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Abstract
Decision-making on the basis of multiple information sources is common. However, to what extent such decisions
differ from those with a single source remains unclear. We combined cognitive modelling and neural-mass modelling to
characterise the neurocognitive process underlying perceptual decision-making with single or double information sources.
Ninety-four human participants performed binary decisions to discriminate the coherent motion direction averaged across
two independent apertures. Regardless of the angular distance of the apertures, separating motion information into two
apertures resulted in a reduction in accuracy. Our cognitive and neural-mass modelling results are consistent with the
hypotheses that the addition of the second information source led to a lower signal-to-noise ratio of evidence accumulation
with two congruent information sources, and a change in the decision strategy of speed–accuracy trade-off with two
incongruent sources. Thus, our findings support a robust behavioural change in relation to multiple information sources,
which have congruency-dependent impacts on selective decision-making subcomponents.

Keywords Decision-making · Multiple sources · Attention · Speed–accuracy trade-off · Cognitive model · Neural-mass
model

Introduction

Making rapid decisions on the basis of noisy information is
a hallmark of voluntary behaviour. For choices made within
a range of 1–2 s, converging evidence from humans (Heek-
eren, Marrett, Bandettini, & Ungerleider, 2004) and non-
human primates (Roitman & Shadlen, 2002) have supported
an evidence accumulation framework governing decision-
making from perceptual (Shadlen & Newsome, 2001), value
(Zajkowski, Krzemiński, Barone, Evans, & Zhang, 2021),
or memory (Ratcliff, 1978) information: the information

• Open data and materials: https://osf.io/5d86z, https://github.
com/dokato/2drdk,
• Pre-registration: https://osf.io/4dn65

� Dominik Krzemiński
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is integrated over time until the accumulated informa-
tion in favour of one option reaches a response threshold
(but see also Cisek, Puskas, and El-Murr (2009) for an
alternative account). This integration process reduces the
noise in the accumulated information and facilitates optimal
behaviour in terms of accuracy and speed (Bogacz, 2007).
A large family of sequential sampling models (Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006) can describe ade-
quately the cognitive (Ratcliff & McKoon, 2008) and neural
(Wang, 2002) processes during evidence accumulation.

Much of the research to date on simple visual perceptual
decisions has focused on evidence accumulation from
a single information source (Gold & Shadlen, 2007).
Understanding how a decision-maker integrates information
from multiple sources is equally important. In preferential
decisions with multiple attributes, such as buying a car
based on its colour and price, sequential sampling models
can effectively account for various biases and heuristics
(Busemeyer, Gluth, Rieskamp, & Turner, 2019), supporting
evidence accumulation as a parsimonious decision-making
framework for distributed information sources.

Another common scenario exists: making decisions by
integrating the same type of information originated from
multiple sources. For example, when approaching a T
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junction, a car driver has to consider incoming traffic from
both left and right sides of the main road; while entering
a roundabout, the driver only needs to attend to one side
because all vehicles circulate in one direction. An intriguing
issue is: how does the presence of multiple information
sources affect behavioural performance. Research on
visual search provide circumstantial evidence to imply an
imperfect integration of multiple sources, because of the
limited capacity of the attentional system. When locating
a target among similar distractors or filtering out task
irrelevant information, there is a robust behavioural (Palmer,
1995) and neural (Reynolds & Chelazzi, 2004) cost in
relation to selective attention on multiple sources. However,
two important questions are yet to be addressed. First,
when the total amount of information remains unchanged,
does separating information into multiple congruent and
incongruent sources have the same impact on behaviour?
Second, does making decisions with additional information

sources lead to a change in the speed of evidence
accumulation, the decision threshold, or both?

The current study investigated these questions, using a
well-established visual perceptual decision paradigm within
the evidence accumulation framework. We conducted a pre-
registered, carefully calibrated online experiment in two
independent groups. Human participants were instructed
to decide the average motion direction of random-dot
kinematogram RDK from two tilted apertures (Fig. 1).
Coherent dot motion was presented in both apertures, with
their moving directions to be congruent (both leftwards
or rightwards) or incongruent (e.g., one leftwards and the
other rightwards). In corresponding baseline conditions,
coherent motion was presented in a single aperture, with
the other aperture containing no coherent motion. Between
the two groups, we varied the angular separation of the two
apertures, allowing us to evaluate the repeatability of
all within-subject effects and assess the between-group

Fig. 1 The diagram of the RDK in two rectangular apertures used in A the staircase procedure and B the main experiment. θ denotes the angle
between the aperture and the horizontal plane, which was ±20◦ in Group 1 and ±45◦ in Group 2. During the staircase procedure, one aperture
contained black dots with 0% motion coherence. In the main experiment, both apertures contained white dots B. Small diagrams in each panel
represent experimental setups of each condition. Dashed lines represent the dots motion in respective apertures and the colour of dots (black or
white). Arrows shows examples of coherent motion direction. In congruent and incongruent conditions, both apertures contained coherent motion
information. In baseline conditions, only one aperture contained coherent motion information

1567Attention, Perception, & Psychophysics  (2022) 84:1566–1582



effect of aperture angles on behaviour. We fitted a
cognitive model, the drift-diffusion model (DDM) (Ratcliff
& McKoon, 2008), to behavioural data and inferred the
effects of motion congruency and sensory sources on
model parameters. Furthermore, we extended a neural-
mass model (Wong & Wang, 2006) to demonstrate how
the observed behavioural changes can be implemented by
a biologically motivated neural network. Together, using
motion discrimination task based on RDK stimulus as
a test platform, our study illustrated the neurocognitive
mechanisms of perceptual decisions from multiple sources.

Methods

Participants and pre-registration

A total of 94 participants were recruited from an online
recruitment portal (Prolific, prolific.co) and took part in
the experiment online (age range 18–68 years old, median
age 25 years old, 25 females, 85 right-handed). Table 1
summarises demographic features of the participants. All
participants received monetary payments for their partic-
ipation. Consent was obtained from all participants. We
considered the recruitment from an online portal as a sample
of convenience. The study was approved by the Cardiff Uni-
versity School of Psychology Research Ethics Committee.

Power analyses, exclusion criteria, experiment proce-
dures and analysis plans were pre-registered prior to data
collection (https://osf.io/4dn65). A sample size of N > 44
provides > 90% power to detect a medium within-group
effect (d = 0.5) at α = 0.05. We randomly assigned par-
ticipants into two independent groups. Group 1 (N = 49)
performed the perceptual decision task with two sources
of visual inputs presented along θ = ±20◦, and Group 2
(N = 45) performed the task with visual inputs presented
along θ = ±45◦ (see Procedure for details). This allowed
us to test the hypothesis about the positive impact of the
correlation of information sources on the decision accuracy.

