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The major challenge in managing blood products lies in the uncertainty of blood
demand and supply, with a trade-off between shortage and wastage, especially in
most developing countries. Thus, reliable demand predictions can be imperative in
planning voluntary blood donation campaigns and improving blood availability within
Ghana hospitals. However, most historical datasets on blood demand in Ghana are
predominantly contaminated with missing values and outliers due to improper database
management systems. Consequently, time-series prediction can be challenging since
data cleaning can affect models’ predictive power. Also, machine learning (ML) models’
predictive power for backcasting past years’ lost data is understudied compared to their
forecasting abilities. This study thus aims to compare K-Nearest Neighbour regression
(KNN), Generalised Regression Neural Network (GRNN), Neural Network Auto-regressive
(NNAR), Multi-Layer Perceptron (MLP), Extreme Learning Machine (ELM) and Long
Short-Term Memory (LSTM) models via a rolling-origin strategy, for forecasting and
backcasting a blood demand data with missing values and outliers from a government
hospital in Ghana. KNN performed well in forecasting blood demand (12.55% error);
whereas, ELM achieved the highest backcasting power (19.36% error). Future studies
can also employ ML algorithms as a good alternative for backcasting past values of
time-series data that are time-reversible.

© 2021 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Background of the study

Blood supply chain (BSC) encapsulates all the
rocesses of collecting, testing, processing, storing and
istributing blood and its components from donor to re-
ipient patient (Osorio, Brailsford, & Smith, 2015; Stanger,
ilding, Yates, & Cotton, 2012). Blood cannot be manufac-

ured artificially, and supply depends on voluntary human
onors who cannot be easily predicted. Given that blood
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demand and supply are uncertain, and blood is a limited
resource and a perishable product with short shelf life, it
is challenging to manage blood inventory. The major chal-
lenge in managing blood products lies in the uncertainty
of blood demand and supply, with a trade-off between
shortage and wastage (Stanger et al., 2012). Blood demand
is increasing rapidly among developed countries, such
that 10 out of every 100 people in the hospital requires
some blood products (The Lancet, 2005). Among develop-
ing countries, approximately 100,000 deaths are recorded
yearly due to blood shortage and common blood-borne
infections from unscreened denoted blood (The Lancet,
2005). Thus, reliable demand predictions can be impera-
tive in planning blood donation campaigns and improving
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blood availability. Empirical studies on the management
of blood products are dominated by the use of operational
research methodologies (such as critical path supply chain
analysis, optimisation, Markov chains and queueing the-
ory) and other simulation techniques (Katsaliaki & Brails-
ford, 2007; Kopach, Balcıoğlu, & Carter, 2008; Van Dijk,
Haijema, Van Der Wal, & Sibinga, 2009). Time-series ap-
proaches for blood demand forecasting are now gaining
popularity in the literature of BSC (Fortsch & Khapalova,
2016; Pereira, 2004). The precision of predictions from
time-series models concerning the blood demand has
been considered an essential determinant of donor re-
cruitment decision making and inventory control (Shih
& Rajendran, 2019). Consequently, a large amount of
data is expected to be collected over time to predict
blood demand trends and identify underlying patterns
such as seasonality through smoothing and time-series
decomposition (Pierskalla, 2005; Rajendran & Ravindran,
2019).

Moreover, the extant literature on the blood supply
hain has been dominated by studies based on blood cen-
res from developed countries such as the USA (Katsaliaki
Brailsford, 2007; Pereira, 2004), Canada (Kopach et al.,
008), Finland (Rytilä & Spens, 2006) and Estonia (Al-
oja, Espenberg, & Kiivet, 2012), among others. However,
mpirical studies on blood demand forecasting using real-
ife time-series data in less developed countries are in-
ufficient in the literature. In a less developed country
ike Ghana, blood products are in high demand for vary-
ng health issues. Due to the frequent blood shortages
t the major hospitals in Ghana, the family-replacement
ystem has been instituted as the replenishment policy
o compel blood donation. However, this replenishment
ystem does not ensure the sufficiency of blood supply.
ence, investigating the requests for blood in develop-
ng countries must be approached as a public health is-
ue. Therefore, this paper is based on the premise that a
ore robust demand predictive method would be a useful
lanning tool for voluntary blood donation campaigns to
upplement supplies and improve blood availability. In
hana, blood banking and transfusion facilities have poor
atabase management systems predominantly due to lack
f computers, computer programs, and training (Nene,
layemi, & Asamoah-Akuoko, 2015). Thus, most of these
ealth facilities recorded data by hand in books and other
ocuments without the proper filing of patient’s medical
ecords, until recent times where the need to collect blood
ata more efficiently for easy retrieval became a matter of
ational concern (Nene et al., 2015; Teviu, Aikins, Abdulai,
ackey, Boni, Afari, & Wurapa, 2012). Consequently, most
f the past years’ data are lost completely, and avail-
ble data are usually contaminated with missing values
nd outliers due to genuine recording errors. In such
nstances, the fidelity of forecasts is greatly affected due
o a bias in model parameter estimates and the outliers’
arry-over effect on the point forecasts (Chen & Liu, 1993).
Backcasting, a term coined by Robinson (1990), was

reviously proposed as a planning method in many fields
f study, including urban planning and resource manage-
ent, to investigate future mechanisms from the present
y moving backwards in time to determine what policy
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measures would be required to reach those future out-
comes (Bibri, 2018; Phdungsilp, 2011). In the context of
time-series modelling, the backcasting methodology can
be adapted to predict lost or unavailable data of past years
based on current values by forecasting backwards in time.
Thus, backcasting and forecasting are only distinguished
based on the direction of predictions. The former retropo-
lates past values from future values in reverse time, and
the latter extrapolates the future values based on histori-
cal data. In blood supply chain management, backcasting
can be used to ensure the coherence of blood-related data
by predicting lost data of past years for short time-series
to aid in exploring relevant long-term patterns or trends,
which can provide additional insights into inventory man-
agement policies, improving data quality for systematic
analysis and the effectively assessing the imbalance be-
tween blood supply and demand. Classical time-series
models cannot capture the non-systematic changes of
outliers due to their exogenous effects (López-de Lacalle,
2016). Different types of outliers may exist in time-series
data such as additive outlier, innovation outlier, level
shift, temporary change and seasonal level shift (Ahmar
et al., 2018; Chen & Liu, 1993; López-de Lacalle, 2016).
An automatic detection method for the different types
of outliers in a given series has been developed (Chen &
Liu, 1993), and a more robust data imputation method
utilising Kalman smoothing on state-space methods have
been developed for univariate time-series data (Durbin &
Koopman, 2012; Hinich, 2005; Moritz & Bartz-Beielstein,
2017). Before time-series modelling, data pre-processing
is thus vital for model selection, parameter estimation,
and predictions.

Machine learning (ML) algorithms for forecasting blood
demand series have been recently developing, and their
performance against classical time-series models have
even been explored in previous studies (Bontempi, Ben
Taieb, & Le Borgne, 2013; Papacharalampous, Tyralis, &
Koutsoyiannis, 2018; Shih & Rajendran, 2019). Nonethe-
less, in the context of blood supply management, no
known study has explored these ML algorithms’ perfor-
mance in backcasting or reverse forecasting blood de-
mand during instances where past years’ data are com-
pletely unavailable compared to their forecasting abilities.
Moreover, the literature on time-series backcasting is also
insufficient relative to forecasting in general. Thus, the
predictive power of machine learning models for back-
casting past time-series values is also imperative. More-
over, in evaluating the performance of ML algorithms and
traditional time-series models, most studies employ the
fixed-origin strategy instead of a rolling-origin evaluation
with different training and test partitions. However, ac-
cording to Tashman (2000), the efficiency and reliability
of out-of-sample evaluations of time-series models can
be improved by adopting rolling-origin strategies. Hence,
an out-of-sample rolling strategy is a better approach
for generalisability and model comparison. This study
thus assesses both forecasts and backcasts from the time-
series models using a proposed rolling-origin strategy.
For additional information about the essence of rolling-
origin assessment approaches in any forecasting studies,
see work by Tashman (2000).
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In this paper, we compare six different machine
earning algorithms (K-Nearest Neighbour regression,
eneralised Regression Neural Network, Neural Network
uto-regressive, Multi-Layer Perceptron, Extreme Learn-
ng Machines, and Long Short-Term Memory models)
or forecasting and backcasting blood demand data with
issing values and outliers from a major hospital in
hana. The standard ARIMA model is used as the baseline
odel for comparison. We use an out-of-sample rolling-
rigin strategy with model re-calibration for forecasting
nd backcasting assessments and statistically compare
he prediction error distributions between the time-series
odels under investigation. Before the time-series mod-
lling, we perform data cleaning by adopting existing
tate-of-the-art algorithms in two stages: (i) data impu-
ation by Kalman smoothing and (ii) automatic outlier
etection and correction. We further justify that the blood
emand series under study is time-reversible for back-
asting using Teraesvirta’s neural network linearity test,
obato-Velasco normality test of stationary processes, and
urrogate data testing.

