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Abstract 

This research introduces the adaptation and development 

of an open-source Artificial Neural Network (ANN) with 

the aim of predicting solar radiation for newly generated 

neighbourhoods in Aswan, Egypt as an example of a hot 

arid zone. The outcomes are the result of training the 

ANN on a database of classified urban geometries and 

their solar radiation simulation results for local weather 

conditions. The classification of this database was first 

introduced and discussed in (Lila and Lannon 2019). This 

paper discusses the different stages of developing the 

ANN code and its final version capabilities. 

The ANN code was developed to differentiate the training 

process from the prediction code to allow for the reuse of 

the trained ANN in multiple tests. The ANN code was 

tested for different database sizes to predict individual 

buildings’ solar radiation and was also used to predict 

solar radiation for urban configurations that were not part 

of the training process. The results of these ANN 

predictions were compared to conventional solar radiation 

simulation results to establish the accuracy and time 

saved. 

Key Innovations 

The focus on solar radiation is a part of a multi-stage 

proof-of-concept framework that produces a novel 

method to optimize performance-based neighbourhood 

geometry. This research shows the building of an ANN 

that is based on novel geometrical classification of urban 

solar radiation as a new method to save simulation time 

and achieve significant accuracy. This ANN, which is 

based on a pre-existing open-source code, is built to be 

reused for the same weather data, can be used in the 

Grasshopper environment(Scott Davidson, 2017), and 

written in the Python Language. This research saves 

computational time to allow for performance-based 

design decisions to be included in the early stages of urban 

design. The time savings will also pave the way for 

generating optimized neighbourhood geometrical options 

with solar radiation as a fitness function for this 

optimization process.  

Practical Implications 

This study shows the potential of applying ANN methods 

to predict solar radiation at the urban scale. The paper also 

provides a proof-of-concept ANN node that can reuse 

trained networks to predict simulation results in the 

Grasshopper environment.  

Introduction 

Urban performance computational modelling and 

simulation has gained attention because of increasing 

awareness of urban growth outcomes and the need to 

mitigate urban microclimate environmental impacts. This 

attention focused on the early stages of urban design to 

develop evidence-based approaches to provide better 

performing urban environments. Some critical issues have 

been addressed during research to develop and produce 

computationally modelled urban environments and 

environmentally optimized design decisions on an urban 

scale for the early stages of design. The complexity and 

level of details of urban modelling are among the issues 

which have been widely investigated by different studies 

(Biljecki et al., 2014; Martin & March, 1972; Picco & 

Marengo, 2015; Schwarz, 2010; Stewart & Oke, 2012). 

Other challenges were the performance simulation 

methods and techniques. Research is still investigating 

and developing different approaches to the urban 

performance simulation process and its inputs, outputs 

and visualizations (Greenberg & Erdine, 2014; Naboni, 

2014; Nault et al., 2016; Trigaux et al., 2014). Moreover, 

another interesting aspect involves dealing with the 

resultant data from these processes and the way to feed it 

into the urban design and decision-making process, either 

for optimization goals or for evidence-based 

computationally generated urban designs (Beirão, 2012; 

Hillier, 2007; Koenig, 2011; Pinto Duarte et al., 2005).  
Most of these studies have utilized the principles of 

parametric design within the urban modelling context. 

Parametric urban design can be represented simply as a 

group of arranged buildings and urban geometrical 

variables shaped by scripted algorithms. This 

interpretation provides a different vision and capability 

for investigating urban design, geometry and performance 

(Schumacher, 2009a, 2009b). This idea of parametric 

modelling and its tools have provided urban design and 

modelling with new computational applications. 

Computational optimization solvers form an important 

aspect of these new capabilities of urban computational 

design in its early stages. (Tamke et al., 2018) have 

discussed the role of merging machine learning methods 

and state of the art simulation tools in parametric 

environments and discussed the emergence of this 

approach in the current architectural practices.  



