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Abstract

We prove the first nontrivial reconstruction theorem for modular tensor
categories: the category associated to any twisted Drinfeld double of any finite
group, can be realised as the representation category of a completely rational
conformal net. We also show that any twisted double of a solvable group is the
category of modules of a completely rational vertex operator algebra. In the
process of doing this, we identify the 3-cocycle twist for permutation orbifolds
of holomorphic conformal nets: unexpectedly, it can be nontrivial, and depends
on the value of the central charge modulo 24. In addition, we determine the
branching coefficients of all possible local (conformal) extensions of any finite
group orbifold of holomorphic conformal nets, and identify their modular tensor
categories.
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1 Introduction

The finite-dimensional complex representations of a finite group G form a semi-simple
rigid tensor category Rep(G). It has finitely many simples (one of which is the tensor
unit), and the Hom-spaces are finite-dimensional vector spaces. Such categories are
called fusion. Moreover, the tensor product is symmetric: the obvious isomorphism
cρ,φ : ρ⊗ φ→ φ⊗ ρ satisfies cρ,φ ◦ cφ,ρ = idφ⊗ρ. A version of Tannaka–Krein duality
due to Deligne (see e.g. Corollary 9.9.25 of [25]) says that any symmetric fusion
category is Rep(G) (though possibly with the braidings cρ,φ twisted by an order 2
element z in the centre of G) — this is called reconstruction — and G, z are unique
up to equivalence.

In section 2.1 we define complete rationality for vertex operator algebras (VOAs)
and conformal nets of factors. The modules of completely rational VOAs V and
conformal nets A also form fusion categories Mod(V) and Rep(A) respectively, but
now the braiding isomorphisms cM,N are as far as possible from being symmetric.
Such categories are called modular tensor categories (MTC). One can ask whether
every MTC is braided tensor equivalent to some Mod(V) or Rep(A) (this would be
reconstruction), and if so, to what extent this realisation is unique. Little is known
about either question, but it has been conjectured that any unitary MTC can be
realised as both Mod(V) and Rep(A). If so, the realisation will be far from unique,
and it is far from clear what plays the role of the central involution z here.

An MTC is a remarkable structure. It carries representations of the modular group
SL2(Z) and indeed every surface mapping class group, gives link invariants for every
closed 3-manifold, etc. The trivial MTC is the category VecC of vector spaces, with
only one simple object. Reconstruction is easy for VecC: the VOAs and conformal
nets with only one simple module are called holomorphic. There are infinitely many
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holomorphic VOAs and conformal nets (e.g. the Monstrous Moonshine VOA), and
classifying all of them is hopeless.

The easiest classes of unitary MTC, as well as completely rational VOAs and
conformal nets, are associated to even positive-definite lattices L. The simples are
in natural bijection with the cosets L∗/L of the dual lattice by L, so self-dual L
are holomorphic. All simples in these MTC are invertible (such categories are called
pointed); it is not difficult to show that any unitary pointed MTC is the category of
modules of both a lattice VOA and lattice conformal net (see e.g. [30]).

The class of unitary MTC we consider in this paper are the twisted Drinfeld
doubles Dω(G) of finite groups, where [ω] ∈ H3(G;T). Because of their importance
and ease of construction, they have a long history, starting with their introduction
by Dijkgraaf–Witten [21]. The simple objects are pairs [g, χ] where g ∈ G and χ
is a projective irrep of the centraliser CG(g), whose multiplier 2-cocycle comes from
ω. These group doubles have a natural interpretation in terms of equivariant G×G
bundles, and this geometric picture plays an important role in our arguments. The
importance of twisted group doubles lies in the orbifold construction, one of the
fundamental constructions in the theory. If G is a finite group of automorphisms of
a VOA or conformal net A, then we define the orbifold VG or AG to be the space of
points fixed by G. When A is holomorphic, the category Rep(AG) will be Dω(G) for
some twist ω [73],[52] (the analogue is conjectured to hold for VOAs).

The easiest and best-studied class of orbifolds are the permutation orbifolds. Let
A (or V) be as above, and let G be any subgroup of some symmetric group Sk. The
permutation orbifold of A by G is (A⊗ · · · ⊗ A)G where G acts by permuting the k
copies of A. When A is holomorphic, so will be A ⊗ · · · ⊗ A, and the MTC of the
permutation orbifold will be Dω(G) for some twist [ω] ∈ H3(G;T). It has long been
believed (see e.g. Conjecture 6.3 in [63], and section IV(B) in [18]) that the class [ω]
must be trivial, because this construction doesn’t see any structure in A. In Theorem
2 we show that [ω] is not always trivial, though it depends only on the central charge
c (a basic numerical invariant) of the net. This shows that the MTC Rep((A⊗k)G) of
permutation orbifolds does not depend only on G and the MTC Rep(A) (which here
is trivial). The possible nontriviality of ω can be seen quite easily using characters,
as we do at the end of section 3.2. Our proof of Theorem 2 relies on work by Nakaoka
[65] on the cohomology of the symmetric group.

We use this to prove reconstruction (Theorem 3) for the twisted group doubles:
for any group G and twist [ω] ∈ H3(G;T), Dω(G) is Rep(AG) for some holomorphic
net A. This is the first nontrivial class of examples of reconstruction. An important
part of our reconstruction proofs uses the 8-term restriction-inflation exact sequence
in cohomology.

Extensions of all these results to completely rational VOAs are expected, but the
structure theory of VOAs is still behind that of conformal nets. Nevertheless we
prove reconstruction for VOAs for arbitrary twists of solvable groups.

A large part of group theory is to understand, and exploit, the subgroups H in a
group G. The relation between Mod(G) and Mod(H) is described by the induction
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and restriction functors. The analogous notion for VOAs and conformal nets is local
or conformal extension. However, although the category Mod(H) is generally smaller
the smaller H gets, the category Mod(V) gets smaller the larger V gets. In categorical
language, extensions Ve of V correspond to module categories of Mod(V) of local
extension type, also called type 1. Again, induction and restriction functors describe
things. For example, the conformal extensions of MTC, VOAs and conformal nets of
a lattice L, correspond to even lattices L′ containing L but of the same dimension,
so L ⊆ L′ ⊆ L′∗ ⊆ L∗. For example, restriction takes the A(L′)-irrep corresponding
to the coset v+L′ ∈ L′∗/L′ to v+L′ ⊂ L∗/L, i.e. to a sum of |L′/L| irreps for A(L).

To prove reconstruction we need explicit control of the conformal extensions (AG)e

of the holomorphic orbifolds AG (and of VG). Equivalently, we need control on all
type 1 module categories of any twisted double Dω(G). We do that in Theorem 1.
We explicitly give the restriction and induction functors (for example the branching
coefficients of (AG)e-modules to A-modules), as well as the MTC of the extension
(AG)e (it itself is always a twisted group double). These extensions are built from
two basic classes: the obvious class corresponds to the orbifold AK by some subgroup
K ≤ G, and the MTC of the extension is simply Dω(K); the other is more difficult
to describe, and has MTC Dω′(G/N) for some normal subgroup N of G. Every
conformal extension is an extension (possibly trivial) from the first class, followed
by one (possibly trivial) from the second. Determining the twist ω′ in the second
class is quite subtle. Our proof builds on Davydov–Simmons [19] and the thesis [47]
of Vaughan Jones. (Incidentally, we describe the remaining module categories of
Dω(G), e.g. those of type 2, in [31].)

For example, consider the untwisted case where G is arbitrary but Rep(AG) is
braided tensor equivalent to D1(G). The extreme example of the first class is K =
1: the resulting extension recovers the holomorphic net A itself, with branching
coefficients Res(A) =

∑
χ dimχ [1, χ]. The extreme example of the second class is

N = G, also a holomorphic net, with branching coefficients
∑

g[g, 1]. The latter is
what is commonly called the orbifold construction, in the physics literature.

The twisted doubles are certainly no less fundamental than the untwisted ones
— e.g. Monstrous Moonshine concerns the orbifold of the Moonshine VOA by its
full automorphism group, the Monster finite simple group M, and the corresponding
Dω(M) has order-24 twist [ω] [45]. The twists are also nontrivial in Conway and
Mathieu Moonshine. The significance of the 3-cocycle ω is obstruction: the more
nontrivial ω is, the fewer conformal extensions AG and VG have, and the fewer (and
larger) are their irreps. This is illustrated in Table 1 below.

This paper falls into the sequence of papers [27],[29],[26],[30],[31] on the K-theory
of loop groups and finite groups. Though it can be read independently, we were led
to many of our arguments by this picture, made explicit for finite groups in [26], and
we use bundles throughout.

There are two obvious extensions of this work, and we intend to address both in
the near future. One is reconstruction for the doubles of other fusion categories asso-
ciated to finite groups. For example, the weakly group theoretical fusion categories
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conjecturally exhaust all fusion categories with square integer global dimension. We
would expect their doubles to be constructed as nested orbifolds starting from a
holomorphic net (or VOA). The general case is out of reach at present, but we have
completed reconstruction for the Tambara–Yamagami categories [30] (reconstruction
of the easier half, that of even rank, has also appeared in [5]). The importance of this
is that these can be regarded as the building blocks of doubles of fusion categories
such as the Haagerup and other quadratic categories.

The second related extension of this work is to arbitrary finite group orbifolds
of conformal nets (or VOAs) whose MTC of representations is pointed (such as the
lattice theories). The resulting MTC are also weakly group theoretical. In recent
work, Mason and Ng [59] have conjectured the explicit form of these categories, as
well as the associated quasi-Hopf algebra. The Verlinde rings have a natural K-
theoretic interpretation, so seem to be a natural generalisation of the finite group
doubles. The challenge is reconstruction for the MTC of [59], as say orbifolds of say
lattice theories.

Section 2 reviews the twisted Drinfeld double Dω(G) of finite groups, as well as
notions of bundles and module categories for finite groups. Section 3 states our results
and gives several examples, and section 4 supplies the proofs.

2 Finite group doubles

2.1 Module categories, alpha induction, and all that

For background on modular tensor categories (MTC) and fusion categories, see e.g.
[25]. Let Φ denote the (finite) set of isomorphism classes λ of irreducible objects in
C; we call these sectors. The Grothendieck ring of C is called the Verlinde or fusion
ring Ver, and has basis Φ.

We occasionally allude to the modular data of an MTC, which is a unitary rep-
resentation of the modular group SL2(Z) on the complexification C ⊗Z Ver. Since
SL2(Z) is generated by

(
0
1
−1
0

)
and

(
1 1
0 1

)
, this representation is uniquely determined

by the matrices S, T ∈ MΦ×Φ(C) corresponding to those generators. T is a diagonal
matrix, whereas S determines the tensor product structure constants of Ver through
Verlinde’s formula.

For the basic theory of vertex operator algebras (VOAs), see e.g. [55]. By a
completely rational VOA, we mean C2-cofinite, regular, simple, self-dual and of CFT-
type. Then the category Mod(V) of modules of a completely rational VOA is a MTC
[42]. For the basic theory of local conformal nets, see e.g. [50]. By a completely
rational conformal net, we mean one with the split property and finite µ-index. Then
the category Rep(A) of representations of a completely rational conformal net is a
unitary MTC [51]. It is expected that the theory of sufficiently nice (e.g. completely
rational and fully unitary) VOAs and their modules should be naturally equivalent
to that of sufficiently nice (e.g. completely rational) conformal nets — see [13, 71]
for recent progress.
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This paper focuses on the twisted group doubles Dω(G), where G is a finite group
and ω ∈ Z3(G;T). These unitary MTC are described next subsection. They arise
in the theory of VOAs and conformal nets as follows. A completely rational VOA
V or conformal net A is called holomorphic if its representation theory is trivial, i.e.
Mod(V) resp. Rep(A) is VecC. If G is a finite group of automorphisms of a VOA V or
conformal net A (so by definition G acts faithfully on the underlying spaces V resp.
H), by the orbifold VG resp. AG we mean the associated VOA resp. conformal net
structure on the space of fixed points of all g ∈ G — see e.g. [55],[73] for details. If A
is completely rational then so is AG [73]; the analogue is conjectured for VOAs (see
e.g. [23, 12, 61] for recent progress). When A is holomorphic, the category Rep(AG)
will be Dω(G) for some twist ω [52] (the analogue is expected for VOAs but is known
only in certain cases).

Any completely rational VOA or conformal net comes with a representation of
the Virasoro algebra. In this representation, the (normalised) Virasoro central term
C is sent to a multiple of the identity. The central charge c of a conformal net or
VOA is that numerical factor. The corresponding MTC determines c only up to mod
8. In particular, the central charge of a holomorphic net or VOA is a multiple of 8.
The central charge enters Theorem 2 below.

A conformal or local extension Ve resp. Ae of a completely rational VOA V or
conformal net A is a completely rational VOA or conformal net containing V resp.
A but with the same central charge, so that any Ve-module or Ae-representation
restricts to Mod(V) resp. Rep(A). These restrictions are called branching rules. Such
extensions correspond to commutative symmetric special Frobenius algebras A in the
MTC C = Mod(V) or Rep(A) as follows (for VOAs this is developed in [53, 43, 16],
and the same arguments work for conformal nets). Here, A is the restriction of Ve
or Ae to V resp. A; to be an algebra it must have a multiplication µA, a morphism
A ⊗ A → A; to be commutative this must satisfy µA ◦ cA,A = µA where cA,A is the
braiding. For the definition of symmetric special Frobenius (which we don’t need), see
e.g. [36]. A left A-module is a pair (V, µV ), where V ∈ C and µV : A⊗ V → V is the
C-morphism corresponding to multiplication. These form a fusion category ModC(A),
where the tensor product V ⊗AW is some summand of V ⊗CW . Alpha-induction is the
functor α : C → ModC(A) defined on objects by α(V ) = A⊗ V and µα(V ) = µA ⊗ id,
and sigma-restriction is the forgetful functor Res: ModC(A)→ C sending (V, µV ) to V .
Alpha-induction is a tensor functor, and sigma-restriction is its adjoint (i.e. Frobenius
reciprocity holds between them). The category ModC(A) is not in general braided;
the MTC Mod(Ve) or Rep(Ae) is identified with the full subcategory ModC

loc(A) of
dyslectic or local objects. The simple objects in ModC

loc(A) consist of the simple
(V, µV ) ∈ ModC(A) with twist θV ∈ C id.

More generally, we have the notion of module category [68]. The MTC C only
describes (part of) the chiral data of the rational CFT. On the other hand, much
of the data of the full CFT (boundary data, defect lines, correlation functions, etc)
is captured by a module category – see e.g. [36]. A module category M over an
MTC C is a bifunctor ⊗ : C × M → M together with compatible associativity
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and unit isomorphisms. These satisfy the usual pentagon and triangle identities,
corresponding to different ways to identify ((X⊗Y )⊗Z)⊗M ∼= X⊗ (Y ⊗ (Z⊗M))
and (X⊗1)⊗M ∼= X⊗M for all objects X, Y, Z of C and M ∈M. There are obvious
notions of equivalence and direct sums of module categories, and of indecomposable
module categories. The Main Theorem of [68] says that each indecomposable module
category of C is the category ModC(A) of right modules in C of a symmetric special
Frobenius algebra A ∈ C. When A is not commutative, ModC(A) will no longer be
a tensor category. For this reason one also considers the A-A-bimodules in C. These
form a tensor category, called the full system C∗M = FunC(M,M), a (typically
nonbraided) fusion category Morita-equivalent to (i.e. with the same double as) Cop.
There are two ways, called α±(V ), to make the left-module A ⊗ V into a bimodule:
we get the right-module structure through either a braiding cA,V or inverse braiding
c−1
V,A. Then both alpha-inductions α± are tensor functors.

