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Abstract
We prove that each exponential functor on the cate-
gory of finite-dimensional complex inner product spaces
and isomorphisms gives rise to an equivariant higher
(that is, non-classical) twist of𝐾-theory over𝐺 = 𝑆𝑈(𝑛).
This twist is represented by a Fell bundle  → , which
reduces to the basic gerbe for the top exterior power
functor. The groupoid  comes equippedwith a𝐺-action
and an augmentation map  → 𝐺, that is an equivari-
ant equivalence. The 𝐶∗-algebra 𝐶∗() associated to  is
stably isomorphic to the section algebra of a locally triv-
ial bundle with stabilised strongly self-absorbing fibres.
Using a version of theMayer–Vietoris spectral sequence,
we compute the equivariant higher twisted 𝐾-groups
𝐾𝐺
∗ (𝐶

∗()) for arbitrary exponential functor twists over
𝑆𝑈(2), and also over 𝑆𝑈(3) after rationalisation.

MSC 2020
19L47, 19L50 (primary), 46L80 (secondary)

1 INTRODUCTION

In three groundbreaking articles [13–15] Freed, Hopkins and Teleman (FHT) proved a close con-
nection between the Verlinde algebra of a compact Lie group 𝐺 and its twisted equivariant 𝐾-
theory, where 𝐺 acts on itself by conjugation. In case 𝐺 is simply connected, their theorem boils
down to the following statement: Let𝑅𝑘(𝐺) be the Verlinde ring of positive energy representations
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of the loop group 𝐿𝐺 at level 𝑘 ∈ ℤ. Then the following 𝑅(𝐺)-modules are naturally isomorphic

𝑅𝑘(𝐺) ≅
𝜏(𝑘)𝐾dim(𝐺)

𝐺
(𝐺). (1.1)

This identification turns into an isomorphism of rings if the left-hand side is equipped with the
fusion product and the right-hand side with the product induced by Poincaré duality and the
group multiplication. The representation theory of loop groups also dictates the fusion rules of
sectors in conformal field theories associated to these groups. In joint work with Gannon, the
first named author proved that it is in fact possible to recover the full system of modular invariant
partition functions of theseCFTs from the twisted𝐾-theory picture [9, 10]. This approach has been
particularly successful in the case of the loop groups of tori, where the modular invariants can be
expressed as 𝐾𝐾-elements. Even exotic fusion categories, like the ones constructed by Tambara-
Yamagami have elegant descriptions in terms of 𝐾-theory as shown in [11].
For a simple and simply connected Lie group𝐺 the classical equivariant twists of𝐾-theory over

𝐺 are classified up to isomorphism by the equivariant cohomology group𝐻3
𝐺
(𝐺; ℤ) ≅ ℤ. The twist

𝜏(𝑘) in the FHT theorem corresponds to (𝑘 + ℎ̌(𝐺)) times the generator, where ℎ̌(𝐺) is the dual
Coxeter number of𝐺. There are several ways to represent the generator of𝐻3

𝐺
(𝐺; ℤ) geometrically:

As a Dixmier–Douady bundle (a locally trivial bundle of compact operators) [21], as a bundle of
projective spaces [4], in terms of (graded) central extensions of groupoids [13] or as a (bundle)
gerbe usually called the basic gerbe [20, 22, 24].
From a homotopy theoretic viewpoint (and neglecting the group action for a moment) twisted

𝐾-theory is an example of a twisted cohomology theory. If 𝑅 denotes an 𝐴∞ ring spectrum, then
it comes with a space of units 𝐺𝐿1(𝑅) and has a classifying space of 𝑅-lines 𝐵𝐺𝐿1(𝑅), which turns
out to be an infinite loop space for𝐸∞ ring spectra [2, 3]. In this situation the twists of 𝑅-theory are
classified by [𝑋, 𝐵𝐺𝐿1(𝑅)]. If 𝐾𝑈 denotes a ring spectrum representing 𝐾-theory, then the group
[𝑋, 𝐵𝐺𝐿1(𝐾𝑈)] splits off

𝐻1(𝑋; ℤ∕2ℤ) × 𝐻3(𝑋; ℤ)

equipped with the multiplication

(𝜔1, 𝛿1) ⋅ (𝜔2, 𝛿2) = (𝜔1 + 𝜔2, 𝛿1 + 𝛿2 + 𝛽(𝜔1 ∪ 𝜔2)) ,

where 𝛽 denotes the Bockstein homomorphism. The twists classified by 𝐻1(𝑋; ℤ∕2ℤ) can easily
be included in the classical picture, for example, by using graded central extensions as in [13] or
graded projective bundles [4].
However, it was already pointed out by Atiyah and Segal in [4] that the group [𝑋, 𝐵𝐺𝐿1(𝐾𝑈)] is

in general more subtle than ordinary cohomology. In joint work with Dadarlat, the second author
found an operator-algebraic description of the twists of 𝐾-theory which covers the full group
[𝑋, 𝐵𝐺𝐿1(𝐾𝑈)] and is based on locally trivial bundles of stabilised strongly self-absorbing 𝐶∗-
algebras [7]. This picture is also easily adapted to include groups of the form [𝑋, 𝐵𝐺𝐿1(𝐾𝑈[

1
𝑑
])],

that is, the twists of the localisation of 𝐾-theory away from an integer 𝑑.
Descriptions of the basic gerbe over 𝑆𝑈(𝑛) were developed by Meinrenken in [20] and by

Mickelsson in [22]. Based on these results Murray and Stevenson found another construction in
terms of bundle gerbes [24]. Motivated by their work, the isomorphism (1.1) in the FHT theorem
and the operator algebraic model in the non-equivariant case [7] we introduce higher (that is,
non-classical) equivariant twists over 𝐺 = 𝑆𝑈(𝑛) in this paper. Our construction takes an expo-
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nential functor 𝐹∶  iso
ℂ

→  iso
ℂ

on the category of complex finite-dimensional inner product
spaces and isomorphisms as input and produces an equivariant Fell bundle  → . As in [24]
the groupoid  = 𝑌[2] is obtained as the fibre product of the surjective submersion 𝑌 → 𝐺 with
itself, where

𝑌 =
{
(g , 𝑧) ∈ 𝐺 × 𝑆1 ⧵ {1} | 𝑧 ∉ EV(g)

}
. (1.2)

The functor 𝐹 gives rise to a strongly self-absorbing 𝐶∗-algebra 𝖬∞
𝐹
(a UHF-algebra) defined as

the infinite tensor product𝖬∞
𝐹
= End(𝐹(ℂ𝑛))⊗∞. Note that 𝑆1 ⧵ {1} inherits a total order from an

orientation of the circle. The fibre of  over (g , 𝑧1, 𝑧2) ∈  with 𝑧1 ⩽ 𝑧2 is given by

(g ,𝑧1,𝑧2) = 𝐹

⎛⎜⎜⎜⎝
⨁

𝑧1<𝜆<𝑧2
𝜆∈EV(g)

Eig(g , 𝜆)
⎞⎟⎟⎟⎠⊗𝖬∞

𝐹 ,

where the empty sum is understood as the zero vector space. The exponential structure of 𝐹 gives
natural isomorphisms 𝐹(0) → ℂ and 𝐹(𝑉 ⊕𝑊) → 𝐹(𝑉) ⊗ 𝐹(𝑉). These give rise to the Fell bun-
dle multiplication

(g ,𝑧1,𝑧2) ⊗ (g ,𝑧2,𝑧3) → (g ,𝑧1,𝑧3)
over points with 𝑧1 ⩽ 𝑧2 ⩽ 𝑧3. In Theorem 3.3, we show that this structure extends to a Fell bundle
over all of , when we take (g ,𝑧1,𝑧2) = ((g ,𝑧2,𝑧1))op.
The space 𝑌 and the groupoid  come with canonical actions of 𝐺, such that the augmentation

map  → 𝐺 is an equivariant equivalence, if 𝐺 is equipped with the adjoint action. This action
extends to the Fell bundle  → . Our main examples of exponential functors are the top exterior
power functor

⋀top and the full exterior algebra
⋀∗. For 𝐹 = (

⋀top)⊗𝑚 with𝑚 ∈ ℕ our construc-
tion reproduces the basic gerbe from [24] (note that in this case𝖬∞

𝐹
= ℂ) giving rise to the classical

equivariant twist discussed above.
A family of equivariant higher twists we will then focus on arises from 𝐹 = (

⋀∗)⊗𝑚. Further
examples of exponential functors and a classification result in terms of involutive 𝑅-matrices are
discussed in [25].
The 𝐶∗-algebra 𝐶∗() associated to the Fell bundle  is a 𝐶(𝐺)-algebra that is stably 𝐶(𝐺)-

isomorphic to the section algebra of a locally trivial bundle  → 𝐺 with fibre 𝖬∞
𝐹
⊗ 𝕂. Neglect-

ing the 𝐺-action, this bundle is classified by a continuous map 𝐺 → 𝐵𝐺𝐿1(𝐾𝑈[
1
𝑑
]), where 𝑑 =

dim(𝐹(ℂ)). At this point our workmakes contact with [7]. The functor𝐹 gives rise to group homo-
morphisms 𝑈(𝑘) → 𝑈(𝐹(ℂ)⊗𝑘), which induce a map 𝐵𝐵𝑈⊕ → 𝐵𝐵𝑈⊗[

1
𝑑
] as shown in [25]. We

conjecture that the classifying map 𝐺 → 𝐵𝐺𝐿1(𝐾𝑈[
1
𝑑
]) agrees up to homotopy with

𝜏𝑛𝐹 ∶ 𝑆𝑈(𝑛) → 𝑆𝑈 ≃ 𝐵𝐵𝑈⊕ → 𝐵𝐵𝑈⊗[
1
𝑑
] → 𝐵𝐺𝐿1

(
𝐾𝑈[ 1

𝑑
]
)

considered in [25], but defer the proof to future work.We expect an analogous statement to be true
in an equivariant setting, but since the units of genuine 𝐺-equivariant ring spectra are a matter
of current research in equivariant stable homotopy theory (see, for example, [27, Example 5.1.17])
we will come back to this question in future work as well.
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The 𝐺-equivariant 𝐾-theory of 𝐶∗() is a module over the localisation 𝐾𝐺
0
(𝖬∞

𝐹
) ≅ 𝑅𝐹(𝐺) =

𝑅(𝐺)[𝐹(𝜌)−1] of the representation ring 𝑅(𝐺) at 𝐹(𝜌), where 𝜌 denotes the standard represen-
tation of 𝑆𝑈(𝑛) on ℂ𝑛. In general, these 𝑅𝐹(𝐺)-modules are computable via a spectral sequence
similar to the one used in [21]. Our computations for 𝑆𝑈(2) are summarised in Theorem 5.3. In
this case the spectral sequence reduces to the Mayer–Vietoris sequence.
We also compute the rationalised higher equivariant twisted 𝐾-theory of 𝑆𝑈(3) for general

exponential functor twists, see Theorem 5.16. Here we adapt the approach developed in [1] to our
situation. In particular, we identify the rationalised chain complex on the 𝐸1-page of the spectral
sequence as the one computing Bredon cohomology of themaximal torus𝕋2 of 𝑆𝑈(3)with respect
to a certain local coefficient system.
If 𝐹 is given by a tensor power of the top exterior algebra functor, we recover the groups on the

left-hand side of (1.1) in both cases.
Even though to our knowledge equivariant exponential functor twists of the form studied here

have not been considered in the literature before, similar exponential morphisms played a crucial
role in [34]. Instead of a localisation of 𝐾𝑈, the ring spectrum considered by Teleman is 𝐾𝑈[[𝑡]],
the power series completion of 𝐾-theory and he shows that

𝜏𝐾dim(𝐺)
𝐺

(𝐺) ⊗ ℂ[[𝑡]]

is a Frobenius algebra and therefore extends to a 2D topological field theory for admissible higher
twists 𝜏.
Our low-dimensional computations for 𝑛 = 2 and for 𝑛 = 3 (after rationalisation) suggest that

the higher twisted𝐾-groups𝐾𝐺
dim(𝐺)

(𝐶∗()) share a lot of the remarkable properties of the classical
ones.

∙ The spectral sequence collapses on the 𝐸2-page for all exponential functor twists.
∙ The 𝑅𝐹(𝐺)-module 𝐾𝐺

dim(𝐺)
(𝐶∗()) is a quotient of 𝑅𝐹(𝐺) by an ideal. In particular, it carries a

ring structure.
∙ The local coefficient system in the 𝑆𝑈(3)-case over the Lie algebra 𝔱 of 𝕋2 is determined by a
homomorphism

𝜋1(𝕋
2) → 𝐺𝐿1(𝑅𝐹(𝕋

2))

similar to the one constructed in [1, Proposition 3.4], which is reminiscent of the appearance of
the flat line bundles in [12, (3.4)].

The case of odd tensor powers of the full exterior algebra twist over 𝑆𝑈(2) is of particular interest,
since the ring 𝐾𝐺

dim(𝐺)
(𝐶∗()) is isomorphic to a fusion ring that has the same fusion rules as the

even part of the classical twist on 𝑆𝑈(2) at odd levels (see Remark 5.8). The question whether the
ring structure we discovered stems from an intrinsic structure of the Fell bundle (similar to the
multiplicative gerbe we get in the classical case) is one of the main future directions of this work.
Even if this turns out to be false, we still expect these𝐾-groups to come frommodules over fusion
categories, and we see our results as an indication for this.
The paper is structured as follows: Section 2 contains preliminary material about Morita-

Rieffel equivalences between 𝐶∗-algebras. Exponential functors (Definition 2.2) are revisited as
well. In Section 3, we construct equivariant Fell bundles that represent equivariant higher twists.
The corresponding equivariant 𝐶∗-algebras of sections are analysed in Section 4, with explicit
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computations of the equivariant 𝐾-theory for 𝑆𝑈(2) and 𝑆𝑈(3) (the latter after rationalisation) in
the final section. More details can be found in the roadmap in the next section.

Roadmap to the main results

In Section 3, we first consider for 𝐺 = 𝑆𝑈(𝑛) the groupoid  = 𝑌[2] with 𝑌 as in (1.2). It comes
equipped with a 𝐺-action and a 𝐺-equivariant map  → 𝐺 and is motivated by [24], where  is
used to construct the basic gerbe for unitary groups. It is more convenient for the analytical parts
of this paper than the construction in [13], which uses infinite-dimensional spaces, like the path
space of the group. Composable elements in  live in the same fibre over 𝐺.
The main goal of Section 3 is the construction of the equivariant Fell bundle  →  from an

exponential functor 𝐹, which is achieved in several steps: The fibre of the map  → 𝐺 over g ∈ 𝐺

is a subgroupoid that embeds into (𝑆1 ⧵ {1})2 ≅ ℝ × ℝ. This gives rise to an orientation of the
groupoid elements, that is, given (g , 𝑧1, 𝑧2) ∈  we could have 𝑧1 < 𝑧2 or 𝑧1 ⩾ 𝑧2. Using this ori-
entation, the groupoid  decomposes into three disjoint components −, 0 and + that are closed
with respect to composition, but not preserved by taking inverses.
Any Fell bundle  →  comes with an associative multiplication g1

× g2
→ g1g1

covering
the groupoid composition. Our Fell bundle  →  will first be constructed over the subcategory
0 ∪ +, where the multiplication is easy to define using the structural data from the exponential
functor. This produces a saturated half-bundle 0,+ in the sense of Definition 3.1. There is a canon-
ical choice that extends the bundle over −. The issue is that we have to extend the multiplication
as well and ensure its associativity. In Subsection 3.1, we state the technical result, proven in the
Appendix, that any saturated half-bundle extends uniquely up to isomorphism to a saturated Fell
bundle (Theorem 3.3). Moreover, if the half-bundle carries a 𝐺-action in an appropriate sense,
then this action extends uniquely to one on the Fell bundle (Corollary 3.6).
We then focus on the construction of the half-bundle 0,+ associated to an exponential functor

𝐹 in Subsection 3.2 (see Lemma 3.9) and discuss the group action on it in Subsection 3.3 (see
Corollary 3.12). Combining the results from all three sections we obtain a saturated𝐺-equivariant
Fell bundle  →  describing the exponential functor twist over 𝑆𝑈(𝑛) associated to 𝐹.
In Section 4, we look at the 𝐶∗-algebra 𝐶∗() associated to  and prove that it is a contin-

uous 𝐶(𝐺)-algebra (see Lemma 4.2). Its fibre 𝐶∗(g ) over g ∈ 𝐺 is Morita equivalent to 𝖬∞
𝐹

(Lemma 4.6). Since 𝐶∗() satisfies the generalised Fell condition from [7], it is stably isomorphic
to a locally trivial bundle classified by a continuousmap to 𝐵𝐺𝐿1(𝐾𝑈[𝑑−1])where 𝑑 = dim(𝐹(ℂ))

by Corollary 4.7. Forgetting the group action, the Fell bundle  →  provided by our construction
therefore gives rise to a twist of 𝐾𝑈[𝑑−1] in the sense of stable homotopy theory. Using results
from strongly self-absorbing 𝐶∗-dynamical systems we then prove in Proposition 4.11 in Subsec-
tion 4.2 that its terms are in fact modules over 𝑅𝐹(𝐺) ≅ 𝑅(𝐺)[𝐹(𝜌)−1] and so is 𝐾𝐺

∗ (𝐶
∗()).

The final section contains the computations of the equivariant higher twisted 𝐾-groups in
the cases 𝑆𝑈(2) (Subsection 5.1) and 𝑆𝑈(3) (Subsection 5.2). For 𝑆𝑈(2) the result boils down
to a Mayer–Vietoris argument and is summarised in Theorem 5.3. In the general case, that is,
for 𝑆𝑈(𝑛), the Mayer–Vietoris sequence has to be replaced by a spectral sequence that is con-
structed in Proposition 4.9. The simplex Δ𝑛−1 parametrises the eigenvalues of group elements in
𝑆𝑈(𝑛). Pulling back an appropriate cover of Δ𝑛−1 along the map 𝑞∶ 𝑆𝑈(𝑛) → Δ𝑛−1 results in
an equivariant cover of 𝑆𝑈(𝑛) and the sequence in Proposition 4.9 is the Mayer–Vietoris spectral
sequence associated to that cover. It is concentrated in even degrees, where it is given by the chain
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complex (5.3) in the case of 𝑆𝑈(3). We determine the differentials on the 𝐸1-page in Lemma 5.9
and compare the resulting chain complex with the one computing the Bredon cohomology of the
Lie algebra of the maximal torus in Lemma 5.10 in Subsection 5.2.1. The identification (5.7) that
allows us to compute these groups as fixed points under a Weyl group action is only true after
rationalisation. As shown in Theorem 5.12 the 𝐸2-page of the spectral sequence obtained from
(5.3) has only one non-vanishing term in the even rows, which is determined in Lemma 5.13 and
allows us to compute the rational equivariant higher twisted 𝐾-groups in Theorem 5.16.

2 PRELIMINARIES

2.1 Bimodules andMorita–Rieffel equivalences

In this section, we collect some well-known facts about Hilbert bimodules and Morita–Rieffel
equivalences. This is mainly to fix notation. A detailed introduction to Hilbert 𝐶∗-modules can be
found in [18]. Let 𝐴, 𝐵 be separable unital 𝐶∗-algebras.

Definition 2.1. An 𝐴-𝐵-bimodule is a right Hilbert 𝐵-module 𝑉 together with a
∗-homomorphism

𝜓𝐴 ∶ 𝐴 → ◦𝐵(𝑉) ,

where ◦𝐵(𝑉) denotes the compact adjointable right 𝐵-linear operators on 𝑉. An 𝐴-𝐵-bimodule
is called a (Morita–Rieffel) equivalence bimodule if 𝑉 is full and 𝜓𝐴 is an isomorphism.

Given a right Hilbert 𝐵-module 𝑉 with inner product ⟨⋅, ⋅⟩𝐵 we can associate a left Hilbert 𝐵-
module 𝑉op to it in a natural way. The vector space underlying 𝑉op is 𝑉, that is, 𝑉 equipped with
the conjugate linear structure. For a given element 𝑣 ∈ 𝑉 we denote the corresponding element
in 𝑉op by 𝑣∗. The left multiplication by 𝑏 ∈ 𝐵 is defined by

𝑏 𝑣∗ = (𝑣 𝑏∗)∗

and the left 𝐵-linear inner product is 𝐵⟨𝑣∗1 , 𝑣∗2⟩ = (⟨𝑣2, 𝑣1⟩𝐵)∗.
The spacehom𝐵(𝑉, 𝐵) of right𝐵-linear adjointablemorphisms is a left Hilbert𝐵-module via the

left multiplication (𝑏 ⋅ 𝜑)(𝑣) = 𝑏𝜑(𝑣) and the inner product 𝐵⟨𝜑1, 𝜑2⟩ = 𝜑1◦𝜑
∗
2
∈ hom𝐵(𝐵, 𝐵) ≅

𝐵. The map

𝑉op → hom𝐵(𝑉, 𝐵), 𝑣∗ ↦ ⟨𝑣, ⋅ ⟩𝐵
provides a canonical isomorphism of left Hilbert 𝐵-modules and we will sometimes identify the
two. Note that there is a conjugate linear bijection

𝑉 → 𝑉op, 𝑣 ↦ 𝑣∗ (2.1)

which satisfies (𝑣 𝑏)∗ = 𝑏∗ 𝑣∗.
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The definition of 𝐴-𝐵 equivalence bimodules may seem asymmetric in 𝐴 and 𝐵. It is actually
not: Let 𝑉 be an 𝐴-𝐵 equivalence bimodule. It carries a left multiplication by 𝑎 ∈ 𝐴 defined by
𝑎 𝑣 = 𝜓𝐴(𝑎)𝑣 and a left 𝐴-linear inner product given by

𝐴⟨𝑣1, 𝑣2⟩ = 𝜓−1𝐴 (𝑣1⟨𝑣2, ⋅ ⟩𝐵).
With respect to this multiplication and inner product𝑉 is a full left Hilbert𝐴-module. The rank 1
operator 𝐴⟨ ⋅ , 𝑣1⟩ 𝑣2 agrees with the right multiplication by ⟨𝑣1, 𝑣2⟩𝐵. Since 𝑉 is full, the compact
left𝐴-linear operators therefore agree with 𝐵, but themultiplication is reversed, that is, we obtain
an isomorphism

𝜓𝐵 ∶ 𝐵op → 𝐴◦(𝑉)

that sends 𝑏 to right multiplication by 𝑏. Thus, we could alternatively define an 𝐴-𝐵 equivalence
bimodule as a full left Hilbert 𝐴-module together with an isomorphism 𝜓𝐵 as above.
If 𝑉 is an 𝐴-𝐵 equivalence bimodule, then 𝑉op is a full left Hilbert 𝐵-module. Let

𝜓
op
𝐴
∶ 𝐴op → 𝐵◦(𝑉

op)

be the ∗-homomorphism given by 𝜓op
𝐴
(𝑎)(𝑣∗) = (𝜓𝐴(𝑎

∗)𝑣)∗. Conjugation by 𝑣 ↦ 𝑣∗ induces a
conjugate linear isomorphism ◦𝐵(𝑉) ≅ 𝐵◦(𝑉

op). From this we deduce that 𝜓op
𝐴
is a (linear)

∗-isomorphism. Thus, 𝑉op is a 𝐵-𝐴 equivalence bimodule.
Note that the left𝐴-linear and right 𝐵-linear inner product on an𝐴-𝐵-equivalence bimodule 𝑉

satisfy the compatibility condition

𝑣1⟨𝑣2, 𝑣3⟩𝐵 = 𝐴⟨𝑣1, 𝑣2⟩𝑣3 (2.2)

for all 𝑣1, 𝑣2, 𝑣3 ∈ 𝑉.
Let 𝐴, 𝐵 and 𝐶 be separable unital 𝐶∗-algebras and let 𝑉 be an 𝐴-𝐵 equivalence bimodule and

𝑊 be a 𝐵-𝐶 equivalence bimodule. The tensor product over 𝐵 gives an𝐴-𝐶 equivalence bimodule
that we will denote by

𝑉 ⊗𝐵 𝑊.