Apparatus

The experiment was conducted online. Experimental scripts
for stimulus presentation and response collection were
written in HTML with a JavaScript library JSPSYCH 6.0.5
(de Leeuw, 2015) and the JSPSYCH-RDK plugin (Rajananda,
Lau, & Odegaard, 2018). The online experiment was hosted
on a web server Pavlovia (pavlovia.org), and participants
performed the experiment in web browsers on their compu-
ters. It has been shown that online experiments in modern web
browsers can serve as a suitable tool for measuring behaviou-
ral responses and reaction times with sufficient precision
(de Leeuw & Motz, 2016; Semmelmann & Weigelt, 2017;
Anwyl-Irvine, Dalmaijer, Hodges, & Evershed, 2020).

Stimuli

The visual stimuli contained two independent sets of
random-dot kinematograms (RDK) (Britten, Shadlen, New-
some, & Movshon, 1992; Shadlen, Britten, Newsome, &
Movshon, 1996; Mazurek, Roitman, Ditterich, & Shadlen,
2003)displayed within two invisible rectangular apertures
(140 pixels width, 550 pixels length) on a grey back-
ground (RGB=128, 128, 128). The use of a grey back-
ground ensured that moving dots in the RDK were always
visible from the background, as both white and black dots
were used in the experiment. Both rectangular apertures are
located at the centre of the screen, with one tilted +θ from
the horizontal plane and the other tilted −θ . Hence, the two
apertures formed an ‘×’ shape, with θ = 20◦ in Group 1 and
θ = 45◦ in Group 2. To facilitate the integration of leftwards
and rightward motion across apertures, four motion target
indicators were presented at the end of the short edges of
the two apertures. On each side of the screen (left or right),
the two target indicators had the same colour (red or blue),
and the colour assignment of those motion indicators was
randomised across participants.

Each rectangular aperture contained 100 dots (i.e., 200
dots in total). Each dot had a radius of 3 pixels. We

Table 1 Statistical information about participants. NA - data not available, STD - standard deviation

Category Value

gender female(25), male(67), NA(1)

handness right(85), left(6), both(2)

age (years) median: 25, mean: 27.3, STD: 8.3

web browser type Chrome(69), Internet Explorer(14), Firefox(4), Safari(5), NA(2)

nationality United Kingdom(25), Poland(13), Portugal(11), United States(7),
Spain(5), Italy(4), Mexico(3), Czech Republic(3), Denmark(2),
Ireland(2), Hungary(2), France(2), Lithuania(1), Germany(1),
Belgium(1), Sweden(1), Colombia(1), Estonia(1), Finland(1),
Netherlands(1), Chile(1), Canada(1), Australia(1), South Africa(1),
China(1), NA(1)
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introduced coherent motion information along the long
edge of each aperture (leftwards or rightwards). In each
frame, a proportion of dots (namely the motion coherence)
was replotted at an appropriate spatial displacement in the
direction of motion (2 pixels/frame velocity), relative to
their positions in the last frame, and the rest of the dots
were replotted at random locations within the aperture.
To minimise the impact of local motion information from
individual dots, all dots were replotted at random locations
after every seven frames (Rajananda et al., 2018).

The choice of two rectangular apertures serves two
purposes. First, it allows us to present two independent
information sources along the long edge of each aperture.
Second, it allows us to present target indicators directly at
the end of the short edges of the two apertures (i.e., the blue
and red arrow blocks in Fig. 1). As a result, the random
dot motion within each aperture leads to the percept that
coherent motion direction is along the long edge of the
aperture and towards one of the two short edges.

Task and procedure

After informed consent and task instructions, the exper-
iment included two parts: (1) a staircase procedure to
identify two perceptual thresholds, and (2) the main per-
ceptual decision-making task. In both parts, participants
performed a two-alternative forced-choice (2AFC) task,
deciding whether the coherent motion direction of the
random-dot stimulus is leftward or rightward, either from
a single information source (i.e., one aperture in Part 1,
Fig. 1a) or combined from double information sources (i.e.,
two apertures in Part 2, Fig. 1b). Participants responded
by pressing the ‘k’ key (for leftward decisions) or the ‘p’
key (for rightward decisions) on a keyboard with their right
index and middle fingers. Participants were free to decide
when to press the button, i.e., they performed a reaction-
time version of the motion discrimination task (Ratcliff &
McKoon, 2008). Each part was proceeded with a self-paced
break.

Part 1: staircase procedure

To allow participants to familiarise with stimuli and the
task, participants underwent a short practise. The practise
part consisted of a single block of 32 trials. On each trial,
one aperture contained black dots (RGB = 255, 255, 255)
with 0% motion coherence, and the other aperture contained
white dots (RGB = 0, 0, 0) at one of the four coherence
levels (5, 10, 20, and 40%, eight trials of each level).
Participants were instructed to pay attention only to white
dots (i.e., the informative aperture) and decide the direction
of coherent motion. The coherent motion direction, the
order of coherence levels, and the informative aperture (i.e.,

the one at +θ◦ or the one at −θ◦) were randomised across
trials. On each trial, the random-dot stimulus disappeared
as soon as a response was made, or a maximum duration
of 3500 ms was reached. The inter-trial interval was
randomised between 900 and 1100 ms.

For online experiments, participants’ hardware settings
and their perceptual performance could vary substantially.
Therefore, we measured motion discrimination thresholds
using the same visual stimulus and the 2AFC task structure
as in the practise: one aperture contained black moving
dots with 0% (i.e., uninformative) coherence, and the
other contained white dots with motion coherence set
according to the staircase routine. The direction of coherent
motion was randomised across trials. At the end of each
trial, visual feedback in text was presented for 500 ms
to indicate whether participant’s response was correct or
incorrect.

The staircase routine combined two parallel staircase
procedures with fixed step sizes: one used a two-down/one-
up rule and the other used a three-down/one-up rule. The
two staircase procedures are independent and interleaved
with each other. In both staircase procedures, the initial
motion coherence was set to a supra-threshold value of
31.6%, the ‘up’ step size was 0.1 (log unit) and the
‘down’ step size was 0.074 following the recommendations
from (Garcıa-Pérez, 1998; Garcı́a-Pérez, 2000). Using
simulations, Garcia-Perez (Garcı́a-Pérez, 2000) reported
the asymptotic convergence targeted by various staircase
procedures with fixed step sizes, and the converged
accuracy level depends on the up/down rule and the size
of up/down steps. More specifically, with the down/up step
size ratio of 0.74 (i.e., the value used in the current study),
a two-down/one-up procedure for a forced-choice task will
converge to the asymptotic threshold of 74% accuracy
(hereafter referred to as the low coherence clow), and a three-
down/one-up procedure will converge to the asymptotic
threshold of 83% accuracy (hereafter referred to as the high
coherence chigh).