.2. Paper structure

This study is structured in six main sections. Apart
rom the background of the study, the paper is organised
s follows. First, Section 2 reviews relevant literature on
nventory management policies and forecasting methods
n BSC; and also presents the main research gap and
ontribution of this paper. Then, the empirical data, data
reprocessing techniques adopted, the proposed back-
asting scheme, the time-series models (ARIMA and six
L models) to be used for blood demand predictions,
nd a summary of the empirical evaluation methods are
resented in Section 3. After that, Section 4 presents
he main results of the study, and Section 5 discusses
he key findings. Finally, we conclude and provide some
ecommendations for future studies in Section 6.

. Literature

.1. Impact of blood demand forecasting on BSC inventory
anagement policies

The improvement of BSC (outlined in Fig. 1) has be-
ome a matter of global concern due to the challenges
osed in healthcare delivery. For example, inventory
anagement of blood products is crucial in hospital oper-
tions due to their perishable nature and demand uncer-
ainty. Also, the short shelf-life of blood components such
s platelets can significantly lead to wastage or expiration
f excess platelets are kept. Nonetheless, blood products’
naccessibility when needed may result in loss of lives and
ther critical conditions. Thus, recent studies have focused
n exploring possible solutions for blood demand un-
ertainty, inventory management and inadequate human
esources (Fortsch & Khapalova, 2016). A cost-effective
ospital inventory management system should reduce
astage while sustaining the required level of service.
lood shortages in hospitals are predominantly due to

he increasing demand and the constrained or irregular
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supply (Rajendran & Srinivas, 2020). Additionally, the
frequency of demand for blood is regularly rising due
to the ageing population and the increasing number of
accidents, amongst other reasons (Ali, Auvinen, & Rauto-
nen, 2010). Consequently, blood inventory management
should incorporate the challenge of exploring the trade-
off between wastage and shortage (Rajendran & Srinivas,
2020). Accurate blood demand forecasting during the
development of inventory policies thus aids in lowering
costs, reducing blood wastage, and conserving limited
resources (Fortsch & Khapalova, 2016).

There exist several generalisable inventory policies
for perishable products, and other blood products de-
veloped based on inventory management models under
demand-supply uncertainties (Dillon, Oliveira, & Abbasi,
2017; Li, Chiang, Down, & Heddle, 2021; Rajendran &
Srinivas, 2020; Shokouhifar, Sabbaghi, & Pilevari, 2021).
The frequently employed policies in BSC to manage in-
ventory levels in order to bridge the gap between blood
shortage and wastage are the periodical policies (Shok-
ouhifar et al., 2021). Other hybrid ordering policies for BSC
under demand uncertainty have also been proposed in
the literature, and their performances examined (Rajen-
dran & Srinivas, 2020). These inventory policies provide
a decision support system for healthcare practitioners to
ascertain the best order quantities, given the characteris-
tics of the hospital. In summary, demand forecasting is
considered as one of the essential aspects of inventory
management, and it can be combined with inventory
management policies to obtain optimal strategies even
for instances of intermittent blood demands (Ramaekers
& Janssens, 2014).

2.2. Forecasting methods in blood supply chain

The characteristics of BSC tend to be more complex
and dynamic than the traditional supply chain Jittamai
and Boonyanusith (2014). Several quantitative approaches
have been adopted by researchers in managing the com-
plexity and uncertainty issues of BSC. Analytical meth-
ods, time-series methods, dynamic programming, queu-
ing technique, optimisation, simulation and combination
of these methods have been proposed Osorio et al. (2015).
Thus, the methods can generally be categorised into three:
simulation (eg. artificial neural network and Monte Carlo
methods) (Baesler, Nemeth, Martínez, & Bastías, 2014;
Beliën & Forcé, 2012; Custer et al., 2004; Khaldi, El, Chihe,
Khald, El, & Chihe, 2019; Pierskalla, 2005), optimisation
(eg. stochastic, linear, dynamic and mixed-integer pro-
gramming) (De Kort, Janssen, Kortbeek, Jansen, van der
Wal, & van Dijk, 2011; Van Dijk et al., 2009;
Arvan, Tavakoli-Moghadam, & Abdollahi, 2015; Chaiwut-
tisak, Smith, Wu, Potts, Sakuldamrongpanich, & Path-
omsiri, 2016), and time-series methods such as univari-
ate and multivariate moving average models (Critchfield,
Connelly, Ziehwein, Olesen, Nelson, & Scott, 1985; Da
Veiga, Da Veiga, Catapan, Tortato, & Da Silva, 2014; Fortsch
& Khapalova, 2016; Maia, De Carvalho, & Ludermir, 2008;
Pereira, 2004; Rasyid & Adhiutama, 2014; Silva-Filho,
Carvalho, Cezarino, Salva, & Silviano, 2013).
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Fig. 1. Blood Supply Chain Processes.
Source: Adapted from Stanger et al.
(2012).
2.2.1. Literature on time-series methods for blood demand
forecasting

Time-series methods have been proposed and applied
in forecasting daily, monthly, and yearly blood demand
data at hospitals and other health centres. The time-series
models for blood demand prediction in the literature have
been dominated by the classical univariate time-series
models, including autoregressive integrated moving aver-
age (ARIMA) models, Holt-Winters’ exponential smooth-
ing models and time-series decomposition for both
seasonal and non-seasonal data (Pankratz, 2009; Pereira,
2004; Shih & Rajendran, 2019), amongst other methods
including logistic regression models (Bosnes, Aldrin, &
Heier, 2005). Fortsch and Khapalova (2016) discovered
that demand for blood is naturally non-stationary. There-
fore, univariate time-series models fitted using the Box–
Jenkins methodology based on the integrated moving
average (ARIMA) class of models are mostly the optimal
choice over the naive, exponential smoothing, simple
moving average and other classical forecasting models.
However, other studies have discovered limitations in
the conventional method in identifying the best specified
ARIMA model for forecasting non-seasonal data (Simon,
2007). The conventional approach of best fit does not
always guarantee the model’s ability to predict future
values nor its predictive performance for previous periods
due to underlying factors of the data (Simon, 2007).