This categorical picture was abstracted from the older subfactor picture [56, 66,
72, 6, 7, 8, 9]. In that picture, the objects in the various categories are unital ∗-
homomorphisms ρ, ρ′ : A → B between type III factors A,B. The tensor product is
composition and sums can be defined; equivalence classes (called sectors) are denoted
[λ] . Let NXN be a (braided) system of endomorphisms on a factor N which realises
the simple objects of a MTC C, and Hom-spaces in C are spaces of intertwiners. Let
ι : N → M be the inclusion N ⊂ M of factors, and let ι : M → N be its conjugate.
We require NXN to be braided, and the dual canonical endomorphism θ = ιι to be
expressible by NXN . Using the braiding or its opposite, we can lift an endomorphism
λ ∈ NXN of N to one of M in two ways, called the alpha-inductions α±(λ). The
induced systems MX±M = α±(NXN) generate the full system MXM . Sigma-restriction
is ιβι. By MXN we mean all irreducibles appearing in any λι for λ ∈ NXN . The
nimrep, precursor to the notion of module category, is the NXN action on NXM ,
given by left composition. The algebra A is θ, with the Q-system structure providing
the Frobenius algebra structure.

Define 〈λ, µ〉 = dim HomC(λ, µ). Then the matrix defined by

Z[λ],[µ] := 〈α+(λ), α−(µ)〉 (2.1)

is the modular invariant associated to the system, since it commutes with S and T .
The modular invariant helps describe how the full CFT is built from chiral data.

The case where the Frobenius algebra A is commutative is called type 1 (or ex-
tension type); as we know they correspond to local extensions. In this paper we focus
on the type 1 module categories of twisted group doubles. The modular invariant of
type 1 module categories is block diagonal. A module category is called type 2 (or
automorphism type) if its modular invariant is a permutation matrix. Every module
category is a combination of two type 1’s and a type 2, in the sense we explain next.

Given a full CFT, it is natural to speak of the maximally extended left and
right chiral algebras, called the type 1 parents. In the subfactor picture [7], these
correspond to intermediate subfactors N ⊂ M± ⊂ M so that N ⊂ M± are
type 1, with dual canonical endomorphisms of the form [ι+ι+] =

∑
λ∈ΦZλ,1[λ] and
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[ι−ι−] =
∑

λ∈ΦZ1,λ[λ] respectively, coming from the first row and column of Z. In
the category language [35], the type 1 parents are called the left and right centre
of the corresponding module category or algebra. The type 1 parents have braided
tensor equivalent MTC; they can both be canonically identified with a subsystem of
the full system MXM generated by the intersection MX+

M ∩ MX−M , called the neutral
system MX 0

M . Write b± for the branching rules, written in matrix form, from the
type 1 parents M±X 0

M±
to C = NXN . Then (2.1) becomes in matrix form

Z = b+σb
t
− , (2.2)

where σ is a permutation matrix corresponding to the composition of the canonical
identifications mentioned above. When the module category is type 1, the intermedi-
ate factors satisfy M+ = M− = M and σ = id so (2.2) collapses to Z = b+b

t
+. Since

the branching rules are more fundamental, the modular invariant will henceforth be
ignored in this paper.

2.2 The category Dω(G)

Throughout this paper, let Irrc(G) denote the set of all isomorphism classes of pro-
jective irreps of G with 2-cocycle multiplier c, and RG the character ring of G. We
write gh for h−1gh, hg for hgh−1 and clG(g) for the conjugacy class {gh : h ∈ G}. For
any subgroup K ≤ G, write CK(g) = {k ∈ K : gk = g}; e.g. CG(g) is the centraliser.
We write ∆G for the diagonal subgroup {(g, g)} of G2 = G×G.

Projective representations of finite groups arise naturally in this theory. We as-
sume the reader is familiar with their basic theory. A standard reference is [49]; the
paper [14] treats the theory in parallel to that of linear (a.k.a. true) representations,
which is also the philosophy we adopt.

Recall the 2- and 3-cocycle conditions for finite group cohomology:

ψ(x, y)ψ(xy, z) =ψ(y, z)ψ(x, yz) , (2.3)

ω(g, h, k)ω(g, hk, l)ω(h, k, l) =ω(gh, k, l)ω(g, h, kl) . (2.4)

For us these always take values in the unit circle T ⊂ C. We call ψ ∈ Z2(G;T)
normalised when all ψ(g, 1) = ψ(1, h) = 1, and ω ∈ Z3(G;T) normalised when all
ω(1, h, k) = ω(g, 1, k) = ω(g, h, 1) = 1. Given any functions f : G→ T and F : G2 →
T, we get a 2-coboundary by δf(g, h) = f(gh)f(g)∗f(h)∗ (where as always we denote

complex conjugation with ‘∗’) and a 3-coboundary by δF (g, h, k) = F (g,hk)
F (g,h)

F (h,k)
F (gh,k)

;

then H i(G;T) is the group of i-cocycles quotient that of the i-coboundaries. Given
a 3-cocycle ω ∈ Z3(G;T), define cωg = cg by

cg(h1, h2) = ω(g, h1, h2)ω(h1, h2, g
h1h2)ω(h1, g

h1 , h2)∗ (2.5)

(a special case of the slant product Hm×Hn → Hn−m). Then for all g, h1, h2, h3 ∈ G,
ω normalised implies c1(h1, h2) = cg(1, h2) = cg(h1, 1) = 1 and cg satisfies [2]

cg(h1, h2) cg(h1h2, h3) = cg(h1, h2h3) cgh1 (h2, h3) , (2.6)
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and therefore is a 2-cocycle for CG(g). Likewise, given a 2-cocycle ψ on G, define

βψg (h) = βg(h) := ψ(g, hg)ψ(h, g)∗ . (2.7)

Then the 2-cocycle condition for ψ directly yields

βgg′(h) = βg(h) βg′(h
g) , (2.8)

βg(hk) = βg(h) βg(k)ψ(h, k)ψ(hg, kg)∗ , (2.9)

for all g, g′, h, k ∈ G. In particular, for any g ∈ G, βg is a 1-dimensional representation
of CG(g). Moreover, when g and h commute,

βgk(h
k) = βg(h) . (2.10)

As mentioned earlier, an important class of MTC, called the twisted group double
Dω(G), is associated to G and a choice of 3-cocycle ω ∈ Z3(G;T). It was introduced
by Dijkgraaf–Witten [21], and developed in [20]. It can be defined as the double
(or centre) of the fusion category Vecω(G) of G-graded vector spaces where the as-
sociativity constraint is defined by ω, and is the category of representations of a
quasi-triangular quasi-Hopf algebra [58]. The modular data and some initial obser-
vations about modular invariants were made in [15]. The relation to subfactors was
worked out explicitly in [32], and this led to the classification [69] of module cate-
gories for Dω(G). This classification is rather abstract, e.g. it is very unclear which of
its module categories are type 1, explicitly what are induction and restriction, what
are the type 1 parents, etc. As we explain in section 3.1, some clarification of this is
made in [17, 19]. Inspired by [33], one of the authors of this paper (DEE) established
the connection of Dω(G) and related structures to K-theory [26]. This connection
underlies this paper, and is reviewed in the next subsection.

Up to braided tensor equivalence, this category Dω(G) depends only on the class
[ω] ∈ H3(G;T) (and of course the isomorphism class of G). Moreover, if α is some
automorphism of G, then Dω(G) and Dα(ω)(G) are again equivalent. The characteri-
sation of when Dω(G) and Dω′(G′) are braided tensor equivalent is given in Corollary
1.5 of [64].

Any Dω(G) can be realised using systems of endomorphisms as follows. Consider
any type III1 factor N , and any subgroup of Out(N) isomorphic to G. Lifting that
subgroup to Aut(N) defines a 3-cocycle ω. Then the Drinfeld or quantum double
of this system yields the category Dω(G). All groups G and classes [ω] are realised
by subgroups of Out(N) in this way, for some N — e.g. N can be chosen to be
hyperfinite [46].

The sectors (equivalence classes of simple objects) in Dω(G) are parametrised by
pairs [g, χ] where g is a conjugacy class representative in G and χ ∈ Irrcg(CG(g)) is
a projective character. The unit is [1,1]. We write Verω(G) for the corresponding
Verlinde ring (Grothendieck ring) of Dω(G). Verω(G) is isomorphic as a ring to the
ω-twisted G-equivariant K-group ωK0

G(G), and though this is crucial to our sequel
[31] it plays no role here.
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We often use in section 4 that a group homomorphism φ : G → H gives rise
to K-theoretic maps φ∗ : Verωφ(H) → Verω(G) and φ! : Verω(G) → Verωφ(H),
namely [h, χ̃] 7→

∑
g[g, χ̃ ◦ φ] and [g, χ] 7→ [φ(g), φ!(χ)] respectively, where the sum

is over all G-orbit representatives g with h ∈ φ−1(G.g), and φ!(χ) is the wrong-way
map (adjoint) of χ̃ ◦ φ. This is easiest to see in the bundle picture described next
subsection. For example, when φ is an embedding, φ!(χ) is induction.

An important, though still somewhat mysterious, part of the story concerns the
modular data. The generators S, T for this SL2(Z) action is, in the most general case
[15],

Sω [a1,χ1],[a2,χ2] =
1

|G|
∑

gi∈cl(ai),g1g2=g2g1

χ1(h1)∗ χ2(h2)∗
cg1(k−1

1 , h1) cg2(k−1
2 , h2)

cg1(g2, k
−1
1 ) cg2(g1, k

−1
2 )

, (2.11)

T ω [a1,χ1],[a2,χ2] = e−2πic/24 δ[a1,χ1],[a2,χ2]χ1(a1)/χ1(1) , (2.12)

where gi = akii , and h1 := k1g2 ∈ CG(a1), h2 := k2g1 ∈ CG(a2), and where c ∈
8Z is the central charge of the corresponding conformal net or VOA. This SL2(Z)-
representation is interpreted in [30] using Chern characters within the bundle picture
of section 2.3.

In section 4.8 we need the modular data for the cyclic group G = Zn. Then
H3(Zn;T) ∼= Zn, with the following explicit cocycle representatives (see e.g. [41])

ωq(g1, g2, g3) = exp(2πi qg1[(g2 + g3)/n]/n) , (2.13)

where q ∈ Zn parametrizes the different cohomology classes, and [x] is truncation
(the largest integer not greater than x). The 2-cocycle c

ωq
a (h, g) is coboundary for

every q and a (since H2(Zn;T) = 0), so for each q there are n2 sectors, which we
can parametrise as [a, χl] where a ∈ Zn and χl(b) = e2πibl/n for l ∈ Zn are the linear
characters of Zn. The modular T matrix (2.12) becomes

T
ωq
[a,χl],[a,χl]

= e−2πic/24 exp(2πi (qa2 + nal)/n2) . (2.14)

In our proof of Theorem 2 below, we use the fact that the T matrix alone uniquely
determines the twist [ωq], for G = Z2, Z3 and Z4. In particular, write nk (k =
0, 1, . . . , n − 1) for the number of eigenvalues in T ωq equal to e2πik/n2

, and consider
the generating polynomial Pq(x) =

∑
k nkx

k: then (2.14) tells us

• G = Z2 has generating polynomials P0(x) = x2 + 3 and P1(x) = x3 + x+ 2;

• G = Z3 has generating polynomials P0(x) = 2x6+2x3+5, P1(x) = 2x7+2x4+2x+3,
and P2(x) = 2x8 + 2x5 + 2x2 + 3;

• G = Z4 has generating polynomials P0(x) = 2x12 + 4x8 + 2x4 + 8, P1(x) = 2x13 +
2x12 + 2x9 + 2x5 + 2x4 + 2x + 4, P2(x) = 2x14 + 2x10 + 2x8 + 2x6 + 2x2 + 6, and
P3(x) = 2x15 + 2x12 + 2x11 + 2x7 + 2x4 + 2x3 + 4.

For G = Z5 and beyond, T ωq no longer determines ωq. However, for any G = Zn,
T ω0 is the only T ωq of order exactly n.
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The proof of Theorem 2 also involves 3-cocycles on G = Z2×Z2×Z2 =: Z3
2. The

group H3(Z3
2;T) ∼= Z7

2 is generated by 6 cocycles inflated from quotients isomorphic
to either Z2 or Z2

2, together with the cocycle

ωiii(a, b, c) = (−1)a1b2c3 . (2.15)

For a given multiplier β ∈ Z2(G;T) of an abelian group G, the projective irreps
χ ∈ Irrβ(G) all have the same dimension d, and there are precisely |G|/d2 of them.
For ωiii, all 1 6= g ∈ Z3

2 have nontrivial βg = βωiiig ∈ Z2(Z3
2;T), each having exactly two

projective irreps (both with dimension 2). For example, the irreps ρε with multiplier
β(1,1,1) send (1, 0, 0) 7→

(
ε
0

0
−ε

)
, (0, 1, 0) 7→

(
0
ε
ε
0

)
, and (0, 0, 1) 7→

(
0
εi
−εi
0

)
, for ε = ±1,

and we see that T[(1,1,1),ρε],[(1,1,1),ρε] = εi. In fact, the MTC Dωiii(Z3
2) is braided tensor

equivalent to D1(D4) (see e.g. [38]) so their S and T matrices coincide.

2.3 Bundles over groupoids and twisted group doubles

In this subsection we interpret the MTC Dω(G) and its module categories using
bundles over groupoids. The classification of module categories for Dω(G) is given in
Proposition 1 below.

A groupoid is a category whose morphisms have both left and right inverses —
see for instance the summary in Appendix A of [34]. When a finite group G acts on
a set X, we write X//G for the corresponding (action) groupoid, with objects x ∈ X
and morphisms g ∈ Hom(x, g.x). A map (or homomorphism) between groupoids is a
functor between the corresponding categories. An untwisted bundle over a groupoid
is a functor from the groupoid to the category of finite-dimensional vector spaces; we
include twists, which control the projectivity of the groupoid action on the fibres. For
example, for ψ ∈ Z2(G;T), ψ-twisted bundles on pt//G are projective representations
of G with multiplier ψ.

The groupoids in this paper can be put in the form Γ//HL ×KR where H resp.
K are subgroups of a finite group Γ which act on Γ by left resp. right multiplication.
We twist by cocycles ω̃ ∈ Z3(Γ;T), ψL ∈ Z2(H;T), ψR ∈ Z2(K;T), and require the
restrictions [ω̃]|H = [ω̃]|K = [1]. In this case, the twisted bundles consist of a vector
space V = ⊕γ∈ΓVγ (the total space, an HL × KR-bimodule) carrying a projective
action of the twisted group rings CψLH and CψRK, such that h(Vγk) = Vhγk as
spaces. These actions satisfy [26]

(h1h2)v = ψL(h1, h2) ω̃(h1, h2, γ)∗ h1(h2v) , (2.16)

v(k1k2) = ψR(k1, k2) ω̃(γ, k1, k2) (vk1)k2 , (2.17)

h(vk) = ω̃(h, γ, k) (hv)k , (2.18)

for all h, hi ∈ H, k, ki ∈ K, γ ∈ Γ and v ∈ Vγ. A morphism V → W between bundles
is a set of linear maps Vγ → Wγ between the fibres which commute with the H ×K
action. We explain how to multiply bundles shortly.

By a slight abuse of notation, we speak of bundles over Γ//(ω̃,ψL,ψR)H
L × KR

rather than (ω̃, ψL, ψR)-twisted bundles over Γ//HL ×KR. We write ψL
H C(Γ) ω̃,ψRK for
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the category of bundles over the groupoid Γ//(ω̃,ψL,ψR) H
L ×KR. When a twist ψi or

ω̃ is identically 1, we usually drop it. Any category of the form ψ
HC(Γ) ω̃,ψH is fusion

using the bundle product given below, provided [ω̃]|H×H×H = 1 (see e.g. section 9.7
of [25]). Its double is the MTC Dω̃(Γ). For ψ = 1, and when H and Γ share no
nontrivial normal subgroup, the category ψ

HC(Γ) ω̃,ψH recovers the A-A system of the
group-subgroup subfactor A = M×H ⊂M×Γ = B.