The convergence of a staircase procedure is an asymp-
totic limit, where coherence value at adjacent reversal values
is sufficiently small in the limit of an infinite number of
trials. In practice, a fixed number of trials is often used
(Garcıa-Pérez, 1998). In the current study, each of the two
staircase procedures terminated after ten staircase rever-
sals and the corresponding threshold was calculated as the
average of the motion coherence levels at the last nine
reversals.

Part 2: perceptual decisions from double sources

Part 2 is the main experiment, in which both apertures
contained white dots (Fig. 1b). Participants were instructed
to attend to both apertures and decide whether the coherent
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motion direction of all (white) dots was leftwards or
rightwards.

After task instruction and a brief practise, the main
experiment comprised 432 trials, which were divided into
6 blocks of 72 trials. Participants took self-paced breaks
between blocks. Decision accuracy (proportion of correct
responses) was measured after every two consecutive
blocks. If a participant had the accuracy lower than 60%,
the experiment ended prematurely, and the dataset was
discarded from further analysis.

Each block contained 50% of leftwards motion trials and
50% of rightwards motion trials. In each block, 64 main task
trials from four experimental condition and eight control
trials were presented. The four experimental conditions
followed a 2 by 2 factorial design with two levels of
combined motion coherence (high and low) and two levels
of information sources (single source and double sources).
Coherent motion directions, task conditions, and control
trials were presented in random order across trials within
each block.

In the high combined coherence conditions, trials with
double information sources had the low motion coherence
clow in one aperture and chigh − clow in the other. The
coherent motion directions were congruent in the two
apertures (i.e., both leftwards or both rightwards). We will
hereafter refer to this condition as the congruent condition.
Trials with single information source had the high motion
coherence chigh in one aperture and 0% in the other , which
we will refer to as the congruent baseline condition.

In the low combined coherence conditions, trials
with double information sources had the high motion
coherence chigh in one aperture and chigh − clow in the
other. Importantly, the coherent motion directions were
incongruent (i.e., opposite) in the two apertures. We
will hereafter refer to this condition as the incongruent
condition. Trials with single information source had the low
motion coherence clow in one aperture and 0% in the other,
which we will refer to as the incongruent baseline condition.

Therefore, for both double and single information
sources, the net motion coherence was always chigh in
high combined coherence conditions and clow in low
combined coherence conditions. In control trials, the motion
coherence levels in two apertures were set to 60 and 0%.
These easy control trials were served as attention check and
excluded from subsequent data analyses.

Each trial started with a 250-ms fixation period, during
which a black cross presented in the central of the screen.
RDK stimuli in two apertures were then presented for a
maximum period of 4000 ms, and the stimuli disappeared
as soon as a choice was made. The visual stimulus was
followed by an inter-trial interval randomised between 400
and 600 ms.

Data analysis

For the staircase procedure, non-parametric tests were used
to compare the high and low coherence levels (chigh and
clow) and to compare between the two aperture angles (θ =
45◦ and θ = 20◦). 95% confidence intervals (CI) were
obtained using bootstrap procedure with 1000 resamples of
simulated distributions.

For the main experiment, we quantified response time
(RT) of each trial as the latency between the RDK
stimulus onset and behavioural response. To eliminate fast
guesses, trials with RT faster than 250 ms were removed.
Trials without a valid response were also removed. The
discarded trials accounted for 0.26% of all trials. We used
mixed frequentist and Bayesian ANOVAs to make group
inferences on mean decision accuracy and RT, with the
coherence level and the number of information source as
within-subject factors. Assumptions of variance equality
were checked with Levene’s test. We performed post hoc
comparisons using JASP (jasp-stats.org) and used Bayes
factors (BFincl, BF10) to characterise the strength of
evidence (Wagenmakers et al., 2018).

Cognitivemodelling of behavioural data

We used the hierarchical Drift Diffusion Model (DDM)
toolbox (Wiecki, Sofer, & Frank, 2013) to fit DDMs to indi-
vidual participant’s response time distribution and decision
accuracy. The hierarchical DDM assumes that the model
parameters of individual participants are sampled from
group-level distributions, and the Bayesian fitting procedure
estimates the posterior distributions of all model parameters
at both individual and group levels, given the observed data.

The basic form of the DDM contained three core
parameters (Ratcliff & McKoon, 2008): (1) the drift rate
v, (2) the decision threshold a, and (3) the non-decision
time Ter (Fig. 5a). For each trial, the model assumes that
noisy information is accumulated over time at an averaged
rate of v and a starting point of a/2, until the accumulated
information reaches the upper or the lower decision
boundary (a or 0) that indicates a correct or incorrect binary
response, respectively. The model prediction of RT is the
sum of the duration of the accumulation process and the
non-decision time, with the latter accounting for delays in
sensory encoding and motor execution (Karahan, Costigan,
Graham, Lawrence, & Zhang, 2019).

The effects of DDM parameters on the model’s
prediction of behavioural performance have previously been
documented (Ratcliff & McKoon, 2008): (1) increasing
the threshold a leads to slower RT and higher accuracy;
(2) increasing the drift rate v leads to faster RT and
higher accuracy; and (3) increasing the non-decision time
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Ter prolongs RT but has no effect on decision accuracy.
In our data, behavioural differences between conditions
cannot be readily explained by a change in any single
model parameter (i.e., a speed–accuracy trade-off in the
incongruent condition and worsened accuracy and RT
in the congruent condition). Hence, to accommodate
changes in behavioural performance between conditions,
we estimated four variants of the DDM with different
parameter constraints. The first three variants allow two of
the three parameters (v, a, Ter) to vary between conditions,
and the last variant allows all three parameters to vary. All
parameters are allowed to vary between participants in all
variants to account for inter-subject variability.

For each variant, we generated 20,000 samples from
the joint posterior distribution of all model parameters by
using Markov chain Monte Carlo sampling. The initial 4000
samples were discarded for the sake of obtaining stable
posterior estimates (Wiecki et al., 2013). 16,000 samples
has previously been shown to be sufficient for model to
converge in similar tasks (Johnson, Hopwood, Cesario, &
Pleskac, 2017; Szul, Bompas, Sumner, & Zhang, 2020).
The convergence of the fits has been tested with a Gelman–
Rubin R̂ criterion (Gelman & Rubin, 1992). Furthermore,
to improve the model’s robustness to outliers, we estimated
mixture models, in that 95% of the data are explained
by the DDM, and 5% of the data are expected to be
outliers generated from a uniform distribution (Ratcliff &
Tuerlinckx, 2002).