To efficiently fit a classical ARIMA model, essential
data features such as seasonality and trends need to be
eliminated to achieve a stationary and non-seasonal series
if they exit. Thus, ARIMA and most classical time-series
models are not robust unless these models’ parametric
assumptions are met. One of the most widely employed
models is the seasonal ARIMA (SARIMA) model in the
presence of seasonality. Both ARIMA and SARIMA models
assume that the future values have a linear relationship
with current and past series. The ARIMA
models assume that its residuals must be independent
and identically distributed. The residuals must also have a
mean of zero, constant variance and serially uncorrelated

(white noise). Thus, for complex non-linear problems,
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predictions by either ARIMA or SARIMA may not be ad-
equate. Hence, hybrid models that combine these ARIMA
classes of models or other traditional approaches such
as Holt-Winter methods and computationally intelligence
models such as Artificial Neural Network (ANN) become
ideal (Khashei, Bijari, & Hejazi, 2012). Consequently, a
different but robust class of time-series models called
machine learning algorithms were developed. Few stud-
ies have employed machine learning algorithms such
as the ANN to predict future demand for blood; their
performance against the classical time-series models has
been considered (Alajrami, Abu-Nasser, Khalil, Musleh,
Barhoom, & Naser, 2019; Darwiche, Feuilloy, Bousaleh, &
Schang, 2010; Khaldi, El Afia, Chiheb, & Faizi, 2017). Shih
and Rajendran (2019) compared traditional time-series
models’ performance to ANN and multiple regression
via machine learning algorithms on a five-year historical
data from Taiwan Blood Services Foundation (TBSF). They
discovered that the classical time-series forecasting (pre-
dominantly Seasonal Exponential Smoothing Method and
ARIMA models) outperformed the machine learning (ML)
algorithms. The cause for such under-performance of the
ML algorithms is attributed to limited data or small sam-
ple size used in training these algorithms; hence, it can
lead to biased ML predictions in such instances (Vabalas,
Gowen, Poliakoff, & Casson, 2019). Khaldi et al. (2017)
found that ANN outperformed ARIMA models for blood
demand forecasting. Thus, they concluded that these
models could be considered a promising approach to
forecasting monthly blood demand. Hence, the classi-
cal time-series methods are usually considered baseline
models for machine learning algorithms.

However, ML algorithms have been considered in aca-
demic literature as suitable alternatives to traditional
time-series forecasting models (Makridakis, Spiliotis, &
Assimakopoulos, 2018). Nevertheless, minimal evidence
about their relative performance (accuracy and computa-
tional requirements) is available (Makridakis et al., 2018).
Makridakis et al. (2018) compared the post-sample accu-
racy between Neural Networks (NN), Automated ANN and
eight classical models for different forecasting horizons. It
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was revealed that the prediction power associated with
the machine learning algorithms were relatively better
than the traditional methods across all examined fore-
casts horizons; however, ML computational requirements
were more significant than the classical time-series mod-
els. Machine learning algorithms for forecasting blood
demand data (with linear or non-linear trends) from
blood centres in developing countries (including Ghana)
are under-studied. Thus, the classical ARIMA model is
considered the baseline model for comparing the ML
models in this study.

2.2.2. Brief review of ML methods for time-series predictions
Machine learning (ML) is a computational intelligence

echnique that adopts programmed algorithms to analyse
nput data and learn from it via supervised or unsuper-
ised processes to predict output values within an ac-
eptable range (Wakefield, 2013). ML models have proven
o be an excellent alternative to classical statistical mod-
ls for forecasting and other research problems (such
s regression and classification problems) over the last
ecade. Neural network (NN) commenced the develop-
ent of ML algorithms. NNs are deep learning methods
eveloped as mathematical models of the brain. They
an allow complex non-linear relationships between the
esponse variable and its predictors. Over time, other
tudies employed the concept of neural networks to de-
elop Decision trees, Random forest, Gradient Boosting
achines, Support vector machines and other ML al-
orithms for regression-type problems (Alpaydin, 2020;
riedman, Hastie, Tibshirani, et al., 2001). There have
een parallel efforts towards empirical validation of ex-
sting models, model comparison and development of
ew ones. The immense importance of these ML devel-
pments to modellers provides a wide range of choices
nd a comprehensive understanding of available models’
trengths and weaknesses for different forecasting prob-
ems. The ML algorithms for time-series forecasting dom-
nating the literature are Multi-Layer Perceptron (MLP),
ayesian Neural Network (BNN), Radial Basis Functions
RBF), Generalised Regression Neural Network (GRNN),
-Nearest Neighbour regression (KNN), CART regression
rees (CART), Support Vector Regression (SVR), Recurrent
eural Network (RNN), Long Short Term-Memory neu-
al network (LSTM), Automated Artificial neural network
AANN) and Gaussian Processes (GP) (Ahmed, Atiya, Ga-
ar, & El-Shishiny, 2010; Makridakis et al., 2018). For
n extensive description of these ML models, see works
f Ahmed et al. (2010), Alpaydin (2020) and Hastie, Tib-
hirani, and Friedman (2009). MLP, BNN, GP, KNN and
RNN were found in a large-scale comparative study
o be the top five machine learning algorithms based
n 18-month one-step-ahead forecasts, among other ML
odels (Ahmed et al., 2010). However, the differences

n their performance could be affected by the choice
f predictive error measures (Makridakis et al., 2018)
nd the type of evaluation strategy employed (Tashman,
000). The performance of ML models may also vary
epending on the historical time-series data and under-
ying hyper-parameters. Other studies have also explored
he predictive performance of ML algorithms such as
1262
Neural Network Auto-Regressive model (NNAR) and Ex-
treme Learning Machine (ELM). ML models for time-series
forecasting have significantly evolved over the years and
are considered good competitors to the classical models
within the forecasting community.

2.3. Research gap and contribution

Forecasters, policymakers, time-series users and prac-
titioners usually need long time-series data for model
assessment, policy analysis, and investigating underlying
trends and patterns to aid decision-making (Caporin &
Sartore, 2011). Nevertheless, such long time-series data
may not always be obtainable at the expected frequency,
with the needed temporal or spatial coverage of the data
unavailable in previous years, especially among blood
centres in developing countries. The data unavailability
may be due to several reasons such as human error, hu-
man failure, software corruption, data storage destruction,
lack of the required data processors, or data collection
only started in some future time, amongst others. Con-
sequently, it is imperative to estimate or predict the lost
data of past years for time-series users. The process of
predicting data of past years is referred to as backcast-
ing or reverse forecasting. It is possible to backcast or
forecast in reverse time for relevant time-series provided
the series is strictly stationary and time-reversible (Ca-
porin & Sartore, 2011; Sharifdoust & Mahmoodi, 2013).
Unfortunately, to the best of our knowledge, no known
study has explored the backcasting power of the existing
state-of-the-art ML algorithms for predicting unavailable
blood demand data of past years. Hence, this current
study attempts to bridge this gap by investigating the
forecasting and backcasting power of a few selected ML
algorithms (KNN, NNAR, GRNN, MLP, ELM and LSTM) for
a short time-series data on blood demand with past lost
values using an out-of-sample rolling-origin evaluation
strategy for model comparison. The current study can
further be expanded by time-series modellers for other
general modelling problems with short series contami-
nated with missing values and outliers, and the findings
can help policymakers in the management of the blood
supply chain (as previously discussed) as well as pro-
vide publicly accessible adaptive programming codes in
R (with the help of existing packages) to forecast or back-
cast any time-series data using the underlying time-series
models via the proposed rolling-origin strategy.

The key contributions of this study are:

i. To demonstrate the application of ML algorithms
and a classical time-series model for also backcast-
ing lost data of past years or any time-reversible
stationary series.

ii. To establish that the direction of prediction (fore-
casting or backcasting) can affect the predictive
performance of ML models given time-series data.

iii. To justify the need for an out-of-sample rolling-
origin strategy in comparing existing time-series
models’ forecasting and backcasting power for short
time-series data (with missing values and outliers).
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3. Materials and methods

As previously discussed, the study primarily compares
he predictive performance of six different ML algorithms
or forecasting and backcasting blood demand in a major
ospital in Ghana based on a short series with missing
alues and outliers. In addition, this section discusses
he data source, data preprocessing procedures, the pro-
osed backcasting scheme based on time-reversibility,
he time-series models for predicting blood demand via
rolling-origin strategy, and summarises the empirical
valuation methods. All analyses were carried out using
statistical software version 3.6.3 (R Core Team, 2019).
he R scripts developed (for the forecast and backcast
chemes via a rolling-origin strategy) and the empirical
ata used for the study can be found via the GitHub URL
ink (for reproducibility of results): https://github.com/
wumasiclement/TimeSeries-Forecasting.

