∑

i=1

ρi(X,Y,Z)di (Z), (9)

where ρi = ρi(X,Y,Z), i = 1,2,3, are functions to be determined that describe the lo-
cal deformation of each cross-section. Each of these functions satisfies the condition
ρi(0,0,Z) = 0, so that the Z-axis is mapped to the centerline r(Z). Taking into account
the small cross-sectional length scales, we denote ρi = εαi , i = 1,2,3.
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The corresponding deformation gradient tensor takes the form

F = Fij di ⊗ ej =
⎡

⎣
α1x α1y ε (1 + εξ) (u2α3 − u3α2)

α2x α2y ε (1 + εξ) (u3α1 − u1α3)

α3x α3y (1 + εξ) [1 + ε (u1α2 − u2α1)]

⎤

⎦ , (10)

where the indices x and y denote the derivatives with respect to x and y, respectively.
As the rod is slender, we assume a spontaneous deformation tensor of the form

G = I + εg, (11)

where g is an incremental remodeling tensor that may induce curvature, twist, or torsion.
We recall that, for a straight rod in torsional deformation, each transverse cross-section is
rotated by some angle while the longitudinal axis remains straight, so that the generators on
the sides of the rod, which are initially parallel to the axis, become helical.

By writing the Taylor expansions:

αi ≈ α
(0)
i + εα

(1)
i + · · · , i = 1,2,3, (12)

p ≈ p(0) + εp(1) + · · · , (13)

and denoting

V (α1, α2, α3,p) = W (A) − p (det A − 1) , (14)

we have the approximation

V (α1, α2, α3,p) ≈ V0

(
α

(0)

1 , α
(0)

2 , α
(0)

3 ,p(0)
)

+ V1

(
α

(0)

1 , α
(0)

2 , α
(0)

3 ,p(0), α
(1)

1 , α
(1)

2 , α
(1)

3 ,p(1)
)

+ · · · . (15)

The potential energy is then written as follows,

E ≈ ε2E0 + ε3E1 + · · · , (16)

where

Ek =
∫ L

0

(∫

S(Z)

Vk dxdy

)
dZ, k = 0,1, . . . , (17)

with Vk = Vk

(
α

(0)

1 , α
(0)

2 , α
(0)

3 ,p(0), . . . , α
(k)

1 , α
(k)

2 , α
(k)

3 ,p(k)
)

.

3.2 Equilibrium Equations

On each cross-section S(Z), we define a sequence of minimization problems for the func-
tionals

Fk =
∫

S(Z)

Vkdxdy, k = 0,1, . . . . (18)
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The associated Euler-Lagrange equations take the form:

∂2Vl

∂x∂α
(k)
jx

+ ∂2Vl

∂y∂α
(k)
jy

− ∂Vl

∂α
(k)
j

= 0, j = 1,2,3, (19)

∂2Vl

∂x∂p
(k)
x

+ ∂2Vl

∂y∂p
(k)
y

− ∂Vl

∂p(k)
= 0, (20)

with the natural boundary conditions:

ñ1
∂Vl

∂α
(k)
jx

+ ñ2
∂Vl

∂α
(k)
jy

= 0, j = 1,2,3, (21)

ñ1
∂Vl

∂p
(k)
x

+ ñ2
∂Vl

∂p
(k)
y

= 0, (22)

where ñ = [̃n1, ñ2]T is the outward unit normal vector to the boundary of S(Z). In these
equations, at each order εl , the choice of k ≤ l will depend on the solution at previous order.

We note that the above system of equations is linear in α
(k)

1 , α
(k)

2 , α
(k)

3 , and p(k), for any
given strain-energy density W(A) and spontaneous deformation tensor G. For l = 1, the
equations are automatically satisfied, hence, α

(1)

1 , α
(1)

2 , α
(1)

3 , and p(1) are only solved at order
ε2. These variables take a form similar to the ones given in [46] and lead to the potential
energy

E ≈ ε4
∫ L

0

(∫

S(Z)

V2dxdy

)
dZ +O(ε5), (23)

where V2 = V2

(
α

(0)

1 , α
(0)

2 , α
(0)

3 ,p(0), α
(1)

1 , α
(1)

2 , α
(1)

3 ,p(1),u1,u2,u3, ξ
)

.

