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ABSTRACT 

An uncertainty-oriented cross-scale topology optimization model with global stress 

reliability constraint, local displacement constraint, and micro manufacturing control based on 

evidence theory is presented. The model is oriented to two-dimensional porous material 

structure, which concurrently designs the material distribution of both the macrostructure and 

the cell microstructure. During the optimization process, the homogenization method is used to 

solve the equivalent elastic modulus of the cell microstructure, which is then endowed to the 

macro elements for subsequent analysis. The local stress constraints are converted to a global 

constraint by P-norm to reduce the computational consumption. Considering the uncertainty 

factors, the evidence theory is utilized to process the uncertainty parameters and evaluate the 

reliability of the structural strength performance. Minimum length scale constraint is imposed 

on the cell microstructure by a density projection method for better manufacturability. Three 

numerical examples are presented to illustrate the availability of the proposed model. 

Keywords: cross-scale topology optimization; global stress constraint; evidence theory; local 

displacement constraint; minimum length scale control 
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1 Introduction 

Topology optimization is a structural optimization method that arranges the material 

distribution in the design domain. Bendsøe and Kikuchi [1] proposed the concept of topology 

optimization and a method of continuum structural topology optimization based on 

homogenization theory in 1988, which greatly stimulated the study of continuum structural 

topology optimization. After their work, topology optimization theory has made great progress 

and a series of optimization methods have been developed: Density-based Method [2-4], 

Evolutionary Structural Method [5, 6], and Level Set Method [7-10], etc. 

Early topology optimization studies mainly focused on structural stiffness performance, 

while strength performance is rarely considered. In engineering practice, stress failure problems 

are widespread and have a great impact on structural safety. In recent years, topological 

optimization considering stress constraints has received more attention, and related problems 

are brought out. There are three main problems in stress-constrained topology optimization [11]: 

the phenomenon of singularity solution, the local nature of stress constraints, and the highly 

nonlinear stress behavior. The singularity phenomenon was discovered by Sved and Ginos [12] 

in the study of the three-bar truss subjected to three working conditions using mathematical 

programming. Cheng and Guo [13] pointed out that the essence of stress singularity is that the 

feasible design domain contains low-dimensional subdomains and proposed a   relaxation 

method to obtain the global optimal solution. Rozvany and Sobieszczanski-Sobieski [14] 

proposed smooth envelope functions (SEF’s) to eliminate the singularity problems encountered 

in rod structure optimization. Matteo [15] proposed the ‘qp’ method based on the   relaxation 

method. The second problem is due to the local nature of the stress constraint: stress constraint 

should be imposed on every material point due to the difficulty in locating the maximum stress. 

A resolution to this problem is to replace the local stress constraints with an integrated stress 

constraint. Duysinx and Sigmund [16] utilized the P-norm format to fit the local stress 

constraints as a global constraint. Yang and Chen [17] proposed the KS function to integrate 

stress constraints, which has a fast convergence rate. Xia et al [18] utilize global stress and 

displacement constraints simultaneously to drive optimization. The third problem is that the 

stress constraints are highly non-linear dependent on the design: the stress is greatly affected 

by the change of density. Stress concentration is prone to occur in the holes and sharp corners 

of the structure, which will lead to the discontinuity of the stress constraint and brings 

difficulties in convergence. Therefore, the appearance of sharp features and intermediate 

density should be avoided to avoid divergence. 
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Multi-scale topology optimization generally refers to the topology optimization involving 

macro and micro scales, and the macrostructure can be regarded as an arrangement of 

microstructure. In the early 1990s, Sigmund [19] first conducted research on topology 

optimization of composite microstructure using the inverse homogenization method and 

achieved the optimal material layout design for the microstructure with Poisson's ratio between 

[-1,1]. After this work, scholars developed many multi-scale topology optimization design 

strategies around the material distribution and macroscopic arrangement of the cell 

microstructures. Multi-scale design based on the parameterized cell is the first strategy, which 

commonly selects the geometric parameters of the cell microstructure as design variables. In 

this field, scholars in recent years have carried out a number of works on parameter design 

based on preset cells [20-22] and attempt to expand the solution space by increasing the number 

of cell design parameters [23, 24]. The solution space of the parameterized cell is greatly 

affected by the initial configuration setting, which limits the performance of the cell 

microstructure sometimes. Multi-scale concurrent topology optimization is another strategy 

that can expand the design space to a greater extent by optimizing the topology design of cells 

at the micro level. However, multi-scale concurrent design inevitably faces large computational 

consumptions, so current researches mostly adopt the periodic arrangement of single cell 

microstructure or the macro design domain partition parallel design by finite species of cells. 