The indecomposable bundles of Γ//(ω̃,ψL,ψR) H
L×KR can be constructed as follows.

Fix any HL×KR orbit representative γ ∈ Γ and a projective irrep Vγ of the stabiliser
S = StabHL×KR(γ) = {(h, k) ∈ H ×K : hγ = γk} ∼= H ∩ γK with 2-cocycle we read
off from (2.16)-(2.18):

c((h, k), (h′, k′)) = ψL(h, h′)ψR(k′−1, k−1) ω̃(hh′γ, k′−1, k−1) ω̃(h, h′, γ)∗ ω̃(h, h′γ, k′−1)∗

(2.19)
The total space (bimodule) of the bundle associated to this pair [γ, Vγ] is the induced

module IndH
L×KR

S (Vγ), and hVγk forms the fibre over hγk for each h ∈ H, k ∈ K.
Direct sums of bundles are defined as usual.

We multiply bundles as follows. Let G,H,K be subgroups of Γ on which the
class [ω̃] is trivial, and choose ψ ∈ Z2(G;T), ψ′ ∈ Z2(H;T), ψ′′ ∈ Z2(K;T). Consider

bundles [a, χ] ∈ ψ
GC(Γ) ω̃,ψ

′

H and [b, φ] ∈ ψ′

H C(Γ) ω̃,ψ
′′

K . Then [a, χ] ⊗ [b, φ] is the bundle

in ψ
GC(Γ) ω̃,ψ

′′

K defined by

[a, χ]⊗ [b, φ] =
∑

h∈Ga∩H\H/H∩bK

[
ahb, IndG

ahb∩K
Gahb∩Hb∩K(χhb·φ)

]
, (2.20)

where bK = bKb−1, Ga = a−1Ga, χk(g) = χ(kg) etc, and Ind is the induction
of projective characters. In the special case where the cocycles ω̃, ψ, ψ′, ψ′′ are all
identically 1, this formula reduces to equation (2) of [54]; the proof of the more
general case (2.20) however follows from the [54] argument.

The bundle product can be expressed in a more coordinate-free manner in terms
of bimodules, as follows, using the product on the base Γ. Let V,W be the total
spaces of the two bundles, i.e. the bimodules with an ω̃-projective action of the
twisted group rings CψG

L and Cψ′H
R, and Cψ′H

L and Cψ′′K
R, as in (2.16)-(2.18).

The total space of the product bundle is simply the tensor product V ⊗Cψ′H W of
bimodules, and the tensor product v ⊗ w of v ∈ Vγ and w ∈ Wγ′ lies in the fibre
above γγ′. This bimodule picture of the bundle product plays a crucial role in our
study of alpha-induction in section 4.

The point is that (see e.g. [69, 26]) Dω(G) can be identified with the category

∆G
C(G2) ω̃∆G

, where

ω̃((g1, g
′
1), (g2, g

′
2), (g3, g

′
3)) = ω(g1, g2, g3)ω(g′1, g

′
2, g
′
3)∗ (2.21)

The sector [g, χ] corresponds to the bundle [(g, 1), χ], where we identify the centraliser
CG(g) with the stabiliser Stab∆L×R

G
(g, 1). The cocycle (2.19) (with ψL = ψR = 1)

collapses with effort to the cocycle (2.5). The braiding in this bundle picture is
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discussed in [26]. The quantum-dimension of the sector [g, χ], namely ‖cl(g)‖χ(1),
equals as it should the dimension of the total space divided by |G|.

The category-theoretic analogue of this geometric picture is module categories
(see e.g. [68, 69]). Identify the (fusion) category 1C(Γ) ω̃1 of bundles over the groupoid
Γ//̃ω 1 with the fusion category Vecω̃(Γ) of Γ-graded vector spaces (the role of ω̃ in
both categories is to define the associativity morphism for products). Let H ≤ G
be such that [ω̃]|H = [1], and choose any class [ψ] ∈ H2(H;T); we can choose the
cocycle ψ so that dψ = ω̃. Then the twisted group algebra CψH is an indecomposable
algebra over Vecω̃(Γ); as a bundle over Γ//ω̃1 it has a copy of C over each h ∈ H.
Right CψH-modules are identified with bundles over Γ//(ω̃,ψ) H

R. The right CψH-

modules form an indecomposable module category 1C(Γ) ω̃,ψH over Vecω̃(Γ), and all
module categories for Vecω̃(Γ) are of that form (see e.g. Example 2.1 of [69]). The
corresponding full system C∗M for the module category M = 1C(Γ)ω̃,ψH is ψ

HC(Γ) ω̃,ψH .
Continuing this example, we identify CψH-bimodules in the category Vecω̃(Γ)

with bundles over Γ//(ω̃,ψ,ψ) H
L × HR, i.e. we identify the fusion categories

BimodVecω̃(Γ)(CψH) and ψ
HC(Γ) ω̃,ψH . Theorem 3.1 of [69] says the indecomposable mod-

ule categories over ψ
HC(Γ) ω̃,ψH are ψ

HC(Γ) ω̃,ψ1

H1
, where H1 ≤ Γ, [ω̃]|H1 = [1] ∈ H3(H1;T),

and ψ1 ∈ Z2(H1;T). Their bundles are (CψH,Cψ1H1)-bimodules. Two pairs (Hi, ψi)
yield equivalent module categories if they are conjugate, i.e. if there is some g ∈ Γ
such that H1 = Hg

2 and [ψ2(h, h′)] = [ψ1(hg, h′g)].
This leads to Ostrik’s characterisation of the module categories of Dω(G):

Proposition 1. ([69], Theorem 3.2) The indecomposable module categories of Dω(G)
are, up to equivalence, ∆G

C(G2) ω̃,ψH , where H ≤ G × G, [ω̃]|H = [1], and [ψ] ∈
H2(H;T). The module categories ∆G

C(G2) ω̃,ψH and ∆G
C(G2) ω̃,ψ

′

H′ are equivalent iff
(H, [ψ]) and (H ′, [ψ′]) are conjugate.

For example, the identity modular invariant Z = I corresponds to the choice
H = ∆G and ψ = 1. More generally, for H = ∆G, ψ plays the role of discrete torsion,
twisting I by the associated cocycles βψg , but for more general H, ψ can act in a much
more complicated way, and the general relation between pairs (H, [ψ]) and modular
invariants Z is subtle, as we see in Theorem 1.

We can describe the Dω(G)-module category ∆G
C(G2) ω̃,ψH corresponding to (H,ψ)

in more detail as follows. Let (h+, h−) ∈ H act on g ∈ G on the right by g 7→ h−1
− gh+.

The indecomposable bundles over G2//(ω,1,ψ) ∆L
G×HR are parametrised by pairs [g, χ]

for g a representative of an H-orbit in G, and χ a projective character of the stabiliser
{(h+, h−) ∈ H : h−g = gh+} in H of g. The special bundle, corresponding in
the subfactor language to the inclusion ι : N ⊂ M of factors, is ι = [1,1] while
its conjugate ι is the bundle [1,1′] over G2//(ω,ψ,1)H

L × ∆R
G, where 1,1′ are certain

projective characters on H∩∆G (cω1 equals 1, but ψ in general contributes a nontrivial
2-cocycle). Then ιι is the algebra A for the module category and the dual canonical
endomorphism θ for the subfactor, and can be computed using (2.20) to be

θ = A =
∑

h∈∆∩H\H/(∆∩H)

[
∆h∆, Ind∆h∩∆

∆h∩H∩∆1⊗ 1′
]
∈ ∆C(G2)ω∆ , (2.22)
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where we write ∆ for ∆G, as in [26] in the untwisted case. The corresponding full
system MXM is ψ

HC(G2) ω̃,ψH [26]. Alpha-induction, sigma-restriction, the product in

MXM , the Ver(G)-module structure of MXN , etc are nontrivially modified by ψ.

3 Results and examples

3.1 The type 1 module categories of twisted group doubles

Let G be finite and ω ∈ Z3(G;T). Recall the classification (Proposition 1) of module
categories for the twisted group double Dω(G) in terms of pairs (H,ψ). In this
subsection we give our first result, Theorem 1, which is our answer to the following
question of Ostrik [69]:

Problem. Which pairs (H,ψ) in Proposition 1 correspond to type 1 (i.e. extension-
type) module categories?

Ostrik also asked to determine explicitly the modular invariant Z associated to
each pair (H,ψ) (not just the type 1 ones). We address that in [31], which gives a
remarkably simple and conceptual KK-theory description of the module categories
for finite group doubles. As we show in [30], this KK-theory description extends to
the MTC associated to lattices and loop groups.

Alpha-induction and the modular invariant in the case where ω = 1 and ψ = 1,
with ∆ ≤ H, was handled in [26], and the modular invariant, full system, nimrep etc
for any H where ω = 1 and ψ = 1 was handled in [29]. For arbitrary ω, Davydov–
Simmons [19] in Theorem 3.15 identify which pairs (H,ψ) are type 1 (for ω = 1,
this was done in Theorem 3.5.1 of [17]), and the MTC of local modules is given in
Theorem 3.16; Theorem 5.8 gives the modular invariant matrix, though in the basis of
commuting pairs (g, h) ∈ G2 rather than the natural basis of sectors [g, χ] (for ω = 1,
this was done in Theorem 3.5.3 of [17]). (This commuting pairs basis simplifies many
calculations because the modular data (2.11),(2.12) become generalised permutation
matrices [2], but e.g. integrality is lost.) To our knowledge, none of alpha-induction,
the full system, nor sigma-restriction is given in [19, 17].

Our expressions for the modular invariants are considerably simpler than those
in [19]. Their expression for the modular invariant associated to (H,ψ) takes the
complicated form

Z[f,f ′],[g,g′] =
∑

(y,y′)∈Y

cf (gy, y−1) cf
′
(g′y

′
, y′−1)∗

cf (y−1, g) cf ′(y′−1, g′)∗
ψ((f y, f ′y

′
), (gy, g′y

′
))

ψ((gy, g′y′), (f y, f ′y′))
, (3.1)

for cf (a, b) = ω(a, b, f)∗ ω(a, bf, b)ω(fab, a, b), where Y is a set of coset representa-
tives for {(y, y′) ∈ G2 | (f y, f ′ y′) ∈ H}/H. Equation (3.1) obscures all the structure
present. For one thing, since this is expressed in the wrong basis, the matrix entries
of (3.1) aren’t in Z≥0. Also, for type 1 module categories, sigma-restriction of lo-
cal modules determines the modular invariant Z = bbt (when it is not type 1, this
becomes Z = bσbt for some permutation σ), but this factorisation is absent from
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(3.1). Our expression for type 1 is indeed Z = bbt, where b is the manifestly integral
matrix for the linear map Res: Verω̄ω̄ψ(K) → Verω(G) given by (3.3) and expressed
in the natural bases [k, χ] and [g, χ]. We give an analogous expression in [31] for
the modular invariant for general (not necessarily type 1) pairs (H,ψ), again using
only inductions of characters and decomposition of conjugacy classes of a group into
conjugacy classes of a subgroup.

Theorem 1. Let G be any finite group and ω ∈ Z3(G;T) be any 3-cocycle, and
define ω̃ by (2.21).

(a) Let H ≤ G2 satisfy [ω̃]|H = [1], and choose ψ ∈ Z2(H;T). Then (H,ψ) is a type
1 pair for Dω(G) iff (up to conjugation in G2) H = ∆K(1 × N) for some subgroup
K of G and normal subgroup N of K, with [ψ]|∆K

= [1] and βψN×1(1×N) = 1. The
condition on ψ is equivalent (up to adjustment by coboundary) to requiring that ψ
satisfy both ψ(∆K , H) = 1 and ψ((n, 1), (1, n′)) = ψ((1, n′), (n, 1)) for all n, n′ ∈ N .

(b) Choose any type 1 pair (H,ψ), with ψ as in the last sentence of (a).

(i) The associated algebra A is described below. The category of right A-modules
(the module category) is ∆G

C(G2)ω̃,ψH , and the category of A-A-bimodules (the
full system) is ψ

HC(G2)ω̃,ψH . Alpha-induction α : Dω(G)→ ∆G
C(G2)ω̃,ψH is

αH([g, χ]) =
∑

k∈CG(g)\G/K

[
gk, Ind

CH(gk)

CK(gk)
χk
]
, (3.2)

where CH(g) = {k ∈ K | gk ∈ N}. Write (3.2) symbolically as
∑

[g′, χ̃]. The
alpha-inductions α± : Dω(G) → ψ

HC(G2) ω̃,ψH are α+[g, χ] =
∑

[(g′, 1), χ̃+] and
α−[g, χ] =

∑
[(1, g′−1), χ̃−] , where we write χ̃±(h+, h−) = χ̃(h±, h±).

(ii) Sigma-restriction ∆G
C(G2)ω̃,ψH → ∆G

C(G2) ω̃∆G
sends the bundle [(g, 1), χ] to∑

n[(ng, 1), χ′], where the sum is as in the decomposition clK(g)N = ∪nclK(ng)
into orbits clK(g′) of Kadj in G, and χ′ is defined in (4.2). The indecomposable
local bundles in ∆G

C(G2)ω̃,ψH are those bundles [(k, 1), χ] for which k ∈ K and χ
satisfies both |χ(k, k)| = |χ(1, 1)| and (4.3) for all n ∈ N .

(iii) The modular tensor category of local modules for (H,ψ) is braided tensor equiv-
alent to the twisted group double Dω̄ω̄ψ(K), where ω and ωψ are 3-cocycles on
K := K/N defined in Proposition 2 (with G there replaced with K). Sigma-
restriction Verω̄ω̄ψ(K) → Verω(G) is ι! ◦ π∗ where π∗ resp. ι! are the natural
K-theoretic maps coming from the quotient π and inclusion ι respectively.

K-theoretic maps like π∗ : Verω̄ω̄ψ(K)→ Verω(K) and ι! : Verω(K)→ Verω(G) in
Theorem 1(b)(iii) are discussed in section 2.2. Explicitly, choosing coset representa-
tives tk̄ ∈ k ∈ K/N , the sigma-restriction ι! ◦ π∗ in Theorem 1(b)(iii) becomes

[k, χ] 7→
∑
k

[k, Ind
CG(k)
CK(k)φ̃ χ ◦ π] (3.3)
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where the sum over k is as in ∪kcl(k) = π−1(cl(k)), and φ̃(h) = β(k,k)(hthN
−1, 1)∗.

Ostrik’s guess [69] for the type 1 module categories missed the ψ 6= 1 possibilities.
The smallest G for which these arise are the dihedral group D4 and the alternating
group A4 — see section 3.4 for an example. We do not know whether inequivalent
module categories (H,ψ) necessarily have distinct modular invariants Z — this would
have seemed very unlikely except that it is true when Z is a permutation matrix [31].

The MTC of local modules goes by other names in the literature: the ambichiral
or neutral system, and more generally the type 1 parents, in subfactor theory; the
left and right centres in categorical treatments; the extended system in CFT or VOA.
The phrase we use should make sense in all frameworks.

Of the two contributions ω (which depends on ω) and ωψ (the part depending
on ψ) to the 3-cocycle twist in Theorem 1(b)(iii), the more important for us is ωψ.
Our proof of reconstruction (Theorem 3) requires delicate control over ωψ — in fact
we get reconstruction (Theorem 3) for arbitrary ω, even if Theorem 1 were to hold
only for trivial twist ω = 1. A crucial part of our proof connects ωψ to the thesis
of Vaughan Jones [47]. A Q-kernel is a homomorphism from a group Q to the outer
automorphism group Out(M) = Aut(M)/Int(M) of a factor M . Any Q-kernel gives
rise to a 3-cocycle on Q. If one has an action of K by automorphisms on a factor,
which is inner when restricted to subgroup N , then one has a K/N -kernel and hence
a 3-cocycle on K/N . This is what Jones exploits and computes explicitly. The
structure coming along with this framework is necessary for our proof of Theorem 3.