Moreover, there has been a continuous development to 

include machine learning methods and principles under 

the notion of built environment optimization. Generally, 

the major difference in machine learning is where the 

problem, or parts of it, are predefined and pre-introduced 

to the solver. This means the algorithm is mainly 

predicting results for the problem based on existing 

“training data” (Dounis et al., 2014; Krarti, 2003; Zhao & 

Magoulès, 2012). Machine learning methods have 

different mathematical models, each of which follow a 

certain way of predicting the results of the proposed 

problem. One of the models, Artificial Neural Networks 

(ANN), aims to imitate the way the human neural system 

works (Cui & Cai, 2013). An overview and comparisons 

of the different mathematical models is presented in (Ali 

et al., 2018). As an emerging technology, accessibility to 

these principles and its application in user friendly 

platforms like Grasshopper has been developed too 

(Cichocka et al., 2017; Poving Ground, 2018; Wortmann, 

2017). This allowed more visualization of the design 

optimization and performance predictions process in 

different stages which led to allow for user control over 

the process in order to overcome a challenge known as 

“Black box” which about these solvers and applications, 

being uncontrolled and ambiguous tools (Wortmann, 

2017; Wortmann & Nannicini, 2016). 

This paper discusses a part of ongoing research aiming to 

produce an urban design optimization framework that can 

break down urban complexity by geometry classification 

and reach for optimal neighbourhood’s geometry based 

on its solar radiation performance prediction using ANNs. 

This paper focuses on the use of ANN’s principles to 

significantly reduce computational cost and time in such 

scale of performance optimization by depending on 

acceptable prediction accuracy while avoiding the 

creation of another black box. Furthermore, the tool is 

intended to be available in commonly used parametric 

environments like Grasshopper and to allow for the 

separation between the training phase and the prediction 

phase of the process. This ANN code allows for the reuse 

of trained networks to save the training time for multiple 

sites when it shares the same weather data. The paper also 

discusses the testing of this ANN and its outcomes 

regarding time saving and achieved prediction accuracy 

when compared to traditional simulation results.  

Methods 

ANN node development  

The literature has illustrated the use of machine learning 

techniques in architectural and urban design problems. An 

Artificial Neural Network (ANN) is one of these 

techniques. It is clear from its name that it is a 

mathematical way of imitating how the human brain 

neurons work. A concise guide to ANN concepts and core 

models can be found in Jian’s “Artificial Neural 

Networks: A Tutorial” (Jain et al., 1996). This paper 

discusses the implementation of ANN to enable the 

recognition of urban geometries that are not typical to the 

saved database of classified geometry with its attribute 

tags and solar radiation performance without sacrificing 

too much of the accuracy achieved from conventional 

simulation methods. 

ANN is tested to assess its accuracy in predicting the solar 

radiation performance of urban configurations based on 

the classified geometry of buildings. The first trial in this 

investigation was to use a ready-made available tool, 

LunchBox ML,  for ANN principles within the platform 

of Grasshopper (Proving Ground, 2018). However, the 

time consumption in these tests proved to be one of the 

limitations using this LunchBox ANN tool. The fact that 

the number of requested predictions does not have a 

significant effect on the time for training and prediction 

has indicated that this can be enhanced by separating the 

training from the prediction process. In this way the time 

needed for training the ANN once can be balanced by 

using the trained network to predict a larger number of 

entries. Although the LunchBox node has an open-source 

code available, the code uses unclear classes, and it does 

not have enough documentation to reveal the source code 

core principles (Proving Ground, 2017). This led the 

research to look for another resource to apply ANN 

principles within this research scope. The idea is to find 

an open-source code for an ANN that does not rely on 

libraries and can be edited to enable the separation of the 

training and the prediction codes. 

The ANN node used for this research is an open-source 

Python code originally inherited from a blog website that 

teaches how to build a neural network in a simple method 

with no loaded libraries (The Codacus, 2017) and went 

through different stages of enhancements until it reached 

the final version used. In this section, the parts added 

during development to the original code will be discussed, 

along with the initial and final stages of testing the 

utilization of ANN principles on the database at hand to 

get the optimal timesaving and accuracy needed. 

The main idea of editing this code was to separate the 

training process from the prediction process. This took 

place by creating two Grasshopper Python components. 