.1. Sources of data

Monthly data collected from January 2013 to Septem-
er 2020 on blood demand was obtained from Tema
eneral Hospital (TGH) for this study. TGH has acquired
he Enzyme-Linked Immunosorbent Assay (ELISA) ma-
hine to screen its blood samples just recently (Ghana
ealth Service, 2014). Therefore, most data on blood de-
and before acquiring the ELISA machine remains frag-
ented and difficult to retrieve (coupled with missing
alues). From 2014, the hospital started recording the
ggregate blood quantity demanded every month at the
ealth Information Department of the Hospital. Thus, the
ime-series data for this study is short in length with
issing values and outliers (assumed to be due to genuine

ecording error). The Institutional Review Board of the
hana Institute of Management and Public Administration
usiness School (GIMPA) gave ethical approval for the
tudy. The TGH’s management also gave the authorisation
o access the secondary dataset on aggregated monthly
lood demand.

.2. Data preprocessing

The data cleaning or preprocessing was done in two
tages using existing state-of-the-art algorithms. The
lood demand series had 14% missing values (n = 13)

and 11 gaps with an average gap size of 1.182. In the first
preprocessing stage, missing value imputation was done
by adopting the Kalman Smoothing on a basic structural
model (BSM) implemented in the imputeTS R package (see
Moritz & Bartz-Beielstein, 2017). For the state-space form
of the BSM, see work by Durbin and Koopman (2012).
Fig. 2 shows the time-series plot of the blood demand se-
ries with highlighted missing values and the imputed data
at the first data-preprocessing stage. During the second
stage of data preprocessing, an automatic outlier detec-
tion and adjustment algorithm for identifying additive
outliers (AO) and other outlier types (innovation outliers,
level shift, temporary change and seasonal level shift)
based on the best ARIMA model errors was used (pro-

posed by Chen & Liu, 1993). Additionally, we used the
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tsoutliers package in R (implemented by López-de Lacalle,
2016) for the automatic ARIMA data correction based on
the blood demand series imputed by Kalman smoothing
on BSM (from the first stage of data preprocessing). As a
result, the automatic ARIMA data correction detected only
three additive outliers and no other outlier type based on
the best ARIMA model errors (Fig. 3). The final corrected
data was used for the subsequent time-series modelling.
The Augmented Dickey–Fuller unit root (ADF) test was
used to investigate the stationarity of the corrected data.
The ADF test revealed that the corrected blood demand
series was stationary at lag 0 (Test statistic = −4.305,
p-value ≤ 0.01).

3.3. Time-series forecasting and backcasting models

The principles of time-reversibility and backcasting
based on forecasts are discussed (Section 3.3.1). This sec-
tion also presents the time-series models under investiga-
tion (classical non-seasonal ARIMA as baseline model and
six ML algorithms) to forecast and backcast blood demand
(Sections 3.3.2–3.3.8).

3.3.1. Time reversibility and linearity

Definition 3.1. Let {Yt , t ∈ Z} be a strictly station-
ary series or stochastic process. Yt is said to be time-
reversible (TR) if, for any positive integer n and all integers
t1, t2, . . . , tn (−∞ < t1 < t2 < · · · < tn < ∞), the vector
(Yt0 , Yt1 , . . . , Ytn )

′ and (Ytn , Ytn−1 , . . . , Yt0 )
′ have the same

joint distribution; such that

(Yt0 , Yt1 , . . . , Ytn )
′ D
∼ (Ytn , Ytn−1 , . . . , Yt0 )

′, (1)

where
D
∼ represents equal in distribution (Sharifdoust &

Mahmoodi, 2013).

Definition 3.2. The stochastic process {Yt , t ∈ Z} is said
to be a linear process if it can be represented as

Yt =

∑
k∈Z

ϕkZt−k (2)

where {Zt , t ∈ Z} is a sequence of nondegenerate in-
dependent and identically distribution random variables
with mean 0 and constant variance σ 2; and {ϕk} is a
sequence of constants such that 0 <

∑
k∈Z ϕ2

k < ∞ (Shar-
ifdoust & Mahmoodi, 2013).

Lemma 1. Let {Yt , t ∈ Z} be a strictly stationary linear
process such that Yt =

∑
k∈Z ϕkZt−k; then {Yt , t ∈ Z}

is time-reversible if and only if it is a Gaussian process or
for t0 ∈ Z and ρ = ±1, ϕt = ρϕt0−t and Zt

D
∼

ρZt (Sharifdoust & Mahmoodi, 2013).

Remark. Hence, to show that a strictly stationary (blood
demand) series is time-reversible and thus backcasting
with the ARIMA and ML models is possible, we need
to establish that the stationary series follows a Gaus-
sian process, comes from a linear stochastic process, and
there is linearity in the mean. Once this assumption of

time reversibility holds, backcasting with the time-series

https://github.com/twumasiclement/TimeSeries-Forecasting
https://github.com/twumasiclement/TimeSeries-Forecasting
https://github.com/twumasiclement/TimeSeries-Forecasting
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Fig. 2. Units of blood demanded from January 2013 to September 2020 with highlighted missing regions (top) and imputed series using Kalman
moothing on BSM (bottom).
Fig. 3. Corrected blood demand series by automatic ARIMA data correction algorithm.
odels is done by forecasting with the reversed series
n time. Lobato-Velasco normality test of stationary pro-
ess (LV test) was used to test the Gaussianity of the
tationary blood demand series using the nortsTest pack-
ge in R (Asael Alonzo Matamoros & Nieto-Reyes, 2020).
n addition, Teraesvirta’s neural network linearity test,
hich tests whether there is linearity in mean given the
eries (Constantino, Garcia, & Sawitzki, 2020; Teräsvirta,
in, & Granger, 1993) and the surrogate data testing,
1264
which tests whether the series is a Gaussian linear pro-
cess (Constantino et al., 2020; Schreiber & Schmitz, 2000)
were employed at α = 5%. For the Surrogate data test-
ing, the time symmetry statistic (T ), which measures the
asymmetry of stationary time-series (Yt of length n) under
time-reversibility, is computed as (adapted from Kantz
and Schreiber (2004)):

T =
1

n − 1

[
n−1∑

YtY 2
t+1 −

n−1∑
Y 2
t Yt+1

]
(3)
t=1 t=1
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Surrogate data of size 2K
α

− 1, for K ≥ 1 is generated
sing a phase randomization procedure (based on Fast
ourier Transform of the Yt ) for a two-sided test (Con-

stantino et al., 2020; Raeth & Monetti, 2009). The null
hypothesis (the series is a Gaussian linear process) for a
two-sided Surrogate test is rejected if the test statistic for
the original series Yt is significantly different from test
statistics for all the 2K

α
− 1 generated surrogate datasets.

The LV normality test revealed that the stationary
blood demand series was normally distributed (Test statis-
tic = 0.078, df = 2, p-value = 0.962). Teraesvirta’s neural
network linearity test revealed that the corrected blood
demand series (χ2

= 0.647, df = 2, p-value = 0.723) is
inear in its mean. The symmetrical distribution of the
ime-reversibility statistic (based on the generated sur-
ogate and observed series) and the normally distributed
emand series are shown in Fig. 4. The time-reversibility
tatistic for the corrected blood demand series is not
ignificantly different from test statistics of all generated
urrogate data (p-value > 0.05). Therefore, the blood
emand series comes from a Gaussian linear process and
s thus time-reversible. Thus, blood demand backcast-
ng with time-series models is possible since the data
s confirmed to be time-reversible. Moreover, according
o Sharifdoust and Mahmoodi (2013), if a stationary linear
odel is assumed, then a test for time reversibility is usu-
lly equivalent to a test for Gaussianity of the stationary
eries. In conclusion, the time-reversibility assumption
s a necessary condition for the proposed backcasting
cheme using the time-series models since backcasts are
btained by reversing forecasts backwards in time (as
reviously justified by Sharifdoust & Mahmoodi, 2013).
his is because, if the stationary series is time-reversible,
he joint probabilities of the forward and reverse state
equences from the time-series models are the same for
ll sets of time increments.

roposition 3.1. Let Yt = (Ym, Ym+1, . . . , Ym+n)′ for
t ∈ {m,m + 1, . . . ,m + n} and m, n ∈ Z (where 0 ≤

m < n < ∞), be the current series of a stationary
data with frequency f and time-reversible. Suppose F h

t =

(Ŷm+n+1, Ŷm+n+2, . . . , Ŷm+n+h)′ are the one-step-ahead for-
ward prediction for h horizons based on a fitted time-series
model; then the backcasts of past values for h (h ≥ 1)
horizons at time t ∈ {m − h,m − h + 1, . . . ,m − 1} are
given as: Bh

t = (Ŷm−h, Ŷm−h+1, . . . , Ŷm−1)′ such that Bh
i = F h

j
at past time index i = m − h,m − h + 1, . . . ,m − 1 and
reversed time index j = m+n+h,m+n+h−1, . . . ,m+n+1
based on the frequency (f ) of the series.

