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Purpose: Tailored	 parallel-	transmit	 (pTx)	 pulses	 produce	 uniform	 excitation	
profiles	at	7	T,	but	are	sensitive	to	head	motion.	A	potential	solution	is	real-	time	
pulse	redesign.	A	deep	learning	framework	is	proposed	to	estimate	pTx	B+

1
	distri-

butions	following	within-	slice	motion,	which	can	then	be	used	for	tailored	pTx	
pulse	redesign.
Methods: Using	 simulated	 data,	 conditional	 generative	 adversarial	 networks	
were	 trained	 to	 predict	B+

1
	 distributions	 in	 the	 head	 following	 a	 displacement.	

Predictions	 were	 made	 for	 two	 virtual	 body	 models	 that	 were	 not	 included	 in	
training.	Predicted	maps	were	compared	with	ground-	truth	(simulated,	following	
motion)	B1	maps.	Tailored	pTx	pulses	were	designed	using	B1	maps	at	the	original	
position	(simulated,	no	motion)	and	evaluated	using	simulated	B1	maps	at	dis-
placed	position	(ground-	truth	maps)	to	quantify	motion-	related	excitation	error.	
A	second	pulse	was	designed	using	predicted	maps	(also	evaluated	on	ground-	
truth	maps)	to	investigate	improvement	offered	by	the	proposed	method.
Results: Predicted	B+

1
	maps	corresponded	well	with	ground-	truth	maps.	Error	in	

predicted	maps	was	lower	than	motion-	related	error	in	99%	and	67%	of	magni-
tude	and	phase	evaluations,	respectively.	Worst-	case	flip-	angle	normalized	RMS	
error	due	to	motion	(76%	of	target	flip	angle)	was	reduced	by	59%	when	pulses	
were	redesigned	using	predicted	maps.
Conclusion: We	propose	a	framework	for	predicting	B+

1
	maps	online	with	deep	

neural	networks.	Predicted	maps	can	 then	be	used	 for	 real-	time	 tailored	pulse	
redesign,	helping	to	overcome	head	motion–	related	error	in	pTx.

K E Y W O R D S

deep	learning,	motion	correction,	parallel	transmit,	RF	pulse	design,	ultrahigh	field

www.wileyonlinelibrary.com/journal/mrm
mailto:
https://twitter.com/Alix_992
https://orcid.org/0000-0002-5404-7491
https://twitter.com/Alix_992
https://orcid.org/0000-0001-9286-3134
https://orcid.org/0000-0001-7342-3715
https://orcid.org/0000-0001-8982-4441
http://creativecommons.org/licenses/by/4.0/
mailto:plumleyaj@cardiff.ac.uk


2 |   PLUMLEY et al.

1 	 | 	 INTRODUCTION

Parallel	 transmission	 (pTx)	 of	 RF	 pulses	 through	 inde-
pendently	 controlled	 channels	 can	 help	 to	 overcome	 B1	
nonuniformity	seen	in	the	head	at	7	T,1,2	particularly	when	
tailored	 pulses	 are	 used.3	Tailored	 pulse	 design	 incorpo-
rates	the	measured	transmit	sensitivities	(B+

1
)	of	each	pTx	

channel,	achieving	a	homogeneous	flip	angle	across	spec-
ified	 slices	or	 regions.	For	optimal	 tailored	pulse	perfor-
mance,	the	measured	B+

1
	distributions	must	match	those	

present	at	the	time	of	pulse	playout.	However,	channels’	
electromagnetic	 fields	 (including	B+

1
)	 and	 their	 interfer-

ence	patterns	depend	critically	upon	the	object	being	im-
aged	(i.e.,	the	coil	load),	including	its	position,	geometry,	
and	composition.4–	6

Geometrical	 and	 compositional	 differences	 between	
human	subjects	are	partly	addressed	in	alternative,	non-
tailored	 approaches	 such	 as	 universal	 pulses	 (UPs),7,8	
SmartPulse,9	 and	 fast	 online-	customized	 pTx	 pulses.10	
Intersubject	robustness	is	achieved	by	designing	a	UP	(of-
fline)	to	minimize	error	across	a	small	database	of	repre-
sentative	subjects.	An	underlying	assumption	is	 that	 the	
range	 in	 head	 geometry	 and	 composition	 across	 human	
subjects	is	relatively	constrained,	implying	that	B+

1
	distri-

butions	are	 similarly	constrained.	The	designed	pulse	 (a	
minimum	 error	 solution	 for	 excitation	 over	 multiple	B+

1
	

distributions)	is	therefore	assumed	to	work	fairly	well	for	
any	individual	subject	without	the	need	for	B+

1
	mapping.	

Plug-	and-	play	usability	of	UPs	in	pTx	has	led	to	the	meth-
od’s	growing	popularity.

However,	the	intersubject	robustness	of	UPs	comes	at	a	
cost	to	flip-	angle	uniformity.	Tailored	pulses	typically	yield	
lower	normalized	RMS	error	(nRMSE)	of	flip	angle	com-
pared	with	UPs	 (7%	vs	11%	 in	Gras	et	al7).	Additionally,	
the	database	approach	is	problematic	in	cases	in	which	an	
individual	 is	an	outlier	with	 respect	 to	anatomies	 repre-
sented	 in	 the	database.	Moreover,	 these	methods	do	not	
address	 the	 dependence	 of	B+

1
	 on	 load	 position,	 leading	

to	 unpredictable	 pulse	 performance	 in	 cases	 of	 differ-
ent	 initial	 subject	positioning11	and/or	within-	scan	head	
motion.12–	14	The	former	is	often	overlooked,	whereas	the	
latter	is	commonly	reported.15	Large	head	movements	(ex-
ceeding	 20	 mm/degree)	 often	 occur	 among	 certain	 clin-
ical	populations,16,17	elderly,18	and	pediatric19,20	 subjects.	
Because	flip	angle	(and	therefore	the	acquired	signal)	de-
pends	on	B+

1
,	displacements	of	approximately	5°	have	been	

found	 to	 cause	 an	 excitation	 error	 of	 12%–	19%	 (percent	
of	target	flip	angle)	when	using	pTx	at	7	T,12	with	larger	
movements	causing	larger	flip	angle–	related	artifacts.

A	 few	 approaches	 have	 been	 proposed	 to	 correct	
motion-	related	RF	field	changes.	Faraji-	Dana	et	al	partially	
overcame	motion-	related	effects	on	the	(receive)	B1	field	
by	 simply	 reorienting	 coils’	 measured	 sensitivity	 maps	

using	 a	 Euclidean	 transformation.21	 Similarly,	 Wallace	
et	 al	 used	 radial	 basis	 functions	 to	 extrapolate	 channel	
sensitivities	to	voxel	locations	outside	of	the	head,	provid-
ing	 sensitivity	 information	 for	 all	 voxels	 in	 the	 FOV,	 re-
gardless	of	head	position.22	Extrapolated	maps	were	used	
for	retrospective	correction.	Neither	approach	considered	
dynamic	 motion-	related	 field	 changes	 (e.g.,	 changes	 in	
coil	loading,	shifting	susceptibility	gradients	in	tissue),	as	
their	 effects	 were	 deemed	 minimal	 at	 3	T.	 However,	 in-
teractions	between	channels’	highly	nonuniform	transmit	
fields	at	7	T,23	especially	with	pTx,	indicate	that	dynamic	
motion-	induced	 field	 changes	 cannot	 be	 overlooked.	 In	
contrast	 with	 these	 approaches,	 data-	driven	 approaches	
inherently	incorporate	these	changes.