We find in section 4.3 that the algebra A associated to the type 1 module category
(H,ψ) of Theorem 1 consists of a copy A(gn,g) of βψ(n,1) ⊗ F(CG(n)/CK(n)) at each

point (gn, g) ∈ ∆G(1 × NG), where NG is the set ∪g∈GN g and F(G′/K ′) denotes
the algebra of functions on the set G′/K ′ of cosets. Multiplication in F(G′/K ′) is
pointwise, and as a G′-representation is equivalent to IndG

′

K′1. The group ∆G acts on
the left and right of A as in (2.16)-(2.18), making A into a bundle in ∆G

C(G2) ω̃∆G
.

The multiplication µ : A(1,1)⊗A(n,1) → A(n,1) is that of F(G/K) restricted to CG(n),
and is extended to µ : C(gn,g) ⊗ C(g′n′,g′) → C(gg′ng′n′,gg′) by equivariance

g µ(v ⊗ w)h = µ(gv ⊗ wh) . (3.4)

It is elementary to specialise Theorem 1 to cyclic groups.

Corollary 1. Let G ∼= Zn and write ω = ωq as in (2.13). Then the type 1 module
categories correspond to any choice of integers m,m′, a ∈ Z>0, where m′|m|n, a ≤ m′,
m′|q and (m′)2|am. The MTC of local modules is a twisted double of Zm/m′.

Here, if we write G = 〈g〉, then K = 〈gn/m〉 ∼= Zm and N = 〈gn/m′〉 ∼= Zm′ . The
2-cocycle ψ comes from a and is given explicitly in section 4.6, along with the proof.
See also the discussion of [24] in section 3.2. Cyclic G is so easy because all simples
in Dω(G) are invertible.

The maximal extensions of Dω(G) occur when the MTC of local modules is trivial,
i.e. is VecC. Such type 1 module categories are said to trivialise Dω(G), for this
reason. They are classified by an analogue of Proposition 1 [69], but again the
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branching rules etc are obscure. In section 4.7 we recover this classification as a
corollary of Theorem 1, and with it the branching rules etc.

Corollary 2. Choose any finite group G and any 3-cocycle ω ∈ Z3(G;T). The type
1 module categories of Dω(G) whose MTC of local modules is VecC, correspond to
any subgroup K ≤ G and ψ′ ∈ Z2(K;T) such that ω|K is coboundary. Then

1 7→
∑
k

[
k, βψ

′

k · ResCG(k)IndGK1
]
, (3.5)

is the associated branching rule, where the sum is over conjugacy class representatives
of K by G, and βψ

′
is defined in (2.7). In the notation of Theorem 1(a), this module

category has H = K ×K and cocycle ψ ∈ Z2(K ×K;T) given by

ψ((k1, k2), (k′1, k
′
2)) = ψ′(k′2

−1, k−1
2 k1)ψ′((k−1

2 k1)k
′
2 , k′2)∗ ψ′((k−1

2 k1)k
′
2 , k′2

−1k′1) . (3.6)

In the physics literature, two of these maximal extensions are singled out: the pair
(K,ψ′) = (1, 1) (the original holomorphic theory) and the pair (K,ψ′) = (G, 1) (what
is unfortunately called there the orbifold of the original theory by G). The physics
literature realises that the latter doesn’t always exist — in particular so-called level-
matching must be satisfied. This (necessary but not sufficient) condition requires
that the resulting modular invariant be invariant under T . In hindsight, there is no
reason to restrict to those two maximal extensions. Moreover level-matching must
be replaced with the [ω]|K = [1] condition, which implies it; in general it is only for
cyclic K that level-matching is equivalent to that condition on ω̃.

For example, Corollary 2 for G = Zn reduces to m′ = m dividing q, and a = 0.
Although Proposition 1 is abstract nonsense (for this reason Ostrik asked his

questions), it is significant that the formulae of Theorem 1 yield explicit expres-
sions. Indeed, all alpha-inductions, sigma-restrictions and modular invariant entries
are computed by nothing more complicated than induction and restriction of (pos-
sibly projective) characters, and decomposition of conjugacy classes of a group into
conjugacy classes of a subgroup. All coefficients are manifestly in Z≥0. Before turning
to the proofs in section 4, we discuss some applications of Theorem 1 in section 3.2
and collect several concrete examples in section 3.4.

3.2 Conformal nets and finite group doubles

This subsection describes some deep consequences of Theorem 1 for conformal nets
of factors. See the following subsection for comments concerning VOAs.

Recall that a holomorphic conformal net A is completely rational with trivial
representation theory: Rep(A) ∼= VecC. When G is a finite group of automorphisms,
the space AG of fixed points is automatically a conformal net, called the orbifold of A
by G. It is known that AG is completely rational whenever A is completely rational
[73] (holomorphicity of A is not needed). When A is in addition a holomorphic, then
the MTC Rep(AG) is Dω(G) for some 3-cocycle ω ∈ Z3(G;T) (Theorem 5.14 in [62]).
Corollary 4 below tells us that the converse also holds.
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As explained in the Introduction, a natural question is to describe all conformal
(a.k.a. local) extensions of the orbifold AG. Such questions seem very difficult to
answer at present, unless one uses categorical methods: the conformal extensions of
AG correspond to the type 1 module categories [52, 43, 16] in Rep(AG) ∼= Dω(G).
Thus Theorem 1 gives all such extensions.

Corollary 3. Suppose A is a completely rational conformal net with Rep(A) tensor
equivalent to Dω(G). Then the conformal extensions Ae of A correspond to the type
1 pairs (H,ψ). Their MTC Rep(Ae) is a twisted group double identified in Theorem
1(b)(iii). The decomposition (branching rules) of Ae and its representations π ∈
Rep(Ae) into a direct sum of A-representations is given in Theorem 1(b)(ii).

Equivalent module categories ∆G
C(G2)ω̃,ψH (i.e. conjugate pairs (H,ψ)) correspond

to extensions of A equivalent as A-representations (and also as conformal nets), but
inequivalent pairs (H,ψ) may correspond to equivalent conformal nets — see e.g. the
A2 ⊕ E6 lattice example given in section 3.4.

Some of these extensions are clear. The quantum Galois correspondence (given in
[40, 22] for VOAs but it applies equally for conformal nets) says that all conformal
nets B between AG and A are in natural bijection with subgroups K of G, namely
K ↔ AK . These correspond to the type 1 module categories with (H,ψ) = (∆K , 1).
But Theorem 1 tells us that there are several other conformal extensions (AG)e of AG
which aren’t subnets of A. Much more challenging is to obtain these from traditional
(i.e. noncategory-theoretic) conformal net or VOA constructions. The plethora of
extensions contained in Theorem 1 provides a graphic example of what seems to be
a serious general challenge for VOAs and conformal nets: to find new construction
methods. See e.g. [28] for further conformal net and VOA candidates (realised by
braided subfactors and MTC) that have not yet been constructed.

The simplest class of these less obvious extensions is as follows. Let A be holomor-
phic, G a finite group of automorphisms and Rep(AG) ∼= Dω(G), as before. Assume
for simplicity here that ω = 1 — nontrivial ω is handled by Theorem 1, and excludes
some of the following extensions. There exists a completely rational conformal net
AGN containing AG, for each normal subgroup N / G. In this case the category of
AGN -modules is the double D1(G/N). Any simple AGN -module decomposes as a AG-
module into the direct sum (4.13). More generally, one can twist these AGN by Jones’
characteristic invariant (the ψ in Theorem 1(a)), and this can introduce a nontrivial
3-cocycle ωψ even when one wasn’t there before. The general extension of AG is a
combination of the AH and these AGN,ψ.

Corollary 2 gives all holomorphic (i.e. maximal) extensions of AG. There may
only be one of these, namely the original A itself, corresponding to K = 1. The
converse, which was previously known, is also true:

Corollary 4. Suppose A is a completely rational conformal net with Rep(A) tensor
equivalent to Dω(G). Then A is an orbifold by G of a holomorphic net.

To see this, choose the holomorphic extension Ahol of A associated to K = 1
and ψ = 1 in the notation of Corollary 2. Then as an A-representation, Ahol =
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⊕π∈Irr(G)π ⊗ [1, π] using obvious notation. But each summand π ⊗ [1, π] manifestly
carries a G×A-action, and it is evident that (Ahol)G = [1,1] = A. QED to Corollary
4

The best studied examples of orbifolds are permutation orbifolds. Let A be any
conformal net. Let G be any subgroup of the symmetric group Sk. Then (A⊗k)G is
called a permutation orbifold — here G acts by v1⊗ · · · ⊗ vk 7→ vπ1⊗ · · · ⊗ vπk in the
k-fold tensor product.

We are interested in the special case where A is holomorphic. In this case the
central charge c necessarily lies in 8Z≥0. The categories Rep((A⊗k)G) is Dω(G) up
to some twist ω ∈ Z3(G;T). In Theorem 2 we identify this twist ω for any such
permutation orbifold.

Theorem 2. Let A be a holomorphic conformal net of central charge c, and let G be a
subgroup of some symmetric group Sk. Let (A⊗k)G be the corresponding permutation
orbifold, and let Dω(G) be its category of modules. Then [ω] is the restriction to G

of [ω
(3)
c (mod 3)] ∈ H3(Sk;T), where the 3-torsion cocycle ω

(3)
q is defined in section 4.8.

In particular, if 24 divides c or 3 does not divide the order |G| of G, then the twist ω
is trivial.

We thank Marcel Bischoff for correspondence on the possibility that [ω] 6= [1].
The expectation had been that [ω] = 1 always [63, 18]. Both Bischoff and Johnson-
Freyd (the latter in [45]) also showed the 3-cocycle could be nontrivial in general.
Example 2.1.1 in [45] announces the general result, corresponding to our Theorem 2.

The nontrivial twist can be detected by the character vectors. For example,
fix some holomorphic theory A at central charge c ∈ 8Z and some n ≥ 1, with
graded dimension χA(τ), and write π = (12 · · ·n) ∈ Sn. Consider the Zn-permutation
orbifold Aπ = (A⊗n)〈π〉. Then Aπ has graded dimension

χAπ(τ) =
∑
d|n

φ(d)

n
χA(dτ)n/d (3.7)

where φ(d) is the Euler totient and the sum is over all divisors of n (see equation
(4.15) of [10] for an analogous expression for the character of any Aπ-module). Now,
χA(−1/τ) must be a linear combination with nonzero coefficients of the characters of
A-representations, and so from it we can read off all values appearing in the modular
T matrix for A. We see that

χAπ(−1/τ) =
∑
d|n

φ(d)

n
χA(τ/d)n/d ∈

∑
d|n

q−nc/24d2C[[q1/d]] .

The central charge of Aπ is nc, and we see that e2πinc/24T for Aπ has order n, unless
both 3|n and 3 doesn’t divide c, in which case the order is 3n. But T should match
T ωq in (2.14) for some 0 ≤ q < n, so q = 0 unless both 3|n and 36 |c, in which case
q = cn/3.

Perhaps the biggest question on the interface of conformal nets/VOAs and cat-
egories is reconstruction: is every MTC realised by a completely rational VOA or
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conformal net? The first nontrivial place to look, presumably, is to the finite group
categories Dω(G), for arbitrary G and ω. These would correspond to orbifolds by G
of a holomorphic VOA or conformal net.

It had been expected for some time that permutation orbifolds would realise any
D1(G), and this is now proven (Theorem 2). But until now, it has been far from clear
that Dω(G) for all 3-cocycles ω and all finite groups G, can likewise be realised as a
representation category. Indeed, the 3-cocycles appearing in all flavours of Moonshine
all seem to have order dividing 24.

Theorem 3. For any finite group G and any 3-cocycle ω ∈ Z3(G;T), there exists a
completely rational conformal net A whose representation category Rep(A) is Dω(G).

We prove Theorems 2 and 3 in section 4.

3.3 VOAs and finite group doubles

This subsection does for vertex operator algebras (VOAs) what the previous subsec-
tion does for conformal nets. In general, less is known about the structure theory of
VOAs than of conformal nets.

Recall that a holomorphic VOA V is a completely rational VOA with trivial
representation theory: Mod(V) ∼= VecC. When G is a finite group of automorphisms,
the space VG of fixed points is automatically a VOA, called the orbifold of V by G.

Conjecture 1. Let V be a holomorphic VOA and G be a finite group of automor-
phisms of G. Then the orbifold VG is also completely rational.

In fact it is generally believed that VG is completely rational whenever V is com-
pletely rational (and not necessarily holomorphic) and G is finite. This has been
proved [60, 12] when G is solvable.

Conjecture 2. Let V be a holomorphic VOA and G a finite group of automorphisms.
Assume VG is completely rational (Conjecture 1). Then the MTC Rep(VG) is Dω(G)
for some 3-cocycle ω ∈ Z3(G;T).

This also is generally believed. Proposition 5.6 of [23] establishes this for all cyclic
G, using intrinsically VOA methods. The main theorem of [52] shows this for any
G but trivial twist ω (i.e. all 2-cocycles arising are 1) — his proof is categorical, so
works equally for conformal nets and (assuming Conjecture 1) VOAs.

If Conjectures 1 and 2 hold, then everything in section 3.2 has an analogue for
VOAs.

First of all, what is the VOA analogue of Corollary 3? The same categorical
methods apply, however [43] requires that we impose the additional property:

(∗) every simple V-module M 6= V must have conformal weight > 0.

This is not an issue in the conformal net picture, because of unitarity. Modulo
this condition, the analogue of Corollary 3 holds for VOAs. In fact (∗) is stronger
than necessary: what is required is that any simple V-module M 6= V appearing in
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any commutative algebra A defining a conformal extension of V (i.e. any simple M
appearing in the restriction of an extension Ve to V), have conformal weight > 0.

Subject to this condition (∗), Corollary 2 gives all holomorphic (i.e. maximal) ex-
tensions of any completely rational VOA V with Mod(V) tensor equivalent to Dω(G).
The case of cyclic G was studied recently in [24]. This paper plays an important
role both in the classification of holomorphic VOAs with central charge 24 (they
construct 5 new ones), and in the proof of Generalised Moonshine. Their Theorem
5.16 describes all type 1 module categories — because all simple modules in Dω(G)
are invertible when G is cyclic, here it is straightforward to get the complete story.
Holomorphic extensions of cyclic orbifolds, which share the additional key property
of the Monstrous Moonshine VOA that there are few states with small conformal
weights, have recently been studied in [37].

Certainly it is expected that Theorem 2, which describes the twist of permutation
orbifolds of holomorphic theories, is expected to hold for VOAs. It will, if both
Conjectures 1 and 2 hold. At present we don’t have a proof of the VOA analogue of
Theorem 2, even in the case where G is solvable.

We are able, however, to prove the following VOA analogue of Theorem 3:

Theorem 4. When G is solvable, then for any ω ∈ Z3(G;T) there exists a completely
rational VOA V with Mod(V) ∼= Dω(G).

Our proof of Theorem 4, which is given in section 4, assumes neither Conjectures
1 nor 2. The reason solvable groups appear, is because it is known that VOA orbifolds
by solvable groups preserves the property of completely rational. If it is proven that
the orbifold of any completely rational VOA by e.g. an alternating group An is also
completely rational, then the proof of Theorem 4 extends to sny finite group with
composition factors Zp and/or An.

3.4 Examples

Consider any type 1 module category, i.e. any pair (H,ψ) in Theorem 1(a). The
simple objects in the extended theory, thanks to Theorem 1(b)(iii), are [k, χ], where
k ∈ K = K/N , and χ is a projective character of CK(k) with 2-cocycle (2.5). Sigma-
restriction, and with it the modular invariant, are determined from (3.3).

Let’s turn next to some concrete examples. The trivial module category for
Dω(G), corresponding to the unextended conformal net or VOA, and the diagonal
modular invariant Z = I, is associated to the choice H = ∆G and ψ = 1.