4 Examples of Rod Deformations

Since the strain-energy density of a nematic rod to the approximation considered here only
depends on the linear behavior of the 3D strain-energy density [46], without loss of gener-
ality, we can use the form

W(A) = μ

2

[
tr

(
HT H

) + tr
(
H2)] , (24)

where H = A − I and μ is the shear modulus at small strain.
We assume a nematic rod with the director taking the following general form in a refer-

ence system with cylindrical polar coordinates (R,	,Z),

n = sin
 cos� eR + sin
 sin� e	 + cos
 eZ, (25)

where 
 ∈ [−π/2,π/2] and � ∈ [0,π ] are given angles. The handedness of the fiber is
given by the sign of 
 with right-handedness obtained with angles strictly between 0 and
π/2. Helical fibers are defined for � = π/2 and purely radial fibers are obtained when

 = ±π/2. Equivalently, in the rectangular coordinate system, the nematic director is equal
to

n = sin
 cos(� + 	)e1 + sin
 sin(� + 	)e2 + cos
 e3. (26)
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4.1 Nematic Rod with Axial Director Field

First, we assume that the nematic field is aligned parallel to the longitudinal axis, i.e., 
 = 0,
so that n = e3. The corresponding spontaneous deformation tensor is equal to

G = diag
(
a−1/6, a−1/6, a1/3

)
, (27)

with diag(·, ·, ·) denoting the diagonal second order tensor. We set a1/3 = 1 + εg(x, y).
Hence,

G = I + εg(x, y) diag (−1/2,−1/2,1) +O(ε2). (28)

When A = G−1F, we can follow the same steps as in [46] to reduce, after solving the Euler-
Lagrange equations, the three-dimensional energy functional to a one-dimensional energy
of the form

E = 1

2

∫ L

0

[
K0(ζ − ζ̂ )2 + K1 (u1 − û1)

2 + K2 (u2 − û2)
2 + K3u2

3

]
dZ, (29)

where ζ = 1 + εξ and the stiffnesses are

K0 =
∫

S
E dX dY, K1 =

∫

S
EY 2 dX dY, K2 =

∫

S
EX2 dX dY, (30)

K3 =
∫

S
μ(Y 2 + X2)dX dY +

∫

S
μ(X
Y − Y
X) dX dY, (31)

with E = 3μ representing the Young’s modulus. Here, 
 is the so-called warping function,
and is a solution of

�
 = 0, (X,Y ) ∈ S, (32)

ñ · (
X,
Y ) = ñ · (Y,−X), (X,Y ) ∈ ∂S, (33)

where ñ is the unit vector normal to the boundary. The unstressed extension is

ζ̂ = H0

K0
, H0 =

∫

S
E G(X,Y )dX dY, (34)

with G(X,Y ) = εg(X/ε,Y/ε). Similarly, the unstressed curvatures are given by

û1 = H1

K1
, û2 = −H2

K2
, û3 = 0, (35)

where

H1 =
∫

S
EY G(X,Y )dX dY, H2 =

∫

S
EX G(X,Y )dX dY. (36)

The bending curvature and the torque of the deformed rod are, respectively (see [19,
p. 103] for details),

κ =
√

û2
1 + û2

2, τ = û3 − û′
1û2 − û′

2û1

û2
1 + û2

2

, (37)
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where ′ denotes the first derivative with respect to Z. Taking the arc length S in a stress-free
reference configuration and the twist

ϕ(S) = arctan
û1

û2
, (38)

as the angle between the normal vector to the centerline and d1, the quantity

∂ϕ

∂S
= û′

1û2 − û′
2û1

û2
1 + û2

2

, (39)

represents the rotation of local basis with respect to the Frenet frame as the arc length in-
creases.

4.1.1 Photoresponses

Following [9], we assume that the anelastic photostrain εp is due to the conversion of straight
(trans) to bent (cis) forms of the dye molecules present in the LCE. In the simplest case, we
can take the photostrain to be proportional to the cis fraction of chromophores nc , so that

εp = −Anc, λp = 1 − Anc, (40)

where λp is the anelastic photostretch and A is the proportionality constant (taken to be 1 in
all the particular examples and figures). When λp = λp(X,Y ) is given in the cross-section,
the rod deformation can be found explicitly.

We can now couple the mechanical theory to the light intensity distribution by using a
generalized Beer-Lambert law [27] for light absorbance. We define η to be the arc length
along an optic path measured from the point η = 0 where the ray enters the material. We are
interested in the light intensity I = I (η) in the material. Defining J = J (η) = I (η)/I (0),
the generalized Beer-Lambert law reads

dJ

dη
= −βnt (J )J, (41)

where β is a material constant, nt is the proportion of trans molecules with the property
nt + nc = 1, and

nc = αJ

1 + αJ
, nt = 1

1 + αJ
, (42)

where α = I (0)/Ic is a measure of incident intensity, with Ic the characteristic intensity [9].
Therefore, (41) reads

dJ

dη
= − βJ

1 + αJ
, J (0) = 1, (43)

which integrates to

J (η) = W0
(
αeα−ηβ

)

α
, (44)
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Fig. 1 Uniform illumination on (a) a square or (b) a partially coated circular cross-section causing (c) a
uniform unstressed curvature. Physically, in the absence of load and body force, this solution can be realized
by a central light source placed at the center of a circle with radius 1/κ

where W0 denotes the Lambert function. We conclude that, along a single path, we have

λp(η) = 1 + (1 − A)W0

(
αeα−ηβ

)

1 + W0

(
αeα−ηβ

) . (45)

In general, at a given point (X,Y ) in the cross-section, multiple light rays contribute to
the light intensity. Then, the total light intensity at that point is given by the sum of these
different contributions from which the photostretch can be found.