For details about this construction we refer the reader to [18, Chapter 4] or [26]. The left 𝐴-linear
inner product provides an 𝐴-𝐴 bimodule isomorphism

𝐴⟨⋅, ⋅⟩∶ 𝑉 ⊗𝐵 𝑉
op → 𝐴.

Similarly, ⟨⋅, ⋅⟩𝐵 ∶ 𝑉op ⊗𝐴 𝑉 → 𝐵 is a bimodule isomorphism as well. Concerning the opposite
bimodule of a tensor product, there is a canonical isomorphism

(𝑉 ⊗𝐵 𝑊)op ≅ 𝑊op ⊗𝐵 𝑉
op (2.3)

given on elementary tensors by (𝑣 ⊗ 𝑤)∗ ↦ 𝑤∗ ⊗ 𝑣∗.
Let 𝐺 be a compact group and let 𝛼∶ 𝐺 → Aut(𝐵) be a continuous action of 𝐺 on 𝐵, where

Aut(𝐵) is equipped with the pointwise-norm topology. We will call 𝐵 a 𝐺-algebra for short.
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A 𝐺-equivariant right Hilbert 𝐵-module [17, Definitions 1 and 2] is defined to be a right Hilbert
𝐵-module 𝑉 together with an action of 𝐺 (denoted by g ⋅ 𝑣 for g ∈ 𝐺, 𝑣 ∈ 𝑉) that satisfies

(a) g ⋅ (𝑣𝑏) = (g ⋅ 𝑣)𝛼g (𝑏),
(b) ⟨g ⋅ 𝑣, g ⋅ 𝑤⟩𝐵 = 𝛼g (⟨𝑣, 𝑤⟩𝐵),
(c) (g , 𝑣) ↦ g ⋅ 𝑣 is continuous.

If𝑉 is a𝐺-equivariant right Hilbert 𝐵-module, then𝑉op equipped with the action g ⋅ 𝑣∗ = (g ⋅ 𝑣)∗

is a𝐺-equivariant left Hilbert𝐵-module. The group𝐺 acts continuously on the𝐶∗-algebra◦𝐵(𝑉)

by conjugation. If 𝐴 denotes another 𝐺-algebra, then a 𝐺-equivariant 𝐴-𝐵-bimodule is an 𝐴-𝐵-
bimodule 𝑉 where the structure map 𝜓∶ 𝐴 → ◦𝐵(𝑉) is 𝐺-equivariant.

2.2 Exponential functors

Let  f in
ℂ

be the category of finite-dimensional complex inner product spaces and linear maps and
denote by iso

ℂ
⊂  f in

ℂ
the subgroupoidwith the same objects but unitary isomorphisms as itsmor-

phisms. The higher twists we are going to construct will depend on the choice of an exponential
functor on  iso

ℂ
. In the context of higher twists these were first considered in [25], which also

contains a classification of those exponential functors that arise from restrictions of polynomial
exponential functors on f in

ℂ
in terms of involutive solutions to the Yang–Baxter equation (involu-

tive 𝑅-matrices). The following definition is taken from [25, Definition 2.1] andwe refer the reader
to that paper for a detailed description of the three conditions (a), (b) and (c) stated below.

Definition 2.2. An exponential functor on f in
ℂ

(respectively, iso
ℂ
) is a triple consisting of a functor

𝐹∶  f in
ℂ

→  f in
ℂ

(respectively, 𝐹∶  iso
ℂ

→  iso
ℂ
) together with natural unitary isomorphisms

𝜏𝑉,𝑊 ∶ 𝐹(𝑉 ⊕𝑊) → 𝐹(𝑉) ⊗ 𝐹(𝑊)

and 𝜄 ∶ 𝐹(0) → ℂ that satisfy the following conditions

(a) 𝐹 preserves adjoints,
(b) 𝜏 is associative,
(c) 𝜏 is unital with respect to 𝜄.

For an exponential functor 𝐹 (on  f in
ℂ

or  iso
ℂ
) let 𝑑(𝐹) = dim(𝐹(ℂ)). We define the dimension

spectrum of 𝐹 to be

Dim(𝐹) ∶= {dim(𝐹(𝑉)) | 𝑉 ∈ obj( iso
ℂ )} = {𝑑(𝐹)𝑛 | 𝑛 ∈ ℕ0}.

The exterior algebra functor𝐹(𝑉) =
⋀∗ 𝑉 provides a natural example of an exponential functor.

The symmetric algebra Sym∗(𝑉) of a vector space 𝑉 comes with natural transformations 𝜏 and 𝜄
as above. It is, however, ruled out by the fact that Sym∗(𝑉) is infinite-dimensional. The exterior
algebra functor can be modified as follows: Let 𝑊 be a finite-dimensional inner product space
and consider

𝐹𝑊(𝑉) =
∞⨁
𝑘=0

𝑊⊗𝑘 ⊗
⋀𝑘

𝑉.
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As outlined in [25, Subsection 2.2], this provides a polynomial exponential functor 𝐹𝑊 ∶  f in
ℂ

→

 f in
ℂ
.

3 HIGHER TWISTS VIA FELL BUNDLES

In this section, we will consider a groupoid  that carries an action of 𝐺 = 𝑆𝑈(𝑛) and comes with
a surjection  → 𝐺 that is equivariant with respect to the conjugation action of 𝐺 on itself. In fact,
will beMorita equivalent to𝐺. We will then construct a Fell bundle 𝜋∶  →  such that its total
space  comes with an action of 𝐺 and 𝜋 is equivariant. The groupoid  decomposes into three
disjoint parts − ∪ 0 ∪ + in such a way that 0,+ = 0 ∪ + generates the whole groupoid. We
will construct the analogue of a saturated Fell bundle over 0,+ first, before extending it to all of. To achieve this, we will need the extension theorem proven in the next section.

3.1 An extension theorem for saturated Fell bundles

In this section, we consider the following situation: Let  be a topological groupoid with object
space (0). Suppose that we have a decomposition of the space of arrows

 = − ∪ 0 ∪ + (3.1)

into disjoint open (and thus also closed) subspaces. Let (2) be the space of composable arrows.
For , ⊂  define

 ⋅  =
{
𝗀1 ⋅ 𝗀2 ∈  | (𝗀1, 𝗀2) ∈ (2) and 𝗀1 ∈  , 𝗀2 ∈ }

and −1 = {𝗀−1 ∈  | 𝗀 ∈  }. We will assume that the decomposition (3.1) satisfies the following
conditions (+)−1 = −, (3.2)

(0)−1 = 0, (3.3)

+ ⋅ + ⊆ +, (3.4)

0 ⋅ + = +, (3.5)

+ ⋅ 0 = +, (3.6)

0 ⋅ 0 = 0. (3.7)

Since the identities on the objects of  are fixed points of the inversion and the decomposition
is disjoint, we obtain from (3.2) and (3.3) that they must be contained in 0. Therefore, (3.6) is
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actually equivalent to + ⋅ 0 ⊆ + and likewise for (3.5). Taking inverses, we also obtain
− ⋅ − ⊆ −
0 ⋅ − = −
− ⋅ 0 = −

Let 0,+ = 0 ∪ +.
Definition 3.1. Let 𝐴 be a separable unital 𝐶∗-algebra. A saturated (Fell) half-bundle is given by
the following data: A Banach bundle 0,+ → 0,+ with the property that

0,+||0 = 0 × 𝐴

and a continuous multiplication map 𝜇∶  (2)
0,+

→ 0,+ where
 (2)
0,+

=
{
(𝑒1, 𝑒2) ∈ 2

0,+ | (𝜋(𝑒1), 𝜋(𝑒2)) ∈ (2)} ⊂
(0,+)2

is equipped with the subspace topology. These data have to satisfy the following conditions.

(a) The multiplication 𝜇 is bilinear and associative. It extends the canonical one on 0,+|0 =0 × 𝐴 and fits into a commutative diagram

inwhich the lower horizontalmap is the groupoidmultiplication.Wewill use the abbreviated
notation 𝑒1 ⋅ 𝑒2 ∶= 𝜇(𝑒1, 𝑒2).

(b) There is a continuous inner product ⟨ ⋅ , ⋅ ⟩𝐴 ∶ 0,+ ×0,+ 0,+ → 𝐴 × (0) that is right𝐴-linear
with respect to themultiplication (𝑒, 𝑎) ↦ 𝑒 ⋅ 𝑎 induced by 𝜇with𝜋(𝑒) = 𝗀 ∈ 0,+ and𝜋(𝑎) =
id𝑠(𝗀) ∈ 0. It fits into the commutative diagram

and restricts to ⟨(𝑎1, 𝗀), (𝑎2, 𝗀)⟩𝐴 = (𝑎∗
1
𝑎2, 𝑠(𝗀)) for (𝑎𝑖, 𝗀) ∈ 0,+|0 . It is compatible with the

norm in the sense that

‖⟨𝑒, 𝑒⟩𝐴‖ = ‖𝑒‖2 (3.8)

and turns each fibre (0,+)𝗀 into a right Hilbert 𝐴-module. The left multiplication (𝑎, 𝑒) ↦

𝑎 ⋅ 𝑒 with 𝜋(𝑒) = 𝗀 and 𝜋(𝑎) = id𝑟(𝗀) is compact adjointable with respect to this inner product
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with adjoint given by 𝑎∗. Moreover, this left multiplication induces a ∗-isomorphism

𝜓𝐴,𝗀 ∶ 𝐴 → ◦𝐴

((0,+)𝗀)
between𝐴 and the compact𝐴-linear operators on each fibre. In otherwords, each fibre (0,+)𝗀
is an 𝐴-𝐴 equivalence bimodule.

(c) The Hilbert 𝐴-bimodule structure on the fibres is compatible with the multiplication in the
sense that 𝜇 induces an 𝐴-𝐴 bimodule isomorphism

for each composable pair (𝗀1, 𝗀2) ∈ (2)
0,+
.

Remark 3.2. Note that Definition 3.1(c) and (3.8) imply that the norm on 0,+ is submultiplicative
in the sense that ‖𝑒1 ⋅ 𝑒2‖ ⩽ ‖𝑒1‖ ⋅ ‖𝑒2‖.
The main reason for considering half-bundles is the following extension theorem that will be

proven in the Appendix.

Theorem 3.3. Let (0,+, 𝜇, ⟨ ⋅ , ⋅ ⟩𝐴) be a saturated half-bundle. There is a saturated Fell bundle
𝜋∶  →  with the property that |0,+ = 0,+, the multiplication of  restricts to the one of 0,+
and for 𝑒1, 𝑒2 ∈ g we have 𝑒∗1 ⋅ 𝑒2 = ⟨𝑒1, 𝑒2⟩𝐴. Moreover, 𝜋∶  →  is unique up to (a canonical)
isomorphism of Fell bundles.

Since we want to construct an equivariant Fell bundle from an equivariant half-bundle, we
need to understand group actions on both structures. Restricting to the following kind of actions
is natural in this context.

Definition 3.4. Let 𝐺 be a compact group and let  be a groupoid with a decomposition as in
(3.1) that has the properties (3.2)–(3.7). We call an action of 𝐺 on  by groupoid automorphisms
admissible if it preserves the decomposition from (3.1), that is, each group element yields a home-
omorphism − → − and similarly for 0 and +, respectively.
Definition 3.5. Let 𝐺 be a compact group that acts admissibly on  and let 𝐴 be a separable
unital 𝐺-algebra. A 𝐺-equivariant saturated half-bundle is a saturated half-bundle 0,+ carrying
a continuous 𝐺-action such that the projection map 0,+ → 0,+ is equivariant and the following
properties hold.

(a) On 0 = 0,+|0 = 0 × 𝐴 the action restricts to the diagonal action of 𝐺 on 0 and 𝐴.
(b) Themultiplicationmap 𝜇∶  (2)

0,+
→ 0,+ is𝐺-equivariant (where the domain is equipped with

the diagonal 𝐺-action) and the inner product satisfies

⟨g ⋅ 𝑒1, g ⋅ 𝑒2⟩𝐴 = 𝛼g (⟨𝑒1, 𝑒2⟩𝐴)
for all g ∈ 𝐺.



EQUIVARIANT HIGHER TWISTED 𝐾-THEORY OF 𝑆𝑈(𝑛) 907

Corollary 3.6. Suppose that  carries an admissible action by a compact group 𝐺. Let
(0,+, 𝜇, ⟨ ⋅ , ⋅ ⟩𝐴) be a 𝐺-equivariant saturated half-bundle. Let  be the extension of 0,+ to a satu-
rated Fell bundle as in Theorem 3.3.
Then the 𝐺-action on 0,+ extends to a continuous 𝐺-action on  in such a way that the multi-

plication map and the projection 𝜋∶  →  are equivariant and g ⋅ 𝑒∗ = (g ⋅ 𝑒)∗ for all 𝑒 ∈  and
g ∈ 𝐺. This extension is unique.

Proof. The condition g ⋅ 𝑒∗ = (g ⋅ 𝑒)∗ uniquely fixes the group action on − and has all properties
stated in the corollary. □

3.2 Construction of the Fell bundle over 𝑺𝑼(𝒏)

The groupoid  alluded to in the introduction to this section is now constructed as follows: Let
𝐺 = 𝑆𝑈(𝑛), 𝕋 ⊂ ℂ the unit circle and let 𝑍 = 𝕋 ⧵ {1} ≅ (0, 1). For g ∈ 𝐺 denote the set eigenvalues
of g (in its standard representation on ℂ𝑛) by EV(g). Let 𝑌 be the space

𝑌 = {(g , 𝑧) ∈ 𝐺 × 𝑍 | 𝑧 ∉ EV(g)}.

There is a canonical quotient map 𝜋∶ 𝑌 → 𝐺. The groupoid  is now given by the fibre product
𝑌[2] of 𝑌 with itself over 𝐺, that is,

 = 𝑌[2] = {(𝑦1, 𝑦2) ∈ 𝑌 × 𝑌 | 𝜋(𝑦1) = 𝜋(𝑦2)}

equipped with the subspace topology†. Note that we can identify this space with

𝑌[2] = {(g , 𝑧1, 𝑧2) ∈ 𝐺 × 𝑍 × 𝑍 | 𝑧𝑖 ∉ EV(g) for 𝑖 ∈ {1, 2}}.

Since 𝑍 is homeomorphic to an open interval via 𝑒∶ (0, 1) → 𝑍 with 𝑒(𝜑) = exp(2𝜋𝑖 𝜑) we can
equip it with a total ordering by defining 𝑧2 = 𝑒(𝜑2) ⩾ 𝑧1 = 𝑒(𝜑1) if and only if 𝜑2 ⩾ 𝜑1. Now we
can decompose 𝑌[2] into disjoint subspaces 𝑌[2] = 𝑌[2]

+ ∪ 𝑌[2]
0

∪ 𝑌[2]
− with

𝑌[2]
+ = {(g , 𝑧1, 𝑧2) ∈ 𝑌[2] | 𝑧2 > 𝑧1 and ∃𝜆 ∈ EV(g), 𝑧2 > 𝜆 > 𝑧1} ,

𝑌[2]
0

= {(g , 𝑧1, 𝑧2) ∈ 𝑌[2] | ∄𝜆 ∈ EV(g),max(𝑧1, 𝑧2) > 𝜆 > min(𝑧1, 𝑧2)} ,

𝑌[2]
− = {(g , 𝑧1, 𝑧2) ∈ 𝑌[2] | 𝑧2 < 𝑧1 and ∃𝜆 ∈ EV(g), 𝑧2 < 𝜆 < 𝑧1}.

Fix a (continuous) exponential functor (𝐹, 𝜏, 𝜄) on  iso
ℂ

as in Definition 2.2. Consider the stan-
dard representation of 𝐺 on ℂ𝑛 and let 𝖬𝐹 = End(𝐹(ℂ𝑛)). Let 𝖬∞

𝐹
be the UHF-algebra given by

the infinite tensor product

𝖬∞
𝐹 =

∞⨂
𝑖=1

𝖬𝐹.

†We will view an element (g , 𝑧1, 𝑧2) ∈ 𝑌[2] as a morphism from (g , 𝑧2) to (g , 𝑧1). Thus, the composition is (g , 𝑧1, 𝑧2) ⋅
(g , 𝑧2, 𝑧3) = (g , 𝑧1, 𝑧3).
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We will construct a saturated half-bundle 0,+ over 0,+ = 𝑌[2]
+ ∪ 𝑌[2]

0
such that over 0 = 𝑌[2]

0
it

coincides with the trivial 𝐶∗-algebra bundle

0 = 0 × 𝖬∞
𝐹 .

To understand the fibre of 0,+ over + fix g ∈ 𝐺 and let (g , 𝑧1, 𝑧2) ∈ +. Consider the following
subspaces of ℂ𝑛:

𝐸(g , 𝑧1, 𝑧2) =
⨁

𝑧1<𝜆<𝑧2
𝜆∈EV(g)

Eig(g , 𝜆)

𝐸≺(g , 𝑧1) =
⨁
𝜆<𝑧1

𝜆∈EV(g)

Eig(g , 𝜆), 𝐸≻(g , 𝑧2) =
⨁
𝑧2<𝜆

𝜆∈EV(g)

Eig(g , 𝜆).

and note that the natural transformation 𝜏 from the exponential functor turns the direct sum
decomposition of ℂ𝑛 shown in the next line into a tensor product decomposition shown in the
line below:

ℂ𝑛 = Eig(g , 1) ⊕ 𝐸≺(g , 𝑧1) ⊕ 𝐸(g , 𝑧1, 𝑧2) ⊕ 𝐸≻(g , 𝑧2) (3.9)

𝐹(ℂ𝑛) ≅ 𝐹(Eig(g , 1)) ⊗ 𝐹(𝐸≺(g , 𝑧1)) ⊗ 𝐹(𝐸(g , 𝑧1, 𝑧2)) ⊗ 𝐹(𝐸≻(g , 𝑧2)).

Denote the corresponding endomorphism algebras of the tensor factors by

𝖬𝐹(g , 𝑧1, 𝑧2) = End(𝐹(𝐸(g , 𝑧1, 𝑧2))), 𝖬𝐹(g , 1) = End(𝐹(Eig(g , 1)))

𝖬≺
𝐹(g , 𝑧1) = End(𝐹(𝐸≺(g , 𝑧1))), 𝖬≻

𝐹(g , 𝑧2) = End(𝐹(𝐸≻(g , 𝑧2))).

Just as in [24, Section 3], it follows that the bundle 𝐸 → + with fibre 𝐸(g , 𝑧1, 𝑧2) over (g , 𝑧1, 𝑧2) ∈+ is a locally trivial vector bundle. Therefore, 𝐹(𝐸) is as well. Observe that the endomorphism
bundle of 𝐹(𝐸) has fibre𝖬𝐹(g , 𝑧1, 𝑧2) over (g , 𝑧1, 𝑧2) ∈ +. The fibre of our half-bundle + will be
given by the following locally trivial bundle of right Hilbert𝖬∞

𝐹
-modules:

(g ,𝑧1,𝑧2) = 𝐹(𝐸(g , 𝑧1, 𝑧2)) ⊗ 𝖬∞
𝐹

where the right multiplication is given by right multiplication on 𝖬∞
𝐹
. The transformation 𝜏

induces a ∗-isomorphism for (g , 𝑧1, 𝑧2), (g , 𝑧2, 𝑧3) ∈ + of the form
𝖬𝐹(g , 𝑧1, 𝑧2) ⊗ 𝖬𝐹(g , 𝑧2, 𝑧3) → 𝖬𝐹(g , 𝑧1, 𝑧3). (3.10)

To define the multiplication on the fibres of + we need the next lemma.
Lemma 3.7. There is an isomorphism 𝜑g ,𝑧1,𝑧2

∶ 𝖬𝐹(g , 𝑧1, 𝑧2) ⊗ 𝖬∞
𝐹
→ 𝖬∞

𝐹
(constructed in the

proof) which is associative in the sense that for (g , 𝑧1, 𝑧2), (g , 𝑧2, 𝑧3) ∈ + the following diagram
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commutes:

where the vertical arrow on the left is the isomorphism from (3.10).

Proof. To construct 𝜑g ,𝑧1,𝑧2
first note that the decomposition (3.9) yields a corresponding decom-

position of the algebra𝖬𝐹 , which we will also denote by 𝜏 by a slight abuse of notation:

(3.11)

Let𝖬1,≺
𝐹

(g , 𝑧1) = 𝖬𝐹(g , 1) ⊗ 𝖬≺
𝐹
(g , 𝑧1) and define

𝜑(𝑘)g ,𝑧1,𝑧2
∶ 𝖬𝐹(g , 𝑧1, 𝑧2) ⊗ 𝖬⊗𝑘

𝐹
→ 𝖬⊗(𝑘+1)

𝐹

to be the following composition

with the endomorphism 𝛼(𝑘)g ,𝑧1,𝑧2
given by

𝛼(𝑘)g ,𝑧1,𝑧2
(𝑇 ⊗ (𝐴1 ⊗ 𝐵1 ⊗ 𝐶1) ⊗⋯⊗ (𝐴𝑘 ⊗ 𝐵𝑘 ⊗ 𝐶𝑘))

= (𝐴1 ⊗ 𝑇 ⊗ 𝐶1) ⊗ (𝐴2 ⊗ 𝐵1 ⊗ 𝐶2) ⊗⋯⊗ (𝐴𝑘 ⊗ 𝐵𝑘−1 ⊗ 𝐶𝑘) ⊗ (1 ⊗ 𝐵𝑘 ⊗ 1).