Another example which works for any Dω(G) is H = 1×1 and ψ = 1. In this case,
there is only one local module (so the extended theory is holomorphic), with sigma-
restriction [1,1] 7→

∑
π dim π [1, π] ∈ Verω(G), where the sum is over all (linear)

characters π ∈ Irr(G). Note that the 2-cocycle multiplier for these π is trivial even
when ω is nontrivial. This example appeared in equation (1.19) of [28].

Another holomorphic example (which works though only for ω = 1) is H = G×G.
Take ψ = 1 for simplicity. Then sigma-restriction sends the unit to

∑
g[g,1] where
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the sum is over conjugacy class representatives g. This example appeared in equation
(1.20) of [28].

For comparison, a simple example which is not type 1 is H = G × 1 and ψ = 1.
Then we have two type 1 parents (a.k.a. left and right centres): one is the H = 1
example whilst the other is H = G×G. Equation (2.2) becomes Z = b1b

t
G×G where b1

resp. bG×G are the matrices capturing the restrictions of the previous two paragraphs.
For a type 1 example with a nontrivial ψ, consider H = A4 × A4, where G = A4

is the alternating group of order 12 and ω = 1. Now, H2(A4;T) ∼= Z2, so let ψ′′

be the nontrivial one. A4 has four conjugacy classes: those of (1), (12)(34), (123)
and (132), with stabilisers A4,Z2×Z2,Z3,Z3 respectively. D1(A4) has 14 sectors but
most aren’t relevant here. The map βψ

′′
is trivial on the stabilisers Z3, but restricts

to the unique nontrivial alternating bicharacter on Z2
2 (this follows from Theorem

2 in [44] or Lemma 1(b) in [30]). We find that the sigma-restrictions of these two
module categories are slightly different:

ψ′ = 1 : [1,1] 7→ [1,1] + [(12)(34), ++ ] + [(123),1] + [(132),1] , (3.8)

ψ′ = ψ′′ : [1,1] 7→ [1,1] + [(12)(34), +− ] + [(123),1] + [(132),1] , (3.9)

where we write s1s2 for the one-dimensional representation of Z2
2 sending (1, 0) 7→ s1

and (0, 1) 7→ s2, and ψ′ is as in Corollary 2.
Consider next the lattice conformal nets A(A2 ⊕ E6), A(A8) and A(L) where

L = span{D7 ⊕
√

36Z, (1
2
, 1

2
, 1

2
, 1

2
, 1

2
; 9√

36
)}. These are all Z3 orbifolds of the holomor-

phic conformal net A(E8), and their categories of modules correspond to the three
inequivalent twisted doubles of Z3, namely Dω0(Z3), Dω1(Z3) and Dω2(Z3) respec-
tively using the notation of (2.13). According to Theorem 1, there are precisely
two nontrivial extensions of A(A2 ⊕ E6) (i.e. type 1 module categories of Dω0(Z3)),
namely [0, 0]⊕ [1, 1]⊕ [2, 2] = A(E8) (H = 1, ψ = 1) and [0, 0]⊕ [1, 2]⊕ [2, 1] ∼= A(E8)
(H = Z3×Z3, ψ = 1). Here we write [0], [1], [2] for the simple modules of both A(A2)
and A(E6), and denote by [k, k′] = [k] ⊗ [k′] the simple modules of A(A2 ⊕ E6).
According to Theorem 1, there is precisely one nontrivial extension of A(A8) (i.e.
type 1 module category of Dω1(Z3)), namely [0]⊕ [3]⊕ [6] = A(E8) (H = 1, ψ = 1).
Here [0], [1], . . . , [8] denote the simple modules of A(A8), enumerated so that fusion
is addition mod 9. Similarly, there is only 1 for A(L), namely H = 1, ψ = 1, with
⊕2
j=0[0, 9j√

36
] ∼= A(E8). This illustrates a general principle: nontrivial 3-cocycles ob-

struct extensions.
Consider now the symmetric group G = S3. Then H3(S3;T) ∼= Z6, with explicit 3-

cocycles ωk given in e.g. equation (6.20) of [15]. For readability, in Table 1 we writeDk
for Dωk . That table collects together the type 1 module categories for each of these 6
twisted doubles. In all cases, ψ must be trivial. The column ‘MTC’ is the MTC of the
local modules, as always a twisted group double Dωq(F ). Conveniently, H2(K;T) = 0
for all subgroups K ≤ S3, which means all 2-cocycles cωg are coboundary, so all
characters are (projectively) equivalent to linear ones, and we can give all sectors
uniform names regardless of ωk. In particular, enumerate the 8 sectors of Dωk(S3)
as χ0 = [1,1], χ1 = [1, sgn], χ2 = [1, τ ], χ3+k = [(123), ξk], χ6+l = [(12), (−1)l], as in
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[32]; label the n2 sectors of Dωq(Zn) as [i, φj] where 0 ≤ i, j < n and φj(1) = e2πij/n.
In the column ‘branching rules’, we list the sigma-restrictions of each sector of Dωq(F )
in order; for F ∼= Zn we order the sectors [i, φj] lexicographically. We use the fact
that, for each prime p, the restriction of the p-primary part of H3(G;T) to H3(P ;T)
is injective, where P is a p-Sylow subgroup of G. The module categories for ω = 1
were first given in [32].

Table 1. Type 1 module categories for Dωk(S3)

ωk H branching rules MTC

ω0 1 χ0 + χ1 + 2χ2 Vec
ω0 ∆(Z2) χ0 + χ2, χ1 + χ2, χ6, χ7 D0(Z2)
ω0 Z2 × Z2 χ0 + χ2 + χ6 Vec
ω0 ∆(Z3) χ0 + χ1, χ2, χ2, χ3, χ4, χ5, χ3, χ4, χ5 D0(Z3)
ω0 Z3 × Z3 χ0 + χ1 + 2χ3 Vec
ω0 ∆(S3) χi D0(S3)
ω0 ∆(S3)(Z3 × 1) χ0 + χ3, χ1 + χ3, χ6, χ7 D0(Z2)
ω0 S3 × S3 χ0 + χ3 + χ6 Vec

ω3 1 χ0 + χ1 + 2χ2 Vec
ω3 ∆(Z2) χ0 + χ2, χ1 + χ2, χ6, χ7 D1(Z2)
ω3 ∆(Z3) χ0 + χ1, χ2, χ2, χ3, χ4, χ5, χ3, χ4, χ5 D0(Z3)
ω3 Z3 × Z3 χ0 + χ1 + 2χ3 Vec
ω3 ∆(S3) χi D3(S3)
ω3 ∆(S3)(Z3 × 1) χ0 + χ3, χ1 + χ3, χ6, χ7 D1(Z2)

ω±2 1 χ0 + χ1 + 2χ2 Vec
ω±2 ∆(Z2) χ0 + χ2, χ1 + χ2, χ6, χ7 D0(Z2)
ω±2 Z2 × Z2 χ0 + χ2 + χ6 Vec
ω±2 ∆(Z3) χ0 + χ1, χ2, χ2, χ3, χ4, χ5, χ3, χ4, χ5 D±1(Z3)
ω±2 ∆(S3) χi D±2(S3)

ω±1 1 χ0 + χ1 + 2χ2 Vec
ω±1 ∆(Z2) χ0 + χ2, χ1 + χ2, χ6, χ7 D1(Z2)
ω±1 ∆(Z3) χ0 + χ1, χ2, χ2, χ3, χ4, χ5, χ3, χ4, χ5 D±1(Z3)
ω±1 ∆(S3) χi D±1(S3)

4 Proofs

By a transversal tk̄ for K/N we mean a choice of coset representatives tk̄ ∈ k ⊂ K.
Write β for the quantity βψ defined in (2.7), cg for the cocycle cωg of (2.5), and define
ω̃ by (2.21).

There are two different sorts of extensions in Theorem 1, what we call type 1∆
(arising in the quantum Galois correspondence) and type 1N . The general extension
is a combination of these. Type 1∆ has H = ∆K and ψ = 1, for any subgroup K ≤ G
(no constraint comes from ω). Type 1N has H = ∆G(1×N) where N E G is normal,
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with ψ(G,H) = 1, βψN×1(1×N) = 1 and [ω̃]H = [1].

4.1 Type 1∆

We will study the general case through the type 1N module category (∆K(1×N), ψ)
of Dω(K), transferred to Dω(G) through the type 1∆ module category (∆K , 1) of
Dω(G). For this reason, we need to first understand the type 1∆ case.

Given any pair (H,ψ), Proposition 1 associates the Dω(G) module category

∆G
C(G2)ω̃,ψH and full category ψ

HC(G2) ω̃,ψH . Any module category is associated an as-
sociative algebra A = θ in Dω(G); the module category is type 1 iff A is commutative
in the braided sense µA ◦ cA,A = µA. The general relation between (bi)modules and
bundles that we need is worked out in Lemma 3.1 of [32].

Consider first type 1∆, so H = ∆K . By F(G/K) we mean the algebra of func-
tions on the set G/K of left cosets. The multiplication in this algebra is pointwise,
(f1f2)([g]) = f1([g]) f2([g]) (hence is commutative). F(G/K) carries a (true) repre-
sentation of G, namely IndGK1, obtained through the G-action on G/K. The desired
algebra A∆ = θ∆, which must be a bundle in ∆G

C(G2) ω̃∆G
, is a copy of F(G/K) on

each point of ∆G, with ∆L×R
G action given by (2.16)-(2.18) and algebra multiplica-

tion µ∆ from equivariance (3.4), both applied to the fibre F(G/K) at (1, 1) ∈ G2.
As a sector in Dω(G), it is [1, IndGK1]. The indecomposable right A∆-modules in

∆G
C(G2) ω̃∆G

are precisely those bundles in ∆G
C(G2) ω̃∆G

of the form [(g, 1), Ind
CG(g)
CK(g)χ]

where χ ∈ Irrcg(CK(g)); this A∆-module corresponds to the indecomposable bun-
dle [(g, 1), χ] ∈ ∆G

C(G2) ω̃∆K
. That correspondence defines the equivalence between

the category of right A∆-modules in ∆G
C(G2) ω̃∆G

and the category ∆G
C(G2) ω̃∆K

. A∆

is indeed commutative in the braided sense because the fibre F(G/K) above the
orbit representative (1, 1) is a commutative algebra in the classical sense. Thus
(H,ψ) = (∆K , 1) is type 1, as desired.

The above bijection also gives sigma-restriction, which is the functor from A-
modules to objects in Dω(G), forgetting the A-module structure. In full generality,
it sends [(g, g′), χ] ∈ ∆G

C(G2) ω̃∆K
, where χ is a (projective) representation of the sta-

biliser (g,g′)∆K∩∆G
∼= CK(g′−1g), to the bundle [(g, g′), Ind

(g,g′)∆G∩∆G
(g,g′)∆K∩∆G

χ] ∈ ∆G
C(G2) ω̃∆G

(note that (g,g′)∆G∩∆G
∼= CG(g′−1g)). This coincides with the sigma-restriction given

in [29] for the module category (∆K , 1).
The local A-modules in ∆G

C(G2) ω̃∆G
are precisely those whose sigma-restriction has

a well defined twist, or T -eigenvalue (see Theorem 3.2 of [53]). It is clear that any A∆-

module of the form [(k, 1), Ind
CG(k)
CK(k)χ] for k ∈ K is local: k ∈ Z(CG(k)) ∩ Z(CK(k))

so any subrepresentation of Ind
CG(k)
CK(k)χ has the same value of twist, namely χ(k)/χ(1).

In terms of the full system ∆K
C(G2) ω̃∆K

, this corresponds to the bundle [(k, 1), χ].
This class of local A∆-modules are precisely those which are also bundles over the
subgroupoid ∆K

C(K2) ω̃∆K
; these form the MTC Dω(K). The easiest way to see that

these exhaust all local A∆-bundles, is to compute dimensions: Theorem 4.5 of [53]
tells us the global dimension of the MTC of local A∆-bundles, which by definition
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is the sum of squares of the quantum-dimensions of all of its sectors, equals the
global dimension of Dω(G) (which is |G|2) divided by the square of the quantum-
dimension of A∆ in Dω(G), which is |G/K| (the quantum-dimension of a bundle in

∆G
C(G2) ω̃∆G

is the dimension of its total space divided by |G|). Thus Dω(K) has
the same global dimension as the MTC of local A∆-modules, of which it is a full
subcategory, and hence the two must be equal. The map ι! of Theorem 1(b)(iii)

sends [k, χ] to [k, Ind
CG(k)
CK(k)χ].

4.2 Proof of type 1-ness in general case

The nesting of type 1 module categories is developed in Proposition 4.16 of [35] and
Proposition 2.3.2 of [17]; we summarise it here. Suppose M1 is a type 1 module
category for an MTC C, and let C1 be its MTC of local modules. Suppose M2 is a
type 1 module category for C1, let A2 be the associated commutative algebra, and
let C2 be its MTC of local modules. Then A2 and indeed all of C2 are objects in C1

(this map is the forgetful functor called sigma-restriction). Likewise, every object
in C1 is an object in C. Let A be the algebra A2 regarded as an object in C in this
sense. A is an algebra in C: the multiplication µA : A⊗C A → A is the composition
of the projection to the fusion product A2 ⊗C1 A2 in C1, with the multiplication
µA2 : A2 ⊗C1 A2 → A2, which we identify with (sigma-restrict to) A (V ⊗C1 W is
naturally a quotient of V ⊗C W — see Theorem 1.5 of [53]). The corresponding
module category M of A-modules in C is the desired nesting or transfer of M2 to
C via M1. A will be type 1 when both M1 and M2 are type 1. The MTC of local
modules for M is the sigma-restriction of C2 first to C1 then to C.

Consider now type 1N , so H = ∆G(1 × N). The algebra AN = θN here is the
bundle in ∆G

C(G2)ω̃,ψH (hence ∆G
C(G2) ω̃∆G

) consisting of C attached to each point in
H, with a ∆L

G×HR-action given by (2.16)-(2.18), where the fibre C(1,1) has the trivial

representation of the stabiliser ∆adj
G . The algebra multiplication µN : C(1,1)⊗C(n,1) →

C(n,1) is that of C; to obtain the product µN : C(gn,g) ⊗ C(g′n′,g′) → C(gg′ng′n′,gg′), use
equivariance (3.4) as before. Then AN decomposes into a sum of Dω(G) sectors as
AN =

∑
n[(n, 1), β(n,1)], where the sum is over representatives n of each G-conjugacy

class (i.e. Gadj-orbit) in N . A bundle in ∆G
C(G2) ω̃∆G

is an AN -module, iff it is also

a bundle in ∆G
C(G2)ω̃,ψH . The indecomposable right AN -modules in ∆G

C(G2) ω̃∆G
are

precisely the indecomposable bundles in ∆G
C(G2)ω̃,ψH with ∆L

G × HR equivariance
restricted to ∆L×R

G . Since the fibre of AN above (1, 1) ∈ G2 is a commutative algebra,
this is also type 1.

Finally, consider the general case, H = ∆K(1 × N) with ψ as in Theorem 1.
We know from last subsection that (∆K , 1) is a type 1 (in fact type 1∆) module
category M1 for Dω(G), whose MTC of local modules is Dω(K). We know from the
previous paragraph that (∆K(1 × N), ψ) is a type 1 module category (in fact type
1N) for Dω(K). Nesting these, we obtain the module category (∆K(1 × N), ψ) of
Dω(G), which is therefore type 1. The description of sigma-restriction last subsection
makes it easy to describe the algebra and MTC of local modules for this nesting. In
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particular, the algebra AN as a bundle in ∆K
C(K2) ω̃∆K

consists of a copy of C above
each point in ∆K(1 × N); it is the identical bundle in ∆K

C(G2) ω̃∆K
; it corresponds

to the bundle in ∆G
C(G2) ω̃∆K

consisting of a copy of C (carrying the representation
β(1,n)) above every point in ∆G(1 × N); and finally it corresponds to the bundle in

∆G
C(G2) ω̃∆G

described in section 3.1.
This shows that the pairs (H,ψ) described in the second sentence of Theorem

1(a) are indeed type 1. The converse is Theorem 3.15 of [19], though it also falls out
from the treatment of general module categories for Dω(G) which we develop in [31].
The final sentence of Theorem 1(a) is deferred to after Claim 2, in section 4.7.