Model fits were assessed by comparing each model’s
deviance information criterion (DIC) value (Spiegelhalter,
Best, Carlin, & Van Der Linde, 2002), which takes into
account both the log-likelihood function of observed data
and the complexity of the model. For the best-fitting variant,
we used Bayesian hypothesis testing (Gelman et al., 2013)
to make inferences between conditions from the parameters’
group-level posterior distributions. For consistency, we use
p to refer to frequentist p values, and Pp|D to refer to the
proportion of posteriors supporting the testing hypothesis at
the group level from Bayesian hypothesis testing.

Recurrent neural mass model

We further used a neural mass model (Wong & Wang, 2006)
to qualitatively demonstrate the effects of motion coherence
and the number of information source on behavioural
performance. The model considered here is simplified from
a recurrent spiking neural network model (Wang, 2002)
via the mean-field approximation. Specifically, the neural-
mass model includes two simulated neural populations
(i.e., accumulators), each supporting the accumulation of
evidence for a direction of motion. The two simulated
neuronal populations compete with each other by means
of self-excitatory and mutual inhibitory connections. Each

accumulator receives selective external inputs (Iin,L and
Iin,R) as momentary evidence supporting each alternative
(e.g. leftwards vs. rightwards motion), as well as a
common, non-selective background input I0 (Fig. 7a).
During decision-making, two accumulators compete against
each other, and the first accumulator that reaches a
decision threshold renders the corresponding response. It
has been shown that this biologically motivated neural mass
model can explain behavioural and single-unit recording
data from 2AFC perceptual decision experiments using
RDK stimuli (Wong & Wang, 2006). Moreover, within a
certain parameter range, the dynamics of the model can
mathematically approximate that of the DDM (Wong &
Wang, 2006; Bogacz et al., 2006).

Here, we extended the original neural-mass model to take
into account the presence of the two information sources in
the current study (for modelling details see Supplementary
methods). The deterministic input currents (Iin,L and Iin,R)
to the two neural accumulators are given by{

Iin,L = Jext[αμ(1 + c1) + (1 − α)μ(1 + c2)] + βI0,

Iin,R = Jext[αμ(1 − c1) + (1 − α)μ(1 − c2)] + βI0,

(1)

where the first term is the selective input current and
the second represents the non-selective background input
current. c1 and c2 denote the motion coherence levels in
the two independent apertures. For simplicity, hereafter we
assign c1 to represent the stronger coherence between the
two (|c1| > |c2|). Other parameters were set in line with
previous studies (Wong & Wang, 2006; Standage, Wang, &
Blohm, 2014b): Jext = 5.2 · 10−4 nA·Hz−1 is the average
synaptic coupling parameter, I0 = 0.321 nA represents the
baseline of the background input current, and μ = 35 Hz is
the baseline of input strength of the evidence.

The two scaling parameters α and β control to what
extent task conditions affect model inputs. First, in trials with
double informative sources, participants need to combine
the evidence from two apertures for optimal decisions.
This claim is supported by behavioural performance in the
incongruent condition, in which double information sources
led to lowered accuracy. If participants focused only on the
dominant source, one would expect the double-source condi-
tion to have higher accuracy than the corresponding single-
source condition. The parameter α determines how a decision-
maker splits the weight of sensory evidence from two sources.
α = 0.5 implies that a participant weight two sources
equally, while 0.5 < α < 1 or 0 < α < 0.5 implies that the
dominant source is weighted more or less, respectively.

Second, previous studies suggest that a change in the base-
line input I0 results in speed–accuracy trade-off (Standage
et al., 2014b; Heitz & Schall, 2012). Compared with the
single-source condition, the double-source condition with
incongruent motion directions had lower accuracy and faster
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RT, suggesting that participants may trade accuracy for
speed in the presence of conflict information. Therefore, we
assumed that the non-selective background input current is
modulated by a factor of β in that condition, which changes
the model dynamics and in turn affects both the accuracy
and RT relative to the condition with a single information
source. For other conditions, we set β = 1 such that the
non-selective input is at its baseline level.

To identify the parameter regime where the neural mass
model can produce qualitatively the behavioural pattern
observed in the experiment, we ran model simulations with
different values of α and β. For each parameter set, we
ran 5000 simulations of each of the four experimental
conditions with representative coherence levels (chigh =
20% and clow = 15%). For example, in the incongruent
condition with double information sources, c1 = 20% and
c2 = −5% for leftward motion; and c1 = −20% and
c2 = 5% for rightward motion. Mean accuracy and RT of
each condition was then calculated from all simulations.

Open data and scripts

We have made the data (https://figshare.com/articles/
dataset/13567916), all analyses scripts (https://github.com/
dokato/2drdk) and experimental materials (https://osf.io/
5d86z/) open access (Krzemiński & Zhang, 2021).

Results

Behavioural results

To investigate how having multiple information sources
may affect perceptual decision, two groups of participants

performed a perceptual decision task, identifying the coher-
ent motion direction (leftwards vs. rightwards) in tilted
random dot kinematograms (RDKs). RDK stimuli displayed
in two independent rectangular apertures, which formed a
shape of ×. To further examine how the geometrical config-
uration of the apertures affect behavioural performance, the
two apertures were presented at ±20◦ for Group 1, and at
±45◦ for Group 2, respectively.

Prior to the main experiment, each participant underwent
a fixed-size, parallel staircase procedure to estimate
two motion coherence thresholds, with coherent motion
information randomly presented in one of the two apertures
(Fig. 1a and Supplementary Fig. 1). A two-down/one-
up staircase procedure was used to estimate a more
difficult, or lower coherence level (clow, Fig. 2). A three-
down/one-up staircase procedure was used to estimate an
easier, or higher coherence level (chigh, Fig. 2b). Previous
research suggested that these staircase procedures lead to
asymptotic convergence of 74% (for the two-down/one-
up rule) and 83% (for the three-down/one-up rule) accu-
racy in two-alternative forced-choice tasks (Garcıa-Pérez,
1998).

Across the two participant groups, as expected, clow was
significantly smaller than chigh (Z = −8.42, p < 0.0001,
95%CI = [−8.9, −6.3]%, Wilcoxon signed-rank test). We
compared the coherence thresholds between the two groups,
and there was no significant difference in either clow (Fig. 2,
U(45, 49) = 983, p = 0.18, 95%CI = [−2.7, 0.9]%,
Mann–Whitney U test) or chigh (Fig. 2, U(45, 49) =
952, p = 0.13, 95%CI = [−5.4, 1.3]%). These results
suggest that participants achieved reliable performance in
the staircase procedure, and their behavioural performance
was not affected by the amount of angular separation of the
apertures.