The endomorphism 𝜑(𝑘)g ,𝑧1,𝑧2
fits into the following commutative diagram
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where 𝜓(𝑘)g ,𝑧1,𝑧2
is an endomorphism constructed analogously to 𝜑(𝑘)g ,𝑧1,𝑧2

by conjugating the endo-
morphism

given by

𝛽(𝑘)g ,𝑧1,𝑧2
((𝐴1 ⊗ 𝐵1 ⊗ 𝐶1) ⊗⋯⊗ (𝐴𝑘 ⊗ 𝐵𝑘 ⊗ 𝐶𝑘))

= 𝐵1 ⊗ (𝐴1 ⊗ 𝐵2 ⊗ 𝐶1) ⊗⋯⊗ (𝐴𝑘−1 ⊗ 𝐵𝑘 ⊗ 𝐶𝑘−1) ⊗ (𝐴𝑘 ⊗ 1 ⊗ 𝐶𝑘)

with the corresponding tensor products of 𝜏. We define the homomorphisms

𝜑g ,𝑧1,𝑧2
∶ 𝖬𝐹(g , 𝑧1, 𝑧2) ⊗ 𝖬∞

𝐹 → 𝖬∞
𝐹

𝜓g ,𝑧1,𝑧2
∶ 𝖬∞

𝐹 → 𝖬𝐹(g , 𝑧1, 𝑧2) ⊗ 𝖬∞
𝐹

as the ones induced by 𝜑(𝑘)g ,𝑧1,𝑧2
and 𝜓(𝑘)g ,𝑧1,𝑧2

on the colimits. The diagram above shows that 𝜑g ,𝑧1,𝑧2
and 𝜓g ,𝑧1,𝑧2

are inverse to each other. The associativity condition stated above can be seen from
the colimit of the following commutative diagram

in which the vertical arrow on the left is the map from (3.10) tensored with the homomorphism
𝐴 ↦ 𝐴⊗ 1. □

Corollary 3.8. Let 𝐸 → + be the vector bundle with fibre 𝐸(g , 𝑧1, 𝑧2) over (g , 𝑧1, 𝑧2) ∈ +. The iso-
morphisms𝜑g ,𝑧1,𝑧2

constructed in Lemma 3.7 yield a continuous isomorphism of𝐶∗-algebra bundles
of the form

𝜑+∶ End(𝐹(𝐸)) ⊗ 𝖬∞
𝐹 → + × 𝖬∞

𝐹 .

Proof. Since𝖬𝐹(g , 𝑧1, 𝑧2) = End(𝐹(𝐸(g , 𝑧1, 𝑧2))), the isomorphisms fromLemma 3.7 indeed piece
together to give a map 𝜑+ as described in the statement. Therefore, the only issue left to prove is
continuity of𝜑+. First observe that𝐸 is by definition a sub-bundle of the trivial bundle+ × ℂ𝑛. Its
orthogonal complement 𝐸⟂ is a locally trivial vector bundle as well. By continuity of 𝐹 we obtain
locally trivial bundles 𝐹(𝐸) and 𝐹(𝐸⟂). Let 𝖬∞

𝐹
(𝐸), respectively 𝖬∞

𝐹
(𝐸⟂), be the UHF-algebras

obtained as the fibrewise infinite tensor product ofEnd(𝐹(𝐸)), respectively,End(𝐹(𝐸⟂)), and note
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that the ∗-homomorphism 𝜏 from (3.11) translates into a continuous isomorphism of 𝐶∗-algebra
bundles

The maps 𝛼(𝑘)g ,𝑧1,𝑧2
from Lemma 3.7 induce another continuous isomorphism of 𝐶∗-algebra bun-

dles:

𝛼∞∶ End(𝐹(𝐸)) ⊗ 𝖬∞
𝐹 (𝐸) ⊗ 𝖬∞

𝐹 (𝐸
⟂) → 𝖬∞

𝐹 (𝐸) ⊗ 𝖬∞
𝐹 (𝐸

⟂)

which shifts End(𝐹(𝐸)) into the tensor factor𝖬∞
𝐹
(𝐸). By definition 𝜑+ is obtained by conjugating

𝛼∞ by 𝜏 and therefore is continuous. □

Let 𝐸 → + be the vector bundle from Corollary 3.8. Let 0 = 0 × 𝖬∞
𝐹
,

+ = 𝐹(𝐸) ⊗ 𝖬∞
𝐹

and let 0,+ = 0 ∪ +. This is a locally trivial bundle of full right Hilbert𝖬∞
𝐹
-modules, where𝖬∞

𝐹
acts by rightmultiplication on itself. The bundle of compact adjointable right𝖬∞

𝐹
-linear operators

on + agrees with
End(𝐹(𝐸)) ⊗ 𝖬∞

𝐹 ,

which we can identify with𝖬∞
𝐹
using 𝜑+ to define a left𝖬∞

𝐹
-module structure on the fibres of +

given by 𝑎 ⋅ (𝜉 ⊗ 𝑏) ∶= 𝜑−1+ (𝑎)(𝜉 ⊗ 𝑏). To turn 0,+ into a saturated half-bundle we need to equip
it with a bilinear and associative multiplication 𝜇. On + we define 𝜇 by the following diagram:

where the map 𝜅 is given by 𝜅((𝜉 ⊗ 𝑎) ⊗ (𝜂 ⊗ 𝑏)) = 𝜉 ⊗ 𝑎 ⋅ (𝜂 ⊗ 𝑏). This is an isomorphism with
inverse 𝜉 ⊗ 𝜂 ⊗ 𝑎 ↦ (𝜉 ⊗ 1) ⊗ (𝜂 ⊗ 𝑎). Let

𝓁𝑧𝑖 ,𝑧𝑗 ∶ 𝖬∞
𝐹 ⊗ 𝐹(𝐸𝑧𝑖,𝑧𝑗 ) ⊗ 𝖬∞

𝐹 → 𝐹(𝐸𝑧𝑖,𝑧𝑗 ) ⊗ 𝖬∞
𝐹

be defined by left multiplication. The associativity condition in Lemma 3.7 implies that the fol-
lowing diagram commutes:
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where we eliminated the group element g from the notation for clarity, and where the map 1© is
given by id𝖬∞

𝐹
⊗((𝜏 ⊗ id𝖬∞

𝐹
)◦(id𝐹(𝐸𝑧1,𝑧2 )

⊗𝓁𝑧2,𝑧3 )). As a consequence, we obtain that the multipli-
cation 𝜇 is associative on +.
On 0 we define the multiplication by the composition of the groupoid elements and the mul-

tiplication in𝖬∞
𝐹
, which is clearly bilinear and associative. If (g , 𝑧1, 𝑧2) ∈ + and (g , 𝑧2, 𝑧3) ∈ 0,

then by definition 𝐸(g , 𝑧1, 𝑧2) and 𝐸(g , 𝑧1, 𝑧3) agree. This identification and the right multiplica-
tion by𝖬∞

𝐹
defines the multiplication on elements from the set

{(𝑒1, 𝑒2) ∈ 2
0,+ | 𝜋(𝑒1) ∈ +, 𝜋(𝑒2) ∈ 0, (𝜋(𝑒1), 𝜋(𝑒2)) ∈ (2)}.

Using the left multiplication by𝖬∞
𝐹
we can also extend 𝜇 over

{(𝑒1, 𝑒2) ∈ 2
0,+ | 𝜋(𝑒1) ∈ 0, 𝜋(𝑒2) ∈ +, (𝜋(𝑒1), 𝜋(𝑒2)) ∈ (2)}.

in an analogous way. The resulting multiplication map is still associative. The fibrewise inner
products on the right Hilbert 𝐴-modules yield a global continuous inner product, that is, for the
elements 𝜉 ⊗ 𝑎, 𝜂 ⊗ 𝑏 ∈ 𝐹(𝐸(g , 𝑧1, 𝑧2)) ⊗ 𝖬∞

𝐹
we define

⟨𝜉 ⊗ 𝑎, 𝜂 ⊗ 𝑏⟩𝐴 =
(⟨𝜉, 𝜂⟩ℂ 𝑎∗𝑏, (g , 𝑧2))

This ensures that all of the properties in Definition 3.1(b) hold. The multiplication also satisfies
Definition 3.1(c) by construction. Thus, we have proven the following.

Lemma 3.9. The triple (0,+, 𝜇, ⟨ ⋅ , ⋅ ⟩𝐴) constructed above is a saturated half-bundle.
Remark 3.10. Note that End(𝐹(ℂ𝑛)) = 𝐹(ℂ𝑛) ⊗ 𝐹(ℂ𝑛)∗ ≅ 𝐹(ℂ𝑛 ⊕ (ℂ𝑛)∗) and this isomorphism is
natural. As a module over itself the algebra𝖬∞

𝐹
morally turns out to be

𝖬∞
𝐹 ≅ 𝐹(ℂ𝑛 ⊕ (ℂ𝑛)∗ ⊕ ℂ𝑛 ⊕ (ℂ𝑛)∗ ⊕ … ) ,

where the left action is on the ℂ𝑛-summands and the right action on their dual spaces. Likewise,
we have

(g ,𝑧1,𝑧2) ≅ 𝐹(𝐸(g , 𝑧1, 𝑧2) ⊕ ℂ𝑛 ⊕ (ℂ𝑛)∗ ⊕ ℂ𝑛 ⊕ (ℂ𝑛)∗ ⊕ … ).

3.3 The group action on 𝟎,+

The group 𝐺 = 𝑆𝑈(𝑛) acts on  = 𝑌[2] by conjugation, that is, for ℎ ∈ 𝐺 and (g , 𝑧1, 𝑧2) ∈  we
define

ℎ ⋅ (g , 𝑧1, 𝑧2) = (ℎgℎ−1, 𝑧1, 𝑧2).

Observe that conjugation is a group automorphism and does not change the set of eigenval-
ues. Therefore, this action is admissible in the sense of Definition 3.4. Let (g , 𝑧1, 𝑧2) ∈ 0,+. Any
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element ℎ ∈ 𝐺 defines an isomorphism

ℎ∶ 𝐸(g , 𝑧1, 𝑧2) → 𝐸(ℎgℎ−1, 𝑧1, 𝑧2) , 𝜉 ↦ ℎ𝜉 ,

where ℎ acts on Eig(g , 𝜆) ⊂ ℂ𝑛 using the standard representation of 𝑆𝑈(𝑛). The exponential func-
tor 𝐹 turns this into a unitary isomorphism

𝐹(ℎ)∶ 𝐹(𝐸(g , 𝑧1, 𝑧2)) → 𝐹(𝐸(ℎgℎ−1, 𝑧1, 𝑧2)).

Thenaturality of the structure isomorphism 𝜏 of𝐹 ensures that the following diagramcommutes:

Similarly, 𝐺 acts by conjugation on 𝖬𝐹 and therefore also on the infinite tensor product 𝖬∞
𝐹
.

Denote this action by 𝛼∶ 𝐺 → Aut(𝖬∞
𝐹
). This turns𝖬∞

𝐹
into a 𝐺-algebra. Combining 𝐹(ℎ) and 𝛼

we obtain isomorphisms of 𝐴-𝐴 bimodules

𝐹(𝐸(g , 𝑧1, 𝑧2)) ⊗ 𝖬∞
𝐹 → 𝐹(𝐸(ℎgℎ−1, 𝑧1, 𝑧2)) ⊗ 𝖬∞

𝐹 (3.12)

inducing a continuous action of 𝐺 on 0,+ covering the action of 𝐺 on 0,+.
Lemma 3.11. Let 𝐸 → + be the vector bundle with fibre 𝐸(g , 𝑧1, 𝑧2) over (g , 𝑧1, 𝑧2) ∈ +. The iso-
morphism𝜑+∶ End(𝐹(𝐸)) ⊗ 𝖬∞

𝐹
→ + × 𝖬∞

𝐹
constructed inCorollary 3.8 is𝐺-equivariant (where

ℎ ∈ 𝐺 acts on End(𝐹(𝐸)) via Ad𝐹(ℎ) and on 𝖬∞
𝐹
via 𝛼ℎ). In particular, (3.12) is an isomorphism of

bimodules and 𝜇 from Lemma 3.9 is 𝐺-equivariant.

Proof. We use the notation introduced in Corollary 3.8. The action of ℎ ∈ 𝑆𝑈(𝑛) maps the
eigenspace Eig(g , 𝜆) unitarily onto Eig(ℎgℎ−1, 𝜆). This induces the given action of 𝐺 on 𝐸 and
another unitary action of 𝐺 on 𝐸⟂ in such a way that + × ℂ𝑛 = 𝐸 ⊕ 𝐸⟂ is an equivariant direct
sum decomposition.With respect to the induced actions on𝖬∞

𝐹
(𝐸) and𝖬∞

𝐹
(𝐸⟂) the isomorphism

𝜏∶ + × 𝖬∞
𝐹
→ 𝖬∞

𝐹
(𝐸) ⊗ 𝖬∞

𝐹
(𝐸⟂) from Corollary 3.8 is 𝐺-equivariant. Since 𝐺 acts in the same

way on each tensor factor of the infinite tensor product 𝖬∞
𝐹
(𝐸) the shift isomorphism 𝛼∞ from

Corollary 3.8 is equivariant as well. But these are the building blocks of 𝜑+. Thus, this implies the
statement. □

Combining Theorem 3.3 and Corollary 3.6, we obtain the main result of this section.

Corollary 3.12. The triple (0,+, 𝜇, ⟨ ⋅ , ⋅ ⟩𝐴) together with the 𝐺-action defined above is a 𝐺-
equivariant saturated half-bundle in the sense of Definition 3.5. In particular, there is a saturated
Fell bundle 𝜋∶  →  with the following properties:
(a) |0,+ = 0,+,
(b) 𝑒∗

1
⋅ 𝑒2 = ⟨𝑒1, 𝑒2⟩𝐴 for all 𝑒1, 𝑒2 ∈  lying in the same fibre,
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(c) the group 𝐺 = 𝑆𝑈(𝑛) acts continuously on  such that 𝜋∶  →  is equivariant and g ⋅ 𝑒∗ =
(g ⋅ 𝑒)∗.

The Fell bundle  is unique up to isomorphism.
Remark 3.13. Note that for 𝐹 =

⋀top the algebra 𝖬∞
𝐹
agrees with ℂ and 𝐹(𝐸) is the determinant

line bundle of 𝐸. Moreover, the fibre (−)(g ,𝑧1,𝑧2) can be identified with (∗
+)(g ,𝑧2,𝑧1). Thus, our

definition generalises the equivariant basic gerbe constructed in [24], which is based on [20, 22].

4 THE 𝑪∗-ALGEBRA ASSOCIATED TO 

In this section, we will review the construction of the 𝐶∗-algebra 𝐶∗() associated to the Fell
bundle  .A priori there are several 𝐶∗-completions of the section algebra of  , but an amenability
argument shows that all of them have to agree. We will also see that 𝐶∗() is a continuous 𝐶(𝐺)-
algebra, which is stably isomorphic to a section algebra of a locally trivial bundle of 𝐶∗-algebras†.
As a consequence, we obtain a Mayer–Vietoris sequence in equivariant 𝐾-theory.
We start by reviewing the construction of the reduced𝐶∗-algebra associated to theFell bundle .

Let𝐴 = 𝐶0(𝑌,𝖬
∞
𝐹
)where𝑌 is as in Subsection 3.2.We can equip the space of compactly supported

sections 𝐶𝑐(𝑌[2], ) with an 𝐴-valued inner product as follows:
⟨𝜎, 𝜏⟩𝐴(g , 𝑧) = ∫𝕋⧵{1} 𝜎(g , 𝑤, 𝑧)

∗ ⋅ 𝜏(g , 𝑤, 𝑧)𝑑𝑤 ,

where 𝜎, 𝜏 ∈ 𝐶𝑐(𝑌
[2], ), the dot denotes the Fell bundlemultiplication andwe used the Lebesgue

measure on𝕋 ⧵ {1}with respect towhich the subset EV(g) ∩ (𝕋 ⧵ {1}) is ofmeasure zero. The space
𝐶𝑐(𝑌

[2], ) also carries a natural right 𝐴-action given for 𝑎 ∈ 𝐴 and 𝜎 ∈ 𝐶𝑐(𝑌
[2], ) by

(𝜎 ⋅ 𝑎)(g , 𝑧1, 𝑧2) = 𝜎(g , 𝑧1, 𝑧2) ⋅ 𝑎(g , 𝑧2).

Denote by 𝐿2() the completion of 𝐶𝑐(𝑌[2], ) to a right Hilbert 𝐴-module with respect to the
norm

‖𝜎‖2 = sup
(g ,𝑧)∈𝑌

‖⟨𝜎, 𝜎⟩𝐴(g , 𝑧)‖.
The space 𝐶𝑐(𝑌[2], ) can also be equipped with a convolution product, which assigns to 𝜎, 𝜏 ∈
𝐶𝑐(𝑌

[2], ) the section

(𝜎 ∗ 𝜏)(g , 𝑧1, 𝑧2) = ∫𝕋⧵{1} 𝜎(g , 𝑧1, 𝑤) ⋅ 𝜏(g , 𝑤, 𝑧2) 𝑑𝑤

Likewise, the ∗-operation on the Fell bundle induces an involution that maps 𝜎 ∈ 𝐶𝑐(𝑌
[2], ) to

𝜎∗(g , 𝑧1, 𝑧2) = 𝜎(g , 𝑧2, 𝑧1)∗ and we have

⟨𝜎 ∗ 𝜏1, 𝜏2⟩𝐴 = ⟨𝜏1, 𝜎∗ ∗ 𝜏2⟩𝐴 ,

† The fact that we only get a stable isomorphism is in line with the classical case. The proof relies on a generalisation of
the Fell condition, which only works after stabilisation, or equivalently is a statement up to Morita–Rieffel equivalence.
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that is, convolution by 𝜎 is an adjointable and hence bounded operator on 𝐿2(). Let ◦𝐴(𝐿
2())

be the adjointable right 𝐴-linear operators on the Hilbert 𝐴-module 𝐿2(). By the above consid-
erations we obtain a well-defined ∗-homomorphism

𝐶𝑐(𝑌
[2], ) → ◦𝐴

(
𝐿2()).

Definition 4.1. We define 𝐶∗
𝑟 () to be the 𝐶∗-algebra obtained as the norm-closure of 𝐶𝑐(𝑌[2], )

in ◦𝐴(𝐿
2()). It is called the reduced 𝐶∗-algebra associated to the Fell bundle  .

Denote by𝐶∗
max() themaximal cross-sectional𝐶∗-algebra of  . The groupoid = 𝑌[2] is equiv-

alent in the sense of Renault to the trivial groupoid

which is (topologically) amenable. Since amenability is preserved by equivalence, the same is
true for 𝑌[2]. Therefore, [29, Theorem 1] implies that the reduced and the universal norm agree
on 𝐶𝑐(𝑌

[2], ) and thus 𝐶∗
max() ≅ 𝐶∗

𝑟 (). Hence, we will drop the subscript from now on and
write 𝐶∗() for this 𝐶∗-algebra.
Observe that 𝐶∗() carries a continuous 𝐺-action defined on sections 𝜎 ∈ 𝐶𝑐(𝑌

[2], ) by
(g ⋅ 𝜎)(ℎ, 𝑧1, 𝑧2) = g ⋅ 𝜎(g−1ℎg , 𝑧1, 𝑧2).

It is also a 𝐶(𝐺)-algebra in a natural way via the action that is defined on sections 𝜎 ∈ 𝐶𝑐(𝑌
[2], )

with 𝑓 ∈ 𝐶(𝐺) as follows

(𝑓 ⋅ 𝜎)(g , 𝑧1, 𝑧2) = 𝑓(g)𝜎(g , 𝑧1, 𝑧2).

Note that this is indeed central and therefore provides a ∗-homomorphism 𝐶(𝐺) → 𝑍(𝑀(𝐶∗()))
Lemma 4.2. The multiplication by elements in 𝐶(𝐺) defined above turns 𝐶∗() into a continuous
𝐶(𝐺)-algebra. For g ∈ 𝐺 let 𝑌[2]

g be the subgroupoid defined by

𝑌[2]
g =

(
𝜋−1(g)

)[2]
and let g = |

𝑌[2]
g
. Then the fibre of 𝐶∗() over g is given by 𝐶∗(g ).

Proof. We can identify 𝐺 with the orbit space of the action of 𝑌[2] on 𝑌. Thus, [29, Corollary 10]
implies that𝐶∗() is a𝐶(𝐺)-algebrawith fibres𝐶∗(g ). The only statement left to show is that g ↦‖𝑎g‖ is lower semi-continuous for every 𝑎 ∈ 𝐶∗(), where 𝑎g denotes the image of 𝑎 in 𝐶∗(g ).
Without loss of generality, wemay assume that 𝑎 is a section 𝜎 ∈ 𝐶𝑐(𝑌

[2], ). Let g ∈ 𝐺 and 𝜖 > 0.
Denote by 𝜏g ∈ 𝐿2(g ) the restriction of 𝜏 ∈ 𝐿2(). Note that

‖𝜏g‖2𝐿2(g )
= sup

𝑧∈𝕋
‖⟨𝜏, 𝜏⟩𝐴(g , 𝑧)‖.
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Take 𝜏 ∈ 𝐿2() with ‖𝜏‖𝐿2() = 1, ‖𝜏g‖𝐿2(g )
= 1 and

‖(𝜎 ∗ 𝜏)g‖𝐿2(g )
⩾ ‖𝜎g‖𝐶∗(g )

−
𝜖
2
.

Since the inner product on 𝐿2() takes values in 𝐴 = 𝐶0(𝑌,𝖬
∞
𝐹
), the function 𝑓∶ 𝑌 → ℝ given

by 𝑓(ℎ, 𝑧) = ‖⟨𝜎 ∗ 𝜏, 𝜎 ∗ 𝜏⟩𝐴(ℎ, 𝑧)‖ is continuous and extends to 𝐺 × 𝕋. Since 𝕋 is compact, there
is 𝑧0 ∈ 𝕋 with (g , 𝑧0) ∈ 𝑌 and 𝑓(g , 𝑧0) = sup𝑧∈𝕋 𝑓(g , 𝑧). By continuity of ℎ ↦ 𝑓(ℎ, 𝑧0) there is an
open neighbourhood 𝑈 of g such that for all ℎ ∈ 𝑈

‖⟨𝜎 ∗ 𝜏, 𝜎 ∗ 𝜏⟩𝐴(ℎ, 𝑧0)‖ 1
2 ⩾ ‖⟨𝜎 ∗ 𝜏, 𝜎 ∗ 𝜏⟩𝐴(g , 𝑧0)‖ 1

2 −
𝜖
2
⩾ ‖𝜎g‖𝐶∗(g )

− 𝜖.