4.1.2 Uniform Illumination: Axial Director, Square Cross-Section

As a simple first example, we consider a square cross-section and assume that the illumi-
nation enters a single side, as shown in Fig. 1(a). Moreover, on the illuminated surface, we
assume that I0 = I (0) is constant and that light enters the material along its normal direc-
tion, as illustrated in Fig. 1(c). In this case, we have η = X + 1 and each light ray only
contributes to a single point in the cross-section. Using (35) with G(X,Y ) = Anc, the only
non-vanishing unstressed curvature reads

û2 = −3

2
A

∫ 2

0
(η − 1)ncdη. (46)
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Fig. 2 Changes in the bending curvature κ , scaled by the light penetration depth 1/β , for a nematic beam
with (a) square or (b) circular cross-section with opening �	 = π and thickness 2, when the thickness to
penetration depth ratio 2β increases under various incident reduced light intensities α

Then, using (42) and (44), we find after simplification, the bending curvature (see Ap-
pendix A for details)

κ = û2 = 3

4

αA

β2

[
αJ 2

2 + 2J2(1 + β) + 2β − 2 − α
]
, (47)

where J2 = J (2). Note that, after a suitable identification of variables, we recover the main
result of [9] (viz., Equation 6, with d = 1/β and w = 2). Thus, the resulting deformation
is pure bending, without torsion or twist. In particular, the principal bending stiffnesses K1

and K2, and the torsional stiffness K3 are the same as for the undeformed rod.
Experimental observations of bending in LCE rods due to illumination are presented,

for example, in [35, 65, 72]. Figure 2(a) shows the bending curvature κ scaled by β (note
the penetration depth is 1/β , so κ/β is dimensionless) as a function of the thickness to
penetration depth ratio 2β for various incident reduced light intensities α (see also Fig. 4 of
[9]).

4.1.3 Uniform Illumination: Axial Director, Partially Coated Circular Cross-Section

We also take a circular cylindrical rod and assume again that on the illuminated surface (see
Fig. 1(b)), I0 = I (0) is constant, and that light enters the material along its normal direction,
i.e., along the radial direction of the cross-section (see Fig. 1(c)). Then, if the cross-section is
a unit circle coated in the opening with angle �	, we can write X = (η − 1) cos� and Y =
(η − 1) sin�, with η ∈ [0,2] and � ∈ [π − �	/2,2π − �	/2]. In this case, using (35)
with G(X,Y ) = Anc , the non-zero unstressed curvature is equal to (details in Appendix A)

û2 = 8 sin(�	/2)

π
A

[∫ 1

0
(η − 1)2ncdη −

∫ 2

1
(η − 1)2ncdη

]
. (48)
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We now obtain the bending curvature

κ = û2 = −4αA sin(�	/2)

3πβ3

[−2α2 + 6αβ − 9α − 6β2 + 12β + 4α2J 3
1 − 2α2J 3

2

− 6α(2β − 3)J 2
1 − 3α(2β + 3)J 2

2 + 12
(
β2 − 2β + 2

)
J1

− 6
(
β2 + 2β + 2

)
J2 − 12

]
,

(49)

where J1 = J (1) and J2 = J (2). Figure 2(b) shows the curvature κ scaled by 1/β as a func-
tion of 2β for various incident reduced light intensities α. Comparison with the mechanical
behavior of a rod with a square cross-section suggests that there is very little difference
between the two cases (see Figs. 2(a) and (b)).

4.1.4 Non-uniform Illumination: Optical Effects

The light paths in the above scenarios are simple, due to the assumption that the light pene-
trates the material only in the normal direction. To demonstrate that our modeling approach
is also amenable to computing the curvature when the optical paths must be resolved, we
consider horizontal light rays entering a material with circular cross-section. In this case,
the light rays are refracted into the material at an angle φ2 from the normal to the material
according to Snell’s law [6]

n2 sinφ2 = n1 sinφ1, (50)

where n1 and n2 are the refractive indices of the external environment and the LCE mate-
rial, respectively. For light rays traveling in the X-direction and intersecting the unit circle
(X(s), Y (s)) = (cos s, sin s), we have φ1 = s, and the light rays enter the material in the
direction (see Appendix B)

[
p

q

]
=

[
−

√
1 − n2 sin2 s cos s − n sin2 s

−
√

1 − n2 sin2 s sin s + n sin s cos s

]

, (51)

where n = n1/n2 is the ratio of the refractive indices. For n close to 1, the light is refracted
by a very small amount and will continue to travel nearly horizontally, with increasing de-
flection for decreasing n. Generally, we will restrict our attention to the range n < 1; in
particular, if the external environment is air, then n1 ≈ 1.00029, while a typical value for
LCE is n2 ≈ 1.64128 [7, 33, 51].