The first component was used for the training part of the 

ANN application. It consisted of the original code classes 

for Connection, Neuron and Network. Then we added one 

more class instead of the original training class in which 

the training took place and then extracted the trained 

network as an output to be fed into the second separate 

component. This added class of code identifies different 

parts in the ANN. It starts with calling static values 

adopted from the original code, the neuron eta and alpha, 

and set by an integer input to the component. Then it 

identifies “maxiterations” which is the maximum number 

of iterations allowed for learning over the whole ANN 

before it starts to output predictions. This number is set as 

an input to the Grasshopper component to be set by the 

user. Then it calls the feed-forward and back propagation 

process over the input data and its targeted results. These 

are also fed to the Grasshopper component as a list of 

target data. This input name is “training P”. Another input 

is the tree of lists containing the data used to train the 

network. Each list contains one column of the training 

database parameters and is named “Training Data” when 

input into the component. Another input is the “Error 



Threshold” which is used to break the training process by 

comparing it with the ANN calculated error. Then the 

network is defined from these inputs and built based upon 

the “topology” input which is a list with the neuron 

number of each layer. The last lines of the code export the 

trained ANN as an output with the name “nn”. Figure 1 is 

showing the two-component interface. Figure 1 (a) shows 

the training component. In addition to the mentioned 

inputs, there are the inputs of setting the eta which means 

the learning rate and sigmoid’s Alpha for this component 

and those are integer inputs. The last input for this 

component is where to find the saved python code for 

“pickling” the neural network which allows for saving the 

trained ANN for reuse. The outputs include the neural 

network trained for live prediction followed by the 

pickled neural network to be reused in another file if 

needed. The third output provides the number of iterations 

done before stopping the training. The next output is a list 

of mean square errors for each iteration and the last output 

is the reason of stopping the training. The prediction 

component interface has less inputs and outputs as shown 

in Figure 1 (b). It basically receives the trained ANN 

either from a pickled version or directly from the training 

component in case both are used in the same instance. The 

other input is the data which needs to be predicted.  

The following component is responsible for receiving the 

trained ANN and the list of new data to be predicted. The 

code basically sets the input data under the name “test 

data” and creates a list of it to be predicted. Then it 

activates the trained ANN. The rest of the code is about 

activating the “feed-forward” function and obtaining the 

prediction results of the input data, either as one entry or 

a list of entries to be predicted at the same time. Then, the 

component exports the output predictions. 

Through this two-component sequence, the time for 

iterating the prediction was reduced and the training time 

is accounted as just one time and the trained ANN is 

reused for different inputs following the training time. 

This saved the overall time and allowed for predicting 

different urban configurations in less time. As discussed 

earlier, the size of the input training data has a significant 

impact on the training time. Yet, this method of separating 

the training enabled the loading of larger datasets along 

with enhancing the possibility of testing it against 

different urban iterations. 

One of the additions to the original code was to add the 

feature of “Cross-validation”. This is a method to hold 

part of the training dataset and use it for testing the 

predictions to enhance the predictions for new data 

entries. So, the preserved subset of the data is used for 

testing the predictions during the training process to 

ensure the ANN is not trained only for the input data set. 

Thus, it allows the predictions to be more accurate when 

it predicts data that it did not see before during the training 

phase. There are different ways of conducting this method 

within the training phase (Arlot & Celisse, 2010; 

Pedregosa et al., 2010; Varoquaux et al., 2015). The 

simplest application of cross-validation was chosen to be 

implemented in this research. These cross-validation 

techniques are about holding a part of the training data 

and testing the ANN prediction on it to make sure the 

prediction error from the validation data set is less than 

the one calculated from the training dataset (Arlot & 

Celisse, 2010). 

The code starts with calling the inputs and defining them. 

Then it starts the ANN training for the training data and 

collecting the error ratios for the training. Following this, 

the prediction starts on the cross-validation dataset 

followed by the collection of the validation error by 

comparing it with the validation target inputs. The last 

section of this class is to determine when to stop the 

training. Although the training still consumes some time, 

training 100,000 entries for 1,000 iterations using an 

ANN with two hidden layers typically consumed 7 to 8 

hours. Although this may seem time consuming, it is still 

reasonable when factored into the ability to obtain 

performance predictions in a maximum of 20 seconds. 

This capability of benefiting from the trained network was 

further developed by importing a Python library, named 

“Pickle”, that enables the saving of the trained ANN to be 

recalled and used for different iterations and on different 

PCs (Python Software Foundation, 1990).. It has the 

function to call for a version of the ANN code saved 

outside Grasshopper in the form of plain text and use it to 

predict the dataset inputs. It generates a version of the 

trained ANN that can be saved in text format too, to be 

reused in predicting different newly generated entries. It 

is important to note that in case the trained data was 

remapped the prediction results must follow the same 

remapping process.  