But ‖⟨𝜎 ∗ 𝜏, 𝜎 ∗ 𝜏⟩𝐴(ℎ, 𝑧0)‖ 1
2 ⩽ ‖(𝜎 ∗ 𝜏)ℎ‖𝐿2(ℎ) and since ‖𝜏ℎ‖𝐿2(ℎ) ⩽ 1 we have

‖𝜎ℎ‖𝐶∗(ℎ) ⩾ ‖𝜎g‖𝐶∗(g )
− 𝜖

for all ℎ ∈ 𝑈, which shows that the map is lower semi-continuous. □

We are going to prove that 𝐶∗() is stably isomorphic to the section algebra of a locally trivial
bundle with fibre 𝖬∞

𝐹
⊗ 𝕂. The following lemma will provide a first step and shows that local

sections of 𝜋∶ 𝑌 → 𝐺 give rise to trivialisations via Morita equivalences.

Lemma 4.3. Let 𝜎∶ 𝑉 → 𝑌 be a continuous section of 𝜋∶ 𝑌 → 𝐺 over a closed subset 𝑉 ⊂ 𝐺. Let
𝑌𝑉 = 𝜋−1(𝑉). Denote the corresponding restriction of  (respectively, ) by 𝑉 (respectively, 𝑉). Let
𝑝𝕋 ∶ 𝑌 → 𝕋 be the restriction of the projection map to 𝑌, let 𝑡 = 𝑝𝕋◦𝜎 and let

𝜄 ∶ 𝑌𝑉 → 𝑉, (g , 𝑧) ↦ (g , 𝑧, 𝑡(g)).

The Banach bundle 𝑉 = 𝜄∗𝑉 gives rise to aMorita equivalence 𝖷𝑉 between 𝐶∗(𝑉) and 𝐶(𝑉,𝖬∞
𝐹
).

If 𝑉 is 𝐺-invariant, then 𝖷𝑉 is a 𝐺-equivariant Morita equivalence.

Proof. We will prove the first part of the statement by showing that 𝑉 provides an equivalence
of Fell bundles in the sense of [23, Section 6] between 𝑉 and the 𝐶∗-algebra bundle 𝑉 ×𝖬∞

𝐹
over

𝑉.
First note that the space𝑌𝑉 is an equivalence between𝑉 and the trivial groupoid over𝑉, which

wewill also denote𝑉 by a slight abuse of notation. Let 𝛽∶ 𝑉 →  be given by 𝛽(g) = (g , 𝑡(g), 𝑡(g)).
We can and will identify 𝑉 ×𝖬∞

𝐹
with 𝛽∗𝑉 . The bundle 𝜅∶ 𝑉 → 𝑌𝑉 carries a left action of

𝑉 and a right action of 𝛽∗𝑉 = 𝑉 × 𝖬∞
𝐹
→ 𝑉 such that [23, Definition 6.1(a)] holds. The two

sesquilinear forms

𝑉 × 𝑉 → 𝑉, (𝑐, 𝑑) ↦ 𝑉 ⟨𝑐, 𝑑⟩ ∶= 𝑐 ⋅ 𝑑∗ ,

𝑉 ×𝜅 𝑉 → 𝑉 ×𝖬∞
𝐹 , (𝑐, 𝑑) ↦ ⟨𝑐, 𝑑⟩𝛽∗𝑉 ∶= 𝑐∗ ⋅ 𝑑

satisfy the conditions listed in [23, Definition 6.1(b)]. Since 𝑉 → 𝑉 is a saturated Fell bundle,
[23, Definition 6.1(c)] is also true for the bundle 𝑉 → 𝑌𝑉 . Therefore, by [23, Theorem 6.4] the
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completion 𝖷𝑉 of 𝐶𝑐(𝑌𝑉,𝑉)with respect to the norms induced by the above inner products is an
imprimitivity bimodule between the 𝐶∗-algebras 𝐶∗(𝑉) and 𝐶(𝑉,𝖬∞

𝐹
).

For the proof of the second part suppose that 𝑉 is 𝐺-invariant. Note that the adjoint action lifts
to 𝑌𝑉 . Moreover, the action described in Subsection 3.3 restricts to 𝐶∗(𝑉). Let 𝛼∶ 𝐺 → Aut(𝖬∞

𝐹
)

be the action of 𝐺 on𝖬∞
𝐹
induced by Ad𝐹(𝜌) where 𝜌∶ 𝐺 → 𝑈(𝑛) is the standard representation.

Then 𝐺 acts on 𝐶(𝑉,𝖬∞
𝐹
) via the adjoint action on 𝑉 and by 𝛼 on 𝖬∞

𝐹
. It is straightforward to

check on sections that these definitions turn 𝖷𝑉 into an equivariant Morita equivalence. □

Remark 4.4. By [29, Lemma 9], the 𝐶(𝐺)-algebra structure is compatible with the Fell bun-
dle restriction in the sense that restricting the sections to 𝑉 induces a natural ∗-isomorphism
𝐶∗()(𝑉) ≅ 𝐶∗(𝑉).
Definition 4.5. Let 𝑋 be a locally compact metrisable space. A continuous 𝐶0(𝑋)-algebra 𝐴
whose fibres are stably isomorphic to strongly self-absorbing 𝐶∗-algebras is said to satisfy the
(global) generalised Fell condition if for each 𝑥 ∈ 𝑋 there exists a closed neighbourhood 𝑉 of 𝑥
and a projection 𝑝 ∈ 𝐴(𝑉) such that [𝑝(𝑣)] ∈ 𝐺𝐿1(𝐾0(𝐴(𝑣))) for all 𝑣 ∈ 𝑉.

Lemma 4.6. The fibre algebra𝐶∗(g ) is Morita equivalent to𝖬∞
𝐹
and the continuous𝐶(𝐺)-algebra

𝐶∗() satisfies the generalised Fell condition.
Proof. Let 𝑉 = {g} ⊂ 𝐺 and choose 𝑧0 ∈ 𝕋 such that (g , 𝑧0) ∈ 𝑌. The first statement is now a
consequence of Lemma4.3 for𝑉 = {g} ⊂ 𝐺 and𝜎∶ {g} → 𝑌 given by𝜎(g) = (g , 𝑧0). For any g ∈ 𝐺

let 𝖷g be the resulting Morita equivalence between 𝐶∗(g ) and𝖬∞
𝐹
.

It remains to be proven that𝐶∗() satisfies the generalised Fell condition. Let g ∈ 𝐺 and choose
an open neighbourhood 𝑈 of g with the property that

𝑆 = {𝑧 ∈ 𝕋 ⧵ {1} | 𝑧 ∉ EV(ℎ) for any ℎ ∈ 𝑈}

contains an open interval 𝐽 ⊂ 𝑆. Note that 𝑈 × 𝐽2 ⊂ 𝑌[2]. Since there are no eigenvalues in
between any two points of 𝐽, the restriction of  to this subspace is just the trivial bundle with
fibre𝖬∞

𝐹
. Thus, extension of a section by 0 produces an inclusion of convolution algebras

𝐶𝑐(𝑈 × 𝐽2,𝖬∞
𝐹 ) → 𝐶𝑐(𝑌

[2], )
and the completion of the left-hand side in the representation on 𝐿2() is isomorphic to
𝐶0(𝑈,𝕂(𝐿

2(𝐽)) ⊗ 𝖬∞
𝐹
). The resulting ∗-homomorphism

𝐶0(𝑈,𝕂 ⊗𝖬∞
𝐹 ) → 𝐶∗()

is an inclusion of 𝐶(𝐺)-algebras. Pick a closed neighbourhood 𝑉 ⊂ 𝑈 of g . If we restrict both
sides to 𝑉 we obtain 𝐶(𝑉,𝕂 ⊗𝖬∞

𝐹
) → 𝐶∗()(𝑉). Let 𝑒 ∈ 𝕂 be a rank 1-projection and define

𝑝 ∈ 𝐶∗()(𝑉) to be the image of 1𝐶(𝑉,𝖬∞
𝐹
) ⊗ 𝑒 with respect to this inclusion. Fix 𝑣 ∈ 𝑉. The iso-

morphism

𝐾0(𝐶
∗()(𝑣)) ≅ 𝐾0(𝐶

∗(𝑣)) ≅ 𝐾0(𝖬
∞
𝐹 )
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induced by the Morita equivalence 𝖷𝑣 maps the 𝐾-theory element [𝑝(𝑣)] ∈ 𝐾0(𝐶
∗()(𝑣)) to the

class of the rightHilbert𝖬∞
𝐹
-module𝑝(𝑣)𝖷𝑣 in𝐾0(𝖬

∞
𝐹
).We can choose the value of 𝑧0 ∈ 𝕋 used to

define 𝖷𝑣 such that 𝑧0 ∈ 𝐽. Moreover, we can without loss of generality assume that 𝑒 ∈ 𝕂(𝐿2(𝐽))

is the projection onto the subspace spanned by a compactly supported function𝑓 ∈ 𝐶𝑐(𝐽) ⊂ 𝐿2(𝐽).
Then we have

𝑝(𝑣)𝖷𝑣 ≅ 𝑝(𝑣)𝐶𝑐(𝐽,𝖬
∞
𝐹
)
‖⋅‖𝐿2 ≅ 𝑒𝐿2(𝐽) ⊗ 𝖬∞

𝐹 ≅ 𝖬∞
𝐹 ,

which represents the unit in 𝐾0(𝖬
∞
𝐹
) and is therefore invertible. □

Corollary 4.7. The continuous 𝐶(𝐺)-algebra 𝐶∗() is stably isomorphic to the section algebra of
a locally trivial bundle → 𝐺 of 𝐶∗-algebras with fibre 𝖬∞

𝐹
⊗ 𝕂. In particular, it is classified by a

continuous map

𝐺 → 𝐵Aut(𝖬∞
𝐹 ⊗ 𝕂) ≃ 𝐵𝐺𝐿1

(
𝐾𝑈
[
𝑑−1𝐹
])
,

where 𝑑𝐹 = dim(𝐹(ℂ)).

Proof. By Lemma 4.6, the algebra 𝐶∗() satisfies the generalised Fell condition and its fibres
are Morita equivalent to the infinite UHF-algebra 𝖬∞

𝐹
. Therefore, the statement follows from [7,

Corollary 4.9]. □

4.1 The spectral sequence

For 𝐺 = 𝑆𝑈(𝑛) let 𝓁 = 𝑛 − 1 be the rank of 𝐺. Choose a maximal torus 𝕋𝓁 of 𝐺 with Lie algebra
𝔱. Let Λ ⊂ 𝔱 be the integral lattice with dual lattice Λ∗. Denote by ⟨ ⋅ , ⋅ ⟩𝔤 the basic inner product
on 𝔤. Choose a collection 𝛼1, … , 𝛼𝓁 ∈ Λ∗ of simple roots and let

𝔱+ =
{
𝜉 ∈ 𝔱 | ⟨𝛼𝑗, 𝜉⟩𝔤 ⩾ 0 ∀𝑗 ∈ {0, … ,𝓁}

}
be the corresponding positive Weyl chamber. Let Δ𝓁 be the standard 𝓁-simplex defined as

Δ𝓁 =

{
(𝑡0, … , 𝑡𝓁) ∈ ℝ𝓁+1

|||||
𝓁∑
𝑖=0

𝑡𝑖 = 1 and 𝑡𝑗 ⩾ 0 ∀𝑗 ∈ {0, … ,𝓁}

}
.

This simplex can be identified with the fundamental alcove of 𝐺, which is the subset cut out from
𝔱+ by the additional inequality ⟨𝛼0, 𝜉⟩𝔤 ⩾ −1, where 𝛼0 is the lowest root. The alcove parametrises
conjugacy classes of 𝐺 in the sense that each such class contains a unique element exp(𝜉) with
𝜉 ∈ Δ𝓁 . Denote the corresponding continuous quotient map by

𝑞∶ 𝐺 → Δ𝓁 .

A sketch of the situation in the case 𝑛 = 3 is shown in Figure 1.
For a non-empty subset 𝐼 ⊂ {0, … ,𝓁} we let Δ𝐼 ⊂ Δ𝓁 be the closed subsimplex spanned by the

vertices in 𝐼. Let 𝜉𝐼 ∈ 𝔤 be the barycentre of Δ𝐼 and let 𝐺𝐼 be the centraliser of exp(𝜉𝐼). In fact, the
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F IGURE 1 The root system of 𝐺 = 𝑆𝑈(3) with positive roots 𝛼1 and 𝛼2 and lowest root 𝛼0. The blue dots
mark the weights inside the Weyl chamber and the fundamental alcove Δ2 is shown in blue

subgroup 𝐺𝐼 does not depend on our choice of 𝜉𝐼 as long as it is an element in the interior of Δ𝐼 .
For 𝐽 ⊂ 𝐼 we have 𝐺𝐼 ⊂ 𝐺𝐽 , which induces a 𝐺-map 𝐺∕𝐺𝐼 → 𝐺∕𝐺𝐽 . Let

𝖦𝑛 =
∐

|𝐼|=𝑛+1𝐺∕𝐺𝐼.

Denote the set {0, … , 𝑛} by [𝑛]. Let 𝑓∶ [𝑚] → [𝑛] be an order-preserving injective map. For each
𝐼 ⊂ {0, … ,𝓁} with |𝐼| = 𝑛 + 1 there is a unique order-preserving identification [𝑛] ≅ 𝐼. Let 𝐽 ⊂ 𝐼

be the subset corresponding to 𝑓([𝑚]) ⊂ [𝑛] in this way. The above construction induces a con-
tinuous map 𝑓∗

𝐼
∶ 𝐺∕𝐺𝐼 → 𝐺∕𝐺𝐽 and those maps combine to

𝑓∗ ∶ 𝖦𝑛 → 𝖦𝑚.

This turns [𝑛] ↦ 𝖦𝑛 with 𝑓 ↦ 𝑓∗ into a contravariant functor. Therefore, 𝖦∙ is a semi-simplicial
space. The group 𝐺 can be identified with its geometric realisation, that is,

𝐺 ≅ ‖𝖦∙‖ = (∐
𝐼

𝐺∕𝐺𝐼 × Δ𝐼

)
∕∼

where the equivalence relation identifies the faces of Δ𝐼 using the maps 𝐺∕𝐺𝐼 → 𝐺∕𝐺𝐽 in the
other component. The map 𝑞∶ 𝐺 → Δ𝓁 is induced by the projection maps 𝐺∕𝐺𝐼 × Δ𝐼 → Δ𝐼 in
this picture. Let

𝐴𝑖 =

{
(𝑡0, … , 𝑡𝓁) ∈ Δ𝓁

||||||
∑
𝑘≠𝑖

𝑡𝑘 ⩽ 𝛿𝑛

}
⊂ Δ𝓁 ,

where 0 < 𝛿𝑛 < 1 is chosen such that the closed sets (𝐴𝑖)𝑖∈{0,…,𝓁} cover Δ𝓁 . Then (𝑉𝑖)𝑖∈{0,…,𝓁} with
𝑉𝑘 = 𝑞−1(𝐴𝑘) is a cover of 𝐺 by closed sets. Note that each 𝑉𝑘 is 𝐺-homotopy equivalent to the
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open star of the 𝑘th vertex. For each non-empty subset 𝐼 ⊂ {0, … ,𝓁} let

𝐴𝐼 =
⋂
𝑖∈𝐼

𝐴𝑖 and 𝑉𝐼 = 𝑞−1(𝐴𝐼) =
⋂
𝑖∈𝐼

𝑉𝑖.

Note that the barycentre 𝜉𝐼 of Δ𝐼 is contained in 𝐴𝐼 . Therefore, there is a canonical embedding
𝜄𝐼 ∶ 𝐺∕𝐺𝐼 → 𝑉𝐼 .

Lemma 4.8. The embedding 𝜄𝐼 ∶ 𝐺∕𝐺𝐼 → 𝑉𝐼 defined above is a𝐺-equivariant deformation retract.

Proof. Observe thatΔ{0,…,𝓁}⧵{𝑖} ∩ 𝐴𝑖 = ∅, which implies thatΔ𝐾 ∩ 𝐴𝑗 = ∅ if 𝑗 ∉ 𝐾. Hence, the inter-
section Δ𝐾 ∩ 𝐴𝐼 can only be non-empty if 𝐼 ⊂ 𝐾. Therefore

𝑉𝐼 =

(∐
𝐼⊂𝐾

𝐺∕𝐺𝐾 × (Δ𝐾 ∩ 𝐴𝐼)

)
∕∼

and the quotient maps 𝐺∕𝐺𝐾 → 𝐺∕𝐺𝐼 induce a well-defined 𝐺-equivariant continuous map
𝑟𝐼 ∶ 𝑉𝐼 → 𝐺∕𝐺𝐼 with the property that 𝑟𝐼◦𝜄𝐼 = id𝐺∕𝐺𝐼 . Note that the set 𝐴𝐼 is convex and consider
the contraction𝐻𝐴 given by

𝐻𝐴∶ 𝐴𝐼 × [0, 1] → 𝐴𝐼, (𝜂, 𝑠) ↦ 𝜉𝐼 + (1 − 𝑠)(𝜂 − 𝜉𝐼).

Since 𝜉𝐼 ∈ Δ𝐼 , each𝐻𝐴
𝑠 maps 𝐴𝐼 ∩ Δ𝐾 to itself for all sets 𝐾 with 𝐼 ⊂ 𝐾. Thus, we can lift𝐻𝐴 to a

𝐺-equivariant continuous map

𝐻∶ 𝑉𝐼 × [0, 1] → 𝑉𝐼

which provides a homotopy between 𝜄𝐼◦𝑟𝐼 and id𝑉𝐼
that leaves 𝜄𝐼(𝐺∕𝐺𝐼) invariant. □

Proposition 4.9. Let 𝜌∶ 𝐺 → 𝑈(𝑛) be the standard representation of 𝐺. For each non-empty sub-
set 𝐼 ⊂ {0, … ,𝓁} let 𝜌𝐼 ∶ 𝐺𝐼 → 𝑈(𝑛) be the restriction of 𝜌 to 𝐺𝐼 . There is a cohomological spectral
sequence with 𝐸1-page

𝐸
𝑝,𝑞
1

=
⨁
|𝐼|=𝑝+1𝐾

𝐺𝐼
𝑞 (𝖬∞

𝐹 ) ≅

{⨁|𝐼|=𝑝+1 𝑅(𝐺𝐼)
[
𝐹(𝜌𝐼)

−1
]

for 𝑞 even,
0 for 𝑞 odd,

where 𝑅(𝐻) denotes the representation ring of𝐻. It converges to the associated graded of a filtration
of 𝐾𝐺

∗ (𝐶
∗()).

Proof. The cover of 𝐺 by closed sets gives rise to a semi-simplicial space 𝖵∙ with

𝖵𝑛 =
∐

|𝐼|=𝑛+1𝑉𝐼.

Similar to the construction of [𝑛] ↦ 𝐺𝑛 we can turn [𝑛] ↦ 𝖵𝑛 into a contravariant functor. Let → 𝐺 be the 𝐶∗-algebra bundle found in Corollary 4.7 and denote by 𝐼 → 𝑉𝐼 its restriction
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to 𝑉𝐼 . The spaces𝐼 can be assembled to form a simplicial bundle of 𝐶∗-algebras 𝖠∙ → 𝖵∙ with

𝖠𝑛 =
∐

|𝐼|=𝑛+1𝐼 .

Replacing each 𝑉𝐼 by 𝐺 and each 𝐼 by  in the definitions of 𝖵∙ and 𝖠∙ we also obtain
two ‘constant’ semi-simplicial spaces 𝖠𝑐

∙ and 𝖦𝑐
∙, respectively. Their geometric realisations are‖𝖦𝑐

∙‖ ≅ 𝐺 × Δ𝓁 and ‖𝖠𝑐
∙‖ ≅  × Δ𝓁 . The canonical morphisms 𝖠∙ → 𝖠𝑐

∙ and 𝖵∙ → 𝖦𝑐
∙ give rise

to the following diagram:

The second square is a pullback. It is not hard to check that the first square is a pullback as well
(compare this with [16, Remark 2.23]). Moreover, the composition 𝑞∶ ‖𝖵∙‖→ 𝐺 × Δ𝓁 → 𝐺 in the
diagram is a 𝐺-homotopy equivalence.
For each pair (𝑋, 𝑓), where𝑋 is a compact Hausdorff𝐺-space and 𝑓∶ 𝑋 → 𝐺 is a𝐺-equivariant

continuous map, consider the contravariant functor

(𝑋, 𝑓) ↦ 𝐾𝐺
∗ (𝐶(𝑋, 𝑓

∗))

from the category of compact Hausdorff 𝐺-spaces over 𝐺 to abelian groups. This functor satisfies
the analogues of conditions (i)–(iv) in [28, Section 5] in this category. Using the same argument
as in the proof of [28, Proposition 5.1] we therefore end up with a spectral sequence with 𝐸1-page

𝐸
𝑝,𝑞
1

=
⨁
|𝐼|=𝑝+1𝐾

𝐺
𝑞 (𝐶(𝑉𝐼,𝐼)) ≅

⨁
|𝐼|=𝑝+1𝐾

𝐺
𝑞 (𝐶

∗()(𝑉𝐼)) ,

whose termination is 𝐾𝐺
∗ (𝐶

∗()) ≅ 𝐾𝐺
∗ (𝐶(𝐺,)), since the ∗-homomorphism 𝐶(𝐺,) →

𝐶(‖𝖵∙‖, 𝑞∗) induces an isomorphism in equivariant 𝐾-theory by 𝐺-homotopy invariance. What
remains to be done is to identify these 𝐾-theory groups. By Lemma 4.8 the map 𝐺∕𝐺𝐼 → 𝑉𝐼

induces an isomorphism 𝐾𝐺
𝑞 (𝐶

∗()(𝑉𝐼)) → 𝐾𝐺
𝑞 (𝐶

∗()(𝐺∕𝐺𝐼)). By the same lemma each 𝑉𝑘 is 𝐺-
equivariantly contractible. Therefore,|𝐺∕𝐺𝐼 is equivariantly trivialisable and

𝐾𝐺
𝑞 (𝐶

∗()(𝐺∕𝐺𝐼)) ≅ 𝐾𝐺
𝑞 (𝐶(𝐺∕𝐺𝐼,𝖬

∞
𝐹 )) ≅ 𝐾

𝐺𝐼
𝑞 (𝖬∞

𝐹 ).