Motion	artifacts	are	often	addressed	through	retrospec-
tive	correction22,24–	27;	however,	this	is	problematic	for	sev-
eral	reasons.	First,	the	issues	described	previously	cannot	
be	 corrected	 retrospectively	 without	 motion-	resolved	B+

1
	

maps,	which	are	not	available.	Second,	channels’	electric	
fields	depend	on	the	same	factors,	including	load	position.	
Specific	absorption	rate	(SAR)	distribution	and	associated	
tissue	heating	are	therefore	also	sensitive	to	motion,	and	
are	 especially	 so	 in	 pTx	 due	 to	 constructive	 interference	
between	channels’	electric	fields.28–	30	Peak	local	SAR	can	
exceed	safety	limits	when	head	motion	occurs	in	pTx	sim-
ulations29—	a	critical	issue	that	cannot	be	addressed	retro-
spectively.	Conservatively	bounded	SAR	estimates	may	be	
used,	but	this	can	prevent	optimal	imaging	performance	
by	limiting	the	RF	power.2,11,31	In	this	study,	the	effect	of	
motion	on	flip	angle	is	the	primary	focus.

It	 is	 therefore	 desirable	 to	 overcome	 the	 motion	 de-
pendence	 of	 tailored	 pTx	 pulse	 performance,	 and	 to	 do	
so	using	prospective	techniques.	Real-	time	pTx	pulse	de-
sign	has	been	proposed	as	a	solution,	in	which	channels’	
complex	coefficients	are	continuously	updated	to	counter-
act	 motion-	induced	 sensitivity	 changes.	 Multispoke	 pTx	
pulses	can	be	designed	in	less	than	0.5	seconds,32	whereas	
2D	 spatially	 selective	 spiral	 pulses	 can	 be	 estimated	 in	
about	9	ms	using	deep	neural	networks.33	With	motion	de-
tection	(e.g.,	Refs	22,25,34,	and	35),	channel	updates	could	
be	determined	by	instantaneous	head	position,	retaining	
flip-	angle	uniformity	in	cases	of	arbitrary	and/or	extreme	
motion.	 However,	 the	 required	 updates	 to	 channel	 co-
efficients	 depend	 on	 the	 motion-	related	 field	 changes.	
Because	real-	time	(i.e.,	motion-	resolved)	B+

1
	maps	are	not	

measurable,	 this	 requires	 that	 the	 relationship	 between	
head	position	and	B+

1
	distribution	to	be	characterized.

Deep	 convolutional	 neural	 networks	 have	 previously	
been	used	to	estimate	(non-	pTx)	B+

1
	distributions.	In	Wu	

et al,36	 high-	quality	 maps	 were	 predicted	 from	 recon-
structed	 T1-	weighted	 images,	 removing	 the	 need	 for	B+

1
	

mapping,	while	 still	 allowing	 retrospective	correction	of	
B+
1

	 related	 artifacts	 in	 quantitative	 MRI.	 This	 approach	
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was	limited	to	postprocessing;	prediction	quality	deterio-
rated	when	B+

1
	was	predicted	directly	from	undersampled	

images.	Abbasi-	Rad	et	al	used	a	convolutional	neural	net-
work	to	reconstruct	B+

1
	from	a	localizer	scan	for	the	pur-

pose	 of	 SAR	 reduction	 through	 pulse	 scaling	 based	 on	
slice-	wise	B+

1
	 magnitude;	 however,	B+

1
	 prediction	 quality	

was	dependent	on	head	position.37

In	 this	 work,	 we	 train	 a	 system	 of	 conditional	 gen-
erative	 adversarial	 networks38	 to	 predict	 pTx	B+

1
	 distri-

butions	 (referred	 to	 as	 B1	 maps)	 following	 simulated	
head	motion,	given	 the	 initial	B1	maps	at	 the	centered	
position	 as	 input.	 If	 used	 in	 conjunction	 with	 motion	
detection,	 this	 would	 constitute	 motion-	resolved	 B1-	
map	estimation,	and	therefore	permit	real-	time	tailored	
pulse	 design.	 B1-	map	 prediction	 quality	 is	 assessed	 by	
comparison	 with	 ground-	truth	 (simulation	 output)	 B1	
maps	 following	 motion.	 Furthermore,	 flip-	angle	 dis-
tributions	 of	 multispoke	 pTx	 pulses	 designed	 using	
network-	predicted	 B1	 maps	 are	 compared	 with	 those	
produced	 by	 tailored	 pulses	 designed	 using	 the	 initial	
subject-	specific	B1	maps	alone.	Finally,	we	also	observe	
peak	10-	g	averaged	local	SAR	for	both	pulses	following	
motion.

2 	 | 	 METHODS

2.1	 |	 Simulations and data

Dizzy,	Billie,	Duke,	and	Ella	(Figure	1A–	D)	of	the	Virtual	
Population39	(IT’IS,	Zurich,	Switzerland)	were	simulated	
with	 a	 generic	 8-	channel	 pTx	 coil	 in	 Sim4Life	 (ZMT,	
Zurich,	 Switzerland).	 Each	 model	 was	 simulated	 at	 one	
central,	and	32	off-	center,	positions.	Off-	center	positions	
included	 rightward	 2,	 4,	 5,	 10,	 and	 20	 mm,	 posterior	 2,	
4,	 5,	 and	 10	 mm,	 and	 all	 possible	 combinations	 thereof.	
These	 29	 positions	 are	 hereafter	 referred	 to	 as	 the	 R-	P	
grid	 (Figure	1E).	 In	addition,	yaw	5°,	10°,	 and	15°	posi-
tions	 were	 also	 simulated	 (Figure	 1F).	 The	 Duke	 model	
was	scaled	to	90%	of	the	original	size,	as	the	body	and	coil	
models	intersected	at	some	positions	when	the	model	was	
full-	sized.	 To	 ensure	 consistent	 voxelization	 (and	 there-
fore	consistent	partial	volume	effects)	in	the	body	model	
across	all	simulated	positions,	the	coil	array	was	displaced	
rather	 than	 the	 body	 model.	 Simulations	 included	 the	
head,	neck	and	shoulders,40	and	were	run	at	295	MHz	fol-
lowing	 coil	 tuning	 to	 this	 frequency.	 Simulation	 results	
were	normalized	to	an	accepted	power	of	1	W	per	chan-
nel	 beyond	 the	 input	 port	 to	 the	 coil	 elements,	 to	 over-
ride	 imperfections	 in	 coil	 matching	 and	 any	 positional	
dependencies.	 The	 simulations	 were	 manually	 checked	
for	input	impedance	and	reflection	coefficient	as	well	as	
field	smoothness	across	positions.

Channels’	 3D	 B1,	 electric	 field,	 current	 density,	 and	
SAR	 distributions	 were	 masked	 to	 exclude	 background	
(air)	 voxels	 and	 exported	 to	 MATLAB	 (The	 MathWorks,	
Natick,	 MA).	To	 incorporate	 interactions	 between	 chan-
nels	 for	 local	 SAR	 evaluations,	 10g-	averaged	 Q-	matrices	
were	calculated.28,41,42	Elements	of	 the	8	×	8	Q-	matrices	
were

where	�(r)	is	the	tissue	mass	density	(kg/m3)	in	voxel	r;	J	is	
the	complex	current	density	(A/m2);	E	is	the	complex	elec-
tric	field	(V/m);	x, y,	and	z	are	the	three	Cartesian	axes;	i	and	
j	 are	 transmit	 channel	 indices;	 and	H	 denotes	 Hermitian	
transpose.

B1	maps	from	51	slices	spanning	a	mid-	axial	slab	with	
a	 thickness	 of	 9	 cm	 from	 the	 Duke	 and	 Ella	 body	 mod-
els	(Figure	1C,D)	were	prepared	for	network	training	by	
interpolating	to	256	×	256	in-	plane	resolution.	The	same	
preprocessing	was	applied	to	the	Billie	and	Dizzy	data,	but	
at	only	 six	 slice	 locations	 (Figure	1A,B).	Magnitude	and	
phase	data	were	separated	and	normalized	between	0	and	
1,	where	1	corresponds	to	the	maximum	magnitude	across	
all	channels,	slices,	and	body	models,	and	to	2π	for	phase.	
Random	 offsets	 were	 applied	 to	 phase	 maps	 so	 that	 the	
phase	wrap	boundary	did	not	occur	at	the	same	location	
across	slices.	B1	maps	were	input	to	networks	as	individ-
ual	axial	slices	with	size	256	×	256	×	8,	where	 the	 third	
dimension	 is	channels.	Corresponding	B1-	map	slices	be-
fore	(input)	and	after	(ground	truth)	a	given	displacement	
formed	the	networks’	input-	target	pairs.	Note	that	inputs	
are	 not	 necessarily	 at	 the	 centered	 position	 (explained	
later	in	Section	2.2).