The testing of this ANN took place during the 

development phase on both data that were introduced to 

the code as training and brand-new data that were unseen 

by the ANN during the training phase. The testing was 

only trying to detect the time saved for using ANN 

predictions instead of running solar radiation simulations 

for the same number of iterations. Also, it was looking for 

the accuracy achieved by ANN predictions against 

simulation results. 

 

a) 

 

b) 

Figure 1 showing a) the training component in 

Grasshopper environment with its inputs and b) the 

prediction component calling a save trained ANN  



Database build-up 

The database used for this research consisted of solar 

radiation performance of buildings attributed to 

classification tags for them. The generation of urban 

configurations and initial creation of these classification 

tags was discussed in earlier publication (Lila & Lannon, 

2019). The final stage of the classification tags consisted 

of 11 fragments to act as an indicator for the classified 

building by building height, area, typology, location and 

orientation within the neighbourhood, and the 

surrounding buildings heights. Figure 2  is showing an 

example of one building geometrical status and its 

classification tag. 

The segments are replaced by integer indicators to make 

it easier for the training and prediction process. The 8 

azimuth directions are replaced by numbers from 0 to 7 

starting with east and ends with north east respectively. 

Other fragments that indicate the exposure to main street, 

exposure to urban voids, number of edges for the building 

typology and courts existence was replaced by a 0 or 1 

indicator. It is important to note that these tags are 

classifying individual buildings and its solar radiation 

results within the urban context. Thus, urban 

configurations simulations results were calculated by 

summing the results of its individual buildings. 

Consequently, ANN code was trained on individual 

buildings results and the predictions of urban 

configurations was also a sum of buildings’ prediction 

results.  

Solar radiation simulations were conducted using 

Ladybug Tools simulation package in Grasshopper 

(Sadeghipour & Pak, 2013). The simulation used the 

Egyptian Typical Meteorological Year (ETMY) weather 

file for Aswan city in southern Egypt (24.0889° N, 

32.8998° E). Tested geometries surfaces were divided 

into an average of 15 by 15 metre grid cells for testing the 

direct solar radiation falling on these surfaces. The sky 

matrix was set to the Tregenza sky matrix (Lee et al., 

2018) which is the default setting of the tool.  

Testing phase  

The testing conducted was for 3 different groups. The first 

group was 10,000 individual classification tags. The two 

other groups were focused on testing urban summed 

results for 100 configuration each with an average of 150 

buildings. One group was selected with similar settings to 

the configurations used in the training phase. The other 

group was consisted 100 configurations randomly 

generated within the same context and changing the same 

parameters used to generate the training database. 

Another phase of the testing was to select an existing 

neighbourhood in the same weather data and test the 

accuracy of the prediction for some generated 

configuration withing its existing context.  

The tests with unseen data were conducted with different 

sample sizes. The one shown in this paper is trained on a 

200,000 tags database. To have a better understanding of 

the performance of the ANN on this sample, multiple 

settings were tested against the same three groups of 

predictions. The first ANN setting had the same settings 

as the previously tested ANNs. To minimize the time 

consumption there was only one hidden layer with seven 

nodes in this ANN. The training parameters were set to 

250 iterations with an error threshold of .001. Alpha was 

set .015. Another ANN was set to have two hidden layers 

of seven and four neurons respectively in the order from 

input to output direction. The maximum number of 

iterations was set to 1,000 iterations. The rest of the 

settings have not been changed. Both ANNs were set to 

have 25% of input data as cross validation data.  

The location of the case study was made based on the 

weather file used to build the training database which was 

the weather file of the city of Aswan in Upper Egypt with 

hot arid zone climate. The location of that existing 

neighbourhood boundary was selected from the city of 

New Aswan in southern Egypt (Error! Reference source 

not found.). This is one of the new cities commissioned 

by Egyptian government to accommodate the Egyptian 

population growth. Being a twin city and an extension to 

the original city it falls within the same climate and 

weather conditions. The total planned area of the city is 

91.532112 km2. It is targeting to accommodate 850,000 

 

a)                      b)  

 

    c) 

Figure 2 a) show case top view, b) show case perspective 

c) show case classification tag. 