4.3 Proof of alpha-induction

In a type 1 theory, alpha-induction can be defined purely categorically, in terms of
the algebra A [53], as we sketched in section 2.1: we get a functor αH from Dω(G)
to right AH-modules ∆G

C(G2)ω̃,ψH , or functors αH± to AH-AH-bimodules ψ
HC(G2)ω̃,ψH .

The more fundamental is αH ; we revisit αH± next subsection when we compute the
branching rules. Unlike sigma-restriction of local modules, alpha-induction for a
nesting is not simply a composition of the alpha-inductions for each component, but
we have learned enough that it is now straightforward to do it in one step.

Consider any (∆K(1 × N), ψ) as in Theorem 1(a). As is clear from the previous

two subsections, its commutative algebra is AH =
∑

n[(n, 1), Ind
CG(n)
CK(n)β

∗
(n,1)], where

the sum is over representatives of the Kadj orbits in N . Note that A∆ = [(1, 1), IndGK1]
is a subalgebra of AH , and so an AH-module is also an A∆-module. In fact, a bundle
in ∆G

C(G2)ω̃,ψH is an AH-module iff it is an A∆-module, hence expressible in the form∑
[g, Ind

CG(g)
CK(g)χ], and also the corresponding bundle

∑
[(g, 1), χ] ∈ ∆G

C(G2) ω̃∆K
is also

a bundle in ∆G
C(G2)ω̃,ψH (though with ∆L

G×HR-equivariance restricted to ∆L
G×∆R

K).
This association of any bundle in ∆G

C(G2)ω̃,ψH to some bundle in ∆G
C(G2) ω̃∆G

is sigma-
restriction here.

Then alpha-induction sends a sector [(g, 1), χ] to the bundle product [(g, 1), χ]⊗
AH . Let’s compute this from the intermediate point, i.e. as a bundle in ∆G

C(G2) ω̃∆K
:

from (2.20) we obtain

αH([g, χ])↔
∑
n

[(g, 1), χ]⊗∆G
[(n, 1), β∗(n,1)]

=
∑
n

∑
h∈CG(g)\G/CK(n)

[(ghn, 1), Ind
CK(ghn)

CK(n)∩CK(ghn)
(χhn β∗(n,1))] , (4.1)

where we use the ∆L
G action to choose more convenient orbit representatives. Inter-

preting this as a bundle in ∆G
C(G2)ω̃,ψH is the same as dropping the sum over n, so

we obtain (3.2).
As a consistency check, the algebra AH can be identified with the bundle ι =

[(1, 1),1] in ∆G
C(G2)ω̃,ψH , as discussed in [26]. Its transpose ι is the bundle [(1, 1),1] in

ψ
HC(G2) ω̃∆G

. The sigma-restriction functor from the full system ψ
HC(G2) ω̃,ψH to Dω(G),

can be computed as the product ιaι of bundles.
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4.4 Local modules and branching rules

In this subsection we prove Theorem 1(b)(ii), i.e. we work out explicitly sigma-
restriction ∆G

C(G2)ω̃,ψH → ∆G
C(G2) ω̃∆G

, and identify the local bundles in ∆G
C(G2)ω̃,ψH .

The type 1∆ case, i.e (∆K , 1), is worked out in section 4.1. In particular, the MTC
of local modules is Dω(K), and sigma-restriction Res: Verω(K) → Verω(G) of local

modules is Res([k, χ]) = [k, Ind
CG(k)
CK(k)χ] , where χ ∈ Irrck(CK(k)) and Ind is induction

to a ck-projective G-character. Of course this coincides with the K-theoretic map ι!
where ι is the embedding K ↪→ G, hence it coincides with Theorem 1(b)(iii) in this
special case.

Now turn to the type 1N case, i.e. H = ∆G(1×N) and ψ as in Theorem 1. Choose
any indecomposable bundle [(k, 1), χ] in ∆G

C(G2)ω̃,ψH . Its support is ∆G(k, 1)H =
(cl(k) × 1)H where cl(k) is the conjugacy class of k in G. The stabiliser of (k, 1) is
StH(k, 1) = {(h+, h−) ∈ H : h−k = kh+} ∼= CH(k). As we know, this bundle sigma-
restricts to a bundle in ∆G

C(G2) ω̃∆G
simply by restricting ∆L

G × HR equivariance to

∆L×R
G . If we write the set cl(k)N as a disjoint union ∪ncl(kn) over certain n ∈ N

(possible, since N is normal in G), this sigma-restriction becomes
∑

n[(kn, 1), χ′],
where χ′ is the appropriate character (identified shortly) of the stabiliser StH(kn, 1)∩
∆G
∼= CG(kn).
To identify that character χ′, let V be the fibre above (k, 1) in the bundle

[(k, 1), χ], carrying a CH(k)-irrep ρ realising the character χ. Choose any n ∈ N
and let V ′ be the fibre above (kn, 1) in that bundle; we can identify V ′ with V
through the invertible map v 7→ v′ = v.(n, 1). Note that (g, g′) ∈ StH(kn, 1) iff
(ng, g′) ∈ StH(k, 1). We can compare ρ′(g, g′)v′ := (g′, g′).(v′.(g, g′)−1) ∈ V ′ to
ρ(ng, g′)v := (g′, g′).(v.(ng, g′)−1) through the moves (g′, g′).

(
(v.(n, 1)).(g, g′)−1

)
≈

(g′, g′).
(
v.(ng−1, g′ −1)

)
= (g′, g′).

(
v.((ng, g′)−1(n, 1))

)
≈
(
(g′, g′).(v.(ng, g′)−1)

)
.(n, 1),

where ‘≈’ means equality up to a phase from (2.16)-(2.18); keeping track of the
phases, we obtain

ρ′(g, g′)v′ = β(n,1)(
ng−1, g′−1)∗ω(k, n, g−1)∗ω(k, ng−1, n)ω(g′, g′−1k, n)

(
ρ(ng, g′)v

)′
(4.2)

Again, ρ′ is the representation of StH(kn, 1) in the fibre above (kn, 1) in the bundle
[(k, 1), χ]; we are interested in its restriction χ′ to StH(kn, 1) ∩∆G

∼= CG(kn).
We want to identify the local AH-modules, i.e. the indecomposable bundles

[(k, 1), χ] in ∆G
C(G2)ω̃,ψH which, when we restrict to a bundle in ∆G

C(G2) ω̃∆G
, has

a well-defined twist. Choose any n ∈ N and g ∈ CG(kn); then (g, g) ∈ StH(kn, 1).
Writing ∆h = (h, h), the twist (or T -matrix eigenvalue) of the indecomposable bun-
dle [(k′, 1), χ′] in ∆G

C(G2) ω̃∆G

∼= Dω(G) is χ′(k′)/χ′(1). So the bundle [(k, 1), χ] in

∆G
C(G2)ω̃,ψH is local iff χ(k, k)/χ(1, 1) has modulus 1 (i.e. ρ(k, k) is scalar), and

χ(k, k) = β(n,1)(k
−1n−1, n−1k−1)∗ω(k, n, n−1k−1)∗ω(k, k−1n−1, n)ω(kn, n−1, n)χ(nk, kn)

(4.3)
for all n ∈ N . Note that some characters χ of StH(k, 1) may not satisfy |χ(k, k)| =
χ(1, 1), since (k, k) will not in general lie in the centre of StH(k, 1).
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Sigma-restriction and local modules for general type 1 (H,ψ) is now a straightfor-
ward nesting of the treatments for types 1∆ and 1N , and is as in Theorem 1(b)(ii).

4.5 The associated modular tensor category

In this subsection we identify the MTC of local modules as a twisted group double.
The type 1∆ case was worked out in section 4.1, so consider first type 1N , i.e.

H = ∆G(1×N) and ψ as in Theorem 1. We will find that the effect of the 2-cocycle
ψ is surprisingly subtle. Write G := G/N and π : G → G for the corresponding
homomorphism. In the following, we identify C∆G

(ng, 1) with CG(ng) and CH(g)/N
with CG(gN).

We begin with the elementary observation that a projective representation of a
group K defines a projective representation for G/N , N the projective kernel:

Claim 1. Let N be a normal subgroup of K, and fix any transversal tk̄ for K/N .
Let c ∈ Z2(K;T) be normalised.

(a) Suppose χ ∈ Irrc(K) satisfies |χ(n)| = χ(1) for all n ∈ N . Then φ(n) :=
χ(n)/χ(1) satisfies

φ(n)φ(n′) = c(n, n′)φ(nn′) , φ(nk) c(n, k) = φ(n) c(k, nk) ∀n, n′ ∈ N , k ∈ K . (4.4)

(b) Suppose φ : N → T satisfies (4.4), and define

c(h, k) := φ(th̄tk̄t
−1
h̄k̄

) c(th̄, tk̄) c(th̄tk̄t
−1
h̄k̄
, th̄k̄)

∗ .

Then the relation χ(k) = χ(tk̄) defines a bijection between the set of χ ∈ Irrc(K)
satisfying χ(n) = φ(n)χ(1) for all n ∈ N , and χ ∈ Irrc̄(K/N).

Proof. Part (a) is trivial: let ρ be the projective representation associated to χ, and
compute ρ(n)ρ(n′) and ρ(k)ρ(n).

To prove (b), first let χ be as above, again realised by ρ. First note that the
matrices ρ(n) are scalar for n ∈ N (this follows from the triangle inequality applied
to χ(n) = φ(n)χ(1)). Now define ρ(h) = ρ(th). Then for all h, k ∈ K/N ,

ρ(h)ρ(k) = c(th̄, tk̄)ρ(th̄tk̄) = c(th̄, tk̄) c(th̄tk̄t
−1
h̄k̄
, th̄k̄)

∗ρ(th̄tk̄t
−1
h̄k̄

)ρ(th̄k̄) = c̄(h̄, k̄)ρ̄(h̄k̄)

as desired. Conversely, given χ ∈ Irrc̄(K/N), define χ(ntk̄) = c(n, tk̄)φ(n)χ(k) for all
n ∈ N, k ∈ K/N , then the same calculation shows χ ∈ Irrc(K). Furthermore, these
two maps χ 7→ χ and χ 7→ χ are inverses. QED to Claim 1

Consider any sector [g, χ] ∈ Verω(G) appearing in the sigma-restriction of a local
bundle in ∆G

C(G2)ω̃,ψH . Then Claim 1 with K there replaced with CH(g), c replaced
with cg, and φ obtained from (4.3), tells us that the χ ∈ Irrcg(CH(g)) satisfying (4.3)
are in natural bijection with the χ ∈ Irrc̄g(CG(g)), where c̄g = cωg c

ψ
g for

cωg (h, k) =ω(ng, n, g)∗ω(n, ng, g)ω(n, ng2, g−1n−1) cg(n, g) cg(th̄, tk̄) cg(n, th̄k̄)
∗ (4.5)

cψg (h, k) = β(g,g)(n, 1) (4.6)
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and where we write n = th̄tk̄t
−1
h̄k̄

.
Note that the 2-cocycle ψ and the 3-cocycle ω are completely independent: the

pair (H,ψ) is type 1 for Dω(G), iff (H, 1) is type 1 for Dω(G); moreover, in that case
it is also type 1 for D1(G). In addition, in (4.5),(4.6) we factorised the multiplier
cg = cωg c

ψ
g where cωg depends on ω but not ψ, and cψg depends on ψ but not ω.

We want to find a 3-cocycle on G which is responsible (in the sense of (2.5)) for
these multipliers cg. The preceding paragraph means that it (if it exists) will factorise
into a part ω seeing only ω, and a part ωψ seeing only ψ.

Fix a transversal tḡ for G/N . Recall that ω̃|H must be coboundary.

Proposition 2. [19, 47] Let F be a 2-cochain on H such that dF = ω̃|H . Define

ω(g, h, k) = ω
(
k1, th̄, tk̄

)
F ((n1, 1), (n2, 1))F ((n3, 1), (n2n1, 1))×
F ((n−1

3 , 1), (n3, 1)) βF(k1,k1)(n4, 1) (4.7)

ωψ(g, h, k) = ψ((n2, 1), (n1, 1))ψ((n−1
4 , 1), (n5, 1))∗ β(tḡ ,tḡ)(n

−1
4 , 1) , (4.8)

where k1 = tḡh̄k̄t
−1
k̄
t−1
h̄

, n1 = tḡh̄tk̄t
−1
ḡh̄k̄

, n2 = tḡth̄t
−1
ḡh̄

, n4 = th̄tk̄t
−1
h̄k̄

, n3 = k1(n−1
4 ),

n5 = tḡth̄k̄t
−1
ḡh̄k̄

, and where βF is as in (2.7). Then both ω, ωψ ∈ Z3(G;T) and are

normalised, and when substituted into (2.5) recover cωg and cψg respectively.

Choosing a different transversal t? won’t change the cohomology class of the 3-
cocycles. Up to notational differences, (4.7) agrees with equation (20) in [19] when
the 2-cocycle ψ is taken to be 1. The calculation of ωψ is also contained in [19]
(when ω = 1), but since we will later need to exploit more structure (see especially
section 4.9) we prefer the treatment in [47], even though it necessitates chopping the
calculation of the 3-cocycle into the two parts. The treatments are equivalent, indeed
the explicit calculations given in the Theorem 2.17 proof would make equal sense in
[47]. It would be nice though to understand conceptually why the two contexts are
equivalent in this sense. The argument that these 3-cocycles recover the appropriate
2-cocycles follows from [19].

The source of (4.8) is the thesis of Vaughan Jones [47]. Jones verified in section
4.2 of [47], that for any 2-cocycle µ ∈ Z2(N ;T) and map λ : G × N → T satisfying
the following equations

λ(m,n) =µ(m,nm)µ(n,m)∗ , (4.9)

λ(gh, n) =λ(g, n)λ(h, ng) , (4.10)

λ(g,mn)λ(g,m)∗ λ(g, n)∗ =µ(m,n)µ(mg, ng)∗ , (4.11)

λ(1, n) = λ(g, 1) =µ(1, n) = µ(n, 1) = 1 , (4.12)

for all m,n ∈ N, g, h ∈ G, the map ωψ is indeed a 3-cocycle on G. Now,
λ(g, n) = β′g(n) and µ(m,n) = ψ′(m,n) satisfy these equations: (4.9)-(4.11) is (2.7)-
(2.9) respectively, and (4.12) follows because ψ is normalised, so we can use Jones’
result.

Jones was interested in determining complete invariants for actions of finite groups
G on the hyperfinite II1 factor. His invariants consist of a normal subgroup N , and
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λ, µ satisfying these equations. A nice review of this circle of ideas is [70]. Incidentally,
in section 4.9 we need the converse, that any solution λ, µ comes from a ψ in this
way. So this point of contact between our context and that of Jones is pronounced.

Inflating, in the usual sense, an indecomposable bundle in ∆Ḡ
C(G2

) ω̃
′

∆Ḡ
(where we

write ω′ = ωωψ) gives a (local) indecomposable bundle in ∆G
C(G2) ω̃∆G

. The equiva-

lence of the category of local modules in ∆G
C(G2)ω̃,ψH and Dω̄′(G) for the appropriate

ω′ is established in Theorem 2.17 of [19].
Sigma-restriction Verω̄ω̄ψ(G) → Verω(G) is the map π∗ of Theorem 1(b)(iii) cor-

responding to the group homomorphism π : G→ G. We can read off from the proof
of Claim 1(b) that an indecomposable bundle [g, χ] ∈ Verω̄ω̄ψ(G) is sent to

[g, χ] 7→
∑
g

[
g, φ̃ χ ◦ π

]
, (4.13)

where the sum over g is over representatives of the distinct conjugacy classes in G
projecting to the G-conjugacy class of g, and φ̃(h) = cg(ht

−1
hN , thN)φ(ht−1

hN) where φ

is as in (4.3). As explained in the previous paragraph, the quantities φ̃ χ ◦ πg can be
identified with cωg -projective characters of CG(g) behaving appropriately with respect
to n ∈ CN(g), as (4.3) requires.