2.2	 |	 Neural networks and 
network training

Models	 were	 implemented	 in	 TensorFlow	 2.343	 using	
Python	 3.7.	 Network	 architecture	 is	 summarized	 in	
Figure	2.	Except	where	specified,	network	hyperparam-
eters	were	the	same	as	those	used	in	the	Pix2Pix	condi-
tional	 generative	 adversarial	 network.44	 The	 generators	
were	 U-	Net45	 models	 with	 eight	 convolutional	 (encod-
ing)	and	eight	deconvolutional	(decoding)	layers	linking	
the	input	and	output	(predicted)	B1	maps,	each	followed	
by	rectified	linear	unit	activation	layers.	Filters	were	4	×	4	
for	magnitude	and	8	×	8	for	phase.	Although	comprehen-
sive	hyperparameter	optimization	was	beyond	the	scope	
of	 this	 project,	 during	 initial	 testing	 it	 was	 found	 that	
phase	networks	benefited	from	the	large	receptive	field	of	
8	×	8	filters.	Conversely,	magnitude	networks	generated	

(1)
Qij (r) =

1

2�(r)

[
JHx,j (r)Ex,i (r) + JHy,j (r)Ey,i (r) + JHz,j (r)Ez,i (r)

]
,
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smoother	 maps	 when	 more	 filters	 were	 used.	 To	 avoid	
increasing	 the	 number	 of	 trainable	 parameters,	 filters	
were	smaller	 for	magnitude.	The	number	of	 filters	 (ini-
tially	128	for	magnitude,	and	64	for	phase)	increased	to	a	
maximum	of	1024	(512	for	phase)	for	the	middle	layers,	
and	stride	size	was	2.	Filters	were	split	into	eight	groups	
to	facilitate	simultaneous	processing	of	all	pTx	channels.	
For	phase,	batch	normalization	was	applied	at	all	layers	
except	the	first	convolution	layer.	For	magnitude,	remov-
ing	batch	normalization	resulted	in	a	smoother	training	
curve	 and	 higher-	quality	 estimated	 maps.	 Skip	 connec-
tions	joined	each	convolution	layer	to	the	symmetric	de-
convolution	layer	for	network	stability.	The	network	was	

regularized	through	dropout	layers	following	each	of	the	
first	three	deconvolution	layers	(rate	=	0.5).

In	 contrast	 to	 encoder–	decoder	 models	 that	 typically	
rely	on	minimizing	L1	 loss	between	predicted	and	 target	
images,	generative	adversarial	networks	 include	an	addi-
tional	loss	term,	which	helps	to	reduce	blurring	often	seen	
with	 L1	 loss	 alone.44	 This	 is	 provided	 through	 a	 second	
convolutional	neural	network—	the	discriminator—	which	
is	trained	to	distinguish	between	generator-	predicted	and	
ground-	truth	 distributions.	 The	 input	 B1	 maps,	 concate-
nated	 with	 either	 ground-	truth	 or	 generator-	predicted	 B1	
maps,	 served	 as	 input	 to	 the	 discriminators,	 which	 con-
sisted	of	 five	convolution	layers.	The	discriminators	used	

F I G U R E  1  Simulation	model	setup.	
(A–	D)	The	four	body	models	used	in	
Sim4Life	simulations.	Ella	and	Duke	
(C,	D)	were	used	to	generate	training	
data	for	networks,	Billie	(B)	was	used	
for	network	validation	and	testing,	and	
Dizzy	(A)	was	used	for	testing	only.	
Testing	(including	pulse	design)	was	
conducted	at	the	six	indicated	slice	
locations.	Validation	slices	were	offset	
by	about	4	mm	from	these,	but	within	
the	same	axial	range.	Slices	in	orange	
were	also	used	for	specific	absorption	
rate	(SAR)	evaluations.	All	axial	slices	
within	the	dashed	slab	were	used	for	
training.	(E)	Positions	simulated	for	the	
R-	P	grid.	The	origin	of	the	central	position	
is	indicated	with	a	red	circle,	whereas	all	
other	positions’	origins	are	indicated	with	
black	dots.	Axial	displacements	were	all	
possible	combinations	of	rightward	(R)	0,	
2,	4,	5,	10,	and	20	mm	and	posterior	(P)	
0,	2,	4,	5,	and	10	mm.	(F)	Yaw	rotations	
were	5°,	10°,	and	15°.	The	head	at	the	
central	position	(gray	isosurface)	and	
most	extreme	displaced	position	(yellow	
isosurface)	are	shown
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leaky	rectified	linear	unit	activation	layers	(ɑ	=	0.3)	as	rec-
ommended	in	Radford	et	al.46	Filter	size	was	the	same	as	
that	for	the	generators,	and	convolution	stride	was	2	except	
for	the	final	two	layers,	where	it	was	1.	A	single	2D	distri-
bution	of	probability	(entropy)	values	was	output.

The	overall	conditional	generative	adversarial	network	
loss	function	can	be	expressed	as

where	G	denotes	the	generator;	D	is	the	discriminator;	and	�	
(set	to	100)	is	a	scaling	parameter	acting	on	the	L1-	norm	be-
tween	generator-	predicted	and	ground-	truth	maps.	The	first	
term	can	be	further	described	as

where	 B1gt	 are	 the	 ground-	truth	 displaced	 B1	 maps;	
B1predicted	are	 the	generator-	predicted	displaced	B1-	maps;	
and	 B1initial	 are	 the	 pre-	displacement	 B1	 maps	 (network	
input).

The	effect	of	head	motion	on	B1	depends	on	 the	dis-
placement	 type	 (i.e.,	 direction,	 magnitude).12,13	 Because	
data-	driven	approaches	assume	that	all	input-	target	pairs	
share	a	common	underlying	mapping,	separate	networks	
were	trained	for	different	displacement	types	(e.g.,	right-
ward	 vs	 posterior).	 Head	 motion	 was	 discretized	 into	
large	 (5	 mm)	 and	 small	 (2	 mm)	 displacements	 in	 right-
ward	(R)	and	posterior	(P)	directions	to	cover	the	R-	P	grid.	
Additional	 networks	 were	 trained	 for	 5°	 yaw	 rotation.	
Separate	networks	were	trained	for	magnitude	and	phase,	
yielding	a	total	of	10	networks.

The	 Duke	 and	 Ella	 data	 were	 used	 for	 training.	
All	 available	 relative	 displacements	 were	 included.	
For	 example,	 to	 train	 the	 R5	 mm	 network,	 such	 as	

(2)Loss=arg min
G

max
D

ℒcGAN (G,D) +�ℒL1(G).

(3)

ℒcGAN (G,D) = �B1gt, B1predicted

[
logD

(
B1gt,B1predicted

)]

+�B1gt,B1initial
[log

(
1−D

(
B1gt,G

(
B1gt,B1initial

))]
,

F I G U R E  2  Conditional	generative	adversarial	network	(cGAN)	architecture.	Generators	were	U-	Nets	with	eight	convolution	and	eight	
deconvolution	layers,	each	with	rectified	linear	unit	(ReLU)	activation.	Discriminators	consisted	of	five	convolutional	layers	with	ReLU	
activation.	Square	matrix	size	and	number	of	filters	(initially	64	for	phase	networks)	are	indicated	beneath	the	layers.	Convolution	stride	was	
2	except	where	specified.	Skip	connections	are	shown	with	arrows.	Dropout	was	applied	at	indicated	layers	(dark	blue).	Batch	normalization	
(red)	was	used	for	phase	networks,	but	not	for	magnitude	networks.	Filters	for	phase	networks	were	8	×	8.	Magnitude	networks	used	double	
the	number	of	filters,	with	filter	size	=	4	×	4
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(input)–	(target)	 pairs	 included	 (R0,	 P0	 mm)–	(R5,	 P0	
mm);	 (R5,	P0	mm)–	(R10,	P0	mm);	 (R5,	P2	mm)–	(R10,	
P2	mm).	This	yielded	a	training	data	set	of	1020	unique	
slices	for	rightward	and	leftward	networks,	and	1224	for	
each	posterior	network.	The	yaw	network	training	data-
base	was	smaller	(306	slices).