The matrix algebra 𝖬⊗𝑘
𝐹

is 𝐺-equivariantly Morita equivalent via the imprimitivity bimodule
𝐹(ℂ𝑛)⊗𝑘 to ℂ with the trivial 𝐺-action. Therefore, 𝐾𝐺𝐼

0
(𝖬⊗𝑘

𝐹
) ≅ 𝐾

𝐺𝐼
0
(ℂ) ≅ 𝑅(𝐺𝐼) and 𝐾

𝐺𝐼
1
(𝖬⊗𝑘

𝐹
) =

0. The ∗-homomorphism𝖬⊗𝑘
𝐹

→ 𝖬⊗(𝑘+1)
𝐹

given by 𝑎 ↦ 𝑎 ⊗ 1 induces themultiplicationwith the
𝐺𝐼-representation 𝐹(ℂ𝑛) on 𝐾𝐺𝐼

0
. This implies

𝐾
𝐺𝐼
2𝑞
(𝖬∞

𝐹 ) ≅ 𝑅(𝐺𝐼)
[
𝐹(𝜌𝐼)

−1
]

and 𝐾
𝐺𝐼
2𝑞+1

(𝖬∞
𝐹 ) = 0

for the 𝐾-theory of the direct limit. □
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4.2 The module structure of 𝑲𝑮
∗
()

An important consequence of Proposition 4.9 is that 𝐾𝐺
∗ (𝐶

∗()) is a module over the ring
𝐾𝐺
0
(𝖬∞

𝐹
) ≅ 𝑅(𝐺)[𝐹(𝜌)−1]. To see this, we need the following observation about strongly self-

absorbing 𝐶∗-dynamical systems.

Lemma 4.10. Let𝐺 be a compact Lie group and let 𝜎∶ 𝐺 → 𝑈(𝑛) be a unitary representation of𝐺.
Let𝐷 = 𝑀𝑛(ℂ)

⊗∞ be the infinite UHF-algebra obtained from𝑀𝑛(ℂ) and let 𝛼∶ 𝐺 → Aut(𝐷) be the
action of 𝐺, which acts on each tensor factor of 𝐷 via Ad𝜎 . Let 𝑋 be a compact Hausdorff 𝐺-space.
Then the first tensor factor embedding

𝜄𝑋 ∶ 𝐶(𝑋,𝐷) → 𝐶(𝑋,𝐷) ⊗ 𝐷 , 𝑓 ↦ 𝑓 ⊗ 1𝐷

is strongly asymptotically G-unitarily equivalent to a ∗-isomorphism.

Proof. By [33, Proposition 6.3], (𝐷, 𝛼) is strongly self-absorbing in the sense of [32, Definition 3.1].
Using the notation introduced in [33, Definition 2.4] we see that(

𝐷∞,𝛼

)𝛼∞ = (𝐷𝛼)∞

by integrating over 𝐺. The fixed-point algebra𝐷𝛼 is an AF-algebra and thus has a path-connected
unitary group. By [33, Proposition 2.19], the action 𝛼 is unitarily regular. The result will there-
fore follow from [31, Theorem 3.2] if we can construct a unital equivariant ∗-homomorphism
𝜃∶ 𝐷 → 𝐹∞,𝛼(𝐶(𝑋,𝐷)). Let 𝑠𝑘 ∶ 𝐷 → 𝐷 be an approximately central sequence of unital equiv-
ariant ∗-homomorphisms and define

𝜃(𝑑)𝑘 = 1𝐶(𝑋) ⊗ 𝑠𝑘(𝑑).

This ∗-homomorphism satisfies all conditions. □

There is a canonical isomorphism 𝐾𝐺
0
(ℂ) ≅ 𝑅(𝐺). As we have seen above, we also have

𝐾𝐺
0
(𝖬∞

𝐹
) ≅ 𝑅(𝐺)[𝐹(𝜌)−1], where the isomorphism can be chosen in such a way that the unit map

ℂ → 𝖬∞
𝐹
induces the localisation homomorphism 𝑅(𝐺) → 𝑅(𝐺)[𝐹(𝜌)−1]. Note that the multipli-

cation in𝑅(𝐺) corresponds to the tensor product in𝐾𝐺
0
(ℂ). Likewise, the identification𝐾𝐺

0
(𝖬∞

𝐹
) ≅

𝑅(𝐺)[𝐹(𝜌)−1] is also an isomorphismof rings. Themultiplication in𝑅(𝐺)[𝐹(𝜌)−1] corresponds to

where the second map is induced by the first factor embedding. To see why this is true it suffices
to note that the following diagram commutes
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where the vertical homomorphism are induced by unit maps and turn into isomorphisms after
localisation.

Proposition 4.11. The first factor embedding 𝐶∗() → 𝐶∗() ⊗ 𝖬∞
𝐹

given by 𝑎 ↦ 𝑎 ⊗ 1𝖬∞
𝐹

induces an isomorphism in equivariant 𝐾-theory and turns 𝐾𝐺
∗ (𝐶

∗()) into a module over the ring
𝐾𝐺
0
(𝖬∞

𝐹
) ≅ 𝑅(𝐺)[𝐹(𝜌)−1] via

where the first homomorphism is induced by the tensor product in𝐾-theory. The sequence constructed
in Proposition 4.9 is a spectral sequence of modules.

Proof. Fix a non-empty subset 𝐼 ⊂ {0, … ,𝓁}. Let𝑋𝐼 = 𝜄𝐼(𝐺∕𝐺𝐼) ⊂ 𝐺, denote the barycentre ofΔ𝐼 by
𝜉𝐼 and note that 𝑋𝐼 = 𝑞−1(𝜉𝐼). We will first show that the embedding 𝐶∗()(𝑋𝐼) → 𝐶∗()(𝑋𝐼) ⊗

𝖬∞
𝐹
induces an isomorphism in equivariant 𝐾-theory. The group elements g ∈ 𝑋𝐼 share the same

eigenvalues. Thus, there exists 𝑧0 ∈ 𝕋 with the property that (g , 𝑧0) ∈ 𝑌 for one (and hence all)
g ∈ 𝑋𝐼 . Define 𝜎𝐼 ∶ 𝑋𝐼 → 𝑌 by 𝜎𝐼(g) = (g , 𝑧0) and let 𝖷𝐼 be the 𝐺-equivariant Morita equivalence
resulting from Lemma 4.3 using the section 𝜎𝐼 . The claimed isomorphism is then a consequence
of the following commutative diagram

in which the vertical maps are induced by 𝖷𝐼 and the horizontal isomorphism follows from
Lemma 4.10.
The first factor embedding 𝐶∗() → 𝐶∗() ⊗ 𝖬∞

𝐹
induces a natural transformation between

the spectral sequences from Proposition 4.9 associated to the functors (𝑋, 𝑓) ↦ 𝐾𝐺
∗ (𝐶

∗(𝑓∗)) and
(𝑋, 𝑓) ↦ 𝐾𝐺

∗ (𝐶
∗(𝑓∗) ⊗ 𝖬∞

𝐹
), which is an isomorphism on all pages by our previous observation.

This implies that 𝐾𝐺
∗ (𝐶

∗()) → 𝐾𝐺
∗ (𝐶

∗() ⊗ 𝖬∞
𝐹
) is also an isomorphism, which gives rise to the

module structure as described. A diagram chase shows that this structure is compatible with the
𝐾-theoretic description of the multiplication in 𝐾𝐺

0
(𝖬∞

𝐹
) described above. □

Remark 4.12. It would be interesting to know whether the first factor embedding 𝐶∗() →
𝐶∗() ⊗ 𝖬∞

𝐹
itself is strongly asymptotically𝐺-unitarily equivalent to a ∗-isomorphism. The anal-

ogous non-equivariant statement is true by [7, Lemma 3.4] and Corollary 4.7.

5 THE EQUIVARIANT HIGHER TWISTED 𝑲-THEORY OF 𝑺𝑼(𝒏)

In this section, we will compute the equivariant higher twisted 𝐾-theory of 𝐺 = 𝑆𝑈(𝑛) for
𝑛 ∈ {2, 3} with respect to the adjoint action of 𝐺 on itself and the equivariant twist described by
the Fell bundle  constructed in Corollary 3.12. This is defined to be the 𝐺-equivariant operator
algebraic 𝐾-theory of the 𝐺-𝐶∗-algebra 𝐶∗(), that is, 𝐾𝐺

∗ (𝐶
∗()).
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5.1 The case 𝑺𝑼(𝟐)

For 𝐺 = 𝑆𝑈(2) we have 𝓁 = 1. The map 𝑞∶ 𝐺 → Δ1 can be described as follows: Since the eigen-
values of any g ∈ 𝑆𝑈(2) are conjugate to one another, each g ≠ ±1has a unique eigenvalue𝜆g with
non-negative imaginary part. Note that g ↦ arg(𝜆g ) extends to all of 𝐺. Let 𝑞∶ 𝑆𝑈(2) → [0, 1] be
given by

𝑞(g) =
arg(𝜆g )

𝜋
∈ [0, 1].

If we pick 𝛿𝑛 =
2
3
the spectral sequence from Proposition 4.9 boils down to the Mayer–Vietoris

sequence for the 𝐺-equivariant closed cover of 𝑆𝑈(2) by 𝑉0 = 𝑞−1([0, 2
3
]) and 𝑉1 = 𝑞−1([ 1

3
, 1]) in

this case, which reduces to the following six-term exact sequence due to the vanishing𝐾𝐺
1
-terms:

where 𝑅𝐹(𝕋) = 𝑅(𝕋)[𝐹(𝜌{0,1})
−1] and 𝑅𝐹(𝑆𝑈(2)) = 𝑅(𝑆𝑈(2))[𝐹(𝜌)−1]. Let 𝜌 be the standard rep-

resentation of 𝑆𝑈(2), then

𝑅𝐹(𝑆𝑈(2)) ≅ ℤ[𝜌][𝐹(𝜌)−1] ,

𝑅𝐹(𝕋) ≅ ℤ[𝑡, 𝑡−1][𝐹(𝑡 + 𝑡−1)−1]

and the restriction to 𝕋maps 𝜌 to 𝑡 + 𝑡−1. Note that 𝑡−1 ∈ ℤ[𝑡, 𝑡−1] corresponds to the dual repre-
sentation ℂ∗ of 𝕋.
Observe that 𝐹(ℂ) is a representation of 𝕋, which we will identify with its corresponding poly-

nomial in ℤ[𝑡, 𝑡−1] and denote by 𝐹(𝑡). Let 𝛼 ∈ Aut(ℤ[𝑡, 𝑡−1]) be the ring automorphism given
by 𝛼(𝑡) = 𝑡−1. Note that 𝛼(𝐹(𝑡)) = 𝐹(𝑡−1), where the right-hand side agrees with 𝐹(ℂ∗) and that
𝑅𝐹(𝑆𝑈(2)) agrees with the fixed points of 𝑅𝐹(𝕋) with respect to 𝛼.

Lemma 5.1. As a module over 𝑅𝐹(𝑆𝑈(2)) the ring 𝑅𝐹(𝕋) is free of rank 2 and 𝛽 = {1, 𝑡} is a basis.

Proof. Let 𝑞 = 𝑡 + 𝑡−1. Since localisations of free modules are free, it suffices to show that 𝑓 ∈

ℤ[𝑡, 𝑡−1] can be uniquelywritten as 𝑓 = g1 + 𝑡g2 with g𝑖 ∈ ℤ[𝑞] ⊂ ℤ[𝑡, 𝑡−1]. Let 𝛼 ∈ Aut(ℤ[𝑡, 𝑡−1])
be given by 𝛼(𝑡) = 𝑡−1. Let

g1 =
𝑡−1𝑓 − 𝑡𝛼(𝑓)

𝑡−1 − 𝑡
, g2 =

𝛼(𝑓) − 𝑓

𝑡−1 − 𝑡
.

Note that 𝛼(g𝑖) = g𝑖 for 𝑖 ∈ {1, 2} and 𝑓 = g1 + 𝑡g2. Let 𝑚 ∈ ℤ and consider 𝑓 = 𝑡𝑚. In this case,
the numerator is divisible by the denominator and g𝑖 ∈ ℤ[𝑞]. Using the linearity of the expres-
sions in 𝑓 we see that g𝑖 ∈ ℤ[𝑞] holds in general. Suppose that g1 + 𝑡g2 = g ′

1
+ 𝑡g ′

2
for another
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pair g ′
𝑖
∈ ℤ[𝑞]. Applying 𝛼 to both sides we obtain(

1 𝑡

1 𝑡−1

)(
g1
g2

)
=

(
1 𝑡

1 𝑡−1

)(
g ′
1

g ′
2

)
.

Multiplication by the matrix (𝑡
−1 −𝑡
−1 1 ) yields (𝑡−1 − 𝑡)g𝑖 = (𝑡−1 − 𝑡)g ′

𝑖
and a comparison of coeffi-

cients gives g𝑖 = g ′
𝑖
. □

Lemma 5.2. If we identify 𝑅𝐹(𝕋) with 𝑅𝐹(𝑆𝑈(2)) ⊕ 𝑅𝐹(𝑆𝑈(2)) using the basis 𝛽 = {1, 𝑡} from
Lemma 5.1, then the homomorphism

𝑑∶ 𝑅𝐹(𝑆𝑈(2)) ⊕ 𝑅𝐹(𝑆𝑈(2)) → 𝑅𝐹(𝕋)

is represented by the matrix (
1 −g1(𝐹)
0 −g2(𝐹)

)
for polynomials g𝑖(𝐹) ∈ 𝑅𝐹(𝑆𝑈(2)) given by

g1(𝐹) =
𝑡−1𝐹(𝑡) − 𝑡𝐹(𝑡−1)

𝑡−1 − 𝑡
and g2(𝐹) =

𝐹(𝑡−1) − 𝐹(𝑡)

𝑡−1 − 𝑡
. (5.1)

(Note that g𝑖(𝐹) satisfies 𝛼(g𝑖(𝐹)) = g𝑖(𝐹) and therefore describes an element in 𝑅𝐹(𝑆𝑈(2)).)

Proof. We can identify 𝐾𝐺
0
(𝖬∞

𝐹
) ≅ 𝑅𝐹(𝑆𝑈(2)) and 𝐾𝕋

0
(𝖬∞

𝐹
) ≅ 𝑅𝐹(𝕋). Using these isomorphisms,

the homomorphism 𝑑 fits into the commutative diagram

(5.2)

where the upper horizontal map is induced by the inclusions𝑉0 ∩ 𝑉1 → 𝑉𝑖 for 𝑖 ∈ {0, 1}. The two
vertical isomorphisms are constructed as follows: Both 𝑋𝑖 ≅ 𝐺∕𝐺𝑖 =∗ are one-point spaces. By
Lemma 4.8, the inclusions 𝑋𝑖 → 𝑉𝑖 are 𝐺-equivariant homotopy equivalences. We will choose
specific Morita equivalences between 𝐶∗()(𝑉𝑖) and 𝐶(𝑉𝑖,𝖬

∞
𝐹
), which give rise to the following

isomorphisms

where the first map is induced by the Morita equivalence and the second by the inclusion 𝑋𝑖 →

𝑉𝑖 . Let 𝜔0 = −1 and 𝜔1 = exp(𝜋𝑖
6
). Consider the sections 𝜎𝑖 ∶ 𝑉𝑖 → 𝑌 given by 𝜎𝑖(g) = (g , 𝜔𝑖) for

𝑖 ∈ {0, 1}, which are well-defined by our choice of 𝛿 in the definition of 𝑉𝑖 . By Lemma 4.3, they
induce equivariant Morita equivalences 𝖷𝑉𝑖

between 𝐶∗()(𝑉𝑖) and 𝐶(𝑉𝑖,𝖬
∞
𝐹
).
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For the vertical isomorphismon the right-hand side, we restrict theMorita equivalence induced
by 𝖷𝑉0

to 𝑉0 ∩ 𝑉1 and use

with the first map induced by the equivalence and the second by

𝐺∕𝕋 ≅ 𝑋{0,1} → 𝑉0 ∩ 𝑉1, [g] ↦ g
(
𝑖 0

0 −𝑖

)
g−1.

We obtain the following description of 𝑑: If 𝑑(𝐻0,𝐻1) = 𝑑(0)(𝐻0) + 𝑑(1)(𝐻1), then 𝑑(𝑖) fits into the
following commutative diagram:

where the tensor product on the middle horizontal arrow is taken over 𝐶∗()(𝑉0 ∩ 𝑉1) and the
bimodules have to be restricted to 𝑉0 ∩ 𝑉1. In the case 𝑖 = 0 the bimodule 𝖷

op
𝑉0

⊗ 𝖷𝑉0
is triv-

ial. Let𝐻0 ∈ 𝑅(𝐺) ⊂ 𝐾𝐺
0
(𝖬∞

𝐹
). Using the isomorphism𝐾𝐺

0
(𝐶(𝐺∕𝕋,𝖬∞

𝐹
)) ≅ 𝐾𝕋

0
(𝖬∞

𝐹
), the element

𝑑(0)(𝐻0) agreeswith the restriction of𝐻0 to𝕋. This gives the first column of thematrix in the state-
ment.
Let 𝐼 = {0, 1} and define 𝜎𝐼 ∶ 𝑉𝐼 →  by 𝜎𝐼(g) = (g , 𝜔1, 𝜔0). Note that this is well-defined and

we have the following isomorphism of bimodules:

𝖷
op
𝑉1

⊗ 𝖷𝑉0
≅ 𝐶(𝑉𝐼, 𝜎

∗
𝐼 ).

All elements of 𝑋𝐼 have eigenvalues ±𝑖. Therefore, over 𝑋𝐼 this bimodule restricts to continuous
sections of the bundle with fibre 𝐸g ⊗𝖬∞

𝐹
, where

𝐸g = 𝐹(Eig(g , 𝑖)) ,

that is, it corresponds to taking the tensor product with the vector bundle 𝐸 → 𝐺∕𝕋, which is
isomorphic to 𝐹(𝐿), where 𝐿 → 𝐺∕𝕋 is the canonical line bundle associated to the principal 𝕋-
bundle 𝐺 → 𝐺∕𝕋. The fibre of 𝐹(𝐿) over [𝑒] ∈ 𝐺∕𝕋 is the representation 𝐹(ℂ), where 𝕋 acts on ℂ

by its defining representation. The proof of Lemma 5.1 gives a decomposition of 𝐹(𝑡) ∈ 𝑅(𝕋)with
respect to the basis 𝛽 in terms of g1(𝐹) and g2(𝐹). Together with the sign convention in the exact
sequence this explains the second column. □

Theorem 5.3. Let 𝐹 be an exponential functor with 𝐹(ℂ) ≇ 𝐹(ℂ∗) as 𝕋-representations. The equiv-
ariant higher twisted 𝐾-theory of 𝐺 = 𝑆𝑈(2) with twist described by the Fell bundle  constructed
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from 𝐹 is given by

𝐾𝐺
0 (𝐶

∗()) = 0 ,

𝐾𝐺
1 (𝐶

∗()) = 𝑅𝐹(𝑆𝑈(2))∕𝐽𝐹

as 𝑅𝐹(𝑆𝑈(2))-modules, where 𝐽𝐹 is generated by the representation 𝜎𝐹 with character 𝜒𝐹 given by

𝜒𝐹 =
1
Δ
det

(
𝐹(𝑡) 𝐹(𝑡−1)

1 1

)
where Δ = 𝑡 − 𝑡−1. In particular, note that 𝐾𝐺

1
(𝐶∗()) is always a quotient ring of 𝑅𝐹(𝑆𝑈(2)).

Proof. First note that 𝜒𝐹 coincides with the polynomial g2(𝐹) ∈ 𝑅𝐹(𝑆𝑈(2)) from (5.1). The
localisation of an integral domain at any multiplicative subset continues to be an integral
domain. By hypothesis we have g2(𝐹) ≠ 0. Thus, the matrix representation of 𝑑 from Lemma 5.2
implies that 𝑑 is injective, which proves 𝐾𝐺

0
(𝐶∗()) = 0. The group 𝐾𝐺

1
(𝐶∗()) is isomor-

phic to the cokernel of 𝑑 and the matrix representation of 𝑑 implies that it has the claimed
form. □

5.1.1 Explicit computations for 𝑆𝑈(2)

We will conclude with a section containing some explicit computations. The case of the classical
twist over 𝑆𝑈(2) at level 𝑘 ∈ ℕ corresponds to the choice

𝐹 =
(⋀top)⊗𝑘

.

In this situation we have𝖬∞
𝐹
≅ ℂ. This implies

𝑅𝐹(𝑆𝑈(2)) ≅ 𝑅(𝑆𝑈(2)).

Together with

𝜒𝐹 =
𝑡𝑘 − 𝑡−𝑘

𝑡 − 𝑡−1
= 𝜌𝑘−1,

we obtain 𝐾𝐺
1
(𝐶∗()) = 𝑅(𝑆𝑈(2))∕(𝜌𝑘−1), that is, the Verlinde ring of 𝐿𝑆𝑈(2) as expected.

To see what happens in the case of higher twists, let 𝑏1, … , 𝑏𝑘 ∈ ℕ and𝑊𝑗 = ℂ𝑏𝑗 . Consider

𝐹𝑗(𝑉) =
⨁
𝑚∈ℕ0

𝑊⊗𝑚
𝑗

⊗
⋀𝑚

(𝑉)

and define 𝐹 = 𝐹1 ⊗⋯⊗𝐹𝑘. By [25, Subsection 2.2] each 𝐹𝑗 is an exponential functor and so
is 𝐹. The character of the irreducible representation 𝜌𝑚 of 𝑆𝑈(2) with highest weight 𝑚 in 𝑅(𝕋)
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is

𝑡𝑚 + 𝑡𝑚−2 +⋯ + 𝑡−𝑚+2 + 𝑡−𝑚 =
𝑡𝑚+1 − 𝑡−(𝑚+1)

𝑡 − 𝑡−1
.

With 𝐹(𝑡) = 𝐹1(𝑡)⋯𝐹𝑘(𝑡) we compute 𝜒𝐹 with 𝜒𝐹𝑖 = 1 + 𝑏𝑖 𝑡 as follows:

𝜒𝐹 =

∏𝑘
𝑖=1(1 + 𝑏𝑖 𝑡) −

∏𝑘
𝑖=1(1 + 𝑏𝑖 𝑡

−1)

𝑡 − 𝑡−1
=

𝑘∑
𝓁=1

⎛⎜⎜⎜⎝
∑

𝐼⊂{1,…,𝑘}|𝐼|=𝓁
𝑏𝐼

⎞⎟⎟⎟⎠𝜌𝓁−1,
where 𝑏𝐼 is the product over all 𝑏𝑖 with 𝑖 ∈ 𝐼. In case 𝑏1 = ⋯ = 𝑏𝑘 = 1, that is, for𝐹(𝑉) =

⋀∗(𝑉)⊗𝑘

we obtain

𝜒𝐹 =
𝑘∑

𝓁=1

(
𝑘
𝓁

)
𝜌𝓁−1.