Such strategies combined with the homogenization method can greatly economize computing 

time. The main advantage of a globally uniform cell microstructure strategy is its low 

computational consumption, so it is widely used in some dynamic [25], uncertainty [26], and 

multidisciplinary [27, 28] topology optimization problems that involve large scale 

computations themselves. Compared with the globally uniform cell design, the multi-scale 

partition parallel design contains a larger design space. The main problem of this strategy is 

how to effectively and reasonably partition the macro design domain. Scholars have proposed 

methods such as partitioning by the macro density distribution [29, 30] and using the principal 

stress direction for partitioning [31], etc. The multi-scale topology optimization in this paper 

involves reliability constraints and microstructure length scale control. The globally uniform 

cells with periodic arrangement are utilized since the optimization problem itself involves large 

computational consumptions. 

Reliability topology optimization considers uncertain factors and has developed theories 

such as probability reliability, fuzzy reliability, and non-probability reliability. The probabilistic 

reliability research is the most mature reliability theory, while the non-probabilistic reliability 

research started late[32-34]. The process of uncertainty information is the focus of reliability 



Evidence Theory-based Reliability Optimization for Cross-scale Topological Structures with Global Stress, Local Displacement and Micro Manufacturing Constraints 

5 

 

problems. Evidence theory proposed by Dempster [35] and Shafer [36] can process the 

uncertainty information more objectively and comprehensively and has broad application 

prospects in reliability topology optimization. Agarwal et al [37] conducted reliability 

optimization based on evidence theory to solve multidisciplinary design problems. Bae et al 

[38] used evidence theory to quantify the uncertainty factors encountered in mechanical 

engineering and conducted an uncertainty optimization design of the aircraft wing part. 

Mourelatos and Zhou [39] proposed evidence-based design optimization (EBDO) and applied 

it to the optimization design of cantilever beams and internal pressure vessels. Vasile [40] 

applied evidence theory to the non-probabilistic reliability optimization design of Mercury and 

Mars rovers and obtained optimization results with good robustness. However, researches on 

continuum topology optimization based on evidence theory are relatively rare, and most of the 

existing researches is focused on discrete topology optimization. 

With the development of additive manufacturing, processing porous materials with 

complex microstructure has become convenient. Considering the limited processing precision, 

it is necessary to impose length scale control on the cell microstructure in cross-scale topology 

optimization. In early studies, some impose constraints on density distribution to control length 

scale [41, 42]. In later works, the minimum length scale control method based on the Heaviside 

projection became a popular field [43-45]. In addition to the minimum length scale control, 

Zhang et al [46] proposed a length scale control method based on structural skeletons, which 

achieved the maximum and minimum length scale control by adding global constraints. Amir 

et al [47] constrained the structural stress by applying length scale control, and finally obtained 

design results that satisfy the stress and length scale constraints. The level set method has the 

advantage of clear topological boundaries, and some scholars [48-50] have proposed a series of 

length scale description functions based on this characteristic. 

In this paper, a tentative study on the combination of evidence theory-based strength 

reliability, microstructure length scale control, and double-scale continuum topology 

optimization is carried out. The originality of this study is mainly reflected in the combination 

of evidence theory-based reliability assessment and gradient algorithm, double-scale sensitivity 

analysis, and simplified computational consumption of the optimization process. The remainder 

of this paper is organized as follows. In Section 2, the formulation of cross-scale topology 

optimization with global stress constraint is introduced. The basic conceptions of the evidence 

theory and structural reliability analysis based on the evidence theory are presented in Section 

3. In Section 4, details of reliability constraint, length scale control method, and sensitivity 

analysis are introduced. The optimization procedure and some discussions on computational 
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consumption are demonstrated in Section 5. Three numerical examples are listed in Section 6 

to demonstrate the effect of the proposed method. 