Figure 3 (To right) case study neighbourhood location 

in the city land use map. (To left) detailed urban design 

of the selected neighbourhood and boundary highlighted 

in colour edited by the researcher. 



inhabitants by the year 2023 (New Urban Communities 

Authority at The Ministry of Housing. Utilities & Urban 

Communities [no date]). 

Results  

The second trained ANN came up with better mean square 

error for its last iterations and the reason it stopped was 

the reaching of the maximum iteration number while the 

first ANN was stopped based on achieving a mean square 

error closer to the error threshold. This was the reason it 

was selected to be tested with the existing 

neighbourhood’s case study. Yet both were tested for the 

3 groups of testing in its first phase. The time consumed 

for the first ANN was five hours of training and the ANN 

with two hidden layers took six hours and 24 minutes.  

For the first phase of testing (Figure 5), the first group of 

randomly generated urban configurations achieved an R2 

value, coefficient of determination, of 0.793 and this was 

enhanced with the added hidden layer to be 0.832 for the 

correlation of predictions and simulation results.  

The other 100 configurations that had similar features of 

the training database resulted in a high value of 

correlation reaching to 0.99 for the ANN with two hidden 

layers and 0.96 R2 value for the ANN with one hidden 

layer (Figure 7).  

Finally, the 1,000 individual Tag results, shown in Figure 

4, had a closer variation between the results of the two 

tested ANNs. The R2 for the ANN with one hidden layer 

was 0.937. This was slightly enhanced for the ANN with 

two hidden layers by getting a value of 0.939 for the R2 of 

the tested correlation.  

The second phase was testing the trained ANN on a newly 

generated classified geometry in an existing context to 

investigate the applicability of this feature. The tested 

urban configurations were generated through the same 

classification framework meaning each generated 

configuration has its individual buildings tagged and 

classified. This is how the ANN is predicting solar 

radiation for these tested configurations based on the 

same tag features used to train it. The test was about 

running a solar radiation simulation for 1,000 random 

urban configurations and comparing its results with our 

ANN prediction results for the same configurations 

(Figure 6). The results have shown a high correlation 

between the two results. It had a 0.94 R2 value for the 

correlation which is a significant positive correlation 

noting that the training data of this ANN node is generated 

from different settings, neighbourhood boundary and 

context conditions.  

Figure 7 Correlation of simulation and prediction for 

100 urban configurations for 2 ANNs with 200,000 

training dataset 
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Figure 5 Correlation of simulation and prediction for 

100 random urban configurations for 2 ANNs with 

200,000 training dataset. 
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Figure 4 Correlation of simulation and prediction for 

1,000 building classification tag for ANN 200,000 

training dataset. 
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simulation results for solar radiation of 1,000 random urban 
configurations kWh/m2 

Figure 6 Correlation of simulation and prediction for 

1,000 urban configurations for the existing case study 

iterations with the same trained network. 



 Discussion  

The assessment of time-saving performance is calculated 

by comparing the time consumed by the ANN node with 

the time consumed by the conventional simulation 

methods. On a building level, ANN predictions consume 

3% of the simulation time. This is due to the capability of 

predicting the whole set of building tags for a 

configuration in one run instead of simulating the 

buildings with their different context and getting the 

results for it. 

It is important to note that the training time is not factored 

into these comparisons due to the difference in the number 

of buildings and configurations that can be done using 

these trained ANNs. Moreover, solar radiation simulation 

is one of the least time-consuming simulation aspects 

when compared to other simulation aspects like energy 

demand or daylighting performance. This finding result 

shows the potential of utilizing this classification method 

accompanied with ANN predictions to get even better 

time-performing frameworks that will reach even better 

time-saving results for other more time-consuming 

aspects of environmental performance. 

The two tests with the 200,000-database had similar 

results for its correlation R2. These high results were also 

accompanied with a similar correlation in the actual 

values between the prediction and simulation at the 

individual building level. This means that the error in 

prediction values follows almost the same percentage as 

shown in Figure 4. The high value of correlation with this 

simple ANN has shown the capability of utilizing this 

method of classification with ANN. This finding provides 

some support for the conceptual premise that applying 

ANN principles can achieve such a high accuracy of 

predictions with the benefit of saving time for the desired 

simulation and the reuse of the trained ANN nodes to be 

utilized with different case studies using the same weather 

file and location. 