Fig. 2 Staircase procedure results. A boxplot shows the quartiles of
the data with whiskers spanning over interquartile range. Grey dots
are outliers. Two motion coherence thresholds obtained from a par-
allel staircase routine: clow from the two-down/one-up rule and chigh

from the three-down/one-up rule. The final value was obtained from
the last nine out of ten reversals. There were no significant (ns) differ-
ences between coherence values for the aperture angles θ = 20◦ and
θ = 45◦ (Mann–Whitney U test)
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In the main experiment, participants in both groups
decided the combined coherent motion direction (leftwards
vs. rightwards) in a 2-by-2 factorial design: either single
or double apertures contained non-zero motion coherence,
and the combined coherence level in the two apertures
was either clow or chigh (Fig. 1b). Critically, when both
apertures contain coherent motion, two information sources
are congruent in trials with a combined high coherence chigh

and incongruent (i.e., with opposite motion directions) in
trials with a combined low coherence clow. For simplicity,
we will refer to them as the congruent and incongruent
conditions, respectively, and their corresponding single-
source conditions as congruent and incongruent baseline
conditions (Fig. 1). This design allows us to compare
behavioural performance in each double-source condition
with its corresponding single-source baseline condition that
had the same combined motion coherence.

We quantified participant’s performance in mean deci-
sion accuracy (proportion of correct) and RT. Each depen-
dent measure entered a two-way mixed ANOVA with the
number of information sources (single or double apertures)
and congruency (i.e., congruent and baseline conditions
with the combined coherence chigh, or incongruent and
baseline conditions with the combined coherence clow) as
within-subject factors. We first focused on our primary
interest: the effect of information sources, which aimed to
examine whether separating information into multiple con-
gruent or incongruent sources have the same impact on
behaviour. For decision accuracy, compared with conditions
of single information source, splitting motion informa-
tion into two apertures always resulted in lower accuracy
(marginal mean: 77.3 vs. 74.3%). This was supported by a
significant main effect of the number of information sources
(F(1, 92) = 47.50, p < 0.001, η2

p = 0.34, BFincl = 1.7 ·
104), and there was no interaction in accuracy between the
number of information sources and congruency (F(1, 92) =
0.01, p = 0.92, η2

p < 0.001, BFincl = 0.17).
For RT, there was no main effect between single vs.

double sources (1366 vs. 1354 ms; F(1, 92) = 0.14,
p = 0.71, η2

p = 0.002, BFincl = 0.12). However,
the interaction between the two within-subject factors was
significant (F(1, 92) = 208.38, p < 0.001, η2

p =
0.69, BFincl = 1.2 · 1013), suggesting that presenting
motion information in double apertures elicited different
changes in response speed between congruency conditions.
A post hoc test showed that compared with the congruent
baseline condition, the congruent condition had slower RT
(mean: 1247 vs. 1409 ms; BF10 = 8014.01, Bayesian t

test). Conversely, the incongruent condition had faster RT
than the incongruent baseline condition (mean: 1297 vs.
1483 ms; BF10 = 1.21 · 104). These findings suggest
that separating motion information into two spatially

independent sources hinders the perceptual decision of
coherent motion direction. Integrating motion information
across two sources can prolong or facilitate decision speed,
depending on the congruency of information in the two
sources.

For the factor of congruency, note that the congruent and
its baseline conditions had higher combined coherence than
incongruent conditions (i.e., chigh vs. clow). As expected,
across both groups, the high combined coherence chigh led to
better performance than the low combined coherence. This
was supported by significant main effects of congruency in
accuracy (Fig. 3, marginal mean: 82 vs. 70%; F(1, 92) =
269.25, p < 0.001, η2

p = 0.745, BFincl = 2.3 · 1055) and
RT (Fig. 4, marginal mean: 1329 vs. 1390 ms; F(1, 92) =
53.70, p < 0.001, η2

p = 0.37, BFincl = 3.73). Hence,
participants’ performance in the main task was consistent
with their results from the staircase procedure, in that higher
combined motion coherence led to higher decision accuracy
and faster RT.

Finally, we examined the between-subject effect of
angular separation of the apertures. The two groups with
different angles of stimulus apertures achieved similar
performance, as there was no significant group effect on
behavioural performance in accuracy (75.7 vs. 75.8%;
F(1, 92) = 0.009, p = 0.92, η2

p < 0.001, BFincl =
0.29) or RT (1365 vs. 1354 ms; F(1, 92) = 0.05, p =
0.30, η2

p < 0.001, BFincl = 0.24). Angular separation
did not interact with the number of information sources
(accuracy: F(1, 92) = 0.02, p = 0.88, η2

p < 0.001,

BFincl = 0.17; RT: F(1, 92) = 0.01, p = 0.93, η2
p <

0.001, BFincl = 0.15). There was a significant interaction
between angular separation and combined coherence levels
in accuracy (F(1, 92) = 4.27, p = 0.04, η2

p = 0.04,
BFincl = 4.20), but not in RT (F(1, 92) = 1.04, p =
0.31, η2

p = 0.01, BFincl = 0.19). Together, these findings
suggest that behavioural performance was largely similar
under different levels of angular separation.

Cognitivemodelling results

We used a hierarchical Bayesian implementation (Wiecki
et al., 2013; Vandekerckhove, Tuerlinckx, & Lee, 2011)of
the DDM (Ratcliff, 2002; Bogacz et al., 2006) to decompose
individual participant’s accuracy and RT into model
parameters that quantify latent cognitive processes. We
considered four model variants, which allow the drift rate v,
the non-decision time Ter and the decision threshold a to be
fixed or vary between task conditions.

For each model variant, the Gelman–Rubin R̂ conver-
gence criterion (Gelman & Rubin, 1992) was used to assess
the convergence of the last 16,000 MCMC samples from
five independent Markov chains. The maximum value of

1573Attention, Perception, & Psychophysics  (2022) 84:1566–1582



Fig. 3 Accuracy (proportion of correct responses) in the main experiment for high (red) and low (purple) combined evidence condition. Bars
represent the averaged accuracy in A Group 1 (aperture angle θ = ±20◦) and B Group 2 (θ = ±45◦). Grey dots represent individual participants’
accuracy. Black horizontal line with asterisk (*) above denotes a significance (p < 0.016 in all tests) of a paired t test between the congruent
(CON) vs. congruent baseline (CON BSL), or incongruent (INC) vs. incongruent baseline (INC BSL) conditions. Each solid grey line links the
performance between double- and single-source conditions from the same participant

the statistic from all parameters was R̂ = 1.0012, which
is lower than the criterion of convergence 1.1 (Gelman
& Rubin, 1992), suggesting that all parameter estimates
converged after 20,000 steps.