Using the fusion rules for 𝑆𝑈(2) the corresponding rings can be computed explicitly by expressing
the ideals in terms of 𝜌 = 𝜌1. For example,

𝑘 = 3∶ 𝜒𝐹 = 3 + 3𝜌1 + 𝜌2 = 𝜌2 + 3𝜌 + 2 = (𝜌 + 2)(𝜌 + 1) ,

𝑘 = 4∶ 𝜒𝐹 = 4 + 6𝜌1 + 4𝜌2 + 𝜌3 = 𝜌(𝜌 + 2)2 ,

𝑘 = 5∶ 𝜒𝐹 = 5 + 10𝜌1 + 10𝜌2 + 5𝜌3 + 𝜌4 = (𝜌 + 2)2(𝜌2 + 𝜌 − 1) ,

𝑘 = 6∶ 𝜒𝐹 = 6 + 15𝜌1 + 20𝜌2 + 15𝜌3 + 6𝜌4 + 𝜌5 = (𝜌 + 2)3(𝜌2 − 1).

Note that the element 𝜌 + 2 =
⋀∗(𝜌) is a unit in 𝑅𝐹(𝑆𝑈(2)). For odd tensor powers of the full

exterior algebra twist, it is possible to compute all of these polynomials explicitly. Let 𝑘 = 2𝑚 + 1

and consider

𝑝𝑚(𝐹) =
2𝑚+1∑
𝓁=1

(
2𝑚 + 1

𝓁

)
𝜌𝓁−1.

With 𝜌1 = 𝜌 and 𝜌0 = 1 tensor products of irreducible representations 𝜌𝑖 of 𝑆𝑈(2) decompose as
follows

𝜌 ⋅ 𝜌𝑖 = 𝜌𝑖−1 + 𝜌𝑖+1.

Lemma 5.4. Let 0 ⩽ 𝓁 ⩽ 𝑚. In the ring 𝑅(𝑆𝑈(2)) we have

(𝜌𝑚 + 𝜌𝑚−1)(𝜌 + 2)𝓁 =
𝓁∑

𝑘=−(𝓁+1)

(
2𝓁 + 1

𝑘 + 𝓁 + 1

)
𝜌𝑚+𝑘

(where we define 𝜌−1 = 0).
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Proof. The statement is true for 𝓁 = 0. Now assume that it is true for 0, … ,𝓁 with 𝓁 ⩽ 𝑚 − 1 and
note that

(𝜌𝑚 + 𝜌𝑚−1)(𝜌 + 2)𝓁+1 =

(
𝓁∑

𝑘=−(𝓁+1)

(
2𝓁 + 1

𝑘 + 𝓁 + 1

)
𝜌𝑚+𝑘

)
(𝜌 + 2)

=
𝓁∑

𝑘=−(𝓁+1)

(
2𝓁 + 1

𝑘 + 𝓁 + 1

)
(𝜌𝑚+𝑘−1 + 𝜌𝑚+𝑘+1) +

𝓁∑
𝑘=−(𝓁+1)

2

(
2𝓁 + 1

𝑘 + 𝓁 + 1

)
𝜌𝑚+𝑘

=
𝓁+1∑

𝑘=−((𝓁+1)+1)

[(
2𝓁 + 1
𝑘 + 𝓁

)
+ 2

(
2𝓁 + 1

𝑘 + 𝓁 + 1

)
+

(
2𝓁 + 1

𝑘 + 𝓁 + 2

)]
𝜌𝑚+𝑘.

Now since
(𝑁+2
𝐾+2

)
=
(𝑁
𝐾

)
+ 2
( 𝑁
𝐾+1

)
+
( 𝑁
𝐾+2

)
by Pascal’s triangle, the last sum agrees with

𝓁+1∑
𝑘=−((𝓁+1)+1)

(
2(𝓁 + 1) + 1

𝑘 + (𝓁 + 1) + 1

)
𝜌𝑚+𝑘 ,

which proves the statement. □

For 𝑚 = 𝓁 we immediately obtain the following corollary by shifting the summation index
appropriately.

Corollary 5.5. The polynomial 𝑝(𝐹) factors as follows:

𝑝𝑚(𝐹) = (𝜌𝑚 + 𝜌𝑚−1)(𝜌 + 2)𝑚.

To understand the quotient ring 𝑅𝐹(𝑆𝑈(2))∕(𝑝𝑚(𝐹)) it is beneficial to choose a new set of gen-
erators 𝜈𝑘 with 𝜈0 = 1 and

𝜈𝑘 = 𝜌𝑘 + 𝜌𝑘−1 ,

which satisfy 𝜈𝑘 ⋅ 𝜈1 = 𝜈𝑘+1 + 𝜈𝑘 + 𝜈𝑘−1. In the quotient ring the relation 𝜈𝑚 = 0 holds, and 𝜈1 + 1

is a unit due to the localisation. Surprisingly, the localisation turns out to be redundant as the
following lemma shows.

Lemma 5.6. The inverse of 𝜈1 + 1 in the ring 𝑅 = 𝑅𝐹(𝑆𝑈(2))∕(𝑝𝑚(𝐹)) is given by the element

𝑥 =
𝑚−1∑
𝑖=0

(−1)𝑖(𝑚 − 𝑖) 𝜈𝑖 = 𝑚 +
𝑚−1∑
𝑖=1

(−1)𝑖(𝑚 − 𝑖) 𝜈𝑖.

Since 𝑥 ∈ 𝑅(𝑆𝑈(2)) we have 𝑅(𝑆𝑈(2))∕(𝜈𝑚) ≅ 𝑅.

Proof. First note that

(𝜈1 + 1)𝑥 = 𝜈1𝑥 + 𝑥 = 𝑚𝜈1 + 𝑚 +
𝑚−1∑
𝑖=1

(−1)𝑖(𝑚 − 𝑖)
[
𝜈𝑖−1 + 2𝜈𝑖 + 𝜈𝑖+1

]
.
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Shifting the summations appropriately we end up with

𝑚𝜈1 + 𝑚 − (𝑚 − 1) + (𝑚 − 2)𝜈1 + (−1)𝑚−12𝜈𝑚−1 − 2(𝑚 − 1)𝜈1

− (−1)𝑚−12𝜈𝑚−1 +
𝑚−2∑
𝑗=2

(−1)𝑗(−(𝑚 − 𝑗 − 1) + 2(𝑚 − 𝑗) − (𝑚 − 𝑗 + 1))𝜈𝑗

which gives 1 after cancelling all terms. □

We note that the case 𝑘 = 5 reproduces the Yang-Lee fusion rules as shown by our observations
above.

Corollary 5.7. The equivariant higher twisted𝐾-theory of 𝑆𝑈(2)with twist given by the exponential
functor 𝐹 = (

⋀∗)⊗5 satisfies

𝐾𝐺
1 (𝐶

∗()) ≅ ℤ ⊕ ℤ

with basis {1, 𝑥}, where 𝑥 is the class of −𝜌. It carries a ring structure given by the Yang–Lee fusion
rules 𝑥2 = 𝑥 + 1.

Remark 5.8. In general, the fusion rules for the ring 𝑅 from Lemma 5.6 with respect to the gener-
ator 𝜈1 are represented by the following tadpole diagram:

This graph is reminiscent of the following: Let 𝜌0 = id, 𝜌2, … , 𝜌2(𝑚−1) be the objects in the even
part of the fusion category for the loop group of 𝑆𝑈(2) at level 2𝑚 + 1. The fusion rules with
respect to the generator 𝜌2 also produce the above tadpole graph.

5.2 The case 𝑺𝑼(𝟑)

The group 𝐺 = 𝑆𝑈(3) has rank 𝓁 = 2. Let 𝐹 be an exponential functor and let 𝜌 be the standard
representation of 𝐺 on ℂ3. Consider the following localisations of representation rings:

𝑅𝐹(𝐺𝐼) = 𝑅(𝐺𝐼)
[
𝐹(𝜌|𝐺𝐼 )−1].

For |𝐼| = 1 we have 𝐺𝐼 = 𝑆𝑈(3) and we will denote 𝐺{𝑖} by 𝐺𝑖 . In case |𝐼| = 2 the group 𝐺𝐼 is iso-
morphic to𝑈(2) and the choice of 𝐼 determines an embedding𝑈(2) ⊂ 𝑆𝑈(3). If 𝐼 = {0, 1, 2}, then
𝐺𝐼 is the subgroup of all diagonal matrices, which is our choice of maximal torus 𝕋2 ⊂ 𝑆𝑈(3). The
𝐸1-page of the spectral sequence from Proposition 4.9 vanishes in odd rows and has the following
chain complex in the even rows:

(5.3)
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The generators for the representation rings are chosen as follows:

𝑅(𝑆𝑈(3)) ≅ ℤ[𝑠1, 𝑠2] ,

𝑅(𝑈(2)) ≅ ℤ[𝑠, 𝑑, 𝑑−1] ,

𝑅(𝕋2) ≅ ℤ[𝑡±1
1
, 𝑡±1
2
, 𝑡±1
3
]∕(𝑡1𝑡2𝑡3 − 1) ,

where 𝑠1 = 𝜌 is the standard representation of 𝑆𝑈(3), 𝑠2 =
⋀2 𝑠1, 𝑠 denotes the standard repre-

sentation of𝑈(2) on ℂ2 and 𝑑 is its determinant representation. The characters 𝑡𝑖 are obtained by
restricting the standard representation of 𝑆𝑈(3) to the maximal torus 𝕋2 and projecting to the 𝑖th
diagonal entry. Let 𝑟∶ 𝑅𝐹(𝑆𝑈(3)) → 𝑅𝐹(𝑈(2)) be the restriction homomorphism†. Thenwe have

𝑟(𝑠1) = 𝑠 + 𝑑−1 ,

𝑟(𝑠2) = 𝑑−1𝑠 + 𝑑.

Let 𝜆𝐹 = 𝐹(𝑑−1) and𝜇𝐹 = 𝐹(𝑠). Note that𝐹(𝑠 + 𝑑−1) = 𝐹(𝑠) ⋅ 𝐹(𝑑−1) is a unit in𝑅𝐹(𝑈(2)). Hence,
the same is true for 𝜆𝐹, 𝜇𝐹 ∈ 𝑅𝐹(𝑈(2)). To express the differential 𝑑0 in terms of the 𝑟, 𝜆𝐹 and 𝜇𝐹
we first need to give an explicit description of the map 𝑞∶ 𝑆𝑈(3) → Δ2: The eigenvalues of each
g ∈ 𝑆𝑈(3) can be uniquely written in the form

exp(2𝜋𝑖𝜅0), exp(2𝜋𝑖𝜅1), exp(2𝜋𝑖𝜅2) ,

where 𝜅0, 𝜅1, 𝜅2 ∈ ℝ satisfy
∑2

𝑗=0 𝜅𝑗 = 0 and

𝜅0 ⩾ 𝜅1 ⩾ 𝜅2 ⩾ 𝜅0 − 1.

Let 𝜇1 = diag( 2
3
, −1

3
, −1

3
) ∈ 𝔱 and 𝜇2 = diag( 1

3
, 1
3
, −2

3
) ∈ 𝔱 be the (duals of the) fundamental

weights. For any triple (𝜅0, 𝜅1, 𝜅2) as above, there are unique values 𝑠, 𝑡 ⩾ 0 with 𝑠 + 𝑡 ⩽ 1 and

diag(𝜅0, 𝜅1, 𝜅2) = 𝑠 𝜇1 + 𝑡 𝜇2. (5.4)

The map 𝑞∶ 𝑆𝑈(3) → Δ2 sends g ∈ 𝑆𝑈(3) to the point (1 − (𝑠 + 𝑡), 𝑠, 𝑡) in the simplex, that is, if
{𝑒0, 𝑒1, 𝑒2} denotes the standard basis ofℝ3, then 𝑞(exp(2𝜋𝑖𝜇𝑗)) agrees with 𝑒𝑗 . We choose 𝛿𝑛 =

17
24

as the constant for the closed cover of Δ2 given by 𝐴0,𝐴1, 𝐴2. The result is shown in Figure 2.
To express the differential 𝑑1 in terms of the representation rings, we first observe that we have

three inclusions 𝜄𝐼 ∶ 𝐺{0,1,2} → 𝐺𝐼 for 𝐼 ⊂ {0, 1, 2}with |𝐼| = 2. These induce three restrictionmaps

𝑟𝐼 ∶ 𝑅𝐹(𝐺𝐼) → 𝑅𝐹(𝐺{0,1,2}) ≅ 𝑅𝐹(𝕋
2).

Let 𝜈𝐹 = 𝐹(𝑡1) for 𝑡1 ∈ 𝑅(𝕋2) ⊂ 𝑅𝐹(𝕋
2) as defined above. In the next lemma, we write 𝑟𝑖𝑗 for 𝑟𝐼

with 𝐼 = {𝑖, 𝑗}.

Lemma 5.9. The trivialisations 𝑅𝐹(𝐺𝐼) ≅ 𝐾𝐺
0
(𝐶∗()(𝑋𝐼)) in the spectral sequence can be chosen in

such a way that the differential 𝑑0 is given by the following expression

𝑑0(𝑥0, 𝑥1, 𝑥2) = (−𝑟(𝑥0) + 𝜆𝐹 ⋅ 𝑟(𝑥1), −𝑟(𝑥1) + 𝜇−1𝐹 ⋅ 𝑟(𝑥2), −𝑟(𝑥0) + 𝜆−1𝐹 ⋅ 𝑟(𝑥2)),

† The three inclusions 𝐺𝐼 ⊂ 𝐺 for |𝐼| = 2 induce the same map on representation rings.
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F IGURE 2 The three closed sets 𝐴𝑖 covering Δ2

where 𝑥𝑖 ∈ 𝑅𝐹(𝐺𝑖) = 𝑅𝐹(𝑆𝑈(3)) and the three components on the right-hand side correspond to the
subsets 𝐼 = {0, 1}, {1, 2} and {0, 2}, respectively. Moreover, 𝑑1 takes the following form

𝑑1(𝑦01, 𝑦12, 𝑦02) = 𝑟01(𝑦01) + 𝜈𝐹 ⋅ 𝑟12(𝑦12) − 𝑟02(𝑦02) ,

where 𝑦𝑖𝑗 ∈ 𝑅𝐹(𝐺{𝑖,𝑗}).

Proof. As above we write 𝑋𝑖 for 𝑋{𝑖} and similarly for 𝐺𝑖 and 𝑉𝑖 . Observe that 𝐺𝑖 = 𝐺 implies that
𝑋𝑖 is a one-point space for 𝑖 ∈ {0, 1, 2}. We will first discuss the construction of the differential 𝑑0.
Restriction along the 𝐺-equivariant homotopy equivalence 𝑋𝑖 → 𝑉𝑖 induces an isomorphism

The differential 𝑑0 is an alternating sumof restriction homomorphisms along the inclusions of the
form𝑉{𝑖,𝑗} → 𝑉𝑘 with𝑘 ∈ {𝑖, 𝑗} composedwith isomorphisms as shown in the following diagram:

We will fix the isomorphisms on the left-hand side by choosing an equivariant trivialisation of
𝐶∗()(𝑉𝑘) via Morita equivalences given by Lemma 4.3. Let

𝜔0 = −1 , 𝜔1 = exp
(
2𝜋𝑖 1

6

)
, 𝜔2 = exp

(
2𝜋𝑖 5

6

)
and define 𝜎𝑘 ∶ 𝑉𝑘 → 𝑌 by 𝜎𝑘(g) = (g , 𝜔𝑘). We claim that this is well-defined and will show this
for 𝑘 = 0. The other cases follow similarly. To see that𝜔0 ∉ EV(g) for all g ∈ 𝑉0 it suffices to prove
that all coordinates 𝜅𝑖 of 𝑞(g) are different from ±1

2
for all g ∈ 𝑉0. By (5.4), we have

𝜅0 =
2
3
𝑠 +

1
3
𝑡 =

1
2

⇔ 𝑠 =
3 − 2𝑡
4
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F IGURE 3 The red lines correspond to 𝑆𝑈(3) elements with at least one eigenvalue equal to −1. As can be
seen from this picture the set 𝐴0 avoids those two lines

and the condition 𝑠 + 𝑡 ⩽ 1 implies that 0 ⩽ 𝑡 ⩽ 1
2
. Likewise,

𝜅2 = −
1
3
𝑠′ −

2
3
𝑡′ = −

1
2

⇔ 𝑠′ =
3 − 4𝑡′

2

and 𝑠′ + 𝑡′ ⩽ 1, 𝑠′ ⩾ 0 yield the constraints 1
2
⩽ 𝑡′ ⩽ 3

4
. Note that the coordinate 𝜅1 is never equal

to±1
2
, since this would contradict the constraints imposed by 𝜅0 ⩾ 𝜅1 ⩾ 𝜅2 ⩾ 𝜅0 − 1 and 𝜅0 + 𝜅1 +

𝜅2 = 0. Therefore, the matrices with at least one eigenvalue equal to −1 are parametrised by the
two line segments described above and shown in Figure 3. Our choice for 𝛿𝑛 was made in such a
way that the resulting 𝐴0 avoids this set proving our claim for 𝑉0. The situation will look similar
for 𝑉1 and 𝑉2 insofar as Figure 3 just has to be rotated accordingly.
By Lemma 4.3 the section 𝜎𝑘 constructed above gives an equivariant Morita equivalence 𝖷𝑉𝑘

between 𝐶∗()(𝑉𝑘) and 𝐶(𝑉𝑘,𝖬
∞
𝐹
). Let 𝐼 ⊂ {0, 1, 2} and denote the minimal element of 𝐼 by 𝑖0.

The restriction of 𝖷𝑉𝑖0
to 𝑉𝐼 is a Morita equivalence between 𝐶∗()(𝑉𝐼) and 𝐶(𝑉𝐼,𝖬

∞
𝐹
) and the

trivialisation 𝑅𝐹(𝐺𝐼) ≅ 𝐾𝐺
0
(𝐶∗()(𝑋𝐼)) is induced by the restricting further to𝑋𝐼 ⊂ 𝑉𝐼 . The differ-

ential 𝑑0 is a signed sum of components of the form

𝑑𝐼
𝑘
∶ 𝐾𝐺

0 (𝖬
∞
𝐹 ) → 𝐾𝐺

0 (𝐶(𝐺∕𝐺𝐼,𝖬
∞
𝐹 ))

with 𝑘 ∈ 𝐼. Just as in Lemma 5.2 the 𝑑𝐼
𝑘
fits into the following commutative diagram:

From this we see that if 𝐼 = {𝑖, 𝑗} with 𝑖 < 𝑗 and 𝑘 = 𝑖, then after identifying the domain of 𝑑𝐼
𝑘

with 𝑅𝐹(𝐺) and the codomain with 𝑅𝐹(𝐺𝐼) the map agrees with the restriction homomorphism.
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F IGURE 4 The table shows the eigenvalue 𝜆 of g ∈ 𝑋𝐼 between 𝜔𝑖 and 𝜔𝑗 in red with 𝑒(𝜑) = 𝑒2𝜋𝑖𝜑 and the
resulting factor in the right-hand column

Let 𝐼 = {𝑖, 𝑗} with 𝑖 < 𝑗 and define 𝜎𝐼 ∶ 𝑉𝐼 → 𝑌 by 𝜎𝐼(g) = (g , 𝜔𝑗, 𝜔𝑖). In this situation, we have

𝖷
op
𝑉𝑗

⊗ 𝖷𝑉𝑖
≅ 𝐶(𝑉𝐼, 𝜎

∗
𝐼 ).

Let 𝐸 → 𝑉𝐼 be the vector bundle with fibre over g ∈ 𝑉𝐼 given by

𝐸g = 𝐹(Eig(g , 𝜆)),

where 𝜆 ∈ EV(g) is the eigenvalue of g between 𝜔𝑗 and 𝜔𝑖 . Then 𝜎∗𝐼  → 𝑉𝐼 is either of the form
𝐸 ⊗𝖬∞

𝐹
if 𝜔𝑗 < 𝜔𝑖 or (𝐸 ⊗𝖬∞

𝐹
)op if 𝜔𝑖 < 𝜔𝑗 . Note that 𝐸|𝑋𝐼

≅ 𝐹(𝑄), where 𝑄 → 𝑋𝐼 is the vec-
tor bundle associated to the principal 𝐺𝐼-bundle 𝐺 → 𝐺∕𝐺𝐼 either using the inverse determinant
representation 𝑑−1 or the standard representation 𝑠 depending onwhether dim(Eig(g , 𝜆)) = 1 or 2
respectively. Using the identifications 𝐾𝐺

0
(𝖬∞

𝐹
) ≅ 𝑅𝐹(𝐺) and 𝐾𝐺

0
(𝐶(𝑋𝐼,𝖬

∞
𝐹
)), ≅ 𝑅𝐹(𝐺𝐼), the map

𝑑𝐼
𝑗
therefore corresponds to a factor of the form 𝐹(𝑑−1)±1 or 𝐹(𝑠)±1 times the restriction homo-

morphism. The resulting factors are listed in Figure 4. Together with the sign convention for the
exact sequence this explains the form of 𝑑0.
The same reasoning can be used for 𝑑1. Let 𝐼 ⊂ {0, 1, 2} be a subset with |𝐼| = 2 and let 𝐽 =

{0, 1, 2}. The differential 𝑑1 decomposes into a sum

𝑑1(𝑥01, 𝑥12, 𝑥02) = 𝑑{0,1}(𝑥01) + 𝑑{1,2}(𝑥12) − 𝑑{0,2}(𝑥02)

with three maps 𝑑𝐼 ∶ 𝐾𝐺
0
(𝐶(𝑋𝐼,𝖬

∞
𝐹
)) → 𝐾𝐺

0
(𝐶(𝑋𝐽,𝖬

∞
𝐹
)) that fit into the following commutative

diagram:

Just as above we see that 𝑑𝐼 agrees with the restriction homomorphism 𝑟𝐼 in the cases 𝐼 = {0, 1}

and 𝐼 = {0, 2}, since 𝖷op
𝑉𝐼
⊗ 𝖷𝑉𝐽

is trivial then. The only remaining case is 𝐼 = {1, 2}, where we
have

𝖷
op
𝑉𝐼
⊗ 𝖷𝑉𝐽

≅ 𝖷
op
𝑉1

⊗ 𝖷𝑉0
≅ 𝐶(𝑉𝐽, 𝜎

∗
{0,1}

).
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The eigenvalues for all g ∈ 𝑋𝐽 are 𝑒(
1
3
), 1, 𝑒(−1

3
) and only the first one lies between 𝜔1 and 𝜔0. Let

𝜆 = 𝑒(1
3
) and let 𝐸 → 𝑋𝐽 be the vector bundle with fibres given by

𝐸g = 𝐹(Eig(g , 𝜆)).