The	Adam47	optimizer	was	used	to	train	models	for	60	
epochs.	Learning	rate	was	critical	during	initial	testing,	so	
learning	rates	within	the	range	5e−5	to	1e−3	were	tested.	
The	default	value	of	2e−4	converged	most	effectively	and	
was	 therefore	 used	 for	 all	 networks.	 Network	 weights	
were	 saved	 at	 the	 epoch,	 which	 yielded	 the	 lowest	 total	
error	 across	 the	 validation	 data	 set	 (the	 Billie	 data)	 as	 a	
form	of	early	stopping	to	help	prevent	network	overfitting.	
Networks	 took	 approximately	 16	 hours	 to	 train	 with	 a	
batch	size	of	1	using	a	standard	PC	with	NVIDIA	GeForce	
GTX	1050	Ti.

2.3	 |	 Network evaluation and cascading

Networks	were	tested	using	the	Billie	and	Dizzy	data	at	six	
slice	locations	(Figure	1A).	For	Billie,	different	slices	were	
used	compared	with	those	used	for	early	stopping	(Dizzy	
was	not	involved	in	the	training	process	at	all).	Like	train-
ing,	 testing	 was	 conducted	 for	 all	 available	 examples	
of	 each	 displacement,	 yielding	 test	 data	 sets	 of	 between	
6	and	72	slices.	In	addition	to	the	positions	listed	in	sec-
tion	2.1,	Billie	and	Dizzy	models	were	simulated	at	three	
combined	yaw-	rightward	positions	to	test	performance	for	
motion	 involving	both	rotation	and	 translation.	Because	
networks	 were	 only	 trained	 for	 five	 displacements	 but	
evaluated	at	35	positions,	networks	were	cascaded	where	
necessary.	Starting	with	the	center	position’s	B1	maps	as	
input,	generators	were	run	sequentially,	with	the	output	
of	one	generator	used	as	input	to	the	next,	until	the	desired	
evaluation	position	was	reached.	For	example,	R5	mm,	R5	
mm,	and	P2	mm	networks	were	cascaded	for	evaluation	
at	the	(R10,	P2	mm)	position.	Finally,	the	Billie	model	was	
also	simulated	at	inferior	5,	10,	and	15	mm	to	investigate	
error	for	through-	plane	motion.

Predicted	B1	maps	were	exported	to	MATLAB.	Voxels	
with	 <	 1%	 of	 the	 maximum	 magnitude	 were	 smoothed	
with	 a	 Gaussian	 kernel.	 Corresponding	 magnitude	 and	
phase	 network	 outputs	 were	 subsequently	 combined	 to	
form	complex	predicted	maps	(B1predicted).

The	B1predicted	quality	was	assessed	through	voxel-	wise	
correlation	(using	MATLAB’s	corrcoef	function)	and	pre-
diction	 error	 between	 predicted	 and	 ground-	truth	 maps	
at	each	position.	These	values	were	compared	with	error	
and	correlation	following	head	motion	(i.e.,	between	the	
two	 simulated	 maps).	 Calculations	 were	 performed	 on	
the	tissue-	masked	region,	with	the	outermost	two	voxels	

excluded	 to	 avoid	 artificial	 amplification	 of	 error	 due	 to	
partially	filled	voxels.	Prediction	error	for	magnitude	and	
phase	distributions	were	assessed	through	nRMSE	and	L1	
norm,	respectively,	as	follows:

where	 j	is	
√

− 1;	and	Nv	is	the	number	of	voxels	in	a	slice,	
indexed	 by	r.	 Motion-	induced	 error	 was	 calculated	 analo-
gously,	but	substituting	B1initial	for	B1predicted	in	Equations	4	
and	5.

2.4	 |	 Pulse design and analysis

Outputs	from	the	R-	P	grid	positions	were	further	processed	
to	assess	whether	predicted	maps	were	of	sufficient	qual-
ity	 to	 be	 used	 for	 tailored	 pTx	 pulse	 design.	 Five-	spoke	
excitation	 pulses	 were	 designed	 using	 a	 small	 tip-	angle	
spatial	 domain	 method,3,48,49	 and	 two	 approaches	 were	
compared	 in	 terms	 of	 their	 performance	 following	 mo-
tion	 within	 the	 R-	P	 grid.	 A	 schematic	 of	 the	 process	 is	
shown	 in	 Figure	 3.	 First,	 a	 conventional	 tailored	 pulse		
(pulseinitial)	was	designed	using	the	subject-	specific	B1	maps	
at	the	initial	position	(B1initial).	A	uniform	magnitude	target	
excitation	profile	(target	flip	angle	=	70°)	was	specified	for	
pulseinitial.	Pulse	coefficients	were	optimized	iteratively	to	
minimize	 magnitude	 error,	 whereas	 the	 profile’s	 phase	
was	relaxed.50	The	resultant	complex	profile	was	used	as	
the	target	profile	for	a	second	pulse	(pulsere-	designed),	which	
was	 designed	 without	 phase	 relaxation	 (because	 magni-
tude	and	phase	distributions	need	to	be	consistent	across	
positions	to	ensure	data	consistency	for	motion	occurring	
mid-	acquisition).	 Pulsere-	designed	 was	 designed	 using	 the	
network-	output	B1predicted	(the	proposed	approach).

Both	 pulses	 (pulseinitial	 and	 pulsere-	designed)	 were	 sub-
sequently	 evaluated	 using	 the	 ground-	truth	 B1	 maps	 at	
the	displaced	position	(B1gt)	 to	quantify	motion-	induced	
effects	 on	 the	 conventional	 approach,	 and	 improvement	
provided	 by	 the	 proposed	 method.	 Their	 flip-	angle	 dis-
tributions	were	compared	with	that	of	pulseinitial	without	
motion	 in	 terms	 of	 nRMSE,	 expressed	 as	 percent	 target	
flip	angle	as	follows:

(4)

nRMSE‖prediction‖ = 100 ×

�
1

Nv

∑Nv
r=1

‖B1gt(r)−B1predicted(r)‖2

1

Nv

∑Nv
r=1

‖B1gt(r)‖

(5)L1∠prediction =
1

Nv

Nv�

r=1

‖∠ej(B1gt(r)−B1predicted(r))‖

(6)
nRMSE� = 100 ×

�
1

Nv

∑Nv
r=1

‖�displaced (r) −�initial(r)‖2

�t
,
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where	�initial	 is	 flip	angle	without	motion;	�displaced	 is	 that	
following	motion	(with	either	pulseinitial	or	pulsere-	designed);	
and	�t	is	the	target	flip	angle.	The	nRMSE	for	pulseinitial	with-
out	motion	(i.e.,	the	“gold	standard”)	was	also	calculated	by	
substituting	�displaced	for	�t	in	Equation	6.

Peak	local	SAR	(psSAR)	of	both	pulses	was	also	evalu-
ated	using	the	10-	g	averaged	Q-	matrices	at	each	position.	
Because	psSAR	sensitivity	to	motion	has	been	reported	to	
exhibit	no	slice	dependence,29	SAR	was	evaluated	at	four	
target	imaging	slices	(out	of	the	six	used	for	pulse	design)	
(Figure	1A).

3 	 | 	 RESULTS

3.1	 |	 B1 prediction quality

B1	 maps	 were	 predicted	 by	 networks	 in	 about	 14	 ms	
using	the	same	PC	as	used	for	training.	Example	B1	maps,	
motion-	induced	error,	and	prediction	error	are	shown	for	
a	5	mm	displacement	 in	Figure	4.	Motion-	induced	error	
(averaged	 across	 channels)	 for	 this	 example	 was	 15.1%	
(magnitude)	 and	 4.9°	 (phase),	 whereas	 mean	 prediction	
error	was	3.2%	(magnitude)	and	3.5°	(phase).