The pseudo-code summarising the proposed backcast-
ing scheme in this study (in accordance with Proposition
3.1) is given by Algorithm 1.

3.3.2. Non-seasonal ARIMA model
Let suppose Yt is the observed series at time t , then the

full ARIMA(p, d, q) model which integrates both AR(p) and
MA(q) models is given as (Hyndman & Athanasopoulos,
2018):

∆Yt = h0 +

p∑
αi∆Yt−i + ϵt +

q∑
θjϵt−j (4)
i=1 j=1 n
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Algorithm 1: Pseudo-code for the proposed back-
casting scheme using time-series models

Input: Current series of a stationary data
Yt = (Ym, Ym+1, · · · , Ym+n)′ for
t ∈ {m,m + 1, · · · ,m + n} and m, n ∈ Z
(where 0 ≤ m < n < ∞), with frequency f .

Output: Backcasts of past values (Bh
t ) for h (h ≥ 1)

horizons at time
t ∈ {m − h,m − h + 1, · · · ,m − 1} such
that: Bh

t = (Ŷm−h, Ŷm−h+1, · · · , Ŷm−1)′, and
Bh
i = F h

j at past time index
i = m − h,m − h + 1, · · · ,m − 1 and
reversed time index
j = m+ n+ h,m+ n+ h− 1, · · · ,m+ n+ 1
based on the frequency (f ) of the series;
where the forward prediction
F h
t = (Ŷm+n+1, Ŷm+n+2, · · · , Ŷm+n+h)′.

1 Test for stationarity of the original series (Yt ) or
transform series into a stationary form by
differencing if necessary.

2 Test the Gaussianity of the stationary series using
appropriate test.

3 Determine if the stationary series is time-reversible
by justifying whether the stationary series is a
linear Gaussian stochastic process.

4 if stationary series is time-reversible then
5 Fit the required time-series model based on the

training set or current series.
6 Generate a one-step-ahead forecast for h ≥ 1

horizons from the fitted model.
7 Reverse the forward predictions or forecasts in

time (based on the frequency of the series) for
the required backcasts or predicted values of
past years.

8 Assess the predictive performance of the model
based on the validation set and appropriate
error measure (preferably via a rolling-origin
evaluation strategy for a short series).

9 else
10 backcasting is not possible with the time-series

model given a time-irreversible series.
11 end

where ∆Yt is the differenced series (at differencing order
denoting the minimum non-negative order such that

he series Yt is stationary), h0 ∈ R is a constant and ϵt
s the random error at time t; whereas p and q are the
utoregressive and moving average non-negative orders
espectively, and αi ∈ R for i = 1, 2, . . . , p and θj ∈ R
or j = 1, 2, . . . , q are the regression coefficients. The
uto.arima function in R was used to fit an automatic non-
easonal ARIMA model (Hyndman et al., 2020). A function
n R was developed to implement the automatic ARIMA
ia a rolling-origin strategy for model comparison (for
oth forecast and backcast schemes).

.3.3. K-nearest neighbour regression model
K-Nearest Neighbour regression (KNN) is a

on-parametric ML model that makes predictions based
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Fig. 4. Plot of time-reversibility statistic for the blood demand series and 199 generated surrogate data (top), and Normal Q-Q plot of the blood
demand series (bottom).
on the target output of the K nearest neighbours of the
given query point (Ahmed et al., 2010). Now, suppose the
ith training instance or data point consists of a vector
of υ features: f = (f i1, f

i
2, . . . , f

i
υ ) which describes the

nstance. Given a new instance with known features: γ =

γ1, γ2, . . . , γυ ), but unknown target vector, these new
eatures are used to find its K most identical training
nstances from their vectors of features and the Euclidean
istance d(f , γ ) (a similarity metric) such that:

(f , γ ) =

√ υ∑
j=1

(f ij − γj)2 (5)

Thus, the closest K training data points are selected,
nd a prediction is obtained based on the average of the
arget output values for these K points (Martínez, Frías,
harte, & Rivera, 2019a; Martínez, Frías, Pérez, & Rivera,
019b). That is, let assume that the targets (y1, y2, . . . , yK )

are the K nearest neighbours for a new instance x, then
the prediction (ŷ) is given by

ŷ =
1
K

K∑
j=1

yj (6)

Larger values of the hyperparameter K lead to a
smoother fit at the cost of a higher bias and vice versa for
smaller values of K ; and thus controls the bias–variance
1266
trade-off (Taieb, Bontempi, Atiya, & Sorjamaa, 2012). There
are several methods for determining the value of K , in-
cluding but not limited to: (i) using some heuristic or
rule-of-thumb technique that recommends setting K to
be the square root of the number of training exam-
ples (Martínez et al., 2019a), (ii) using a cross-validation
or optimisation techniques that estimate the optimal K
value by minimising a forecast error measure such as
MAPE (Hyndman & Koehler, 2006), and (iii) using local
learning techniques to adaptively set K by minimising the
Leave-One-Out (LOO) error statistic (described by Taieb
et al., 2012) or, preferably, the Prediction Sum of Square
(PRESS) statistic, which produces forecasts with the most
similar stochastic characteristics to the training samples
(Allen, 1974; Bontempi, Birattari, & Bersini, 1999). In
this study, KNN was fitted using the tsfknn package in
R (Martínez et al., 2019a). Due to ease of computation and
the tsfknn package being used, the optimal values of the
hyperparameter K were iteratively tuned from a range
of possible values (from 1 to the maximum number of
training samples) via a cross-validation procedure which
minimises the MAPE statistic (defined in Eq. (20)) based
on a multiple-step ahead strategy known as the Multiple-
Input-Multiple-Output (MIMO) (described in Bontempi &
Taieb, 2011; Taieb et al., 2012). In addition, we developed
a function in R to implement KNN via a rolling-origin
strategy for model comparison (for both forecast and
backcast schemes) by adapting the tsfknn R package.
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3.3.4. Generalised Regression Neural Network model
Generalised Regression Neural Network (GRNN) is a

ype of ANN model which is more robust for non-linear
itting and originally developed to complement the ARIMA
odel (BuHamra, Smaoui, & Gabr, 2003; Leung, Chen, &
aouk, 2000). GRNN is a type of Radial Basis Function
etwork (RBF) characterised by a fast single-pass learning,
nd consists of hidden layers of RBF neurons. Now, given
training set with υ training patterns (x1, x2, . . . , xυ ) and

its corresponding targets (y1, y2, . . . , yυ ), GRNN makes
redictions for an input x based on the weighted aver-
ge of target outputs of the training data points in the
eighbourhood of x, using some kernel function (Ahmed
t al., 2010). Thus, the prediction (ŷ) for data point x is

estimated such that:

ŷ =

υ∑
j=1

ωjyj (7)

where the weights wj produced by the hidden layers are
given by

ωj =

Ker f
(

∥x−xj∥
ρ

)
∑υ

j′=1 Ker f
(

∥x−xj′ ∥
ρ

) (8)

where yj is the target output for training data point xj,
Ker f is a kernel function with bandwidth ρ and ∥ · ∥

is the Euclidean norm. The Gaussian kernel in the form
Ker f(u) = e−u2/2/

√
2π is typically used. The normalised

eights ω denote the training pattern contributions to the
final output. The hyperparameter of GRNN, the bandwidth
ρ, determines the smoothness of the fit; such that very
large ρ result in prediction close to the mean of train-
ng targets (with similar weights), and small ρ assigns
significant weights to training targets closer to the in-
put vector. The GRNN model was fitted, the smoothing
parameter ρ automatically tuned via optimisation using
tsfgrnn package in R (Francisco Martinez, 2019). Also, a
function was developed in R to implement GRNN via a
rolling-origin strategy for model comparison (for both
forecast and backcast schemes).