The general type 1 module category (∆K(1×N), ψ) is a combination of the type
1∆ pair (∆K , 1) followed by the type 1N pair (∆K(1 × N), ψ). Then the MTC of
local bundles for the desired type 1 module category, as well as sigma-restriction from
local bundles to Vecω(G), is obtained from the type 1N and 1∆ ones as explained in
the beginning of section 4.2. The result is given in Theorem 1(b)(iii).

4.6 Proof of Corollary 1

Take G = 〈g〉 ∼= Zn. Write m = |K| and m′ = |N |. Then m′|m|n and K = 〈gn/m〉,
N = 〈gn/m′〉, and H = ∆K(1×N) ∼= Zm′ × Zm, where the Zm′ factor has generator
g1 = (gn/m

′
, 0) and the Zm factor has generator g2 = (gn/m, gn/m).

Explicit k-cocycles are worked out in [41] for all abelian groups and all k. For the
group H ∼= Zm′ × Zm, H3(H;T) ∼= Z2

m′ × Zm with representatives

ωa1,a2,a12(gi11 g
i2
2 , g

j1
1 g

j2
2 , g

k1
1 g

k2
2 ) = exp

(
2πi

a1i1
m′

[
j1 + k1

m′

])
×

exp

(
2πi

a2i2
m

[
j2 + k2

m

])
exp

(
2πi

a12i2
m′

[
j1 + k1

m′

])
for integers 0 ≤ a1, a12 < m′ and 0 ≤ a2 < m. Now ω̃q|H is the 3-cocycle given by

ω̃q(g
i1
1 g

i2
2 , g

j1
1 g

j2
2 , g

k1
1 g

k2
2 ) = exp

(
2πi

q

m
(
m

m′
i1 + i2)

[
j1 + k1

m′
+
j2 + k2

m

])
exp

(
−2πi

q

m
i2

[
j2 + k2

m

])
This is required to be coboundary, so in particular the restriction to the subgroup
〈g1〉 ∼= Zm′ must be coboundary, but that restriction is clearly qω′1 where ω′1 is the
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generator of H3(Zm′ ;T) ∼= Zm′ given in (2.13). This restriction is coboundary iff
m′|q. Write [ω̃1]|H = [ωa1,a2,a12 ]. Since the restriction of ω̃1|H to ∆K is coboundary
(in fact identically 1), a2 = 0. Therefore [ω̃1]|H = [ωa1,0,a12 ] has order dividing m′, so
[ω̃q]|H = q[ω̃1]|H = [1]. Hence the only conditions on H (i.e. on m′,m) are m′|m|n
and m′|q.

By the Künneth formula, H2(H;T) ∼= Zm′ . We find (e.g. [41]) that ψ can be
taken to be

ψa(g
i1
1 g

i2
2 , g

j1
1 g

j2
2 ) = exp (ai1j2/m

′)

where 0 ≤ a < m′. Since H2(Zm;T) = 0, the restriction of any ψa to ∆K is automat-
ically coboundary. For the remaining condition on ψ, we compute

ψa((
n

m′
i1, 0), (0,

n

m′
j2)) =ψa(g

i1
1 , g

−j1
1 g

mj2/m′

2 ) = exp
(
2πi ami1j2/(m

′)2
)

ψa((0,
n

m′
j2), (

n

m′
i1, 0)) =ψa(g

−j1
1 g

mj2/m′

2 , gi11 ) = 1

These must be equal for all i1, j2, so we obtain (m′)2|am.

4.7 Proof of Corollary 2 and other things

Claim 2. Let H = ∆K(1×N).

(a) Each class in Z2(H;T) contains a cocycle ψ satisfying

ψ((gn, g), (km, k)) = βψ(k,k)(n, 1)∗ ψ((nk, 1), (m, 1))ψ((g, g), (k, k)) . (4.14)

(b) Conversely, suppose ψ′ ∈ Z2(1×N ;T), ψ ∈ Z2(∆K ;T), and β(g,g)(n, 1) ∈ T is a
function on g ∈ K,n ∈ N , satisfying (2.8): i.e. β(gk,gk)(n, 1) = β(g,g)(n, 1) β(k,k)(n

g, 1)
for all g, k ∈ K, n ∈ N . Extend ψ′ to H ×H by (4.14); then ψ′ ∈ Z2(H;T).

Proof. Consider first part (a). Let ψ′ ∈ Z2(H;T) be arbitrary. Define all f(k, k) = 1,
choose values f(n, 1) arbitrarily, and define f(kn, k) = ψ′((k, k), (n, 1))∗ f(n, 1). Then
ψ := ψ′ δf ∗ is a cocycle cohomologous to ψ′. We compute ψ((g, g), (m, 1)) = 1, so
(2.7) collapses to ψ((n, 1), (k, k)) = βψ(k,k)(n, 1)∗ and the cocycle condition (2.6) tells

us ψ((g, g), (km, k)) = ψ((g, g), (k, k)). Using this and (2.6),(2.9) we get

ψ((n, 1), (km, k)) = ψ((n, 1), (km, 1))ψ((n km, 1), (k, k))ψ((km, 1), (k, k))∗

=
ψ((n, 1), (km, 1))

βψ(k,k)(
km, 1)∗

(
βψ(k,k)(n, 1)βψ(k,k)(

km, 1)ψ((n, 1), (km, 1))

ψ((nk, 1), (m, 1))

)∗
which collapses to agree with (4.14). Using this and the cocycle condition, one finds
(4.14) holds in general. Part (b) is also straightforward. QED to Claim 2

Suppose (H,ψ) is type 1 (so H = ∆K(1 × N)), and has trivial left and right
centres Cl(A) = Cr(A) = VecC. Theorem 4.5 of [53] tells us that the global dimension
of the MTC of local modules equals the global dimension of Dω(G), namely |G|2,

31



divided by the square of the quantum-dimension of A, namely |N | |G/K|, and so
equals (|K|/|N |)2. But VecC has dimension 1, which forces N = K. Assume ψ is put
in the form (4.14), which we can rewrite as

ψ((gn, g), (km, k)) = ψ((n, 1), (k, k))ψ′(nk,m)ψ((g, g), (k, k)) , (4.15)

for some ψ′ ∈ Z2(K;T). The condition ψ(K,H) = 1 is equivalent to the requirement
that ψ((g, g), (k, k)) = 1 for all g, k ∈ K. The requirement on ψ((n, 1), (1, n′)) is
equivalent to the condition that ψ((n, 1), (k, k)) = ψ′(k−1, n)ψ′(nk, k−1)∗. We recover
the form for ψ given in Corollary 2. We also require that the class [ω̃|H ] be trivial.
But the cocycle ω(k1, k2, k3)ω(k′1, k

′
2, k
′
3)∗ is coboundary on G2 iff ω is coboundary on

G. This proves one direction of Corollary 2.
For the other direction, let ψ′ ∈ Z2(K;T). Define ψ(K,K) = 1 and

ψ((n, 1), (k, k)) by the formula given in the previous paragraph. Then according
to Claim 2(b), ψ defined as in Corollary 2 is a 2-cocycle of H = K2, provided
β(gk,gk)(n, 1) = β(g,g)(n, 1) β(k,k)(n

g, 1), i.e. provided

ψ′(k−1g−1, n)ψ′(ng, g−1)ψ′(ngk, k−1) = ψ′(ngk, k−1g−1)ψ′(g−1, n)ψ′(k−1, ng) .

But this follows from the relations ψ′(ngk, k−1) = ψ′(ngk, k−1)ψ′(k−1, ng)ψ′(k−1, ngk)∗,
ψ′(ngk, k−1g−1) = ψ′(ngk, k−1g−1)ψ′(k−1, g−1n)ψ′(k−1, ngk)∗, ψ′(ngk, k−1g−1) =
ψ′(ngk, k−1)ψ′(ng, g−1)ψ′(k−1, g−1)∗, and ψ′(k−1, g−1n) = ψ′(k−1g−1, n)ψ′(k−1, g−1)ψ′(g−1, n)∗,
coming from the cocycle condition (2.3).

We can now conclude the proof of the final sentence of Theorem 1(a): choose ψ
to be the cocycle in its cohomology class whose existence is promised by Claim 2(a).
We see directly from (4.14) that ψ(∆G, H) = 1. The condition βψN×1(1 × N) = 1,
which is equivalent to ψ((n, 1), (1, n′)) = ψ((1, n′), (n, 1)), holds for ψ iff it holds for
all cocycles in [ψ].

4.8 Proof of Theorem 2

Since G ≤ Sk, (A⊗k)G contains (A⊗k)Sk , and the 3-cocycle ωG for (A⊗k)G is the
restriction of that for (A⊗k)Sk . So it suffices to prove Theorem 2 for the full symmetric
group G = Sk.

First, let us recall some generalities about group cohomology (see e.g. [11]).
Given an embedding ιK : K ↪→ G, we get restriction ι∗K : Hn(G;T) → Hn(K;T), a
group homomorphism. Given any finite group G and prime p dividing its order, it
is elementary that restriction ι∗P to a p-Sylow subgroup P sees only the p-primary
part of Hn(G;T) (i.e. the elements annihilated by some power of p), i.e. it kills
the p′-primary part for any prime p′ 6= p. Less obvious is that transfer (see e.g.
Theorem 10.3 in [11]) says that restriction ι∗P of the p-primary part of Hn(G;T) to
P is injective.

Nakaoka (Theorem 5.8 of [65]) has proved that for any embedding ι : Sm ↪→ Sk
for m ≤ k, the map ι∗ is surjective, with kernel which is a direct summand. Moreover
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(his Corollary 6.7), for n < k/2 restriction ι∗ : Hn(Sk;T) → Hn(Sk−1;T) is an
isomorphism. The first few groups H3(Sk;T) are

Z2 , Z6 , Z12 × Z2 , Z12 × Z2 , Z12 × Z2 × Z2 ,

for S2, S3, S4, S5, resp. Sk for k ≥ 6, where it stabilises.
In particular, for k ≥ 3 the 3-torsion subgroup in H3(Sk;T) is Z3; combining

Nakaoka’s result with transfer allows us to identify (via ι∗) that 3-torsion in H3(Sk;T)

(k ≥ 3) with H3(C3;T) where C3 = 〈(123)〉 ∼= Z3. We write [ω
(3)
q ] ∈ H3(Sk;T) for

the unique 3-torsion class which restricts to [ωq] ∈ H3(C3;T) in (2.13). This is the
cocycle appearing in the statement of Theorem 2.

Claim 3. Suppose some class [ω] ∈ H3(Sk;T) is nontrivial. Then there is either a
cyclic subgroup C ≤ Sk of order ≤ 4 such that the restriction of [ω] to C is nontrivial,
or k ≥ 6 and the restriction of ω to 〈(12)〉 × 〈(34)〉 × 〈(56)〉 ∼= Z2 × Z2 × Z2 is
cohomologous to ωiii of (2.15).

Proof. Without loss of generality we may assume k = 6, by stability. Write (non-
canonically) H3(S6;T) = 〈x〉×〈y〉×〈z〉 where x, y, z have orders 12, 2, 2 respectively.

Suppose first that [ω] ∈ H3(Sk;T) has order a multiple of 3. Then by the above
discussion it must restrict to an order 3 element of H3(C3;T), where C3 is as above.

The 2-primary part of H3(Sk;T) is more delicate. Suppose first that [ω] ∈
H3(Sk;T) has order 4 (so [ω] is of the form x±3yizj). Then by Nakaoka it must
restrict to an order-4 class in H3(S4;T), hence by transfer to an order-4 class for
its Sylow 2-subgroup 〈(1324), (12)〉 ∼= D4, the dihedral group of order 8. Explicit
cocycles can be computed e.g. by the homological algebra library HAP in GAP; a
cocycle of order 4 in H3(D4;T) ∼= Z4 × Z2 × Z2 is

ω(4)(a
lbm, al

′
bm
′
, al
′′
bm
′′
) =


eπi(−1)ml/2 if m′ = 0 and 2l′ + 2l′′ +m′ +m′′ ≥ 8

eπi(−1)m+1l/2 if m′ = 1 and 2l′′ +m′′ > 2l′ +m′

1 otherwise

where we write D4 = 〈a, b | a4 = b2 = (ab)2 = 1〉, so 0 ≤ l < 4, 0 ≤ m < 2, etc. We
see that the restriction of ω(4) to 〈a〉 ∼= Z4 (i.e. choosing m = m′ = m′′ = 0) is ω1

(recall (2.13)), hence order 4. The order-4 classes for D4 equal [ω±1
(4)] times an order-2

class; in all cases it restricts to an order-4 cocycle on C4 = 〈(1234)〉 ∼= Z4.
Of course, if [ω] = [ω(4)]

2, then it is also nontrivial (in fact order 2) on C4. So the
only classes remaining to consider are [ω] ∈ {y, yz, z}.

It is convenient to change scalars T. The short exact sequence 0 → Z → R →
T→ 1 gives a long exact sequence in cohomology whose connecting homomorphisms

α : Hn(G;T) → Hn+1(G;Z) are isomorphisms. The short exact sequence 0 → Z ×2→
Z π→ Z2 → 0, where π is reduction mod 2, gives the long exact sequence

· · · → Hn(G;Z)
×2→ Hn(G;Z)

π→ Hn(G;Z2)
β→ Hn+1(G;Z)→ · · · (4.16)
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The sequence 0 → Z2
ε→ T square→ T → 1 where ε identifies Z2 with ±1, gives a long

exact sequence

· · · → Hn(G;Z2)
ε→ Hn(G;T)

square→ Hn(G;T)
γ→ Hn+1(G;Z2)→ · · · (4.17)

Finally, 0 → Z2 → Z4
×2→ Z2 → 0 gives a long exact sequence where the connecting

homomorphism is called the Steenrod square Sq1. All of these connecting maps are
essentially the same: more precisely, Sq1 = π ◦ β = γ ◦ ε. However, Sq1 is the
most accessible: it is a derivation on the (commutative) ring H∗(G;Z2) (where the
product is the cup product), and Sq1(a) = a2 for any class of degree 1. In all cases,
naturality of the long exact sequence implies that the restrictions of cohomology
groups intertwine the connecting maps.

A fairly complete description of the Z2-cohomology of the symmetric groups is pro-
vided in Chapter VI of [1]. As rings, we have the isomorphisms H∗(S2;Z2) ∼= Z2[σ′1],
and H∗(S6;Z2) ∼= Z2[σ1, σ2, σ3, c3]/(c3(σ3 + σ1σ2)), where the subscript indicates the
degree of the generators. Restriction from S6 to S2 × S2 × S2 = 〈(12), (34), (56)〉
(where S6 is the permutation group for {1, 2, 3, 4, 5, 6}) sends c3 to 0, and σ1, σ2, σ3

to the generators of the same name of a polynomial subalgebra Z2[σ1, σ2, σ3] of
H3(S3

2 ;Z2) ∼= H3(S2;Z2) ⊗Z2 H
3(S2;Z2) ⊗Z2 H

3(S2;Z2). Moreover, Sq1(σ2) =
σ1σ2 + σ3 + c3, Sq1(σ3) = (c3 + σ3)σ1, Sq1(c3) = 0, and as always Sq1(σ1) = σ2

1

and Sq1(ab) = Sq1(a) b+ aSq1(b).
Equation (4.16) tells us that β(H3(S6;Z2)) equals the order 2 classes in H4(S6;Z),

namely Span{6α(x), α(y), α(z)} ∼= Z3
2, and that π kills 6α(x). Therefore we can

identify (through β) the image of Sq1 = π ◦ β on H3(S6;Z2) with the space
Span{α(y), α(z)} ∼= Z2

2. We compute this image to be Span{Sq1(σ3
1), Sq1(σ3)}. This

means we can identify y = ε(σ3
1) and z = ε(σ3).