2 General problem statements 

Traditional stress-constrained optimal formulation based on finite element method can be 

depicted as 
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where iP   is the density design variable of the -thi   element, iV   is the volume of the -thi  

element, V  is the volume of the design domain, N  is the number of the design variables, K  

is the finite element global stiffness matrix, U  is the displacement response column vector, F  

is the load column vector, 
,vM k  is the von Mises stress of the -thk  constraint point, cons  is 

the value of the stress constraint, M   is the number of the stress constraints,    is a small 

number set to avoid the singularity of the stiffness matrix. Since the von Mises is not uniform 

within the element, the von Mises stresses at the Gaussian points are often selected as the von 

Mises stresses of the element. In this paper, the arithmetic mean value of von Mises stresses at 
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coordinate is selected as the von Mises stress of the element as shown in Fig 1. 

 

Fig 1 The Gaussian points under the local coordinate 

In continuum structure topology optimization, the structure formed during the iteration 
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can’t be accurately predicted, which brings difficulty in locating the position of maximum stress. 

If stress constraint is imposed on every element, it will lead to excessive computational 

consumption. A general treatment is to condense the stress constraints into a global constraint, 

i.e., select the maximum stress as the constraint: 

 ( ),max vM k cons    (2) 

Since ( ),max vM k  is a non-differentiable function, it can be smoothed by P-norm: 
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where q   controls the smoothness of the function. A large value of q   will lead to a better 

approximation effect, but an excessive value will cause oscillation problems during iteration, 

so an improved function [51] is used: 
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where the parameter c  will be updated during each iteration by 
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The above parameter (0,1]Ia    controls the variations between 1Ic −   and Ic  : (0,1)Ia    is 

chosen when c  tends to oscillate, otherwise =1I  is chosen. 

The objective of this paper is cross-scale topology optimization involving macrostructure 

and cell microstructure, thus the optimization model contains the macro and the micro design 

domains. Combined with the forenamed stress cohesion method, the formulation of stress-

constrained cross-scale topology optimization can be expressed as 
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where 
j  is the density design variable of the -thj  element in the micro design domain, n  
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is the number of micro design variables, 
,Mac iD  is the elastic matrix of the -thi  element in the 

macro design domain, 
,Mic jD  is the elastic matrix of the -thj  element in the micro design 

domain, 
,Mac iD  and 

,Mic jD  are processed by SIMP [52-54] method respectively to suppress the 

appearance of elements with intermediate density, HD  is the equivalent elastic matrix of the 

cell microstructure, 0D   is the elastic matrix of the material. The schematic diagram of the 

cross-scale topology optimization has been shown in Fig 2. It is worth noting that the 

microstructure can be macro-spatially varying, that is, each macro element corresponds to a 

unique microstructure. Considering the efficiency of the solution, the optimization in this paper 

adopts a globally uniform periodic arrangement microstructure design. The equivalent elastic 

matrix HD  can be solved by the homogenization theory [55], which can obtain the equivalent 

elastic property of the cell microstructure by solving the response of the cell under periodic 

boundary conditions. The homogenization theory assumes that the microstructure has periodic 

repeating characteristics, and some macroscopic physical quantities can be depicted as micro-

periodic functions such as 
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where 
ijklH  denotes the components of the elastic tensor(  , , , 1,2,3i j k l  for 3D;  1,2  for 

2D),   and   denote the macro and micro coordinates respectively, Y  is the period of the 

microscopic coordinates, b  is a small number, u  denotes the structural displacement field. 

Through the asymptotic expansion of u   with respect to b   and the linearized small 

perturbation hypothesis, combined with the displacement variation equation, the general 

expression of the equivalent tensor solved by the homogenization can be depicted as 
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where Y 
 is the periodic cell domain, 

ijklH  denotes the components of the elastic tensor of 

the material, kl

m   is the feature displacement, n   denotes the micro coordinate 

(  , , , , , 1,2,3i j k l m n  for 3D;  1,2  for 2D). The feature displacement kl

m  can be solved by 

imposing unit strain fields under periodic boundary conditions. During the process of 

optimization, the equivalent elastic matrix serves as a link between two design domains: the 

macro structural response is solved by the macro elements endowed with the equivalent elastic 
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matrix, and the update of the cell microstructure is based on the macro structural response. The 

micro and macro scales obey the constitutive relationship of isotropic materials and anisotropic 

materials, respectively. Therefore, the constitutive equations of the two scales are 

 
: 2

:

ij ij ij

ij ijkl ij

micro

macro H

  
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= +

=
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where ij  is the stress tensor, ij  is the strain tensor, ij  is Kronecker function,   and   

are Lame constants,   is the volume strain. 