3.3.5. Neural Network Auto-Regressive model
Neural Network Auto-Regressive model (NNAR) is also

a type of artificial neural network (ANN) which allows the
modelling of complex non-linear relationships between
input and output variables but uses lagged values of the
current series as inputs for model fitting (Thoplan, 2014).
For a seasonal data with a frequency of s, the NNAR sea-
sonal model is represented as NNAR(p, P, k)s; where p, P
and k model parameters denote the trend auto-regressive
order, seasonal trend autoregressive order and the num-
ber of nodes in the hidden layer, respectively (Hyndman
& Athanasopoulos, 2018). The non-seasonal model is de-
noted by NNAR(p, k). More generally, NNAR(p, P, k)s has
inputs (yt−1, yt−2, . . . , yt−p, yt−s, yt−2s, . . . , yt−Ps) and k
neurons or nodes in the hidden layer. Eliminating the hid-
den layer of the model (i.e. setting k = 0), NNAR(p, P, 0)s
is analogous to the seasonal ARIMA (p, 0, 0)(P, 0, 0)s
model, and NNAR(p, 0) is similar to AR(p) model but with

non-linear functions (Faraway & Chatfield, 1998). The

1267
NNAR model is a feedforward neural network, where
each layer of neurons or nodes receives inputs or train-
ing samples from the previous layers. Consequently, the
outputs of the nodes in one layer are inputs to the next
layer. Now, let suppose yt−1 = (yt−1, yt−2, . . . , yt−p) is an
input vector for a single-hidden-layer NNAR(p, k) model
with k hidden nodes at time t − 1; then, the (non-linear)
relationship between the model output (yt ) at time t and
inputs (yt−1) at time t−1 has the following mathematical
representation:

yt = ϕ

⎛⎝bi +
p∑

j=1

wi,j · yt−j

⎞⎠ + ϵt for i = 1, 2, . . . , k

(9)

where bi is the hidden layer bias, and wi,j is the weight
corresponding to the input vector yt−1 for the jth (j =

1, 2, . . . , p) input in hidden node i; ϵt is the series error
(assumed to be homoscedastic and possibly normally dis-
tributed), and ϕ is a logistic sigmoid function in the form

ϕ(u) =
1

1 + e−u (10)

The hidden layer bias and weights are numerically
estimated from the data (using a backpropagation algo-
rithm and a cost function). Thus, the weights have no
closed-form and meaningful interpretation. In this study,
a non-seasonal NNAR(p, k) model with a single-hidden
layer was fitted using the forecast package in R (Hyndman
et al., 2020). A novel function in R was also developed to
implement NNAR via a rolling-origin strategy for model
comparison (for both forecast and backcast schemes). The
best average number of hidden nodes was determined at
different possible values.

3.3.6. Multi-layer perceptron model
A multilayer perceptron (MLP), just like NNAR model,

is also a feedforward ANN class that utilizes supervised
learning techniques via backpropagation for non-linear
prediction of a stationary time-series (Rosenblatt, 1961;
Rumelhart, Hinton, & Williams, 1985). MLP consists of at
least three layers of nodes: an input layer, a hidden layer
and an output layer, including hidden node (i), weights
(w) and a transfer function ϕ (a logistic sigmoid function
given by Eq. (10)). Suppose x is an input vector or training
samples of length ϑ; then, the prediction for the network
output (ŷi) for hidden node i is given as (related to NNAR
output prediction):

yi = ϕ

⎛⎝bi +
ϑ∑
j=1

wi,jxj

⎞⎠ for i = 1, 2, . . . , k (11)

where bi is the hidden layer bias, wi,j is the weight corre-
sponding to jth input xj (j = 1, . . . , ϑ) for hidden node i,
and k is the number of hidden nodes. The hidden layer
bias and weights can be adjusted based on corrections
that minimize the error in the entire output via gradient
descent. A major drawback of MLP is its high computa-
tional time for training. Hence, the model is trained in
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three stages: a forward pass, calculation of error or loss
and a backward pass. An automated MLP was fitted using
the nnfor package in R (Kourentzes, 2017). A 5-fold cross-
validation was used to automatically choose the number
of hidden nodes and the differencing order of the training
samples. A function was created in R to implement MLP
via a rolling-origin strategy for model comparison (for
both forecast and backcast schemes).

3.3.7. Extreme Learning Machine
Extreme Learning Machine (ELM) is also a hidden

ayer feedforward neural network that does not require
radient-based backpropagation optimisation but Moore–
enrose generalised inverse to set the weights connecting
he inputs to the hidden layer and hidden layer biases
unlike other ML algorithms like NNAR or MLP); hence,
enerally faster in computational time (Huang, Zhu, &
iew, 2006; Jayaweera & Aziz, 2018). The mathematical
odel for a single-layer ELM with input vector or training
amples x and output (y) is given as

j =

k∑
i=1

βigi(x) =

k∑
i=1

βig(bi + ωixj) for j = 1, 2, . . . , ϑ

(12)

where k is number of hidden nodes, ϑ is the length of
the input vector, b is the hidden layer bias vector, ω is
the weight vector between input and hidden layer, β is
weight vector between the hidden layer and output, and g
is a linear activation function (where g can be a penalised
linear regression or the traditional linear regression). The
main hyperparameter that requires tuning is the number
of hidden nodes. An automated ELM was fitted using the
nnfor package in R (Kourentzes, 2017). A 5-fold cross-
validation was used to automatically select the number of
hidden nodes and the differencing order of the training
samples. In addition, the classical Lasso regression was
used as the linear activation function (g) in estimating the
output layer weights. A function was also developed in R
to implement ELM via a rolling-origin strategy for model
comparison (for both forecast and backcast schemes).

3.3.8. Long Short-Term Memory network
Long Short-Term Memory network (LSTM) is a partic-

ular type of Recurrent Neural Network (RNN) for dealing
with the vanishing gradient problem of the classical RNN
or capable of learning long-term dependencies (Gopika,
Sowmya, Gopalakrishnan, & Soman, 2020). LSTM com-
prises memory blocks (or cells) connected through layers.
The information in the cells is contained in cell state ct
and hidden state yt at time t via mechanisms known
as gates based on two sigmoid activation functions: hy-
perbolic tangent function (tanh) and a logistic sigmoid
function. LSTM requires the series to be in a supervised
learning mode with target (y) and predictor (x) variables.
Consequently, the series is transformed by lagging (at lag
φ) such that the lagged value at time t − φ is used as
the input and lagged value at time t considered as the
target, for a φ-step lagged dataset. Additionally, LSTM has
three gates: (i) input gate (receives new information and
1268
the prior predictions as inputs), (ii) forget gate (eliminates
the information that is no longer relevant in the cell state),
and (iii) output gate (makes a selection based on the new
information and the previous predictions). Thus, the final
output is obtained through three steps or mechanisms
described as follows:

Step 1 (input gate it ): Let xt (current input at time t)
and yt−1 (previous hidden state at time t − 1) be input
information. The logistic sigmoid layer creates an update
filter such that

it = ϕ (Wixt + Riyt−1 + bi) (13)

where W is the input weight vector, R is the recurrent
weight vector, b is the hidden layer bias vector, and ϕ is
the logistic sigmoid function (given by Eq. (10)).