Restriction to S3
2 of σ3

1 and σ3 (hence of y, z) is now straightforward, and we see
that z restricts to 0 on 〈(12)〉 =: C2, while y (hence yz) restricts to ε(σ′ 31 ) 6= 0 on C2.
Using the interpretation of the image of restriction in terms of symmetric invariants,
as discussed in section III.4 of [1] — S3 acts by permuting the three S2’s — we identify
the restriction of z with the 3-cocycle ωiii, as desired. QED to Claim 3

So it suffices to consider permutation orbifolds of the form (A⊗k)C , where C is
a cyclic group generated by an order n cycle π in Sk, where n = 2, 3, 4, as well as
(A⊗6)S2×S2×S2 .

We can read off the conformal weights of any simple module in (A⊗n)〈π〉 from
the work [10, 3, 4, 57, 48] on permutation orbifolds (or the (3.7) paragraph). For
example, [57], Theorem 6.3e gives the conformal weights of the simple summands of
the restriction to that permutation orbifold of the unique π-twisted module of the
conformal net A⊗n: these are j

n
+ n2−1

24n
c where c ∈ 8Z≥0 is the central charge of A and

0 ≤ j < n. (We thank Marcel Bischoff for correspondence on this point.) Hence the
conformal weights of the permutation orbifold with G ∼= Zn for n = 2, 4 lie in 1

n
Z. As

was discussed at the end of section 2.2, this means that the twist ω occurring in those
n = 2, 4 orbifolds is trivial. However, when n = 3, the conformal weights lie in 1

9
Z;
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in particular c/9 (mod 1) is a conformal weight. Again from the calculations at the
end of section 2.2, we see this requires the specific twist ω = ωc (mod 3) ∈ H3(Z3;T).

Putting this together with transfer and the results of Nakaoka, we identify the
twist [ω] of the permutation orbifold (A⊗k)G as the restriction to H3(G;T) of the

class we call [ω
(3)
c (mod 3)].

Let’s turn to (A⊗6)S2×S2×S2 , where S2 × S2 × S2 = 〈(12)〉 × 〈(34)〉 × 〈(56)〉. This
clearly equals ((A⊗A)S2)⊗3. But we’ve learned the 3-cocycle for (A⊗A)S2 will be
trivial, so so will that for the S2 × S2 × S2 orbifold.

This concludes the proof of Theorem 2.

4.9 Proof of Theorems 3 and 4

Fix any finite groupG and normal subgroupN . Jones (see section 1.2 of [47]) defines a
group Λ(G,N), his characteristic invariant, as follows. If the pairs (λ, µ) and (λ′, µ′)
both satisfy (4.9)-(4.12), then so does their product (λλ′, µµ′). Let Z denote the
resulting (abelian) group of solutions λ : G×N → T, µ ∈ Z2(G;T) to those equations.
For any function η : N → T with η(1) = 1, and define λη(g, n) = η(n) η(ng)∗ and
µη(n, n

′) = η(nn′) η(n)∗η(n′)∗. Then λη, µη are readily seen to satisfy (4.9)-(4.12),
and so the set of all of them form a subgroup of Z. Jones’ group Λ(G,N) is defined
to be the quotient of Z by that subgroup.

Likewise, let Z ′ be the set of all ψ ∈ Z2(H;T) satisfying both [ψ]|∆G
= [1] and

βN×1(1×N) = 1 (the conditions on a type 1 ψ in Theorem 1(a)). Since βψψ
′
= βψβψ

′
,

Z ′ is a subgroup of Z2(H;T). Since (n, 1) and (1, n′) commute, βψ(n,1)(1, n
′) = 1 when

ψ is coboundary, so Z ′ contains all 2-coboundaries. Define G(G,N) to be the quotient
of Z ′ by all 2-coboundaries; it is the subgroup of H2(H;T) consisting of all classes
[ψ] where (H,ψ) is type 1.

Claim 4. The map sending (λ, µ) to ψ((gn, g), (kn′, k)) := µ(nk, n′)/λ(k, n) defines
an isomorphism between the groups Λ = Λ(G,N) and G = G(G,N), with inverse
sending ψ to λ(g, n) = βψ(g,g)(n, 1) and µ(n, n′) = ψ((n, 1), (n′, 1)).

Proof. Call a 2-cocycle ψ ∈ Z2(H;T) well-chosen if it satisfies ψ(∆G, H) = 1
and βψN×1(1 × N) = 1. Let (H,ψ) be type 1. Then Theorem 1(a) says ψ
is cohomologous to a well-chosen one. Suppose ψ and ψ′ are both well-chosen
and cohomologous, and write ψ′ = ψ δf for some f : H → T with f(1, 1) =
1. Because ψ|∆G

= ψ′|∆G
, we know f(gk, gk) = f(g, g) f(k, k). Because

ψ((g, g), (n, 1)) = ψ′((g, g), (n, 1)), we know f(gn, g) = f(g, g) f(n, 1). We com-
pute (δf)((gn, g), (km, k)) = f(nkm, 1) f(n, 1)∗f(m, 1)∗. Therefore ψ, ψ′ are both
well-chosen and cohomologous iff there is a function η : N → T with η(1) = 1 and
ψ′((gn, g), (km, k))ψ((gn, g), (km, k))∗ = η(nkm) η(n)∗η(m)∗ =: ψη((gn, g), (km, k)).
We’ve shown G is the group Z ′′ of all well-chosen ψ, quotient the subgroup of all ψη.

Because µ ∈ Z2(N ;T) and λ satisfies (4.10), Claim 2(b) tells us ψ((gn, g), (km, k)) :=
µ(nk,m)/λ(k, n) lies in Z2(H;T). The resulting ψ is well-chosen: ψ(∆G, H) = 1 by
(4.12), and βψ(n,1)(1, n

′) = 1 by (4.9) and (4.10). Moreover, (λη, µη) 7→ ψη, so passing
to the quotients, we get a group homomorphism F : Λ→ G.
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For ψ well-chosen, define λ(g, n) = βψ(g,g)(n, 1) = ψ((n, 1), (g, g))∗ and µ(n, n′) =

ψ((n, 1), (n′, 1)). As mentioned in section 4.5, (λ, µ) lie in Z. This map is the inverse
of the map Z → Z ′′ of the previous paragraph. The map sends ψη to (λη, µη), so
passing to the quotients we get the inverse F−1 : G → Λ. QED to Claim 4

By an extension of G by N , we mean a group G̃ with a normal subgroup Ñ ∼= N
for which G̃/Ñ ∼= G. Associated to the projection p : G̃ → G is inflation p∗ :

H∗(G;T) → H∗(G̃;T). Associated to the embedding ι : Ñ ↪→ G̃ is restriction

ι∗ : H∗(G̃;T)→ H∗(Ñ ;T).
Jones (amongst others) showed (Proposition 4.2.5 in [47]) that the standard 5-

term restriction-inflation exact sequence for finite group extensions 1 → Ñ → G̃ →
G→ 1 can be extended to the right:

1→H1(G;T)
p∗→H1(G̃;T)

ι∗→H1(Ñ ;T)G → H2(G;T)
p∗→H2(G̃;T)

ι∗→Λ(G,N)
γ→ H3(G;T)

p∗→ H3(G̃;T) (4.18)

In fact this sequence can be continued indefinitely [39], but we only need those next
three terms. The map γ here coincides with the assignment (4.8); by Claim 4 we can
replace Λ with G. The map p∗ there is inflation.

It is well-known that a projective representation of a finite group G can be lifted
to a true (i.e. linear) representation of a finite extension of G. The cohomological

fact underlying this is that there is an extension G̃ of G (by the Schur multiplier)

such that inflation H2(G;T) → H2(G̃;T) is the 0 map. We need the H3 analogue,
which is Lemma 7.1.2 in [47]. In fact this holds more generally:

Proposition 3. [67] Let G be finite, and q ≥ 2. Then there exists an extension G̃

by a finite abelian group (depending on q) such that inflation Hq(G;T) → Hq(G̃;T)
is the 0 map.

Now turn to the proof of Theorem 3. Choose any finite group G and any 3-cocycle
ω ∈ Z3(G;T), and define ω̃ ∈ Z3(G2;T) by (2.21). Choose an extension G̃ of G by

some group N so that inflation p∗ : H3(G;T)→ H3(G̃;T) is trivial. Then exactness
of (4.18) says γ must be surjective. This means we can choose a type 1 ψ ∈ Z ′ so
that ωψ ∈ H3(G;T) is cohomologous with ω.

Fix any holomorphic conformal net A in central charge 24 — e.g. the Monstrous
moonshine module. Use Cayley’s Theorem to fix some embedding of G̃ in some sym-
metric group Sk. Next, perform the permutation orbifold (A⊗k)G̃. By Theorem 2,

this has category of representations D1(G̃). Then for N and ψ chosen as in the previ-
ous paragraph, we know (∆G̃(1×N), ψ) is type 1. Let A′ denote the corresponding
extension. Then by Theorem 1, A′ will be a completely rational conformal net with
category of representations Rep(A′) braided tensor equivalent to Dω(G).

Of course, the extension G̃ in Proposition 3 is solvable iff G is, since N is abelian
here. Since Conjecture 1 is known to hold for any solvable G, we get unconditionally
that any Dω(G) with G solvable, is realised as the MTC Mod(V) of some completely
rational VOA V .
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After we completed this proof and shared it with Victor Ostrik, he later com-
municated an alternate proof of Theorem 3, which assumes our Theorem 2, which
we now sketch. First, upgrade the homomorphism K → G to a tensor functor
F : Vec(K) → Vecω(G). Let I be the right adjoint of F and let A = I(1). Then A
has a natural lift to the untwisted double of K, where it is an étale algebra. More-
over the category RepVec(K)(A) is tensor equivalent to Vecω(G). The category of local
A-modules is the centre of RepVec(K)(A), giving the desired result.

Before we turn to the proof of Theorem 4, let us make some general comments
on orbifolds of holomorphic VOAs. Suppose G is a finite solvable group, and V is a
holomorphic VOA on which G acts faithfully. Then VG is completely rational, and
Mod(VG) is a modular tensor category C. This is the situation studied in sections
4 and 5 of [52], and we begin by reviewing what is obtained there. Let A be the
commutative algebra in C capturing the extension VG ⊂ V . Then the isomorphism
classes of simple objects (the so-called twisted modules) in the full system ModC(A)
are in natural bijection with g ∈ G. Choose a representative Xg for each g. Then for
each g, h ∈ G there are isomorphisms µg,h ∈ Hom(Xg ⊗A Xh, Xgh) ∈ C (⊗A denotes
the tensor product in the fusion category ModC(A)), and these will be unique up to
nonzero constants. Computing morphisms in Hom(Xg ⊗A Xh ⊗A Xk, Xghk) ∼= C by
introducing brackets in two ways, we can define ω(g, h, k) ∈ C× by µg,hk◦(1⊗Aµh,k) =
ω(g, h, k)µgh,k◦(µg,h⊗A1). Then ω obeys the 3-cocycle condition, and defines a unique
class in H3(G;C×) ∼= H3(G;T) (cohomologous 3-cocycles can be obtained from ω by
rescaling the µg,h). We would expect C to be tensor equivalent to Dω(G), but this is
not yet proven; however, the main theorem of [52] says that if ω is coboundary, then
C ∼= D1(G).

Now suppose V ′ is another holomorphic VOA carrying a faithful action of G, and
let ω′ be its 3-cocycle. Consider the diagonal action of G on the holomorphic VOA
V ⊗ V ′. Then V ⊗ V ′ ⊃ (V ⊗ V ′)G ⊃ VG ⊗ V ′G. The (g, h)-twisted module will be
Xg × X ′h, so the g-twisted module for the diagonal action will be Xg × X ′g, and the
3-cocycle will be ωg,h,kω

′
g,h,k. This implies that if [ω] has order k say in H3(G;T),

then the orbifold for the diagonal action of G on V⊗· · ·⊗V (k times) will have trivial
3-cocycle, hence the category of modules of the corresponding orbifold will be tensor
equivalent to D1(G).

Now we turn to the proof of Theorem 4. Let G be any solvable group, and choose
any ω ∈ Z3(G;T). Let G̃ be as in the proof of Theorem 3 given earlier this subsection.
As it is an extension of G by an abelian group, it too is solvable.

Choose any even self-dual positive-definite lattice L. Then the VOA V(L) associ-

ated to L will be holomorphic. Consider the permutation orbifold of V(L) by G̃. The
aforementioned papers on permutation orbifolds all show that the twisted sectors Xg

(g 6= 1) have conformal weight > 0. Now, every simple module of (V(L)⊗n)G̃ lies in
some Xg, so we see that they all have conformal weights ≥ 0, and the only ones with
conformal weight = 0 are in X1. But X1 = V(L)⊗n , so the only simple module in X1

with conformal weight 0 can be (V(L)⊗n)G̃ itself. Thus condition (∗) of section 3.3 is

satisfied by (V(L)⊗n)G̃.
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Let N ∈ Z>0 be such that the diagonal action of G̃ on (V(L)⊗n)⊗k has trivial 3-
cocycle. Then (V(L)⊗n)⊗k is a holomorphic VOA, and ((V(L)⊗n)⊗k)∆G̃ has category

of modules tensor equivalent to D1(G̃). Moreover, ((V(L)⊗n)⊗k)∆G̃ satisfies condition

(∗), because (V(L)⊗n)G̃ does.
The remainder of the proof of Theorem 4 is exactly as that of Theorem 3, with

((V(L)⊗n)⊗k)∆G̃ replacing (A⊗k)G̃.
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[35] Fröhlich, J., Fuchs, J., Runkel, I., Schweigert, C.: Correspondences of ribbon categories. Adv. Math. 199 (2006),
192–329.

[36] Fuchs, J., Runkel, I., Schweigert, C.: Conformal correlation functions, Frobenius algebras and triangulations.
Nucl. Phys. B624 (2002), 452–468.

[37] Gemünden, T., Keller, C. A.: Orbifolds of lattice vertex operator algebras at d = 48 and d = 72.
arXiv:1802.10581.

[38] Goff, C., Mason, G., Ng, S.-H.: On the gauge equivalence of twisted quantum doubles of elementary abelian
and extra-special 2-groups. J. Algebra 312 (2007), 849–875.

[39] Habegger, N., Jones, V., Pino Ortiz, O., Ratcliffe, J.: Relative cohomology of groups. Comment. Math. Helvetici
59 (1984), 149–164.

[40] Hanaki, A., Miyamoto, M., Tambara, D.: Quantum Galois theory for finite groups. Duke Math. J. 97 (1999),
541–544.

[41] Huang, H.-L., Wan, Z., Ye, Y.: Explicit cocycle formulas on finite abelian groups with applications to braided
linear Gr-categories and Dijkgraaf-Witten invariants; arXiv:1703.03266.

[42] Huang, Y.-Z. Rigidity and modularity of vertex tensor categories. Commun. Contemp. Math. 10 (2008), 871–
911.

[43] Huang, Y.-Z., Kirillov, A. Jr, Lepowsky, J.: Braided tensor categories and extensions of vertex operator
algebras. Commun. Math. Phys. 337 (2015), 1143–1159.

[44] Hughes, N. J. S.: The use of bilinear mappings in the classification of groups of class 2. Proc. AMS 2 (1951),
742–747.

[45] Johnson-Freyd, T.: The moonshine anomaly. Commun. Math. Phys. (to appear); arXiv: 1707.08388v2.

[46] Jones, V. F. R.: An invariant for group actions. Algèbres d’opérateurs (Sém., Les Plans-sur-Bex, 1978), pp.
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