For given n, the light paths satisfy

[
X(s, t)

Y (s, t)

]
=

[
cos s + pt

sin s + qt

]
. (52)

Noting that p2 + q2 = 1, t is the arc length along the path and may be identified with η

in (41). We can now compute the curvature by numerically integrating (41) along the light
paths, while simultaneously integrating for û2 by converting equation (36) into an integral
over s and t (details in Appendix B).

In Fig. 3(a), we plot the scaled curvature κ/β against the thickness to penetration depth
ratio 2β for different values of n2 > 1 (with n1 = 1), for fixed incident intensity α = 0.5.
Also included in this plot for comparison are the cases of radial rays with �	 = π , and
horizontal rays on a square cross-section; these appear respectively as the black dashed and
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Fig. 3 Curvature generation for horizontal rays refracted into a circular cross-section. In (a), the scaled cur-
vature is plotted against the thickness to penetration depth ratio 2β for varying refractive index of the nematic
beam (with n1 = 1): n2 = 1.01 (red), 1.1 (orange), 1.6 (green), 2 (blue), and 4 (purple). Also included are the
cases of radial rays (black dashed) and horizontal rays for a square cross-section (dotted black). The optical
paths are illustrated for each case. In (b), the integrated curvature κint is plotted against refractive index ratio
n2/n1 for the indicated values of incident intensity α. Light paths are shown (at evenly spaced points around
the circle) for indicated values of n2/n1, with caustic curves highlighted in red

dotted curves, almost indistinguishable. The first clear difference when comparing the cases
of refracted and unrefracted light is that in the refracted cases the quantity κ/β diverges as
β tends to zero. This is due to the existence of regions that are not reached by the refracted
light (unlike the case of Fig. 1(a) or Fig. 1(b) with �	 = π ). Therefore, even if J ≡ 1 across
the entire path of the light rays, nc will remain 0 in the hidden regions so that a curvature
still develops with β = 0, and thus κ/β → ∞ as β → 0.

It also appears from Fig. 3 that low refraction generates less curvature: the lowest cur-
vatures occur for n2 = 1.01 (red) and n2 = 1.1 (orange), for which the light paths remain
nearly horizontal. With increasing n2, there are two competing effects for curvature genera-
tion: (i) the light becomes more focused, with the light rays tending to the radial direction as
n2 → ∞, and (ii) the size of the hidden domain for which no light paths enter first increases
and then decreases with increasing n2. The hidden domain is largest for n2 around 2 (this
is more clearly evident in the light paths shown in Fig. 3(b)). When β is small, this second
effect is dominant, and the highest curvature is generated when the hidden region is largest.
For larger β , the light intensity decays too quickly for the second effect to have much con-
sequence; instead the curvature is higher when the light is more focused: thus the case of
n2 = 1.6 (blue) provides highest curvature for small β , while n2 = 4 (purple) gives a higher
curvature for larger β .

These observations demonstrate a strong dependence of curvature generation on both
the optics and the depth of the material, and suggest the potential to balance the competing
effects noted above in order to optimize the optical properties for curvature generation. To
investigate further, we define an integrated scaled curvature

κint =
∫ 10

0

κ(β)

β
dβ, (53)

which provides a measure of the ability of the material to generate curvature over a range of
thickness to penetration depth ratios. In Fig. 3(b), we plot κint as a function of 1/n = n2/n1

for a range of values of incident intensity α. We verified numerically that the divergence as
β → 0 is slower than 1/x for all values of n2/n1, so that κint remains finite. These plots show
an optimal value of n2 ≈ 2.2. We see that the optimal value has almost no dependence on
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Fig. 4 In a cross-section S , the
light intensity at a point p

depends on the path-length η̃

the intensity α, and moreover, the maximum value seems to saturate for α � 0.5, suggesting
that, once the light intensity is high enough, generating curvature is purely a function of the
material geometry and optical properties. The dashed vertical line corresponds to n2 = 1.64,
showing that the value of refractive index typically cited for LCE is not far from the optimal
value.

4.1.5 Non-uniform Illumination: Bending Towards the Light

Now, we consider a uniform inextensible transversely isotropic rod with a square cross-
section that is clamped at one end. We choose the axes so that the sides of the cross-section
at the clamped end are oriented along the rectangular X- and Z-directions, respectively,
and, in the absence of illumination, the rod’s longitudinal axis is parallel to the Y -direction.
We are interested in finding its configuration when light rays are produced so that they
are parallel to the X-direction, and the rod is illuminated from the negative X-direction.
For simplicity, and to avoid any end effects, we also assume that the top end of the rod is
opaque, which prevents the light from entering the material. This basic setup is inspired by
the experiments in [35] showing how a clamped rod bends into the light.