The model variant that described the data best (i.e., the
one with the lowest DIC value) allows all three parameters
(v, Ter and a) to vary between conditions. To evaluate the
model fit, we generated model predictions by simulations
with the posterior estimates of the model parameters. There
was a good agreement between the observed data and the
model simulations in all conditions. Figure 6 showed group-
level model simulation in comparison with empirical data
(see Supplementary Figs. 2 and 3 for model fits to individual
participants’ responses).

We then compared the posterior parameter values from
the best model between experimental conditions. Inferences
on model parameters allow us to examine whether making
decisions with additional information sources lead to a
change in the speed of evidence accumulation, the decision
threshold, or both. Figure 5c shows the group-level posterior

parameter estimates for the two participant groups. We
used Bayesian statistics (Gelman et al., 2013; Kruschke,
2014) to quantify the proportion of parameters’ posterior
distributions that did not overlap between groups and
conditions (Table 2). There was no evidence to support a
difference in model parameters between groups (Pp|D <

0.93 in all parameters). This concurs with the results above
that the two groups did not differ in their behavioural
performance.

For the cognitive model inference, we focused on the
difference between the double-aperture conditions versus
their corresponding baseline condition. Compared with the
congruent baseline condition, the congruent condition had
a higher drift rate v (Pp|D = 0.006 across two groups),
but there is no strong evidence to suggest a change in
the decision threshold a (Pp|D = 0.94). In contrast, the
incongruent condition had similar drift rate (Pp|D = 0.33)
but a lower decision threshold (Pp|D = 0.002) than the
incongruent baseline condition. We did not observe strong
evidence in supporting a difference in the non-decision time
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Fig. 4 Reaction time (RT) in the main experiment for high (red) and low (purple) combined evidence condition. Bars represent the averaged
accuracy in A Group 1 (aperture angle θ = ±20◦) and B Group 2 (θ = ±45◦). Grey dots represent individual participants’ accuracy. Black
horizontal line with asterisk (*) above denotes a significance (p < 0.024 in all tests) of a paired t test between the congruent (CON) vs. congruent
baseline (CON BSL), or incongruent (INC) vs. incongruent baseline (INC BSL) conditions. Each solid grey line links the performance between
double- and single-source conditions from the same participant

(congruent vs. congruent baseline conditions: Pp|D = 0.59;
incongruent vs. incongruent baseline conditions: Pp|D =
0.27). Table 2 further lists the posterior differences in model
parameters between each pair of experimental conditions.
Our cognitive modelling highlighted two behavioural
mechanisms when information for perceptual decision is
separated into two sources: a decrease in the signal-to-noise
ratio of evidence accumulation (i.e., a lowered drift rate)
for the congruent condition and a trade of accuracy for
speed (i.e., a lowered decision threshold) for the incongruent
condition. Below we investigate how these mechanisms can
be implemented in a neural circuit.

Neural-mass modelling results

Our cognitive modelling results suggested that splitting
coherent motion information into two apertures led to a
decrease of drift rate in the congruent condition, and a
decrease of decision threshold in the incongruent condition.
How could these changes be incorporated in a biologically
derived model (Wang, 2002; Standage et al., 2014b)?

Building on the previous research (Standage, Blohm,
& Dorris, 2014a), we hypothesised that the presence
of additional information sources changes the strength
of selective sensory inputs and non-selective background
inputs to neural populations that implement the evidence
accumulation process, which in turn leads to changes in
behavioural performance. To test these hypotheses, we
introduced two extensions (Fig. 7a) to a neural-mass model
of perceptual decision (Wong & Wang, 2006), which
implements an evidence accumulation process akin to that
of the DDM (Bogacz et al., 2006). First, for conditions with
double information sources, we assumed that the sensory
input selective to motion coherence is a weighted sum of
the two sources. The two weights (αμ and (1 − α)μ; see
Eq. 1) sum up to the constant baseline weight μ that is
applied to the conditions with single information source.
Second, we assumed that the non-selective sensory input I0

is changed at the rate of β in the double source condition
with incongruent inputs, which has been shown to be a
realistic neural mechanism in modulating decision threshold
(Heitz & Schall, 2012; Standage et al., 2014a).

1575Attention, Perception, & Psychophysics  (2022) 84:1566–1582



Fig. 5 Drift-Diffusion Model (DDM) fitting results. A Examples of
evidence accumulation trajectories depicted by the DDM. The decision
threshold a represents the distance between the correct and incorrect
decision thresholds. The drift rate v describes the average speed of evi-
dence accumulation. The non-decision time Ter represents the latency
of other processes not included in the evidence accumulation. The dif-
fusion continues until the accumulated evidence reaches one of the two
thresholds (solid black lines). If the accumulated evidence reaches the
correct (upper) threshold (blue trajectory), the model predicts a cor-
rect response. Because of noise, the accumulated evidence may reach
the incorrect (lower) threshold (red trajectory). B The deviance infor-
mation criterion (DIC) value differences between the four variants of

the DDM and the best fit. The black square indicates that the corre-
sponding parameter can vary between the conditions, and the white
square indicates that the parameter is invariant. The best model had
variable a, v, and Ter between conditions. C The posterior distributions
of group-level parameters of the best fit model, which is the fourth
model variant in panel B with a, v and Ter to vary between task con-
ditions. Each posterior distribution was obtained from 15,000 MCMC
samples. Top: Group 1 with 20◦ aperture angle. Bottom: Group 2 with
45◦ aperture angle. Red and purple lines represent different congru-
ency conditions. Solid and dashed lines represent different numbers of
information sources

Table 2 Posterior comparisons of model parameters

v a Ter

θ1 θ2 θ1 θ2 θ1 θ2

x = I1; y = I2 0.662 0.671 0.997 0.998 0.708 0.744

x = C1; y = I2 1.000 1.000 0.958 0.984 0.173 0.339

x = C2; y = I2 1.000 1.000 0.999 0.999 0.250 0.402

x = C1; y = I1 1.000 1.000 0.113 0.233 0.067 0.145

x = C2; y = I1 0.999 1.000 0.770 0.734 0.118 0.186

x = C1; y = C2 0.998 0.989 0.025 0.087 0.392 0.430

The table lists the proportion of non-overlap between two posterior parameter estimates x and y, which is equivalent to a Bayesian test of the
hypothesis Pp|D(x > y). Experimental conditions: I1 and I2 refer to single or double informative sources with a combined coherence of chigh;
C1 and C2 refer to single or double informative sources with a combined coherence of clow. The DDM model parameters: v drift-rate, a decision
threshold and Ter non-decision time. Two angular distances in two groups: θ1 = 20◦, θ2 = 45◦
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Fig. 6 Posterior predictive response time (RT) distributions from the
fitted DDM. Each panel shows normalised histogram of the observed
data (red for congruent and blue for incongruent conditions) and the
model predictions (black lines) across participants. The RT distribu-
tion of correct responses is shown along the positive horizontal axis.