Figure	5	shows	a	summary	of	error	and	correlation	co-
efficient	 for	magnitude	and	phase	at	each	evaluated	dis-
placement	(averaged	across	Dizzy	and	Billie	models,	slices,	
channels,	 and	 initial	 positions).	 Position	 dependence	 of	

prediction	 quality	 was	 minimal	 compared	 with	 motion-	
related	error,	as	seen	by	the	reduced	gradient	with	respect	
to	displacement	norm	in	all	cases.	Dizzy	and	Billie	mod-
els	 yielded	 very	 similar	 prediction	 quality	 (Supporting	
Information	Figure	S1).

Mean	motion-	induced	magnitude	error	scaled	linearly	
with	 displacement	 magnitude	 at	 about	 3%	 per	 millime-
ter	(or	3.2%	per	degree	of	rotation),	compared	with	0.36%	
per	 millimeter	 (0.27%	 per	 degree)	 for	 prediction	 error.	
Prediction	 error	 was	 lower	 than	 motion-	related	 error	 in	
99.8%	 of	 translation,	 and	 90%	 of	 rotation	 evaluations.	
Figure	 6A	 shows	 B1	 magnitude	 nRMSE	 for	 magnitude	
for	all	slices	and	channels	for	10	example	displacements.	
Motion	caused	a	worst-	case	magnitude	error	of	117%	fol-
lowing	 a	 displacement	 of	 R20,	 P10	 mm,	 whereas	 max-
imum	 prediction	 error	 was	 33%	 (at	 the	 y15°,	 R4	 mm	
position).	 Worst-	case	 prediction	 error	 from	 the	 R-	P	 grid	
was	lower	(20%	at	the	R20,	P10	mm	position).

Example	magnitude	correlations	are	shown	in	Figure	7A.		
The	 lowest	 observed	 correlation	 coefficient	 between	
B1initial	and	B1gt	magnitudes	was	0.79	following	a	y15°,	R4	
mm	displacement.	Correlation	between	B1predicted	and	B1gt	
did	not	fall	below	0.96.

Motion-	induced	error	and	correlation	were	observed	to	
be	slice-	dependent	and	channel-	dependent	(i.e.,	the	error	
depended	on	the	displacement	relative	to	each	channel’s	
location,	as	expected).	The	B1predicted	quality	was	 similar	
across	channels,	as	demonstrated	by	the	strong	correlation	

F I G U R E  3  Outline	of	the	testing	workflow.	Simulated	B+

1
	maps	from	the	center	position	are	input	to	the	first	trained	generator.	

Generators	were	trained	for	small	displacements	but	can	be	run	sequentially	(cascaded)	until	the	desired	off-	central	(displaced)	position	
is	reached	in	evaluations.	Prediction	quality	is	assessed	by	normalized	RMS	error	(nRMSE)	and	voxel-	wise	correlation	with	respect	to	the	
ground-	truth	(simulation	output)	displaced	B+

1
	map.	In	addition,	pulses	designed	using	the	initial	B+

1
	map	are	compared	with	those	designed	

using	predicted	maps,	in	terms	of	their	excitation	profiles	following	head	motion
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across	 all	 channels	 in	 Figure	 7A.	 However,	 prediction	
error	was	somewhat	slice-	dependent,	with	the	most	infe-
rior	slice	 locations	yielding	 the	highest	prediction	errors	
(slice	information	not	shown).

Phase	error	for	10	example	displacements	are	shown	in	
Figure	6B.	For	phase,	maximum	observed	prediction	error	
(57°)	was	similar	to	maximum	motion-	related	error	(55°).	
These	worst	cases	arose	in	the	Dizzy	model;	for	the	Billie	
model,	maximum	prediction	error	(29.4°)	was	lower	than	
that	 caused	 by	 motion	 (44.2°).	 Furthermore,	 prediction	
error	was	 lower	 than	motion-	induced	error	 for	phase	 in	
68%	and	66%	of	 translation	and	rotation	evaluations,	re-
spectively	(including	both	models).

Yaw	 rotation	 caused	 substantially	 higher	 error	 than	
axial	translations;	for	the	R-	P	grid,	maximum	prediction-	
related	 and	 motion-	related	 errors	 were	 19.8°	 and	 34.7°,	
respectively.	 Mean	 phase	 prediction	 error	 was	 less	
position-	dependent	than	motion-	related	error,	with	axial	
translations	causing	error	of	approximately	0.9°	per	mil-
limeter	displacement,	compared	with	0.4°	per	millimeter	
in	predicted	maps.	For	displacements	including	rotation,	
analogous	gradients	were	2°	and	0.2°	per	degree	of	yaw,	
respectively.

Mean	phase	correlation	coefficient	between	predicted	
and	ground-	truth	maps	was	higher	than	(or	very	similar	

to)	 that	 between	 initial	 and	 ground-	truth	 maps	 for	 all	
displacements.	Phase	correlation	examples	are	shown	in	
Figure	7B.	Correlation	coefficient	between	B1predicted	and	
B1gt	exceeded	that	between	B1predicted	and	B1initial	 in	69%	
of	cases.

3.2	 |	 Parallel- transmit pulse 
performance

Subsequent	 analyses	 were	 conducted	 using	 the	 Billie	
model	 with	 the	 R-	P	 grid	 data	 only.	 Five-	spokes	 pTx	
pulses	designed	using	B1initial	(pulseinitial)	yielded	uniform	
flip-	angle	 profiles	 (mean	 nRMSE	 ~1%)	 without	 motion.	
However	as	expected,	uniformity	was	lost	following	axial	
translation.	Pulses	were	about	7.7	ms	long.

Figure	 8	 shows	 that	 flip-	angle	 nRMSE	 for	 pul-
seinitial	 was	 strongly	 position-	dependent,	 reaching	 a	
maximum	 of	 76%	 following	 a	 displacement	 of	 R20,	
P5	 mm.	 Conversely,	 pulses	 redesigned	 using	 B1predicted		
(pulseredesigned)	 produced	 much	 improved	 flip-	angle	 pro-
files	when	evaluated	at	the	displaced	position,	yielding	
nRMSE	 of	 14%	 for	 the	 same	 displacement.	 Maximum	
pulseredesigned	 nRMSE	 was	 17%	 (at	 the	 R2,	 P10	 mm	
position),	 whereas	 this	 error	 value	 was	 exceeded	 by	

F I G U R E  4  Example	magnitude	
and	phase	B+

1
	maps	and	error	following	

a	rightward	displacement	of	5	mm	
(slice	location	=	2).	Motion-	induced	
(M-	I)	error	shows	difference	between	
simulation-	output	B1	at	the	centered	
and	displaced	positions	(B1initial	and	
B1gt,	respectively).	Prediction	(P)	error	
shows	the	difference	between	simulation-	
output	B1gt	and	generator-	predicted	
B1	(B1predicted).	Motion-	induced	error	
(averaged	across	channels)	for	this	
example	was	15.1%	(magnitude)	and	4.9°	
(phase),	whereas	mean	prediction	error	
was	3.2%	(magnitude)	and	3.5°	(phase).	
Abbreviation:	pTx,	parallel	transmission
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F I G U R E  5  Error	(nRMSE	for	magnitude,	L1	norm	for	phase)	and	correlation	coefficient	(ρ)	shown	for	magnitude	and	phase,	averaged	
over	Dizzy	and	Billie	body	models,	channels,	slices,	and	initial	positions	for	each	evaluated	displacement.	Translational	displacements	(the	
R-	P	grid)	are	shown	in	the	large	panels,	while	rotations	(yaw)	and	combined	rotation-	translations	(yaw	plus	a	4-	mm	translation)	are	shown	
in	the	smaller	panels	below	(for	the	purpose	of	the	x-	axis,	the	amount	of	yaw	rotation	is	treated	as	magnitude	displacement;	for	example,	
yaw	5°	plus	4-	mm	translation	is	shown	at	x	=	6).	The	effects	of	motion	are	shown	in	purple,	while	network-	related	prediction	error	is	shown	
in	yellow.	The	SD	is	shown	as	shaded	regions	for	magnitude	but	is	omitted	for	phase	for	clarity,	as	values	were	similar
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pulseinitial	 (i.e.,	 without	 any	 correction)	 after	 displace-
ments	of	just	≥	5	mm.	The	largest	errors	occurred	in	in-
ferior	 slice	 locations	 for	both	pulses	 (slice	 information	
not	shown).	Maximum	motion-	related	error	in	the	exci-
tation	profile’s	phase	(110.4°)	was	reduced	by	7.8°	when	
using	pulseredesigned.