In this scenario, the light rays are not oriented with respect to the normal at each point
on the rod surface, rather the light distribution will depend on the rod’s inclination that itself
depends on the rod’s curvature, dictated by light. The problem can be solved by computing
the contribution of different light rays to a given cross-section S , as depicted in Fig. 4,
following Snell’s law.

The light intensity at a point p ∈ S depends on the light decay along a path of length η̃.
Hence, we can use equation (44) to obtain the light intensity J at p as follows,

J (̃η) = W0

(
αeα−η̃β

)

α
, (54)

where η̃ is now the length along the section S from the light entry point. Following Kirch-
hoff’s assumptions on the geometry of a rod, the curvature and the incidence angle do not
vary rapidly with arc length. Therefore the light paths impacting on a given cross-section
will be approximately parallel. With this simplification, basic geometry gives η̃ = η/ cos θ2,
and therefore, (54) is equivalent to

J (η, θ1) = W0

(
αeα−ηβ/ cos θ2(θ1)

)

α
. (55)

We observe that this relationship for the light distribution inside the material is the same as
that given by (44), except that the parameter β is now replaced by β̃ = β/ cos θ2(θ1). The
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Fig. 5 (a) A rod is illuminated from the left and bends into the light as observed in [35]. (b) The unstressed
curvature κ depends on the incidence angle θ1. (c) According to its length, the rod will bend completely
or partially towards the light. Past a critical length, Lcrit, the top part of the rod remains horizontal. The
parameter values are α = β = 1, A = 0.1, and Lcrit ≈ 98.921

result on the curvature provided by (47) can then be readily adapted by replacing β with β̃ in
(47). Since a cross-section with θ1 = π/2 does not receive any light, the curvature vanishes
identically on any cross-section that reaches that particular value of the angle. We obtain the
following unstressed curvature depending on the incidence angle,

κ(θ1) =
{

3
4

αA

β̃2

[
αJ̃ 2

2 + 2J̃2(1 + β̃) + 2β̃ − 2 − α
]

if 0 ≤ θ1 < π/2,

0 if θ1 = π/2,
(56)

where

J̃2 =
W0

(
αeα−2β̃

)

α
and β̃ = β

cos
(

arcsin
(

n1
n2

sin θ1

)) . (57)

From the curvature, we find the unstressed shape by first recalling that the tangent vector
is equal to r′(s) = − sin θ1ex + cos θ1ey and, second, by connecting the incidence angle to
the curvature: θ ′

1(s) = κ . We then derive the shape by integrating numerically the following
system of ordinary differential equations,

dx

ds
= − sin θ1,

dy

ds
= cos θ1,

dθ1

ds
= κ(θ1), (58)

with initial conditions x(0) = y(0) = θ1(0) = 0. An illustration of this integration is shown
in Fig. 5, where we see that there is a critical length Lcrit for the rod when θ1(Lcrit) = π/2.
For L < Lcrit, a rod of length L only bends partially towards the light, and for L > Lcrit, the
rod has an horizontal segment with zero curvature of length L − Lcrit.
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4.2 Nematic Rod with Helical Director Field

We further consider LCE rods with a helical nematic field (see [48, 71] for relevant experi-
mental tests, and also [17] for a theoretical discussion). In cylindrical polar coordinates, the
nematic director takes the form

n = sin
 e	 + cos
 eZ. (59)

Equivalently, in Cartesian coordinates, the director is equal to

n = − sin
 sin	 e1 + sin
 cos	 e2 + cos
 e3. (60)

Then G takes the form

G = 1 − εnc

4

⎡

⎣
−2 0 0
0 1 − 3 cos 2
 3 sin 2


0 3 sin 2
 1 + 3 cos 2


⎤

⎦ . (61)

Performing similar calculations to those for a cylindrical rod with axial nematic field, we
obtain the unstressed extension and curvatures

ζ̂ = − A

πR4
0

∫ 2π

0
d	

∫ R0

0
R(1 + 3 cos 2
(R,	))nc(R,	)dR, (62)

û1 = − A

πR4
0

∫ 2π

0
d	 sin	

∫ R0

0
R2(1 + 3 cos 2
(R,	))nc(R,	)dR, (63)

û2 = A

πR4
0

∫ 2π

0
d	 cos	

∫ R0

0
R2(1 + 3 cos 2
(R,	))nc(R,	)dR, (64)

û3 = − 2A

πR4
0

∫ 2π

0
d	

∫ R0

0
R2 sin 2
(R,	)nc(R,	)dR, (65)

where, as before, A relates the concentration of cis molecules to their stretch (introduced
in (40)).