Step 2 (forget gate ft ): This gate eliminates the informa-
tion that is no longer relevant in the cell state (ct ) given
weights (Wf , Rf and bf ) such that

ft = ϕ
(
Wf xt + Rf yt−1 + bf

)
(14)

nd the tanh activation layer creates a vector of potential
andidates (zt ) given weights (Wz , Rz and bz) such that

t = tanh(Wzxt + Rzyt−1 + bz). (15)

A sigmoid layer then creates an update filter (ut ) given
eights (Wu, Ru and bu) such that

t = ϕ (Wuxt + Ruyt−1 + bu) (16)

nd the previous cell state ct−1 is updated such that

t = ft ⊗ ct−1 + ut ⊗ zt (17)

tep 3 (output gate ot ): The sigmoid layer filters the cell
tate (ct ) for the output (ot ) given weights (Wo, Ro and bo)
uch that

t = ϕ (Woxt + Royt−1 + bo) . (18)

Finally, an element-wise product (⊗) of the scaled cell
tate (ct ) and the filtered output (ot ) gives the new hidden
tate yt for the next cell (ct+1) such that

t = ot ⊗ tanh(ct ). (19)

With the help of the open-source R software libraries:
eras and TensorFlow (Arnold, 2017), a function was cre-
ted in R to implement LSTM based on the empirical
ime-series data (lagged at differencing order φ = 1
nd normalised afterwards) via a rolling-origin strategy
or model comparison (for both forecast and backcast
chemes).
Unlike the other aforementioned R packages for ma-

hine learning forecasting (discussed in Sections 3.3.3–
.3.7), the Keras and TensorFlow libraries do not directly
eturn a forecast object in R when implementing LSTM.
hus, users must take care when fitting LSTM due to
umerous modelling steps from time-series differencing,
ata normalisation, data transformation into
-dimensional arrays, inverse scaling after obtaining pre-
ictions from the compiled model, converting predictions
nto a forecast object in R, and finally estimating predic-
ion error (either via the rolling-origin forecast or backcast
trategy).



C. Twumasi and J. Twumasi International Journal of Forecasting 38 (2022) 1258–1277

r
o
a
w
t
e
O
W
i
T
F
t
t
s
p

r
c
d
s
(
z
s

t

t
s
p
t
n
T
c
w
i
a
t
s
e
K
t
t
t
i

p
f
f
f
t
m
L

3.4. Empirical evaluation

The forecasting and backcasting power of six ML algo-
ithms (KNN, NNAR, GRNN, MLP, ELM and LSTM) based
n the corrected blood demand data with short length
re primarily examined. The non-seasonal ARIMA model
as considered as a baseline model for comparison with
he ML algorithms. We further investigated whether there
xist seasonality in the stationary series using the Webel-
llech overall seasonality test (implemented in Ollech &
ebel, 2020). The Webel-Ollech test found no seasonality

n the corrected blood demand series (p-value >0.05).
his finding is also confirmed in the Auto-correlation
unction (ACF) and seasonal plots (Fig. 5). Also, the sta-
ionary blood demand series was found to be
ime-reversible. Thus, blood demand backcasting (pre-
ented by Algorithm 1) with the time-series models was
ossible under the time-reversibility assumption.
An out-of-sample rolling-origin strategy with model

ecalibration is used to assess the forecasting and back-
asting power of the time-series models under study at
ifferent lead times. Thus, the corrected blood demand
eries was split into different training and test partitions
determined by the maximal and minimal prediction hori-
ons or lead times) according to the following proposed
eries splitting rule:
Let H be the maximal prediction horizon (set at H =

18 months), and assume ν is the minimal prediction hori-
zon (set at ν = 2 months). Suppose N is the total
length of the observed series. For forecasting and back-
casting schemes, different training sets for model fitting
are chosen with increasing lengths N − H,N − H −

1, . . . ,N − ν; whereas the test set for cross-validation is
chosen at decreasing lead times H,H − 1, . . . , ν. Per this
proposed rolling-origin strategy, the expected number of
different sets of predictions (forecasts or backcasts) or the
number of times an individual model is re-calibrated is
η = H − ν + 1 (i.e. η=18-2+1=17 prediction sets). Hence,
the overall total number of either forecasts or backcasts
for this rolling-origin strategy with a maximal prediction
horizon of H is given η(H+ν)

2 (based on the sum of η lead
imes as arithmetic sequences).

For each set of the 17 different predictions (η = 17),
heir respective test set was compared with its corre-
ponding predictions by estimating the mean absolute
ercentage error (MAPE) given by Eq. (20) at each lead
ime. A pooled average error statistic (median MAPE de-
oted by MdMAPE) given by Eq. (21) (recommended by
ashman & Kruk, 1996) was finally computed for model
omparison. Thus, MdMAPEs at the different lead times
ere obtained for each time-series model during forecast-

ng and backcasting assessments, respectively, resulting in
n error distribution. The prediction error distributions of
he time-series models were further compared, and the
ignificant differences between the time-series models’
rror distributions were determined using the standard
ruskal–Wallis (KW) median test and Bonferroni Dunn’s
est of multiple comparisons at 5% alpha level. For each
est set (YT ) at lead time T = H,H − 1, . . . , ν, let assume
he test series is given by YT = (Y1, Y2, . . . , YnT ) and
ts corresponding predicted values F = (F , F , . . . , F ),
T 1 2 nT r
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then the MAPE at lead time T and the median MAPE
(MdMAPE) are computed such that:

MAPET =
1
nT

nT∑
i=1

⏐⏐⏐⏐Yi − Fi
Yi

⏐⏐⏐⏐ × 100 for i = 1, 2, . . . , nT

(20)

and

MdMAPE = median(MAPE1,MAPE2, . . . ,MAPEnT ) (21)

where nT is the test series length at lead time T .

4. Results

4.1. Blood demand forecasts and backcasts from the ARIMA
and ML models

The non-seasonal ARIMAmodel was considered a base-
line model for comparison with the ML models for fore-
casting and backcasting the units of blood demanded via
the proposed 18-month rolling-origin strategy with 17
different sets of predictions; and thus, 17 different fitted
ARIMA models. Fig. 6 is a plot of the blood demand fore-
casts and backcasts at the maximal 18-month prediction
horizon.

Moreover, the six ML algorithms (KNN, GRNN, NNAR,
MLP, ELM and LSTM) were also fitted to forecast and back-
cast the units of blood demanded at the Tema General
Hospital via the rolling-origin strategy. Comparative plots
of the blood demand forecasts and backcasts for the fitted
ML models at the maximal 18-month prediction horizon
are given by Figs. 7 and 8, respectively.

4.2. Overall predictive performance of the time-series models

The predictive power of the time-series models for
forecasting and backcasting the short blood demand se-
ries were assessed at different prediction origins based
on the rolling-origin evaluation (using Eqs. (20) and (21)).
Fig. 9 shows that there was some degree of variability in
the prediction error at the different forecast and backcast
origins for any given time-series model. For example,
KNN generally had the highest forecasting power at fore-
cast origins from May 2019 to July 2020; whereas, ELM
achieved the best backcasting power at backcast origins
from July 2013 to June 2014. The prediction error dis-
tribution between ARIMA and the six ML models were
also compared as displayed in Fig. 10. It was found from
the Kruskal–Wallis median test that there is a significant
difference in the median prediction error of the time-
series models for both forecasts (χ2

= 39.058, df =
6, p-value <0.001) and backcasts (χ2

=43.081, df = 6,
-value <0.001) at 5% alpha level. In addition, the Bon-
erroni Dunn’s test for pairwise comparison of the models’
orecast error distributions (Table 1) revealed that KNN’s
orecast error was significantly different (and lower) than
he forecast errors of the ARIMA model and the other
achine learning algorithms (NNAR, GRNN, MLP, ELM and
STM models).
Also, pairwise comparison of the models’ backcast er-
or distributions (Table 2) showed that, except for the
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Fig. 5. Auto-correlation function (top) and seasonal (bottom) plots based on the corrected series.
KNN model, the backcast errors of ELM were significantly
different (and lower) than the backcast errors of the other
time-series models; whereas, backcast errors of NNAR and
KNN were significantly different at 5% alpha level. We can
therefore conclude from Table 3 that the best forecasting
model was KNN (12.55% error), followed by NNAR (17.63%
error) and ARIMA (18.40% error). On the other hand, ELM
achieved the highest backcasting power (19.36% error),
followed by KNN (25.94% error) and LSTM (28.21% er-
ror). Nevertheless, there was no significant difference be-
tween the forecasting power of the ML algorithms and
the ARIMA model, except the KNN model (Table 1). How-
ever, ELM significantly outperformed the ARIMA model in
backcasting blood demand based on the short time-series
data. The high variability in the models’ predictive power
at the different training and test partitions of the data
suggests the need to adopt the rolling-origin strategies
over the fixed-origin strategy for effective and robust
model comparisons (Figs. 9 and 10). From Table 3, it can
also be inferred that all the time-series models under
investigation performed well in forecasting blood demand
than backcasting based on the given empirical data.