Benefited from the homogenization processing, the equivalent macroscopic elastic 

properties of the cell microstructure can be transferred directly to the macro elements. Utilizing 

gradient algorithm and sensitivity, the density design variables of the two design domains can 

be updated simultaneously during the optimization iteration, so the double-scale optimization 

described in Eq.(6) can be carried out simultaneously at two scales instead of a nested 

optimization. 

 

Fig 2 Double-scale topology optimization 

3 Structural reliability analysis based on the evidence theory 

Uncertain factors are widespread, and sometimes it is difficult to make accurate statistics 

on uncertainty information or obtain a sufficient number of samples. In this case, the non-

probability reliability theory and the evidence theory are more applicable. Evidence theory is a 

generalization of classical probability theory, which uses basic probability assignment to 
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describe the inaccuracy and incompleteness of data. Compared with other uncertainty theories, 

evidence theory is a more general uncertainty modeling theory, which can effectively deal with 

random uncertainties, fuzzy uncertainties, and interval uncertainties. The principle of 

processing the uncertainty information and structural failure analysis based on the evidence 

theory will be discussed in this chapter. 

3.1 Basic conceptions of evidence theory 

Evidence theory is a theory of uncertainty induce and decision-making based on the 

framework of discernment, which contains basic probability assignment, belief function, 

plausibility function, and other elements. The framework of discernment is defined as a set that 

contains all the possible results of a problem, which is generally expressed by a non-empty set 

 . The set of all possible sub-propositions in the framework of discernment   is called the 

power set, which is denoted as 2
. For example, the power set of the framework of discernment 

 1 2 3, ,Y Y Y =  is 

               1 2 3 1 2 1 3 2 3 1 2 32 = , , , , , , , , , , , ,Y Y Y Y Y Y Y Y Y Y Y Y    (10) 

Basic probability assignment (BPA) characterizes the reliability of arbitrary propositions, 

which is a projection from 2
 to the range  0,1  satisfying 
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When a set A  satisfies ( ) 0m A  , it is called a focal element. The definition of basic 

probability assignment reflects the nature that the reliability of the empty set is 0 and the total 

reliability of all propositions is 1. 

Evidence theory uses belief and plausibility to express the true degree of the proposition. 

For the set A , its belief function and plausibility function are 
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B A

B A

A m B
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Bel( )A  is the sum of the basic probability assignment of the evidence supporting A , which 

represents the lower bound of the probability when A  occurs. Pl( )A  is the sum of the basic 

probability assignment of the evidence that partially and completely supports A , which 
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represents the upper bound of the probability when A  occurs. 

When there exists information from different sources or theories proposed by multiple 

experts, evidence synthesis rules can be used to fuse them into a more accurate and reliable 

form. Dempster rule is the most typical evidence synthesis rule, which supposes 1 2, ,..., nm m m  

is the basic probability assignment from multiple experts or multiple data sources under the 

same framework of discernment. Then the multi-source synthesis basic probability assignment 

of A  is assigned as 

 ( )
( )

1
,

1

i

i i

A A i N

m A

m A A
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=  
=  

−
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in which ( )
1i

i i

A i N

K m A
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=     denotes the conflict coefficient: 0K =  means no conflict 

while 1K =  denotes a high degree of conflict. The Dempster rule is mainly used in cases where 

the conflict of evidence is small, and the cases of high conflict can be synthesized by other 

methods. 

3.2 Analysis of structural failure based on evidence theory 

In this section, the quantification and propagation analysis of uncertainty factors in 

structural parameters is carried out, and the structural failure probability is calculated based on 

evidence theory. 

Consider the structural response under specified external load and boundary conditions: 

 ( )f = θ   (14) 

where  1 2, ,..., n  =θ  is the vector of the uncertainty parameters. The uncertainty parameter 

j  often satisfies some certain arrangement on its distribution interval , jj  
  . According to 

the respective distributions of each uncertainty parameter, , jj  
   can be divided into 

jn  

sub-intervals. The sub-intervals can then be combined to obtain the joint framework of 

discernment (FOD) C  including all combinations: 

  1 2 1 2, ,..., ,k k k k
jjn k n jC c          =   = =       (15) 

If the uncertainty parameters are independent of each other, the basic probability assignment of 

the focal element kc  can be expressed by 

 ( ) ( ) ( ) ( )1 2

k k k

k nm c m m m  =    (16) 



Evidence Theory-based Reliability Optimization for Cross-scale Topological Structures with Global Stress, Local Displacement and Micro Manufacturing Constraints 