The urban scale testing had two groups, each of which had 

100 urban configurations in it. The first group comprised 

urban configurations selected with shared urban inputs as 

the ones included in the database for training. The other 

group was randomly generated within the pool of 

iterations for this case study as the framework generation 

discussed in previous publications from the research 

team. The accuracy for predicting the solar radiation on 

the urban configuration was investigated by comparing 

the urban configuration simulation results against the 

outcome of the framework process and the ANN 

prediction. The result of the tag predictions is summed to 

get the final prediction for the solar radiation on the urban 

configuration. This number is compared with the 

simulation outcome.  

The R2 results for the similarly selected 100 

configurations were 0.99 for the tested training sample as 

shown in Figure 7. This value was lower for the randomly 

generated 100 configurations predictions’ correlations. 

Figure 5 shows that R2 value result for the 200,000-

training dataset was 0.83. This difference in correlation 

coefficient values for the two groups of urban 

configuration predictions can show the impact of the 

similarities between the tested configurations to the ones 

used in training. The choice of R2 to assess the accuracy 

of prediction was caused by the aim of the analysis as this 

accuracy is merely looking for the prediction accuracy as 

a total without paying attention to the individual 

parameters impact on the prediction (Zikmund & Carr, 

2000). The accuracy achieved in these tests have passed 

the significance level suggested by (Henseler et al., 2009) 

where it is important to mention that the level of a good 

R2 value is rarely determined yet, These achieved 

accuracy levels can be found similar to other 

investigations of applying ANN methods on different sets 

of data and for different prediction goals in urban design 

context (Chan & Chau, 2019; Lin et al., 2020). Although 

these findings for prediction results on an urban scale 

seem in line with the findings of the building prediction 

scale as it shows a linear positive correlation, yet these 

correlations are not at the same level of accuracy. This 

highlights the need for further investigation on the relative 

input contribution on the prediction results. Moreover, 

this can be noted from the difference in values between 

prediction and simulation outcomes for the tested urban 

configurations, especially the random selected ones. A 

possible explanation of this might be the selection of the 

training database. The training database was built from 

similar groups of urban configurations and it was not 

selected from different feature groups in the available 

pool of iterations. This was due to the limitation of 

automating a random selection of the buildings in the 

database. Another explanation for this is the expected 

aggregation of the prediction error becoming clearer with 

the addition of the classification tag prediction results. 

These findings show that there is still room for 

improvement when it comes to using the prediction on an 

urban scale applying this classification method. However, 

there are some immediately dependable conclusions for 

the framework aiming for a proof of concept. These are 

based on the found linear positive correlation to utilize 

this node of ANN in the next optimization stage applying 

genetic algorithm principles to highlight the optimal 

solution in this pool of iterations. 

Conclusion  

This paper has shown different tests utilizing ANN 

principles to gauge its potential in predicting solar 

radiation performance when compared to simulation 

results along with consideration of the accuracy of 

predicting the performance at building and urban level 

and the potential time saved in the process. The Artificial 

Neural Network principles have been applied on the 

classified database of building classification tags and its 

attributed solar radiation results.  

The trial of available ANN tools led to the use of a basic 

open-source code for a neural network to create a 

sequence that separates the training and prediction time.  

The testing discussed in this paper were aimed at 

calculating the time saved by the ANN prediction in 

comparison with the time consumed for the simulation 

and it aimed to compare the results for both methods to 



measure the accuracy achieved by the ANN prediction 

when compared to the simulation results acting as the 

benchmark for accuracy.  

This method has already shown acceptable accuracy and 

it also opens the door for other simulation aspects to be 

considered utilizing the same method of depending on the 

individual building classified results to build a database 

for predicting urban configuration results.  

This paper has discussed a stage of creating a proof-of-

concept framework which adopt machine learning 

principles within its data flow to provide the capability of 

computational prediction of solar radiation performance 

aiming for this to save the simulation time consumption 

without sacrificing the accuracy achieved by the 

conventional simulation engines. To expand the scope, 

Other weather files will be used for the training and 

testing of this developed ANN and it will utilize more 

investigation for variables and its relative contribution on 

the prediction results. The significantly positive accuracy 

and time-saving results allowed the framework to go 

forward with its investigation and use these prediction 

results to answer the question about the capability of 

optimization in the early stages of design.  
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