4.2.1 Uniform Illumination: Helical Director, Partially Coated Circular Cross-Section

As an application of the curvatures generated by helical nematic directors, we consider a
uniform rod with circular cross-section and a constant helical director field, with 
 > 0,
that only exists in a sector R ∈ [R1,R0],	 ∈ [0,2π ]. The rod is partially coated so that light
only enters in a section of the boundary circle as shown in Fig. 1(b) following the setup of
Sect. 4.1.3. We also assume that the illumination is uniform. In this case, we can adapt the
computation of Sect. 4.1.3 for the case of helical fibers to obtain the curvatures

û1 = 0, (66)

û2 = −αA(1 + 3 cos 2
) sin�	

3πβ3

[
− 2α2 + 6αβ − 9α − 6β2 + 12β − 2α2J 3

2 + 2α2J 3
11

+ 2α2J 3
12 − 3α(2β + 3)J 2

2 + 9αJ 2
12 − 6

(
β2 + 2β + 2

)
J2



A. Goriely et al.

Fig. 6 Changes in intrinsic curvature û3 and intrinsic twist û3, as a function of the inverse of light penetration
depth β , for a nematic beam with circular cross-section and R0 = 1, R1 = 1/2 (ω = A = 1, �	 = π/2,

 = π/4), under various incident reduced light intensities α. We observe the non-monotonic behavior of the
twist as a function of α

+ 6αβJ 2
12R1 + αJ 2

11 (9 − 6βR1) + 6β2J12R
2
1

+ 6J11

(
β2R2

1 − 2βR1 + 2
) + 12βJ12R1 + 12J12 − 12

]
,

(67)

û3 = 2αA(π − �	) sin 2


3πβ3

[
− 2α2 + 6αβ − 9α − 6β2 + 12β + 2α2J 3

2 + 2α2J 3
11

− 2α2J 3
12 + 6αβJ 2

2 + 9αJ 2
2 + 6β2J2

+ 12βJ2 + 6J11

(
β2R2

1 − 2βR1 + 2 − 6J12

(
β2R2

1

)

+ 2βR1 + 2

)
+ αJ 2

11(9 − 6βR1) − 3αJ 2
12(2βR1 + 3)

+ 12J2 − 12

]
, (68)

where we have taken R0 = 1 and J2 = J (2), J12 = J (1 + R1), J11 = J (1 − R1).
An example of the behavior of this twist under different light penetration depths and

reduced light intensities is shown in Fig. 6. We note that the intrinsic torsion is negative,
creating a left-handed intrinsic helix even though the directors are right-handed. This is
due to the fact that the molecules contract, hence applying an anticlockwise rotation of the
cylinder that is compensated by a torsional response.

We can now use this exact form to compute the critical values at which a straight LCE
rod would become unstable when illuminated. For example, we assume that such a straight
rod is pulled with an end tension T and there is no twist before illumination. If the ends
are prevented from turning, then, upon illumination, its intrinsic curvatures are given by
(66)-(68), and will build elastic energy. Depending on the parameters of the system, this
elastic energy can be sufficient to create an instability [23, 39].

To compute the critical value of the parameters where such an instability occurs, we
follow the general perturbation method given in [19, pp 136-137]. The Kirchhoff equations
for an inextensible and unshearable rod, written in local director basis, are [46]

n3u2 − n2u3 + n′
1 = 0, (69a)
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Fig. 7 Critical tension at which a
straight pulled (infinite) rod
becomes unstable as a function of
the illumination intensity α, for
β = 1, . . . ,10. We assume a
nematic rod with circular
cross-section and R0 = 1,
R1 = 1/2 (ω = A = 1,
�	 = π/2, 
 = π/4, E = 1).
For a given set of parameter and
illumination, the straight rod is
stable when the tension is above
the critical value, given by
equation (70)

n1u3 − n3u1 + n′
2 = 0, (69b)

n2u1 − n1u2 + n′
3 = 0, (69c)

K1

(
u′

1 − û′
1

) + K3u2 (u3 − û3) − K1u3 (u2 − û2) − n2 = 0, (69d)

K1

(
u′

2 − û′
2

) + K1u3 (u1 − û1) − K3u1 (u3 − û3) + u1 = 0, (69e)

K3

(
u′

3 − û′
3

) + K1u1 (u2 − û2) − K1u2 (u1 − û1) = 0, (69f)

where {n1,n2,n3} and {u1,u2,u3} are the local components of the force and the curvature,
respectively (see equation (7)).