Figure	 8B	 shows	 flip-	angle	 profiles	 for	 both	 pulses	
following	 several	 example	 displacements.	 Supporting	
Information	Figure	S2A	also	shows	flip-	angle	nRMSE	for	
nine	example	displacements.	It	should	be	noted	that	flip-	
angle	 uniformity	 for	 pulseredesigned	 could	 be	 further	 im-
proved	by	including	phase	relaxation	in	the	design	(as	was	
done	for	pulseinitial);	however,	this	would	permit	excitation	
phase	to	vary	throughout	the	scan,	causing	reconstruction	
inconsistencies.

3.3	 |	 Cascading

The	B1predicted	quality	remained	high	when	networks	were	
cascaded	multiple	times;	however,	there	was	a	weak	linear	
relationship	between	prediction	error	and	motion	magni-
tude.	To	investigate	the	impact	of	cascading	on	prediction	
quality,	 we	 ran	 secondary	 analyses	 for	 displacements	 of	
R0,	P10	mm,	R-	2,	P10	mm,	and	R-	5,	P10	mm	using	only	
the	P2	mm	network	for	the	posterior	component.	Running	
the	 2	 mm	 network	 five	 times	 (i.e.,	 four	 cascades)	 led	 to	
approximate	 average	 increases	 in	 magnitude	 and	 phase	
error	of	1.2%	and	1.2°,	 respectively,	compared	with	run-
ning	 the	5	mm	network	 twice	 (one	cascade).	There	was	
also	 reduced	 flip-	angle	 uniformity	 compared	 with	 using	
the	 5	 mm	 network.	 Nevertheless,	 Figure	 9	 shows	 that	

F I G U R E  6  B1	error	(nRMSE	for	magnitude	[A],	L1	norm	for	phase	[B])	for	all	evaluations	with	the	Billie	model	following	10	
example	displacements.	Motion-	related	error	is	shown	in	purple,	while	error	for	predicted	maps	is	in	yellow.	Asterisks	indicate	the	
number	of	network	cascades	required	for	evaluation.	The	blue-	shaded	region	shows	the	maximum	observed	prediction	error	across	all	35	
displacements	for	the	Billie	model	(consistent	across	panels)
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motion-	induced	error	was	appreciably	 reduced	using	ei-
ther	approach.

3.4	 |	 Specific absorption rate

In	addition	to	flip	angle,	SAR	was	also	evaluated	for	the	
R-	P	 grid	 positions.	 Following	 motion,	 psSAR	 produced	
by	pulseredesigned	was	lower	than	that	of	pulseinitial	in	89%	
of	cases.	For	pulseinitial,	motion	caused	psSAR	to	increase	
(relative	 to	 that	 without	 motion;	 psSARcenter)	 in	 72%	 of	
evaluations.	When	pulseredesigned	was	used	instead,	psSAR	
increased	 relative	 to	 the	 centered	 case	 in	 only	 16%	 of	
the	cases.	The	psSAR	for	nine	example	displacements	 is	
shown	in	Supporting	Information	Figure	S2B.

Figure	 10A	 shows	 worst-	case	 psSAR	 for	 each	 evalu-
ated	 position	 (relative	 to	 psSARcenter).	 Figure	 10B	 shows	
the	 same	 information,	 separated	 by	 slice	 location.	

Motion-	related	 SAR	 change	 was	 similar	 across	 slices,	
whereas	benefits	offered	by	pulseredesigned	were	most	con-
sistently	 seen	 in	 slices	 1	 and	 6	 (furthest	 from	 mid-	axial	
locations).	 Pulseredesigned	 yielded	 lower	 psSAR	 than	 pul-
seinitial	 following	 large	 displacements,	 but	 sometimes	
resulted	 in	 higher	 psSAR	 for	 small	 displacements,	 espe-
cially	 in	 slice	 4	 (mid-	axial).	 In	 the	 worst	 observed	 case,		
pulseredesigned	 yielded	 a	 3.1-	fold	 increase	 in	 psSAR	 (slice	
4	at	 the	posterior	5-	mm	position),	whereas	pulseinitial	 in-
creased	by	a	maximum	of	3.3	 fold	(following	the	 largest	
axial	displacement).	It	should	be	noted	that	SAR	was	not	
used	as	a	constraint	in	either	pulse’s	design.

4 	 | 	 DISCUSSION

As	far	as	we	know,	this	study	is	the	first	to	demonstrate	
motion-	resolved	B1	map	prediction	in	pTx.	We	successfully	

F I G U R E  7  Example	voxel-	wise	
correlations	between	B1initial	and	B1gt	(left)	
and	B1predicted	and	B1gt	(right)	for	nine	
example	displacements.	The	pTx	channels	
are	indicated	by	color.	The	x	and	y	axes	
range	between	0	and	3	µT	for	magnitude	
(A),	and	0	and	2π	for	phase	(B)
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trained	a	system	of	deep	neural	networks	to	estimate	B+
1

	
sensitivity	 distributions	 following	 simulated	 in-	plane	
head	motion.	Predicted	B1	maps	were	of	sufficiently	high	
quality	to	be	used	for	tailored	pTx	pulse	design,	and	result-
ing	pulses	outperformed	conventionally	designed	tailored	
pulses	under	conditions	of	head	motion.

Across	the	four	R-	P	grid	magnitude	networks,	predic-
tion	error	was	4.5%	±	1.5%	(mean	±	SD)	of	 the	ground-	
truth	B1	magnitude	(tested	individually	without	cascading	
and	error	calculated	according	to	the	definition	in	Abbasi-	
Rad	et	al37).	This	is	in	line	with	expectations	based	on	pre-
vious	work,	in	which	magnitude	B1	maps	were	predicted	
with	 mean	 error	 of	 9.5	 ±	 7.1%.37	 The	 experimental	 and	
3D	nature	of	data	in	Abbasi-	Rad	et	al37	may	have	caused	
the	slightly	higher	error.	We	also	observe	similar	B1predicted	
correlation	 coefficients	 to	 those	 reported	 in	 Wu	 et	 al36	
(~0.99),	which	was	retained	even	when	our	networks	were	
cascaded	multiple	times.	Yaw	rotation	caused	higher	error	
than	translational	motion,	and	prediction	error	was	gen-
erally	 higher	 than	 that	 of	 translations.	We	 attribute	 this	
to	 the	much	smaller	 training	database	used	to	 train	yaw	
networks.

It	 was	 previously	 reported	 that	 excitation	 profile	
nRMSE	 increases	 by	 approximately	 2.4%	 per	 millimeter	
of	 axial	 displacement	 in	 simulations,12	 and	 our	 results	
(2.7%	per	millimeter)	are	in	good	agreement.	A	12%–	22%	
flip-	angle	error	was	observed	in	vivo	following	motion	in	
the	range	of	about	5–	16	mm	in	Kopanoglu	et	al,12	and	we	
observed	 an	 error	 of	 about	 11%–	35%	 for	 a	 similar	 range	

of	 motion.	 Error	 was	 reduced	 to	 approximately	 8%–	10%	
using	 the	 proposed	 approach	 in	 our	 study.	 For	 larger	
movements,	the	benefit	of	pulse	redesign	using	predicted	
maps	was	even	greater.