It is isomorphic to 𝐹(𝑄), where𝑄 → 𝑋𝐽 is the vector bundle associated to the principal 𝐺𝐽-bundle
𝐺 → 𝐺∕𝐺𝐽 via the representation 𝑡1. Thus, by the same argument as before the map 𝑑{1,2} agrees
with 𝐹(𝑡1) times the restriction homomorphism 𝑟12. □

5.2.1 Restriction to maximal torus

As above, denote by 𝔱 the Lie algebra of the maximal torus 𝕋2 ⊂ 𝑆𝑈(3). In this section, we will
prove that the chain complex in Lemma 5.9 computes the equivariant (Bredon) cohomology of
𝔱 with respect to an extended Weyl group action and a twisted coefficient system. This approach
is reminiscent of the method used in [1] to compute the (rational) twisted equivariant 𝐾-theory
of actions with isotropy of maximal rank and classical twist. We will focus here on the action of
𝐺 = 𝑆𝑈(3) on itself by conjugation with non-classical twists. An extension of this approach to
𝐺 = 𝑆𝑈(𝑛) will be part of upcoming work.
Let 𝑊 = 𝑆3 be the Weyl group of 𝑆𝑈(3). Our identification of 𝕋2 with the diagonal matrices

induces a corresponding isomorphism

𝔱 ≅ {(ℎ1, ℎ2, ℎ3) ∈ ℝ3 | ℎ1 + ℎ2 + ℎ3 = 0}.

The fundamental group 𝜋1(𝕋, 𝑒) agrees with the lattice Λ in 𝔱 obtained as the kernel of the expo-
nential map. We will identify the two, which gives

𝜋1(𝕋
2, 𝑒) = Λ = {(𝑘1, 𝑘2, 𝑘3) ∈ ℤ3 | 𝑘1 + 𝑘2 + 𝑘3 = 0}. (5.5)

The Weyl group acts on 𝔱 and Λ by permuting the coordinates and we define

𝑊 = 𝜋1(𝕋
2)⋊𝑊.

Note that 𝑊 also acts on ℤ3 in the same way. Let 𝑊 = ℤ3 ⋊𝑊 and observe that 𝑊 ⊂ 𝑊 as a
normal subgroup. Given an exponential functor 𝐹 we obtain a group homomorphism

𝜑∶ 𝜋1(𝕋
2, 𝑒) → 𝐺𝐿1(𝑅𝐹(𝕋

2)) , 𝜑(𝑘1, 𝑘2, 𝑘3) = 𝐹(𝑡1)
𝑘1 ⋅ 𝐹(𝑡2)

𝑘2 ⋅ 𝐹(𝑡3)
𝑘3 .

If we define 𝐹(−𝑡𝑖) = 𝐹(𝑡𝑖)
−1 we can rewrite the right-hand side as

𝜑(𝑘1, 𝑘2, 𝑘3) = 𝐹(𝑘1𝑡1 + 𝑘2𝑡2 + 𝑘3𝑡3).

Combining 𝜑 with the permutation action of𝑊 on 𝑅𝐹(𝕋
2) results in an action of𝑊 on 𝑅𝐹(𝕋

2).
Just as in [1], this gives rise to local coefficient systems andℚ as follows

(𝑊∕𝐻) = 𝑅𝐹(𝕋
2)𝐻, ℚ(𝑊∕𝐻) = 𝑅𝐹(𝕋

2)𝐻 ⊗ ℚ.
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F IGURE 5 The cover of 𝔱 induced by the cover of Δ2

The simplex Δ2 ⊂ 𝔱 is a fundamental domain for the action of𝑊 on 𝔱 and turns it into a𝑊-CW-
complex, in which the 𝑘-cells are labelled by subsets 𝐼 ⊂ {0, 1, 2} with |𝐼| = 𝑘 + 1. We have three
0-cells, three 1-cells and one 2-cell. Let 𝑊𝐼 be the stabiliser of 𝜉𝐼 . Likewise let 𝑊𝐼 ⊂ 𝑊 be the
stabiliser of exp(2𝜋𝑖𝜉𝐼). The restriction maps 𝑅𝐹(𝐺𝐼) → 𝑅𝐹(𝕋

2) induce ring isomorphisms

𝑟𝐼 ∶ 𝑅𝐹(𝐺𝐼) → 𝑅𝐹(𝕋
2)𝑊𝐼 .

As above let 𝑞∶ 𝐺 → Δ2 be the quotientmap that parametrises conjugacy classes. Let �̂� = 𝑞|𝕋2◦𝑞𝔱,
where 𝑞𝔱 ∶ 𝔱 → 𝕋2 is the universal covering. Let 𝐵𝐼 = �̂�−1(𝐴𝐼) ⊂ 𝔱. Note that {𝐵0, 𝐵1, 𝐵2} is a𝑊-
equivariant cover of 𝔱 as shown in Figure 5. It has the property that the inclusionmap𝑊 ⋅ 𝜉𝐼 → 𝐵𝐼
is an equivariant homotopy equivalence.
For any subset 𝐼 ⊂ {0, 1, 2} the Bredon cohomology𝐻𝑘

𝑊
(𝐵𝐼,) is only non-zero in degree 𝑘 = 0

where we have a natural isomorphism

𝐻0

𝑊
(𝐵𝐼;) ≅ 𝑅𝐹(𝕋

2)𝑊𝐼 .

For 𝐽 ⊂ 𝐼 the restriction homomorphism 𝐻0

𝑊
(𝐵𝐽;) → 𝐻0

𝑊
(𝐵𝐼,) translates into the natural

inclusion 𝑅𝐹(𝕋2)𝑊𝐽 ⊂ 𝑅𝐹(𝕋
2)𝑊𝐼 . The sum over all𝐻𝑞

𝑊
(𝐵𝐼;) with |𝐼| = 𝑝 + 1 forms the 𝐸1-page

of a spectral sequence that converges to 𝐻
𝑝+𝑞

𝑊
(𝔱;). By our above considerations this 𝐸1-page

boils down to the chain complex

𝐶𝑘

𝑊
(𝔱;) =

⨁
|𝐼|=𝑘+1 𝑅𝐹(𝕋

2)𝑊𝐼

with the differentials 𝑑cell
𝑘

∶ 𝐶𝑘

𝑊
(𝔱;) → 𝐶𝑘+1

𝑊
(𝔱;) given by alternating sums of inclusion homo-

morphisms.We can identify𝑊with the subgroup of𝑊 consisting of elements of the form (0, 𝑤) ∈

𝜋1(𝕋
2, 𝑒)⋊𝑊. Observe that𝑊𝑖 = 𝑊 = 𝑊0 for 𝑖 ∈ {0, 1, 2},𝑊{0,2} = 𝑊{0,2},𝑊{0,1} = 𝑊{0,1} andwe

have group isomorphisms

𝑊1 → 𝑊1, 𝑥 ↦ ((−1, 0, 0), 𝑒𝑊) ⋅ 𝑥 ⋅ ((1, 0, 0), 𝑒𝑊) ,

𝑊2 → 𝑊2, 𝑥 ↦ ((0, 0, 1), 𝑒𝑊) ⋅ 𝑥 ⋅ ((0, 0, −1), 𝑒𝑊).
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Here, 𝑒𝑊 denotes the neutral element of𝑊 and we used the conjugation action of𝑊 on𝑊. The
first isomorphism restricts to𝑊{1,2} → 𝑊{1,2}. These identifications induce corresponding isomor-
phisms of the fixed-point rings

�̃�1 ∶ 𝑅𝐹(𝕋
2)𝑊1 → 𝑅𝐹(𝕋

2)𝑊1, 𝑝 ↦ 𝐹(𝑡1) ⋅ 𝑝

�̃�2 ∶ 𝑅𝐹(𝕋
2)𝑊2 → 𝑅𝐹(𝕋

2)𝑊2, 𝑝 ↦ 𝐹(𝑡3)
−1 ⋅ 𝑝

�̃�{1,2} ∶ 𝑅𝐹(𝕋
2)𝑊{1,2} → 𝑅𝐹(𝕋

2)𝑊{1,2} , 𝑝 ↦ 𝐹(𝑡1) ⋅ 𝑝.

Define �̃�𝐼 ∶ 𝑅𝐹(𝕋
2)𝑊𝐼 → 𝑅𝐹(𝕋

2)𝑊𝐼 for all other 𝐼 ⊂ {0, 1, 2} to be the identity. Let 𝑟𝐼 =

�̃�𝐼◦𝑟𝐼 ∶ 𝑅𝐹(𝐺𝐼) → 𝑅𝐹(𝕋
2)𝑊𝐼 .

Lemma 5.10. The isomorphisms 𝑟𝐼 fit into the following commutative diagram:

In particular, the chain complex from Lemma 5.9 computes the𝑊-equivariant Bredon cohomology
𝐻∗
𝑊
(𝔱;) of 𝔱 with coefficients in.

Proof. Let 𝑟(𝑘) (respectively, �̃�(𝑘)) for 𝑘 ∈ {1, 2, 3} be the sum over all 𝑟𝐼 (respectively, �̃�𝐼) for all
𝐼 ⊂ {0, 1, 2} with |𝐼| = 𝑘 + 1. Consider

𝑑0 ∶
⨁
|𝐼|=1 𝑅𝐹(𝕋

2)𝑊𝐼 →
⨁
|𝐼|=2 𝑅𝐹(𝕋

2)𝑊𝐼 ,

𝑑1 ∶
⨁
|𝐼|=2 𝑅𝐹(𝕋

2)𝑊𝐼 → 𝑅𝐹(𝕋
2)

with 𝑑0(𝑥0, 𝑥1, 𝑥2) = (−𝑥0 + 𝐹(𝑡1)𝑥1, −𝑥1 + 𝐹(𝑡1 + 𝑡3)
−1𝑥2, −𝑥0 + 𝐹(𝑡3)

−1𝑥2) and 𝑑1(𝑦01, 𝑦12,

𝑦02) = 𝑦01 + 𝐹(𝑡1)𝑦12 − 𝑦02. Then we have 𝑟(2)◦𝑑0 = 𝑑0◦𝑟
(1) and 𝑑1◦𝑟

(2) = 𝑑1. The statement
follows from the following two observations:

(�̃�(2)◦𝑑0)(𝑥0, 𝑥1, 𝑥2)

= (−𝑥0 + 𝐹(𝑡1)𝑥1, −𝐹(𝑡1)𝑥1 + 𝐹(𝑡3)
−1𝑥2, −𝑥0 + 𝐹(𝑡3)

−1𝑥2)

= (−�̃�0(𝑥0) + �̃�1(𝑥1), −�̃�1(𝑥1) + �̃�2(𝑥2), −�̃�0(𝑥0) + �̃�2(𝑥2))

= (𝑑cell0 ◦�̃�(1))(𝑥0, 𝑥1, 𝑥2)

and

(𝑑cell1 ◦�̃�(2))(𝑦01, 𝑦12, 𝑦02) = 𝑦01 + 𝐹(𝑡1)𝑦12 − 𝑦02 = 𝑑1(𝑦01, 𝑦12, 𝑦02). □
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The above lemma reduces the problem of computing the equivariant higher twisted𝐾-theory of
𝑆𝑈(3) to the computation of Bredon cohomology groupswith local coefficients.Wewill determine
these groups after rationalising the coefficients, that is, we compute 𝐻∗

𝑊
(𝔱;ℚ). The inclusion

 → ℚ induces a homomorphism

𝐻∗
𝑊
(𝔱;) → 𝐻∗

𝑊
(𝔱;ℚ). (5.6)

Even though [1, Theorem 3.11] is only stated for coefficient systemsℚ where the module struc-
ture is induced by a homomorphism 𝜋1(𝕋

2) → hom(𝕋2, 𝑆1), the proof works verbatim in our situ-
ation, where 𝑅𝐹(𝕋2) ⊗ ℚ carries a 𝜋1(𝕋2)-action induced by 𝜋1(𝕋2) → 𝐺𝐿1(𝑅𝐹(𝕋

2) ⊗ ℚ). Hence,
we obtain

𝐻∗
𝑊
(𝔱;ℚ) ≅ 𝐻∗

𝜋1(𝕋
2)
(𝔱;ℚ)

𝑊. (5.7)

Lemma 5.11. Let 𝐹 be an exponential functor with deg(𝐹(𝑡1)) > 0, then (𝐹(𝑡2) − 𝐹(𝑡1),

𝐹(𝑡3) − 𝐹(𝑡2)) is a regular sequence in 𝑅𝐹(𝕋2) ⊗ ℚ.

Proof. Let 𝑅𝐹 = 𝑅𝐹(𝕋
2) ⊗ ℚ, 𝑅 = 𝑅(𝕋2) ⊗ ℚ ⊂ 𝑅𝐹 and let 𝑞𝐹 = 𝐹(𝜌) = 𝐹(𝑡1 + 𝑡2 + 𝑡3). Let 𝐼𝑗𝑘 ⊂

𝑅𝐹 be the ideal generated by 𝐹(𝑡𝑘) − 𝐹(𝑡𝑗). We have to show that multiplication by 𝐹(𝑡3) − 𝐹(𝑡2)

is injective on 𝑅𝐹∕𝐼12. On this quotient 𝐹(𝑡3) − 𝐹(𝑡2) agrees with 𝐹(𝑡3) − 𝐹(𝑡1). Suppose we have
elements 𝑝, 𝑞 ∈ 𝑅𝐹 with the property that 𝑝 is not divisible by 𝐹(𝑡2) − 𝐹(𝑡1) and

𝑝 ⋅ (𝐹(𝑡3) − 𝐹(𝑡1)) = 𝑞 ⋅ (𝐹(𝑡2) − 𝐹(𝑡1)). (5.8)

Multiplying both sides by an appropriate power of 𝑞𝐹 we may assume that 𝑝, 𝑞 ∈ 𝑅. Now we can
use the relation 𝑡3 = (𝑡1𝑡2)

−1 to express both sides of (5.8) in terms of 𝑡1, 𝑡2, 𝑡−11 , 𝑡−1
2
. Since we may

multiply both sides by 𝑡𝑘
1
𝑡𝑙
2
for appropriate 𝑘, 𝑙 ∈ ℕ0, we canwithout loss of generality assume that

𝑝, 𝑞 ∈ ℚ[𝑡1, 𝑡2]. Let

𝐹(𝑡1) =
𝑚∑
𝑘=0

𝑎𝑘𝑡
𝑘
1

with 𝑎𝑚 ≠ 0. We have deg(𝐹(𝑡1)) = deg(𝐹(𝑡2)) = 𝑚 and by our assumption𝑚 > 0. However, note
that deg(𝐹(𝑡3)) ⩽ 0. The highest order term of 𝐹(𝑡2) can be expressed as follows

𝑎𝑚𝑡
𝑚
2 = 𝑎𝑚𝑡

𝑚
1 −

𝑚−1∑
𝑘=1

𝑎𝑘(𝑡
𝑘
2 − 𝑡𝑘1 ) + 𝐹(𝑡2) − 𝐹(𝑡1).

Since we are working over ℚ, we can therefore assume that 𝑝 is a linear combination of terms
𝑡𝑘
1
𝑡𝑙
2
with 𝑙 < 𝑚 by adapting 𝑞 accordingly. Suppose that 𝑝 has total degree 𝑟 and let 𝑝𝑟 be the

corresponding homogeneous part. Comparing the terms of highest degree in (5.8), we obtain

−𝑝𝑟𝑡
𝑚
1 = 𝑞𝑟(𝑡

𝑚
2 − 𝑡𝑚1 ) ,

where 𝑞𝑟 is the homogeneous part of 𝑞 of degree 𝑟. Since the left-hand side contains no sum-
mands 𝑡𝑘

1
𝑡𝑙
2
with 𝑙 ⩾ 𝑚, this equation implies 𝑞𝑟 = 0, therefore 𝑝𝑟 = 0 and hence 𝑝 = 0. This is a
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contradiction to our initial divisibility assumption. Hence, 𝑝 must be divisible by 𝐹(𝑡2) − 𝐹(𝑡1)

proving that multiplication by 𝐹(𝑡3) − 𝐹(𝑡2) is injective on 𝑅𝐹∕𝐼12. □

Theorem 5.12. Let 𝐹 be an exponential functor with deg(𝐹(𝑡1)) > 0. Then 𝐻𝑘
𝜋1(𝕋

2)
(𝔱;ℚ) = 0 for

𝑘 ≠ 2 and

𝐻2
𝜋1(𝕋

2)
(𝔱;ℚ) ≅ 𝑅𝐹(𝕋

2) ⊗ ℚ∕(𝐹(𝑡2) − 𝐹(𝑡1), 𝐹(𝑡3) − 𝐹(𝑡2)).

Moreover,𝑊 acts on𝐻2
𝜋1(𝕋

2)
(𝔱;ℚ) by signed permutations.

Proof. LetΛ = 𝜋1(𝕋
2) be as in (5.5). The two vectors 𝜅1 = (1, −1, 0) and 𝜅2 = (0, 1, −1) form a basis

of Λ. Note that

ℚ[Λ] ≅ ℚ[𝑟1, 𝑟2, 𝑟3]∕(𝑟1𝑟2𝑟3 − 1)

and 𝜅1 corresponds to 𝑟1𝑟−12 under this isomorphism. Likewise, 𝜅2 agrees with 𝑟2𝑟−13 . The action
of Λ on 𝑅𝐹(𝕋2) ⊗ ℚ extends to a ring homomorphism 𝜑∶ ℚ[Λ] → 𝑅𝐹(𝕋

2) ⊗ ℚ given by

𝜑

(∑
𝑘,𝑙,𝑚

𝑎𝑘𝑙𝑚𝑟
𝑘
1 𝑟

𝑙
2𝑟

𝑚
3

)
=
∑
𝑘,𝑙,𝑚

𝑎𝑘𝑙𝑚𝐹(𝑡1)
𝑘𝐹(𝑡2)

𝑙𝐹(𝑡3)
𝑚.

In particular,𝜑(𝑟1𝑟−12 ) = 𝐹(𝑡1)𝐹(𝑡2)
−1 and similarly for 𝑟2𝑟−13 . The equivariant cohomology groups

𝐻∗
Λ
(𝔱;ℚ) are computed by the cochain complex

homℚ[Λ](𝐶∗(𝔱) ⊗ ℚ, 𝑅𝐹(𝕋
2) ⊗ ℚ) (5.9)

(see [5, I.9, (9.3)]), where 𝐶∗(𝔱) is the cellular chain complex of 𝔱 viewed as aΛ-CW-complex. Note
that 𝔱 has aΛ-CW-structurewith one 0-cell given by the orbit of the origin, two 1-cells correspond-
ing to the orbits of the edge from (0,0,0) to (1, −1, 0) and to (0, 1, −1), respectively, and one 2-cell.
As pointed out in the proof of [1, Theorem 4.2] (see also [6, p. 96]) the chain complex 𝐶∗(𝔱) can be
identified with the Koszul complex

𝐾𝑛 =
⋀𝑛

ℤ2 ⊗ ℤ[Λ]

for the sequence (𝑟1𝑟−12 − 1, 𝑟2𝑟
−1
3

− 1). If we identify 𝐶∗(𝔱) and 𝐾∗ in this way, the cochain com-
plex in (5.9) turns into

𝐶𝑛
𝐹 =

⋀𝑛
𝑅2𝐹 with 𝑑𝑛(𝑦) = 𝑥 ∧ 𝑦,

where 𝑅𝐹 = 𝑅𝐹(𝕋
2) ⊗ ℚ and 𝑥 = (𝐹(𝑡1)𝐹(𝑡2)

−1 − 1, 𝐹(𝑡2)𝐹(𝑡3)
−1 − 1), which is a regular

sequence in 𝑅𝐹 by Lemma 5.11. The first part of the statement now follows from [8, Corollary 17.5].
We can identify ℤ2 with Λ using 𝜅1 and 𝜅2. This induces an action of𝑊 on ℤ2. The group𝑊 acts
diagonally on 𝐾𝑛 using its natural action on ℤ[Λ]. If we equip the cochain complex

homℚ[Λ](𝐾𝑛 ⊗ ℚ, 𝑅𝐹(𝕋
2) ⊗ ℚ)
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with the𝑊-action given by (g ⋅ 𝜑)(𝑦) = g𝜑(g−1𝑦), then the isomorphism of this cochain complex
with (5.9) is equivariant. Likewise, 𝑊 acts diagonally on 𝐶𝑛

𝐹
≅
⋀𝑛

ℚ2 ⊗ 𝑅𝐹 making the last iso-
morphism equivariant as well. In particular, 𝑊 acts on

⋀2
ℚ2 via the sign representation. This

proves the second statement. □

To distinguish the signed permutation action of 𝑊 on 𝑅𝐹(𝕋
2) ⊗ ℚ from the usual one, we

denote the two modules by 𝑅sgn
𝐹

and 𝑅𝐹 , respectively, as in [1]. We also define 𝐼sgn
𝐹

= (𝐹(𝑡2) −

𝐹(𝑡1), 𝐹(𝑡3) − 𝐹(𝑡2)). Over the rational numbers taking invariants with respect to a finite group
action is an exact functor. Hence, Theorem 5.12 gives isomorphisms of 𝑅𝑊

𝐹
-modules

𝐻2
𝑊
(𝔱;ℚ) ≅ 𝐻2

Λ(𝔱;ℚ)
𝑊 ≅ (𝑅

sgn
𝐹

)𝑊∕(𝐼
sgn
𝐹

)𝑊.

The ring 𝑅𝑊
𝐹
is a localisation of the quotient of the ring of symmetric polynomials in the variables

𝑡1, 𝑡2, 𝑡3 by the ideal generated by (𝑡1𝑡2𝑡3 − 1). Themodule (𝑅sgn
𝐹

)𝑊 is a similar quotient of the anti-
symmetric polynomials by the submodule (𝑡1𝑡2𝑡3 − 1)(𝑅

sgn
𝐹

)𝑊 . Any antisymmetric polynomial is
divisible by the Vandermonde determinant

Δ = Δ(𝑡1, 𝑡2, 𝑡3) = (𝑡1 − 𝑡2)(𝑡2 − 𝑡3)(𝑡3 − 𝑡1).

This induces an 𝑅𝑊
𝐹
-module isomorphism

Ψ∶ (𝑅
sgn
𝐹

)𝑊 → 𝑅𝑊𝐹 , 𝑝 ↦
𝑝

Δ

(compare with [1, Subsection 5.1]). Let 𝜃𝑗𝑘 = 𝐹(𝑡𝑗) − 𝐹(𝑡𝑘).