One can readily verify that the straight configuration, with u1 = u2 = u3 = n1 = n2 = 0,
n3 = T , satisfies equations (69a)-(69f) for all tension values T . We start in a regime of
large tension, then decrease the tensile force until one reaches the critical value Tcrit. To find
this limit, we linearize equations (69a)-(69f) around the straight solution and determine the
largest tension that leads to the existence of a non-trivial solution. After simplification, we
obtain

Tcrit = Eπ
(
�3̂u2

3 + û2
2

)
2

16�4̂u2
3

, (70)

where � = K1/K3 ∈ [2/3,1]. We recognize a correction of the well-known twisting insta-
bility due to curvature and recover the twisting instability [21, 22] as û2 → 0. Since we know
the values of the intrinsic curvatures from equation (66)-(68), we can compute the critical
tension necessary to destabilize the system, as a function of the illumination for different
penetration depths (see Fig. 7). We note that the main difference between an infinite and a
finite length rod is a delay of the bifurcation, so that the critical tension for a finite length
rod is slightly lower than the one given here for an infinite length. This difference vanishes
as the rod increases in length.

5 Conclusions

We have presented in this paper a general method to construct an LCE rod model from a
3D material model. As long as the internal changes due to the excitation of the nematic
directors remain moderate, so that the intrinsic curvatures are of the same order as the rod’s
slenderness ratio, the approximate strain-energy density of the LCE rods can be obtained
through dimensional reduction.
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We have demonstrated the utility of this approach through a series of examples. In the
case of uniform illumination, we have obtained explicit formulas for the light-induced cur-
vature as a function of the incident light intensity and penetration depth of the material. We
have shown that our approach is also compatible with cases of non-uniform illumination, in
which the light paths are non-trivial to resolve. The approach proposed here thus represents
a major step in our ability to model these materials and use them in actual structures that
respond to external stimuli such as heliotracking devices [25]. Indeed, the change of shape
of a structure can be systematically recomputed by updating continuously the effect of the
stimuli on the nematic directors. Rather than using a computationally expensive 3D finite-
element approach, the large deformations of the rod can be easily computed as an updated
boundary-value problem at each time step as done, for instance, in the case of plant tropism
[47].

At the same time, this work hints at a wealth of complexity that exists in the fully general
case. Indeed, the curvature depends on the light paths, which depend on both the geometry
of the material and the orientation in the light stimulus, which depends on the curvature.
Even when solved in an iterative fashion, resolving the paths of refracted light across dif-
ferent cross-sections in a 3D geometry can pose a formidable challenge, particularly when
shadowing effects are important. Nevertheless, in principle, our approach is amenable to any
scenario, and in most cases analytic progress may be made under reasonable approximations
such as uniform rays impacting on a given cross-section.

More generally, LCE materials open a new area of research where mechanics can be
coupled with other physical effects affecting in real time the internal microstructure of the
material. While great progress has been made in understanding the intrinsic geometry of
such materials, much work remains to be done to fully couple geometry to mechanics and
other external fields. We are now in a position to use the full power of nonlinear anelasticity
to explore the behavior and shape these materials can acquire.

Appendix A: Curvature Calculations for Square or Circular
Cross-Section

We provide below some detailed calculations for the curvature in the case of a square or
circular cross-section. When the cross-section is a square, we first evaluate the integral in
(46),

−
∫ 2

0
(η − 1)ncdη = α

β

∫ 2

0
(η − 1)

dJ

dη
dη

= α

β

(
J2 + 1 −

∫ 2

0
Jdη

)

= α

β

[
J2 + 1 + 1

β

∫ 2

0
(1 + αJ )

dJ

dη
dη

]

= α

β

[
J2 + 1 + 1

β
(J2 − 1) + α

2β

(
J 2

2 − 1
)]

= α

2β2

[
αJ 2

2 + 2J2(1 + β) + 2β − 2 − α
]
.
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Then, using this expression, we obtain (47) as follows,

û2 = −3

2
A

∫ 2

0
(η − 1)ncdη

= 3

4

αA

β2

[
αJ 2

2 + 2J2(1 + β) + 2β − 2 − α
]
.

(71)

When the cross-section is circular, the integrals in (48) are evaluated as

−
∫ 2

1
(η − 1)2ncdη = α

β

∫ 2

1
(η − 1)2 dJ

dη
dη

= α

β

[
J2 −

∫ 2

1
2(η − 1)Jdη

]

= α

β

[
J2 + 1

β

∫ 2

1
2(η − 1) (1 + αJ )

dJ

dη
dη

]

= α

β

[
J2 + 1

β

(
2J2 + αJ 2

2

) − 1

β

∫ 2

1

(
2J + αJ 2

)
dη

]

= α

β

[
J2 + 1

β

(
2J2 + αJ 2

2

) + 1

β2

∫ 2

1

(
2 + 3αJ + α2J 2

) dJ

dη
dη

]

= α

β

[
J2 + 1

β

(
2J2 + αJ 2

2

) + 2

β2
(J2 − J1) + 3α

2β2

(
J 2

2 − J 2
1

)

+ α2

3β2

(
J 3

2 − J 3
1

)]

and
∫ 1

0
(η − 1)2ncdη = α

β

∫ 0

1
(η − 1)2 dJ

dη
dη

= α

β

[
1 −

∫ 0

1
2(η − 1)Jdη

]

= α

β

[
1 + 1

β

∫ 0

1
2(η − 1) (1 + αJ )

dJ

dη
dη

]

= α

β

[
1 − 1

β
(2 + α) − 1

β

∫ 0

1

(
2J + αJ 2

)
dη

]

= α

β

[
1 − 1

β
(2 + α) + 1

β2

∫ 0

1

(
2 + 3αJ + α2J 2

) dJ

dη
dη

]

= α

β

[
1 − 1

β
(2 + α) + 2

β2
(1 − J1) + 3α

2β2

(
1 − J 2

1

) + α2

3β2

(
1 − J 3

1

)]
.