There	 was	 some	 slice	 dependence	 for	 both	 B1predicted	
quality	 and	 flip-	angle	 error,	 with	 the	 highest	 errors	 ob-
served	for	inferior	slice	locations.	This	is	in	line	with	pre-
vious	 research,	 in	 which	 higher	 motion	 sensitivity	 was	
observed	for	inferior	slices	passing	through	the	temporal	
lobes	and	the	cerebellum.12	Inferior	slices	yield	lower	field	
magnitude,	 and	 B1prediction	 quality	 was	 lower	 in	 regions	
with	very	low	field	magnitude,	which	may	explain	the	re-
sidual	slice	dependence	in	predicted	maps.	An	alternative	
explanation	is	that	there	were	fewer	inferior	slices	in	the	
training	 data	 set	 compared	 with	 mid-	axial	 slices,	 which	
could	have	resulted	in	better	training	for	mid-	axial	slices.

Considering	 that	 the	 R5	 mm	 training	 data	 included	
positions	up	to	just	10	mm	along	the	rightward	axis,	it	is	
noteworthy	that	the	R5	mm	network	was	able	to	extrap-
olate	beyond	this	by	successfully	cascading	four	times	to	
estimate	the	fields	at	 the	R20	mm	position.	We	attribute	
this	to	the	global	normalization,	conducted	over	all	data	
sets.	 Results	 for	 large	 displacements	 could	 likely	 be	 fur-
ther	improved	by	including	extreme	positions	in	the	train-
ing	data	set.

Magnitude	networks	consistently	outperformed	those	
of	phase.	Prediction	error	exceeded	motion-	induced	error	
for	phase	 in	about	a	 third	of	evaluations.	 Improvements	
to	excitation	phase	were	evident	but	modest.	It	has	been	

F I G U R E  8  Excitation	profile	results	for	five-	spoke	pTx	pulses	following	head	motion.	(A)	Mean	flip-	angle	nRMSE	(above)	and	phase	
RMSE	(below)	for	excitation	profiles,	averaged	over	slices	and	initial	positions	for	each	evaluated	displacement.	Excitation	pulses	were	
five-	spoke	pTx	pulses	designed	using	either	the	initial	position	(pulseinitial)	or	predicted	(pulseredesigned)	B1	maps.	The	SD	is	shown	as	shaded	
regions	for	magnitude	but	is	omitted	for	phase	for	clarity,	as	values	were	similar.	(B)	Example	flip-	angle	profiles	produced	by	pulseinitial	at	
the	initial	position,	by	pulseinitial	at	the	displaced	position,	and	by	pulseredesigned	at	the	displaced	position
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previously	acknowledged	that	phase	changes	due	to	mo-
tion	 are	 difficult	 to	 model,	 and	 other	 work	 on	 motion-	
related	 field	 changes,22	 including	 B1	 prediction,37	 often	
neglect	 phase	 altogether.	 Most	 of	 the	 phase-	prediction	
error	 occurred	 at	 phase-	wrapping	 boundaries.	 This	 was	
somewhat	 reduced	 by	 applying	 random	 phase	 offsets	 to	
pairs	of	input	B1	maps,	but	it	was	not	eliminated.	In	terms	
of	pulse	performance,	these	small,	 local	errors	are	likely	
to	have	less	impact	than	the	global	changes	caused	by	mo-
tion,	which	could	potentially	accumulate	when	channels	
are	superposed.	Incidentally,	when	we	instead	trained	net-
works	using	unwrapped	phase	data,	the	error	in	B1predicted	
was	globally	higher	and	yielded	inferior	results	compared	
with	wrapped	data.	In	contrast,	the	local	prediction	errors	

seen	 with	 wrapped	 data	 are	 not	 structured.	 We	 believe	
that	 the	 increase	 in	 error	 seen	 for	 unwrapped	 data	 was	
due	 to	 the	 increased	dynamic	range	of	unwrapped	data,	
meaning	that	relative	changes	due	to	motion	were	smaller	
following	normalization.

One	limitation	of	this	study	is	that	it	deals	with	simu-
lated	data	only	because	of	the	lack	of	models	for	the	RF	
coils	 at	 the	 institution	 due	 to	 proprietary	 information.	
In	 DeepQSM,51	 training	 data	 were	 solely	 synthetic;	 the	
ground	truth	consisted	of	overlapping	cubes	and	spheres	
with	 known	 (simulated)	 susceptibility	 values.	 This	 was	
convolved	with	a	forward	dipole	kernel	to	create	the	corre-
sponding	input.	Networks	were	able	to	resolve	high-	quality	
susceptibility	maps	for	human	brains,	despite	only	being	

F I G U R E  9  Effect	of	cascading	the	
P2	mm	network	four	times	compared	
with	cascading	the	P5	mm	network	
once	for	evaluation	at	the	R5,	P10	mm	
position	(along	with	the	R5	mm	network	
for	the	rightward	component).	(A)	
Example	motion-	induced	(M-	I)	error	
and	prediction	(P)	error	for	both	cascade	
approaches	for	magnitude	(left)	and	
phase	(right).	Error	shown	below	maps	
is	nRMSE	(%)	for	magnitude	and	L1	
norm	(°)	for	phase,	both	averaged	over	
channels.	(B)	Comparison	of	flip-	angle	
profiles	and	nRMSE	for	pulses	designed	
using	initial	(left)	and	predicted	maps	
using	both	cascade	regimes	(center	and	
middle).	Target	flip	angle	is	70°
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trained	 on	 simple	 geometric	 shapes.	 Similarly,	 Meladio	
et	al	demonstrated	successful	in	vivo	validation	following	
training	with	synthetic	data.52	We	believe	that	the	method	
proposed	here	would	be	similarly	generalizable	if	a	real-
istic	RF	coil	model	(i.e.,	a	model	of	the	coil	to	be	used)	is	
used	for	simulations.	Moreover,	using	simulated	training	
data	 avoids	 the	 requirement	 for	 choreographed	 in	 vivo	
head	movement	 to	be	 replicated	precisely	across	 several	

subjects	to	create	the	training	data	sets,	which	would	be	
practically	 infeasible.	 Aside	 from	 the	 initial	 (measured)	
input	B1	map,	networks	automatically	output	maps	in	pa-
tient	coordinates,	making	online	registration	unnecessary.	
However,	motion	tracking	is	needed	to	determine	which	
network(s)	 are	 required,	 and	 for	 online	 corrections	 to	
gradient	waveforms	 to	update	 the	 imaging	volume	as	 in	
Zaitsev	et	al.53

F I G U R E  1 0  Peak	10g-	averaged	local	SAR	(psSAR)	for	pulseinitial	and	pulseredesigned	following	motion.	(A)	Worst-	case	psSAR	for	both	
pulses	across	all	observed	slice	locations.	(B)	Slice-	wise	worst-	case	psSAR	for	both	pulses.	Slice	locations	are	indicated	in	the	inset	on	the	
right.	Vertical	axes	show	relative	psSAR,	calculated	as	psSAR	as	a	factor	of	that	without	motion	using	pulseinitial	(psSARcenter).	The	green-	
shaded	region	shows	psSAR	at	or	below	psSARcenter	(i.e.,	indicating	that	psSAR	did	not	increase	following	motion).	Neither	pulse	included	
SAR	constraint	in	the	design
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The	minimum	motion	resolution	we	consider	here	 is	
2	mm.	Smaller	movements	could	remain	problematic	for	
quantitative	MR	protocols	that	rely	on	signal	changes	on	
the	scale	of	1%–	4%	of	the	total	signal.21	Finer	discretization	
is	possible	through	simulations	of	smaller	displacements.	
The	 most	 appropriate	 motion	 discretization	 will	 depend	
on	the	user’s	primary	aims.	While	using	finer	discretiza-
tion	and	cascading	more	(i.e.,	5	×	2	mm	vs	2	×	5	mm)	did	
result	in	slightly	higher	error	here,	motion-	induced	error	
was	still	largely	ameliorated.