The RT distribution of error responses is shown along the negative hor-
izontal axis. The posterior predictions of the model were generated by
averaging 1000 simulations of the same amount of observed data. The
top row shows results from Group 1 (with 20◦ angle between apertures)
and the bottom row for Group 2 (45◦)

We parametrically modulated the two scaling parameters
α and β. For each parameter set, we simulated the extended
neural-mass model 20,000 trials (5000 simulations for
each experimental condition) and estimated the decision
accuracy as well as mean RT. Figure 7b and c show
the behavioural performance from simulations. We further

identified parameter regimes that qualitatively satisfy the
observed performance difference between double (both
congruent and incongruent) and single information sources
conditions.

Based on model simulations, in order to satisfy
the pattern of behavioural performance observed in the

Fig. 7 Neural-mass model simulation results. A The diagram of the
two-state neural-mass model. w+ denotes excitatory connections,
w− denotes inhibitory connections, α determines how the weight of
sensory evidence is split between two sources, and β modulates non-
selective background input current. B Parameters space with difference
in performance, �, between single and double information sources in
congruent (CON BSL - CON; left) and incongruent (INC BSL - INC;

right) conditions in terms of accuracy (top row) and reaction times
(bottom row). The grey zone indicates the area where the model param-
eters reproduce the direction of behavioural differences observed in
the experiment. α varied between 0.1 and 0.9, and β varied between
0.98 and 1.02. C Behavioural performance from model simulations
with parameters α = 0.7 and β = 1.018. Black vertical lines denote
standard errors from 1000 simulation runs
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experiment, the scaling parameter α on input weights
needs to be larger than 0.5. Therefore, the dominant,
or more informative, sensory input of the two apertures
is weighted more than the other. From a modelling
perspective, unbalanced weights on two sensory inputs (i.e.,
α > 0.5) imply an imperfect integration of two congruent
sources, which yields lower decision accuracy than a single
sensory input with the same amount of information. Recall
that our cognitive model suggested a lower drift rate in the
congruent condition than the congruent baseline condition.
Such change in the drift rate can be mapped onto the
change in the relative weighting of sensory inputs, i.e., the
parameter α in the neural-mass model.

Furthermore, for model simulations to be consistent with
the observed data, the parameter β needs to be larger than 1.
This constraint implies that the incongruent condition is
associated with an elevated non-selective sensory input.
The higher the non-selective sensory input is, the larger
activity both neural populations will have. As a result,
increasing the non-selective input effectively lowers the
decision threshold, because less evidence needs to be
accumulated for the model to reach a decision. The change
of the non-selective input in the neural-mass model serve a
similar computational role as that of the decision threshold
in the cognitive model: eliciting a speed–accuracy trade-off
(Standage et al., 2014b; Bogacz, Wagenmakers, Forstmann,
& Nieuwenhuis, 2010). In short, our neural-mass modelling
offers a link between results from cognitive modelling and
their potential implementations in a network circuitry.

Discussion

The current study examined, in two independent groups,
how the presence of a second source of sensory information
affects the behavioural performance of perceptual decision
as well as its underlying neurocognitive mechanisms. When
motion directions are congruent between the two sources,
decisions on the global motion direction were less accurate
and slower than that in the single-source condition with the
same amount of total information (i.e., combined motion
coherence). In contrast, when two information sources are
incongruent, decisions were less accurate but faster than that
in the single-source condition. Therefore, the change in task
performance depends on the congruency between multiple
sources of sensory evidence.

Using a Bayesian DDM, our cognitive modelling
provided novel evidence on the decision-making process
with multiple information sources. First, information
congruency has selective influence on different decision-
making subcomponents. The congruent condition had
a lower drift rate than its corresponding single-source
condition (i.e., with a combined motion coherence of chigh

in both). The drift rate of the DDM represents the signal-
to-noise ratio of the information (Ratcliff & McKoon,
2008) and has been linked to the allocation of attention
(Schmiedek, Oberauer, Wilhelm, Süß, & Wittmann, 2007).
The presence of congruent information in two apertures
may modulate the divided attention towards the stimuli that
in turn lowers the averaged rate of evidence accumulation.
Human electrophysiological data support this proposition.
The EEG-evoked response potentials have been linked to the
attended location in the visual decision experiments (Eimer,
1996; Luck & Hillyard, 1994). Recent studies showed that
this EEG marker of selective attention modulates the rate of
evidence accumulation in perceptual decision (Loughnane
et al., 2016), and the dynamics of selective attention can
influence evidence accumulation throughout the decision
process (Rangelov & Mattingley, 2020).

Second, splitting motion information into two incongru-
ent apertures did not vary the drift rate. Instead, there was
a substantial reduction in the decision threshold, reflecting
the behavioural change that participants traded accuracy for
speed in this condition. The speed–accuracy trade-off (SAT)
is widely observed across decision-making tasks (Wickel-
gren, 1977; Heitz, 2014; Beersma et al., 2003). In exper-
iments with humans, the SAT is often induced explicitly
via verbal instructions (Zhang & Bogacz, 2010) or response
deadlines (Yamaguchi, Crump, & Logan, 2013). Such
manipulations can efficiently switch between accuracy-
seeking and speed-seeking behaviour every few trials (Mul-
der et al., 2013) or in consecutive trials (Forstmann et al.,
2008). Modelling studies on explicit SAT demands have
been consistently associated with the change of decision
threshold (Palmer, Huk, & Shadlen, 2005; Ratcliff, 2006):
a smaller decision threshold leads to faster and more error-
prone decisions. Nevertheless, the SAT can also be triggered
endogenously without explicit demands (Desender, Boldt,
Verguts, & Donner, 2019). In the current study, the two
apertures in the incongruent condition contained contradic-
tory information, presenting a decision dilemma. Our results
showed that in such a difficult scenario, participants adapted
their decision strategy to be more speed-seeking, allow-
ing them to complete the current decision sooner. Future
research could examine this conflict avoidance bias fur-
ther by changing the relative difference between multiple
incongruent information sources.