Then, (49) is calculated as follows,

û2 = 8

π
A

[∫ 1

0
(η − 1)2ncdη −

∫ 2

1
(η − 1)2ncdη

]
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= 8

π

αA

β

[
α2

3β2

(
J 3

2 − 2J 3
1 + 1

) + 3α

2β2

(
J 2

2 − 2J 2
1 + 1

)
(72)

+α

β

(
J 2

2 − 1
) + 2

β2
(J2 − 2J1 + 1) + J2

(
1 + 2

β

)
+ 1 − 2

β

]
.

Appendix B: Curvature Calculation with Refracted Light in
Cross-Section

In this appendix, we outline the calculation of curvature for refracted light paths within a
cross-section. According to Snell’s law, the light will enter the material at an angle φ1 from
the normal to the boundary satisfying n1 sinφ1 = n2 sinφ2, where φ2 is the incident angle
between the incoming light and the normal vector, and n1, n2 are the refractive indices of the
external environment and LCE material, respectively. In the case of a circular cross-section
(X(s), Y (s)) = (cos s, sin s), and light rays traveling in the negative horizontal X-direction,
the light will intersect the boundary for s ∈ [−π/2,π/2], and simple geometry gives the
connection

cos s = cosφ1.

Note that the plots in the main text show the case of rays traveling in the positive X-direction,
but the curvature developed is equivalent up to a sign, and the calculation is somewhat
cleaner with the light impacting on the right side of the circle, so that is what we present
here.

The light rays follow the path

[
X(s, t)

Y (s, t)

]
=

[
cos s + pt

sin s + qt

]
,

with the unit vector (p, q) = − cosφ2er + sinφ2eθ , according to Snell’s law, where er =
(cos s, sin s) and eθ = (− sin s, cos s) are the unit radial and circumferential vectors, respec-
tively. From Snell’s law we compute also the relation

cosφ2 =
√

n2
2 − n2

1 sin2 s

s
.

Combining the above, and denoting n = n1/n2, we obtain

[
p

q

]
=

[
−

√
1 − n2 sin2 s cos s − n sin2 s

−
√

1 − n2 sin2 s sin s + n sin s cos s

]

.

To compute the intrinsic curvature û2, we take equation (35) and the connection
G(X,Y ) = Anc = AαJ/ (1 + αJ ), and convert the integral over the cross-section into an
integral following the light paths. This gives

û2 = A

∫ π/2

−π/2

∫ T (s)

0
X(s, t)

αJ (s, t)

1 + αJ (s, t)

∣
∣∣
∣
∂(X,Y )

∂(s, t)

∣
∣∣
∣ dtds. (73)



A Rod Theory for Liquid Crystalline Elastomers

In the above expression, the ending value of t is defined by the point when each light ray
reaches the other boundary of the cross-section. This point can be found by solving x2 +
y2 = 1 for s, with X(s, t), Y (s, t) as defined above, which leads to

T (s) = √
2
√

2 − n2 + n2 cos(2s).

The Jacobian of the transformation is
∣
∣∣∣
∂(X,Y )

∂(s, t)

∣
∣∣∣ =

∣
∣∣∣
∣
2 − n2 + 2nt cos s + n2 cos(2s) − t

√
4 − 2n2 + 2n2 cos(2s)

√
4 − 2n2 + 2n2 cos(2s)

∣
∣∣∣
∣
.

In producing Fig. 3, our approach was to numerically integrate the curvature as fol-
lows: We first discretize the boundary [−π/2,π/2] as the set of points S = {−π/2,−π/2 +
δs, . . . , π/2}. For each si ∈ S, we numerically integrate the system of equations:

dX

dt
= p(si),

dY

dt
= q(si),

dJ

dt
= −βJ

1 + αJ
,

dû2i

dt
= XαJ

1 + αJ

∣∣
∣∣
∂(X,Y )

∂(s, t)

∣∣
∣∣ ,

from t = 0 to t = T (si), with initial conditions X(0) = cos(si), Y (0) = sin(si), J (0) = 1,
û2i

(0) = 0. Then, a Riemann sum

û2 ≈ A
∑

i

û2i
δs (74)

approximates the intrinsic curvature.
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