Lemma 5.13. The submodule (𝐼sgn
𝐹

)𝑊 is generated by the two antisymmetric polynomials 𝑞+ =

𝜃12𝑡3 + 𝜃23𝑡1 + 𝜃31𝑡2 and 𝑞− = 𝜃12𝑡
−1
3

+ 𝜃23𝑡
−1
1

+ 𝜃31𝑡
−1
2
. The corresponding submoduleΨ((𝐼sgn

𝐹
)𝑊)

is generated by

Ψ(𝑞±) = −
1
Δ
det

⎛⎜⎜⎜⎝
𝐹(𝑡1) 𝐹(𝑡2) 𝐹(𝑡3)

𝑡±1
1

𝑡±1
2

𝑡±1
3

1 1 1

⎞⎟⎟⎟⎠ . (5.10)

Proof. First note that 𝜃12 + 𝜃23 + 𝜃31 = 0. Therefore, 𝑞± ∈ (𝐼
sgn
𝐹

)𝑊 . The module 𝑅(𝕋2) is free of
rank 6 over 𝑅(𝕋2)𝑊 by [30, Theorem 2.2]. Thus, the same is true for 𝑅𝐹 as a module over 𝑅𝑊𝐹 . An
explicit basis is given by 𝛽 = {𝑒, 𝑡2, 𝑡3, 𝑡

−1
2
, 𝑡−1
1
, 𝑡−1
1
𝑡3}. Consider the averaging map

𝛼∶ 𝑅
sgn
𝐹

→ (𝑅
sgn
𝐹

)𝑊, 𝑝 ↦
1
6

∑
g∈𝑊

g ⋅ 𝑝.

This is a surjective module homomorphism, which maps the submodule 𝐼sgn
𝐹

onto (𝐼sgn
𝐹

)𝑊 . Let
𝑞 ∈ (𝐼

sgn
𝐹

)𝑊 and choose 𝑝 ∈ 𝐼
sgn
𝐹

such that 𝛼(𝑝) = 𝑞. Then we have

𝑝 = 𝜃12𝑝1 + 𝜃23𝑝2
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for suitable 𝑝𝑖 ∈ 𝑅𝐹 . We have to see that 𝑞 = 𝛼(𝑝) is in the submodule generated by 𝑞±. After
decomposing 𝑝1 and 𝑝2 with respect to 𝛽 we see that it suffices to check that 𝛼(𝜃12𝑦) and 𝛼(𝜃23𝑦)
lie in this submodule for all 𝑦 ∈ 𝛽. Since 𝛼(𝜃12) = 𝛼(𝜃23) = 0, this is true for 𝑦 = 𝑒. We have

𝛼(𝜃12𝑡2) =
1
6
((𝜃12 + 𝜃23)𝑡2 + (𝜃12 + 𝜃31)𝑡1 + (𝜃31 + 𝜃23)𝑡3)

= −
1
6
(𝜃31𝑡2 + 𝜃23𝑡1 + 𝜃12𝑡3) = −

1
6
𝑞+

𝛼(𝜃12𝑡3) =
1
3
(𝜃12𝑡3 + 𝜃31𝑡2 + 𝜃23𝑡1) =

1
3
𝑞+.

The cases 𝛼(𝜃23𝑡2) and 𝛼(𝜃23𝑡3) work in a similar way. The expressions 𝛼(𝜃12𝑡−12 ), 𝛼(𝜃23𝑡−12 ),
𝛼(𝜃12𝑡

−1
1
) and 𝛼(𝜃23𝑡

−1
1
) produce corresponding multiples of 𝑞−. In the remaining two cases, a

short computation shows that

𝛼(𝜃12𝑡
−1
1 𝑡3) =

1
6
𝑞+ ⋅ (𝑡−11 + 𝑡−12 + 𝑡−13 ) ,

𝛼(𝜃23𝑡
−1
1 𝑡3) =

1
6
𝑞− ⋅ (𝑡1 + 𝑡2 + 𝑡3).

This shows that the submodule (𝐼sgn
𝐹

)𝑊 is generated by 𝑞+ and 𝑞−. The determinant formula fol-
lows from a straightforward computation. □

Example 5.14. In case of the classical twist, that is, for 𝐹 = (
⋀top)⊗𝑚 we have 𝐹(𝑡𝑖) = 𝑡𝑚

𝑖
. For

Ψ(𝑞+), Equation (5.10) boils down to the definition of the Schur polynomial for the partition with
just one element [19, I.3, p. 40]. In this case the Schur polynomial agrees with the complete homo-
geneous symmetric polynomial ℎ𝑚−2. Using the properties of the determinant we also have

Ψ(𝑞−) = −
1
Δ
det
⎛⎜⎜⎝
𝑡𝑚+1
1

𝑡𝑚+1
3

𝑡𝑚+1
3

1 1 1

𝑡1 𝑡2 𝑡3

⎞⎟⎟⎠ = 1
Δ
det
⎛⎜⎜⎝
𝑡𝑚+1
1

𝑡𝑚+1
3

𝑡𝑚+1
3

𝑡1 𝑡2 𝑡3
1 1 1

⎞⎟⎟⎠
which produces ℎ𝑚−1. Altogether we obtain

Ψ(𝑞+) = −ℎ𝑚−2, Ψ(𝑞−) = ℎ𝑚−1.

For 𝑚 = 0 we have 𝑞− = 𝑞+ = 0, for 𝑚 = 1 we get 𝑞+ = 0 and 𝑞− = 1 and in the case 𝑚 = 2

the submodule (𝐼sgn
𝐹

)𝑊 is generated by 𝑞+ = 1 and 𝑞− = ℎ1. Thus, for 𝑚 ∈ {1, 2} the quotient
𝑅𝑊
𝐹
∕𝐼𝑊

𝐹
vanishes.

Example 5.15. For the 𝑚th power of the exterior algebra twist 𝐹 = (
⋀∗)⊗𝑚 we have 𝐹(𝑡𝑖) =

(1 + 𝑡𝑖)
𝑚 and since

𝐹(𝑡𝑗) =
𝑚∑
𝑙=0

(
𝑚
𝑙

)
𝑡𝑙𝑗
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the determinant formula for Ψ(𝑞±) gives

Ψ(𝑞+) = −
𝑚∑
𝑙=2

(
𝑚
𝑙

)
ℎ𝑙−2, Ψ(𝑞−) =

𝑚∑
𝑙=1

(
𝑚
𝑙

)
ℎ𝑙−1.

We are now in the position to provide a complete computation of the equivariant higher twisted
𝐾-theory for 𝑆𝑈(3) after rationalisation and summarise our results in the following theorem.

Theorem 5.16. For the rational equivariant higher twisted 𝐾-theory of 𝑆𝑈(3) with twist given
by an exponential functor 𝐹 with deg(𝐹(𝑡)) > 0 we have the following isomorphism of 𝑅𝐹(𝑆𝑈(3))-
modules:

𝐾𝐺
0 (𝐶

∗()) ⊗ ℚ ≅ (𝑅𝐹(𝑆𝑈(3)) ⊗ ℚ)∕𝐽𝐹, 𝐾𝐺
1 (𝐶

∗()) ⊗ ℚ ≅ 0,

where 𝐽𝐹 is the submodule generated by the two representations 𝜎𝐹1 and 𝜎
𝐹
2
whose characters 𝜒1, 𝜒2

are the symmetric polynomials

𝜒1 =
1
Δ
det

⎛⎜⎜⎜⎝
𝐹(𝑡1) 𝐹(𝑡2) 𝐹(𝑡3)

𝑡1 𝑡2 𝑡3

1 1 1

⎞⎟⎟⎟⎠ , 𝜒2 =
1
Δ
det

⎛⎜⎜⎜⎝
𝐹(𝑡1)𝑡1 𝐹(𝑡2)𝑡2 𝐹(𝑡3)𝑡3

𝑡1 𝑡2 𝑡3

1 1 1

⎞⎟⎟⎟⎠.
In the case 𝐹 = (

⋀∗)⊗𝑚 the submodule 𝐽𝐹 is generated by the representations

𝜎𝐹1 =
𝑚∑
𝑙=2

(
𝑚
𝑙

)
Sym𝑙−2(𝜌), 𝜎𝐹2 =

𝑚∑
𝑙=1

(
𝑚
𝑙

)
Sym𝑙−1(𝜌).

Proof. Let  be the universal UHF-algebra equipped with the trivial action. By continuity of the
𝐾-functor the 𝐾-theory of 𝐶∗() ⊗ is the rationalisation of the 𝐾-theory of 𝐶∗(). To com-
pute 𝐾𝐺

∗ (𝐶
∗() ⊗) we can use the corresponding spectral sequence from Proposition 4.9. The

resulting cochain complex will have 𝑅𝐹(𝐺𝐼) ⊗ ℚ in place of 𝑅𝐹(𝐺𝐼) in each degree. Lemma 5.10
identifies it as the complex computing the 𝑊-equivaraint cohomology of 𝔱 with respect to the
coefficient systemℚ. Thus, the homomorphism (5.6) is now an isomorphism. Combining Theo-
rem 5.12 with Lemma 5.13, we obtain the first part of the statement. The second part follows from
Example 5.15 by identifying the characters given by the homogeneous symmetric polynomials
with symmetric powers of the standard representation. □

Remark 5.17. The choice of the orientation of 𝕋 that went into the construction of  through
the choice of order on 𝕋 ⧵ {1} features in the computations of the twisted 𝐾-groups as follows:
Changing the orientation to its opposite corresponds to replacing all factors of the form 𝐹(𝑡) by
𝐹(𝑡)−1. Since the ideal 𝐼sgn

𝐹
is invariant under this transformation, we obtain isomorphic higher

twisted 𝐾-groups in both cases.

We expect Theorem 5.16 also to be true without the rationalisation. Since the modules 𝑅𝐹(𝐺𝐼)

are free over 𝑅𝐹(𝑆𝑈(3)) the differentials fromLemma 5.9 in the cochain complex can be expressed
in terms of matrices, which allowed us to perform an extensive computer analysis in the case of
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the full twist 𝐹 = (
⋀∗)⊗𝑚 for𝑚 ∈ {1,… , 8}. For these levels we thereby confirmed the above con-

jecture.
The approach presented above should also be seen as a blueprint for the computation of the

rationalised equivariant higher twisted 𝐾-theory of 𝑆𝑈(𝑛). We will return to this discussion in
future work.

APPENDIX A: PROOF OF THEOREM 3.3

Let inv∶  →  be given by inv(𝗀) = 𝗀−1. We first extend 0,+ over − by defining 𝜋∶ − → − as− = (inv∗+)op. This means that we have (−)𝗀 = (+)op𝗀−1 fibrewise for all 𝗀 ∈ −. Let  = − ∪

0,+. Together with the canonical quotient map to  this is a Banach bundle. The conjugate linear
bijection 𝑒 ↦ 𝑒∗ from (2.1) yields a well-defined ∗-operation on  . It fits into the commutative
diagram

Next we have to extend the multiplication map 𝜇 to all of  , that is, we have to construct a
bimodule isomorphism 𝜇∶ 𝗀1 ⊗𝐴 𝗀2 → 𝗀1𝗀2 for (𝗀1, 𝗀2) ∈ (2). Depending on which subset
𝗀1, 𝗀2 and 𝗀1𝗀2 are contained in, there are six cases to consider:

𝗴𝟏 𝗴𝟐 𝗴𝟏 ⋅ 𝗴𝟐
1 + + +

2 + − +

3 + − −

4 − + +

5 − + −

6 − − −

A +, respectively, −, refers to the case that the groupoid element is in 0,+, respectively, −. We
need the relation

(𝑒1 ⋅ 𝑒2)
∗ = 𝑒∗2 ⋅ 𝑒

∗
1

to hold in a Fell bundle. This implies that if we have defined the multiplication in case 𝑘, then we
have fixed it in case (7 − 𝑘) as well. This reduces the number of cases to consider to the first three.
We will use the following graphical representation of groupoid elements: A morphism in 0,+

will be drawn as an arrow pointing right, a morphism in − corresponds to an arrow pointing
left.† Let 𝗀1, 𝗀2 ∈ (2). If 𝗀1 ⋅ 𝗀2 ends up in 0,+, then the concatenation of the two corresponding
arrows will end in a point to the right of the base of 𝗀1. Similarly, a composition ending up in −

†Contrary to the usual notation of morphisms we will draw the arrows from the codomain to the domain. This way the
order of composition agrees with the composition of the arrows.
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will end up in a point left of the base of 𝗀1. Cases 1,2 and 3 are drawn as follows:

The multiplication is already defined in case 1. For case 2, let (𝗀1, 𝗀2) ∈ (2) with 𝗀1 ∈ 0,+, 𝗀2 ∈−, 𝗀1 ⋅ 𝗀2 ∈ 0,+. Observe that 𝗀1 = 𝗀1𝗀2 ⋅ 𝗀
−1
2

is a decomposition of 𝗀1 into elements that are
contained in 0,+. This can be easily read off from the above graphical representation. Since

𝜇∶ (0,+)𝗀1𝗀2 ⊗𝐴 (0,+)𝗀−1
2

→ (0,+)𝗀1
is an isomorphism, we can extend 𝜇 by defining it to be the upper horizontal arrow in the diagram
below, in which the vertical arrow on the right-hand side is given by right multiplication:

If we label the arrows by Fell bundle elements instead of groupoidmorphisms, this definition will
graphically be represented as follows:

where 𝑒′
12

⋅ 𝑒′
2
= 𝑒1 and the inner product is used to replace the loop on the right-hand side with

an element in 𝐴.
Consider case 3, that is, (𝗀1, 𝗀2) ∈ (2) with 𝗀1 ∈ 0,+, 𝗀2 ∈ −, 𝗀1 ⋅ 𝗀2 ∈ −. Using (2.3) and the

multiplication 𝜇, we obtain an isomorphism

𝜇op ∶ (0,+)op𝗀1 ⊗𝐴 (0,+)op(𝗀1𝗀2)−1 → (0,+)op𝗀−1
2

and we can extend themultiplication to this case using the upper horizontal arrow in the diagram
below:
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Graphically this definition is represented as follows:

that is, we decompose 𝑒∗
2
= (𝑒′

1
)∗ ⋅ (𝑒′

12
)∗ for some (𝑒′

1
)∗ ∈ (0,+)op𝗀1 and (𝑒′

12
)∗ ∈ (−)𝗀1𝗀2 and

define

𝑒1 ⋅ 𝑒
∗
2 = 𝐴⟨𝑒1, 𝑒′1⟩ ⋅ (𝑒′12)∗.

This finishes the extension of the multiplication map 𝜇.
Next, we have to prove that the extended multiplication is still associative. Let 𝗀1, 𝗀2, 𝗀3 ∈ 

such that (𝗀1, 𝗀2) ∈ (2) and (𝗀2, 𝗀3) ∈ (2). Let 𝑒𝑖 ∈ 𝗀𝑖 for 𝑖 ∈ {1, 2, 3}. We have to show that

(𝑒1 ⋅ 𝑒2) ⋅ 𝑒3 = 𝑒1 ⋅ (𝑒2 ⋅ 𝑒3).

Each 𝗀𝑖 could be in 0,+ or in −. Thus, if we neglect the compositions for a moment, this leaves
us with six cases to consider. However, the above equality implies

𝑒∗3 ⋅ (𝑒
∗
2 ⋅ 𝑒

∗
1) = (𝑒∗3 ⋅ 𝑒

∗
2) ⋅ 𝑒

∗
1 .

Therefore, we can without loss of generality assume that 𝗀2 ∈ 0,+. The diagrams of all remaining
cases are shown in Figure A.1. To prove the associativity condition in each case we make the
following observations.
The given multiplication 𝜇 on 0,+ is fibrewise a bimodule isomorphism. Thus, whenever we

have to decompose an element of 𝑒 ∈  , we may without loss of generality assume that it is max-
imally decomposed with respect to the diagram. This means that in terms of the graphical repre-
sentation we may make the following replacements:

where 𝑒 = 𝑒1 ⋅ 𝑒2 in the first case and 𝑒′ = 𝑒1 ⋅ 𝑒2 ⋅ 𝑒3 in the second. Note that associativity of 𝜇
over 0,+ ensures that we may drop the brackets in the second case. Likewise, we may assume the
analogous decomposition for themirror images of these diagramswith arrows pointing to the left.
By our definition of the extension of 𝜇 to − associativity is also satisfied in diagrams that have

one of the following forms:

Using this it follows that associativity holds in the cases 1, 2, 5 and 8 in Figure A.1. The mul-
tiplication isomorphism 𝜇∶ (0,+)𝗀1 ⊗𝐴 (0,+)𝗀2 → (0,+)𝗀1𝗀2 preserves inner products, hence we
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F IGURE A . 1 The twelve compositions to consider in the proof of associativity

obtain

𝐴⟨𝑒1 ⋅ 𝑒2, 𝑒′1 ⋅ 𝑒′2⟩ = 𝐴⟨𝑒1 ⋅ 𝐴⟨𝑒2, 𝑒′2⟩, 𝑒′1⟩ ,
which is diagrammatically represented by the following relation:

Again, an analogous relation is true for the mirror images of the above diagrams. Our observation
shows we can drop the brackets in expressions represented by diagrams of the form depicted on
the right-hand side. This implies that associativity holds in the cases 3, 4, 6, 7 in Figure A.1.
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The last relation needed is the compatibility of the two inner products in each fibre. Let
𝑒1, 𝑒2, 𝑒3 ∈ (0,+)𝗀 for some 𝗀 ∈ 0,+. Then (2.2) implies in our context that:

𝑒1 ⟨𝑒2, 𝑒3⟩𝐴 = 𝐴⟨𝑒1, 𝑒2⟩ 𝑒3 ,
𝑒∗1 𝐴⟨𝑒2, 𝑒3⟩ = ⟨𝑒1, 𝑒2⟩𝐴 𝑒∗3 .

Expressed graphically this means that associativity holds for the diagrams:

Using this relation, it follows that associativity holds in the cases 9, 10, 11 and 12 as well. Since
the computations are slightly more involved than in the previous cases, we give the details for
diagram 10. Let 𝑒∗

1
∈ (−)𝗀1 , 𝑒2 ∈ (0,+)𝗀2 and 𝑒∗3 ∈ (−)𝗀3 . Let 𝑒2 = 𝑒21 ⋅ 𝑒22 and 𝑒∗3 = 𝑒∗

31
⋅ 𝑒∗

32
⋅ 𝑒∗

33
be the maximal decompositions of 𝑒2 and 𝑒3. We have

(𝑒∗1 ⋅ 𝑒2) ⋅ 𝑒
∗
3 = 𝐴⟨⟨𝑒1, 𝑒21⟩𝐴 𝑒22, 𝑒31⟩ 𝑒∗32 ⋅ 𝑒∗33

𝑒∗1 ⋅ (𝑒2 ⋅ 𝑒
∗
3) = 𝑒∗1 𝐴⟨𝑒21 ⋅ 𝑒22, 𝑒32 ⋅ 𝑒31⟩ 𝑒∗33

and by our considerations above we obtain

𝑒∗1 𝐴⟨𝑒21 ⋅ 𝑒22, 𝑒32 ⋅ 𝑒31⟩ 𝑒∗33 = 𝑒∗1 𝐴⟨𝑒21 𝐴⟨𝑒22, 𝑒31⟩, 𝑒32⟩𝑒∗33
= ⟨𝑒1, 𝑒21 𝐴⟨𝑒22, 𝑒31⟩⟩𝐴 𝑒∗32 ⋅ 𝑒∗33
= ⟨𝑒1, 𝑒21⟩𝐴 𝐴⟨𝑒22, 𝑒31⟩ 𝑒∗32 ⋅ 𝑒∗33
= 𝐴⟨⟨𝑒1, 𝑒21⟩𝐴 𝑒22, 𝑒31⟩ 𝑒∗32 ⋅ 𝑒∗33

The other cases are similar. This finishes the proof of associativity.
Thus, we obtain a Banach bundle  → with a continuous, bilinear, associative multiplication

𝜇 and a compatible continuous conjugate linear involution ∗∶  →  . Our definition implies that
𝑒∗ ⋅ 𝑒 = ⟨𝑒, 𝑒⟩𝐴

for all 𝑒 ∈  . This implies the 𝐶∗-norm condition ‖𝑒∗𝑒‖ = ‖⟨𝑒, 𝑒⟩𝐴‖ = ‖𝑒‖2, which also ensures
that the norm is submultiplicative for all 𝑒 ∈  . Therefore,  →  defines a saturated Fell bundle.
To address the question about uniqueness let  →  be another saturated Fell bundle that sat-

isfies the conditions in the theorem. In particular, we have 0,+ = 0,+. Therefore, the involution
yields a (linear!) isomorphism of Banach bundles

Θ∶ − →
(+)op = −

The relation (𝑒1 ⋅ 𝑒2)∗ = 𝑒∗
2
⋅ 𝑒∗

1
shows thatΘ has to intertwine the restrictions 𝜇− ∶ − ⊗𝐴 − →

− and 𝜇− . The relation ⟨𝑓∗1 , 𝑓∗2⟩𝐴 = 𝐴⟨𝑓1, 𝑓2⟩ for all 𝑓∗1 , 𝑓∗2 ∈ (−)g implies thatΘ preserves the
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inner product as well. We have already seen above that our extension of the multiplication map
was forced upon us by associativity considerations, the fact that 𝜇 induces fibrewise bimodule
isomorphisms and the relation 𝑓∗

1
⋅ 𝑓2 = ⟨𝑓1, 𝑓2⟩𝐴 for 𝑓1, 𝑓2 ∈ g . Consequently, if we extend Θ

by the identity on 0,+ = 0,+ it yields an isomorphism of Fell bundles  →  over .
Remark A.1. Let 𝐴 be a unital separable 𝐶∗-algebra and let (𝐴) be the 2-groupoid that has
𝐴 as its objects, the 𝐴-𝐴 equivalence bimodules as 1-morphisms and bimodule isomorphisms as
2-morphisms†. The groupoid  is a 2-groupoid with just identity 2-morphisms. If we forget about
the topology, then a saturated Fell bundle is a functor

 ∶  → (𝐴) ,

whereas saturated half-bundles correspond to functors

 ∶ 0,+ → (𝐴).

Theorem 3.3 can be rephrased by saying that the restriction functor

res∶ 𝑢𝑛(,(𝐴)) → 𝑢𝑛(0,+,(𝐴))

induced by the inclusion 0,+ →  is an isomorphism of functor categories. This seems to suggest
that there should be a proof of Theorem 3.3 based on category theory. However, a first step would
require identifying the right topology on (𝐴) to obtain a bijection between saturated Fell
bundles and continuous functors.
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