Third, it is worth comparing between single- and double-
source conditions which had equal motion coherence in
the dominant aperture. Compared with the single-source
condition with high coherence (chigh in one aperture and
0% in the other), the incongruent double-source condition
(chigh in one aperture and chigh − clow in the other) had a
smaller drift rate. The congruent double-source condition
had a larger drift rate than the single-source condition with
low coherence. That is, introducing additional incongruent
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(or congruent) information led to a reduction (or increase)
in the rate of evidence accumulation. These results agree
with two robust behavioural effects consistently reported in
the literature of visual search: the presence of distractors
in hindering the search performance (Palmer, 1995), as
well as the facilitating role of task-relevant information
(Krummenacher, Müller, & Heller, 2002). Our findings
further suggest that participants not only attended the
dominant aperture, but attempted to integrate motion
information across apertures to form decisions, albeit the
integration of multiple information sources was not optimal,
as discussed above and reported elsewhere (Wyart, Myers,
& Summerfield, 2015).

Fourth, the Ter is considered as the latency external to the
evidence accumulation process (Ratcliff & McKoon, 2008).
Recent electrophysiological and imaging studies suggest
that the Ter accounts for delays in early sensory processing
(Nunez, Gosai, Vandekerckhove, & Srinivasan, 2019) or
motor preparation (Karahan et al., 2019). The current study
did not observe a change in the Ter between task conditions
in either participant group. Hence, our results are unlikely
originated from potential changes in early visual processing
or motor execution in response to multiple information
sources.

Based on our cognitive modelling, we proposed two
extensions to a neural-mass model of decision-making
(Wong & Wang, 2006). The first extension is to vary the
relative weighting of sensory inputs from two independent
apertures, and the second is to vary the non-selective back-
ground inputs in the incongruent double-source condition.
From an exhaustive search of the parameter space, we iden-
tified the parameter regime that can qualitatively account
for the observed behavioural changes in the presence of two
information sources. It is worth noting that the neural-mass
model is not meant to fit to experimental data, but outlines
possible biological mechanisms and neural implementations
that give rise to the observed behaviour.

We showed that, to accommodate experimental results,
the sensory input from the dominant source needs to
be weighted higher than the input from the additional
source (α > 0.5). When this ratio becomes too high, the
contribution of the additional source diminishes, resulting
in the model unable to integrate information from the non-
dominant source. Therefore, perceptual decisions with two
information sources involve an unbalanced integration that
is biased towards the more informative source.

Additionally, the non-selective background input needs
to be elevated in the incongruent condition (β > 1). An
increased baseline activity effectively decreases the amount
of evidence required to make a decision (Standage et al.,
2014a), leading to speed-seeking behaviour at the cost of
less accurate decisions that was observed in the current
study. Both brain imaging (Ivanoff, Branning, & Marois,

2008) and single-unit recording (Heitz & Schall, 2012)
studies showed that the baseline change underlies the SAT,
consistent with our model simulation results.

Interestingly, although participants were instructed to
decide leftwards vs. rightwards coherent motion from two
tilted apertures, the angular distance between the apertures
did not affect behaviour nor DDM parameters. This may
seem counterintuitive because a larger angular distance
results in less coherent motion information to be projected
onto the horizontal plane. Future studies could examine
whether there is a significant behavioural difference at
larger aperture angles because in an extreme condition
of two vertical apertures (θ = ±90◦), there is zero
horizontal motion and the decision accuracy will be at
chance. One plausible account for the lack of group
difference is that participants decided the coherent motion
direction with a reference of individual apertures (i.e., along
their long edges), not the horizontal plane. One could
validate this hypothesis by presenting multiple independent
sources of motion information within a single aperture
(e.g. Wendelken, Ditterich, Bunge, & Carter, 2009).

There are several limitations of this study. First, as in all
online experiments, the current study faced practical con-
straints that could affect the millisecond-level precision of
stimulus timing (Anwyl-Irvine et al., 2020). To mitigate
the impact of variable testing environments between partici-
pants, we pre-registered the experiment, applied rigorous
inclusion/exclusion criteria, conducted staircase procedures
to calibrate stimuli for individual participants, and focused
on within-subject effects in most analyses. Our study and
research practises contribute to the growing trend of online
psychological, or even psychophysical experiments, con-
firming the feasibility and reproducibility (i.e., in two inde-
pendent groups) of online experiments to investigate task-
specific effects in the context of perceptual decision-making
(Semmelmann & Weigelt, 2017; de Leeuw & Motz, 2016).

Second, owing to the potential variability of online test-
ing environments between participants, we designed our
experiment to be completed in one testing session. Percep-
tual learning studies showed that behavioural performance
of coherent motion discrimination improves steadily over
multiple testing sessions across several days (Zhang &
Rowe, 2014; Liu & Watanabe, 2012). It would be of interest
to examine if repetitive training modulates the behavioural
change between single and multiple information sources.

Third, for a comprehensive investigation of all possible
scenarios, one could examine three conditions for each
level of task difficulty: (1) a single-aperture baseline
condition, (2) a double-aperture congruent condition,
and (3) a double-aperture incongruent condition. The
current study only included congruent conditions in high
combined coherence trials and incongruent conditions in
low combined coherence. This was primarily due to the
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constraint of limited testing time in online experiments.
Furthermore, the high combined coherence was set to the
threshold of 83% accuracy (i.e., staircase procedure in
Part 1). Having an incongruent, high combined coherence
condition in our current design would lead to strong
coherent motion in the dominant aperture (e.g., chigh+clow),
which may cause a ceiling effect.

Fourth, the current study aimed to use the motion
discrimination task as a test platform to examine the general
scenario of perceptual decision-making from multiple
information sources, capitalising on existing literature and
established experimental procedures (Shaw, 1982; Cassey,
Evens, Bogacz, Marshall, & Ludwig, 2013). Due to
our specific task settings, our conclusions may not be
generalizable to broader scenarios of decision-making with
other types of information. Further research should examine
whether the effect of multi-source congruency on decision
performance also exists in other paradigms.

In conclusion, in perceptual decisions on coherent
motion direction, separating motion information into
two independent sources lowered the decision accuracy.
Our cognitive and neural-mass modelling showed two
selective neurocognitive mechanisms that may underlie the
behavioural effect, a change in the signal-to-noise ratio of
the accumulation process and the speed–accuracy trade-off,
depending on the congruency of multiple sensory sources.
Overall, our findings combine experimental work with two
levels of computational modelling, supporting potential
neurocognitive mechanisms underlying the behavioural
changes in decisions with multiple information sources.

Supplementary Information The online version contains supplemen-
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