In	 this	 study	 we	 considered	 only	 positive	 displace-
ments	 (e.g.,	 rightward,	 but	 not	 leftward).	 Because	 the	
trained	 networks	 are	 direction-	specific,	 the	 same	 net-
works	cannot	handle	negative	displacements.	This	is	due	
to	the	nature	of	inverting	a	deep	neural	network	(not	pos-
sible,	as	reversing	convolutional	layers	results	in	a	highly	
underdetermined	problem).	However,	the	training	of	net-
works	for	positive	displacements	does	not	limit	generaliz-
ability,	and	additional	networks	can	similarly	be	 trained	
for	negative	displacements.	In	fact,	by	training	a	network	
for	positive	and	negative	displacements	for	each	of	the	6	
degrees	of	freedom	of	motion,	all	rigid-	body	motion	could	
be	covered.

We	 focused	 on	 in-	plane	 motion	 (axial	 translations	
and	 yaw	 rotation),	 as	 motion-	induced	 error	 was	 ob-
served	 to	 be	 more	 spatially	 varying.	 Although	 some	
motion-	induced	 B1	 error	 was	 observed	 in	 peripheral	
slices	 following	 inferior	 translation	 (see	 Supporting	
Information	 Figure	 S3),	 the	 error	 was	 relatively	 lower,	
and	 importantly,	 more	 global	 (i.e.,	 spatially	 smoothly	
varying)	 within	 the	 slice.	 We	 attribute	 this	 to	 the	 fact	
that	 relative	 tissue-	channel	 distances	 remain	 constant	
for	 through-	slice	 translation.	 This	 means	 that	 simpler	
correction	methods	(e.g.,	slice-	dependent	pulse	scaling)	
could	 feasibly	 be	 used	 to	 counteract	 the	 B1	 effects	 of	
through-	plane	motion.

In	contrast	to	B1,	through-	plane	motion	was	shown	to	
be	 more	 disruptive	 to	 B0	 than	 within-	plane	 motion.54,55	
Although	B0	off-	resonance	can	be	incorporated	in	tailored	
pulse	 design,56	 this	 cannot	 currently	 be	 updated	 in	 real	
time	 with	 pTx,	 as	 it	 increases	 the	 degrees	 of	 freedom	 to	
be	optimized	in	the	pulse,	pushing	redesign	times	beyond	
practically	 feasible	 TR	 values.32	 Instead,	 motion-	related	
effects	 on	 B0	 can	 be	 corrected	 retrospectively,	 such	 as	
using	 data-	driven	 coefficients	 to	 link	 motion	 with	 field	
changes.55	 Alternatively,	 real-	time	 B0	 shimming	 may	 be	
possible	with	multicoil	shim	arrays	by	predicting	B0	field	
changes	due	to	motion	in	a	manner	similar	to	the	method	
proposed	here.

The	 SAR	 observations	 reported	 here	 are	 incidental.	
The	 focal	 point	 of	 this	 study	 was	 to	 develop	 a	 method	
to	accurately	estimate	B1	maps	following	motion.	Using	
SAR	as	a	pulse	design	constraint	would	trade	flip-	angle	

homogeneity	 for	 reduced	SAR,	 thereby	overshadowing	
B1	 quality.	 Hence,	 SAR	 was	 not	 used	 as	 a	 design	 con-
straint.	 Although	 motion-	related	 SAR	 increase	 was	
generally	lower	for	pulses	redesigned	with	predicted	B1	
maps,	it	was	higher	for	a	minority	of	cases.	Motion	sen-
sitivity	 of	 SAR	 in	 pTx	 has	 previously	 been	 reported	 to	
be	similar	across	axial	slices,29	and	we	also	did	not	ob-
serve	clear	slice	dependence	for	SAR	motion	sensitivity.	
However,	we	did	observe	that	inferior-	most	and	superior-	
most	slices	benefited	from	the	proposed	approach	more	
consistently	 than	 mid-	axial	 slices.	 Nevertheless,	 the	
overall	improvement	offered	by	pulseredesigned,	especially	
for	 larger	displacements,	 is	promising	for	future	devel-
opment	 of	 this	 approach.	 Neural	 networks	 have	 previ-
ously	 been	 used	 to	 predict	 B1	 maps	 for	 the	 purpose	 of	
SAR	reduction.37	This	was	achieved	 through	slice-	wise	
pulse	 scaling	 based	 on	 a	 predicted	 3D	 B1	 magnitude.	
The	entire	9-	cm	axial	slab	could	be	predicted	within	ap-
proximately	0.8	seconds,	permitting	concatenation	into	
pseudo-	3D	B1	maps	that	could	feasibly	be	used	for	pulse	
scaling	or	similar	SAR	management	here.	Pulse	scaling	
based	 on	B+

1
	 cannot	 guarantee	 SAR	 compliance,	 as	B+

1
	

does	 not	 necessarily	 reflect	 electric-	field	 distributions.	
However,	SAR	compliance	could	be	ensured	if	(3D)	elec-
tric	fields	were	also	predicted.

5 	 | 	 CONCLUSIONS

We	have	demonstrated	a	framework	for	a	deep-	learning	
approach	 for	 motion-	resolved	 B+

1
	 estimation	 in	 pTx.	

Estimated	maps	can	be	used	for	real-	time	tailored	pulse	
redesign,	 yielding	 homogeneous	 flip-	angle	 profiles	 in	
cases	 of	 head	 motion.	 Importantly,	 networks	 can	 be	
run	sequentially	to	predict	B1	maps	following	arbitrary	
displacements	 comprising	 multiple	 directions.	 Here,	
error	was	reduced	for	35	displacements	using	networks	
trained	for	 just	 five	displacements.	Our	findings	repre-
sent	 one	 potential	 avenue	 toward	 user-	friendly,	 opti-
mized	pTx	at	7	T.
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FIGURE S1	 (A)	 B1	 prediction	 quality	 (error	 and	
correlation)	 for	 the	 Billie	 model	 only.	 (B)	 B1	 prediction	
quality	(error	and	correlation)	 for	 the	Dizzy	model	only.	
(Figure	5	displays	the	same	evaluations	averaged	over	the	
two	body	models.)	Data	from	the	Billie	model	were	used	
for	 validation	 during	 the	 training	 process,	 whereas	 the	
Dizzy	model	was	not	involved	at	all	during	training
	FIGURE S2	 (A)	 Raincloud	 plots	 showing	 flip-	angle	
normalized	 RMS	 error	 (nRMSE)	 (percent	 of	 target	 flip	
angle)	 for	 nine	 example	 displacements	 using	 pulseinitial	
(orange)	and	pulseredesigned	(dark	blue).	Asterisks	indicate	
the	number	of	network	cascades	required	for	evaluation.	
The	light	blue–	shaded	region	shows	maximum	prediction	
nRMSE	across	all	35	evaluated	displacements	(consistent	
across	 panels).	 (B)	 All	 specific	 absorption	 rate	 (SAR)	
evaluations	 for	 the	 same	 nine	 example	 displacements.	
Vertical	 axes	 show	 relative	 peak	 local	 SAR	 (psSAR),	
calculated	 as	 psSAR	 as	 a	 factor	 of	 that	 without	 motion	
using	 pulseinitial	 (psSARcenter).	 The	 green-	shaded	 region	
shows	psSAR	at	or	below	psSARcenter	(i.e.,	indicating	that	
psSAR	did	not	increase	following	motion).	Neither	pulse	
included	SAR	constraint	in	the	design
FIGURE S3	Voxelwise	correlations	between	initial	(B1initial)	
and	ground-	truth	(B1gt)	B1	maps,	to	compare	motion-	related	
error	 following	 through-	plane	 (A)	 and	 within-	plane	 (B)	
displacements.	Results	are	shown	for	two	positions	and	three	
slice	locations	(1	=	least	superior,	6	=	most	superior).	Note	that	
the	large	inferior	displacement	(15	mm)	is	greater	than	the	
large	rightward	displacement	(10	mm),	and	yet	error	remains	
lower	due	to	the	through-	plane	nature	of	the	movement
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