5. Discussion

5.1. Theoretical implications of the study

This study mainly investigated the predictive perfor-
mance of ML algorithms for forecasting and backcasting
1270
Table 1
P-values of the Bonferroni Dunn’s test for pairwise
comparison of models’ forecast error distributions.
Models (i, j) ARIMA KNN NNAR GRNN MLP ELM

KNN 0.001
NNAR 1.000 0.002
GRNN 1.000 0.000 1.000
MLP 0.602 0.000 1.000 1.000
ELM 1.000 0.000 1.000 1.000 1.000
LSTM 1.000 0.000 1.000 1.000 1.000 1.000

∗ p-value < 0.05 in ijth position implies forecasting error
between models i and j are significantly different at 5%
alpha level.

Table 2
P-values of the Bonferroni Dunn’s test for pairwise
comparison of models’ backcast error distributions.
Models (i, j) ARIMA KNN NNAR GRNN MLP ELM

KNN 0.789
NNAR 1.000 0.000
GRNN 1.000 0.411 0.247
MLP 1.000 0.113 0.499 1.000
ELM 0.000 0.722 0.000 0.000 0.000
LSTM 1.000 1.000 0.373 1.000 1.000 0.010

∗ p-value < 0.05 in ijth position implies backcasting error
between models i and j are significantly different at 5%
alpha level.
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Fig. 6. A plot of the 18-month forecasts and backcasts from fitted ARIMA model.
Table 3
Pooled average prediction error (me-
dian MAPE) for empirical model
comparison.
Time-series Median MAPE (%)

models Forecast Backcast

ARIMA 18.399 29.220
KNN 12.547 25.937
NNAR 17.634 33.959
GRNN 19.127 29.680
MLP 22.184 29.322
ELM 18.558 19.364
LSTM 18.942 28.212

∗ The median MAPE quantifies the
overall % prediction error.

blood demand in a major hospital in Ghana, based on a
short time-series data with unavailable past values; and
contaminated with missing values and outliers. The clas-
sical non-seasonal ARIMA model was used as a baseline
model for comparison with the ML models (KNN, NNAR,
GRNN, MLP, ELM and LSTM algorithms), and a proposed
rolling-origin strategy was employed for model evalua-
tions. We also proposed a backcasting scheme to predict
past values of lost data using time-series models pro-
vided the series is strictly stationary and time-reversible,
such that its probabilistic structure remains invariant. The
backcasts were obtained by reversing forecasts backwards
1271
in time, and thus, the time-reversibility assumption was
considered a necessary condition for the proposed back-
casting scheme using time-series models. In addition, ro-
bust state-of-the-arts data preprocessing algorithms were
adopted for data cleaning before the time-series mod-
elling. Thus, the effect of different data preprocessing
techniques and their respective performance on the pre-
dictive errors of the models were not significant concerns
in this study.

Previous studies have systematically shown that the
traditional time-series methods such as ARIMA and expo-
nential smoothing models usually outperform the com-
plex machine learning algorithms (Makridakis et al., 2018).
Nonetheless, Cerqueira, Torgo, and Soares (2019) discov-
ered in their study that the prediction deficiency of ML
models in such instances is predominantly due to poten-
tially small training sample sizes. ML algorithms generally
perform better with large training samples, though appro-
priate hyperparameter(s) tuning can also improve their
predictive performance. Expressly, the two studies, as
mentioned earlier, confirmed that traditional forecasting
methods give better predictions relative to the ML mod-
els when up to only 144 observations are considered
during model training (Cerqueira et al., 2019; Makri-
dakis et al., 2018). However, the choice of the prediction-
error measures, the type of out-of-sample evaluation tests
employed, data preprocessing techniques used, and the
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Fig. 7. Comparative plot of the 18-month blood demand forecasts from the fitted ML models.
direction of prediction (either forecasting or reverse fore-
casting) could also affect the validity of their conclu-
sion, amongst other factors. In this study, the time-series
1272
models were sequentially trained using different training
samples of sizes ranging from 75 to 91 observations via a
proposed rolling-origin strategy since the entire length of
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Fig. 8. Comparative plot of the 18-month blood demand backcasts from the fitted ML models.
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Fig. 9. Comparison between the prediction errors of the time-series models at different forecast (top) and backcast (bottom) origins.
the empirical data was 93. It was revealed that KNN and
NNAR models outperformed the classical ARIMA model
during blood demand forecasting, but there was no sig-
nificant difference between their prediction errors across
different forecasting origins, except for the KNN model.
On the contrary, ELM models significantly had better
backcasting power than the ARIMA model. Therefore, the
direction of prediction (either forecasting or backcast-
ing) can also affect the performance of machine learning
algorithms and the traditional methods.

5.2. Managerial implications of the study

Blood centres are responsible for ensuring that blood
roducts are available to promptly satisfy the demand
rom hospitals for transfusion to save lives. Reliable de-
and forecasting is thus the foundation of all blood sup-
ly chain planning and decision making
Silva Filho, Cezarino, & Salviano, 2012). However, there
re often shortages in blood supply among blood banks or
ospitals in Ghana due to low voluntary blood donation
nd associated challenges with the family-replenishment
trategy (Stanger et al., 2012). The critical impeding fac-
ors for voluntary blood donations in Ghana are social and
ultural beliefs, health risk concerns, and lack of proper
ducation on sanitary blood donation (Harrington, 2013).
herefore, the rise in demand predominantly causes blood
hortages, and thus, the need to identify time-series mod-
ls that can efficiently predict blood demand over time
1274
based on existing empirical data to avoid excess blood
supply resulting in blood wastage. Unfortunately, small
datasets like the one considered in this current study
often exist where values of past years are either lost or
completely unavailable.

Hence, we have demonstrated the application of ma-
chine learning algorithms and other time-series models
like ARIMA to predict unavailable data of past years and
make future predictions based on smaller sets of infor-
mation or available data. Nonetheless, this study’s main
limitation is that the only available data on blood demand
at the Tema General Hospital spanned from January 2013
to September 2020. Hence, it is inevitable that with more
data, the conclusions would have been different concern-
ing the predictive performance between the reference
model (ARIMA) and the ML algorithms, but also regarding
data preprocessing techniques and their sensitivity to the
numbers of outliers.

6. Conclusion and recommendation

The study discovered that Extreme Learning Machine
(ELM) and the K-Nearest Neighbour regression (KNN) al-
gorithms are effective ML algorithms for predicting past
values of unavailable blood demand data for blood centres
and hospitals in Ghana via a reverse-forecast or backcast
scheme. Time-series backcasting was only possible be-
cause the blood demand data was time-reversible and fol-
lowed a Gaussian linear stochastic process. Even though
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Fig. 10. Comparison of the prediction error distribution between ARIMA and the ML models.
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-Nearest Neighbour regression (KNN) and Neural Net-
ork Auto-regressive (NNAR) ML models outperformed
he traditional ARIMA model in predicting future values
ased on the short time-series data, only KNN amongst
he ML models, had a significantly lower forecasting error
han the ARIMA model comparatively. Also, it was re-
ealed that the direction of prediction (either forecasting
r backcasting) could also affect the performance of the
nderlying time-series models.
The data correction method could significantly affect

he predictive outcome of ML algorithms and other classi-
al time-series models. Hence, we recommend that future
tudies investigate the effects of different data prepro-
essing techniques on the time-series models’ predictive
ower for short or long series. Furthermore, the blood
entres in Ghana should get proper database management
ystems to avoid data loss and outliers due to genuine
ecording errors. Future studies can also employ machine
earning algorithms as a good alternative for backcasting
ast values of different time-series data with unavailable
ata of previous years.
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