12 

 

Utilizing the structural failure domain ( ) | 0, kg c C      ( ( )g   is the structural 

response failure judgment function which is commonly referred to as performance function in 

reliability theory, ( ) 0g    indicates structural failure), the belief function and the plausibility 

function can be calculated by 

 Bel( ) ( ),   Pl( ) ( )
k k

k k

c c

m c m c
 

 
 

= =    (17) 

Now consider the optimization model mentioned in chapter 2. When considering 

uncertainty factors, it is reliable to restrict the upper bound of the stress response, but this will 

lead to a conservative design. Therefore, the structural failure probability can be used to judge 

structural failure more reasonably. Suppose the uncertainty variables are elastic modulus

11 2, ,..., nE e e e =     and external load 
21 2, ,..., nF f f f =    , where ie   and 

jf   are the 

subintervals of E   and F  . The joint framework of discernment of E   and F   can be 

expressed as 

  [ , ] ,k i j i jC E F c e f e E f F=  = =     (18) 

Since E  and F  are independent of each other, the basic probability assignment of kc  can be 

calculated by 

 ( ) ( ) ( )k i jm c m e m f=   (19) 

Based on the original stress constraint 
,PN k cons  , the structural stress failure domain 

can be denoted as 

  , ,| ( , )= 0,PN k PN k cons PN k kg c c C    = −     (20) 

Then the belief function Bel( )  and plausibility function  Pl( )  of structural failure can be 

solved by Eq. (17). The focal element that has an intersection with the failure domain will be 

counted into  Pl( )  as shown in Fig 3. 
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Fig 3 Stress failure domain of the joint FOD 

Since  Pl( )  denotes the upper bound of structural failure probability, it is reasonable to 

constrain  Pl( )  as the stress failure probability: 

  Pl ( , ) 0PN fg C P     (21) 

where 
fP  denotes the value of stress failure probability constraint. Eventually, the original 

stress constraint PN cons   is replaced by Eq. (21). The procedure of estimating the stress 

failure probability  Pl( )  is shown in Fig 4. 

It can be predicted from the above descriptions that the accuracy and efficiency of the 

structural uncertainty analysis based on evidence theory mainly depend on the allocation of the 

focal elements. A fine focal element division can evaluate the structural failure probability more 

accurately but will decline the solving efficiency. Some discussions on evidence theory and 

other uncertainty analysis methods are as follows: (1) Compared with the non-probabilistic 

convex set method, evidence theory makes better use of the uncertain information, instead of 

only considering the parameter boundary. (2) Compared with the first-order reliability method, 

evidence theory works normally when the structural performance function is highly nonlinear, 

and can obtain higher accuracy by adjusting the focal element allocations, but may be inferior 

to FORM in terms of efficiency. (3) Compared with the Monte Carlo method, evidence theory 

can improve the accuracy by arranging the focal element meticulously, but it will also produce 

huge computational consumption, thus the accuracy and efficiency of both are related to the 

problem studied. Besides, the analysis process of evidence theory does not depend on the form 

of data source and does not need to consider the construction of random numbers as Monte 

Carlo simulation. 

In fact, the greatest advantage of the evidence theory method compared with other 
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uncertainty analysis methods is its ability in fusing multi-source uncertainty parameters. In 

engineering practice, the common conditions are that the obtained data cannot accurately 

estimate the probability distribution of parameters, but the information is not just limited to the 

boundary of parameters. In this case, evidence theory can handle both random uncertainty and 

cognitive uncertainty data sources by data fusion. Compared with the traditional uncertainty 

analysis methods, evidence theory has the potential to assess reliability more accurately by 

fusing multi-source data. 

 

Fig 4 Estimation procedure of stress failure probability based on evidence theory 

 

4 Framework of stress-constrained cross-scale reliability topology 

optimization based on evidence theory 

In the previous chapter, the evidence theory is introduced to process the uncertainty 

parameters, the original global stress constraint is replaced by the failure probability to measure 

the stress failure. The optimal formulation can be rewritten as 
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  (22) 

The optimal formulation and the sensitivity will differ from the deterministic optimization 

when considering uncertainty factors. This chapter will discuss the sensitivities and some 

details involved in optimization, including smoothing of the failure probability plausibility 

function, length scale control on cell microstructure, and sensitivity derivation of the constraint 

functions. 

4.1 Smoothing of the failure probability plausibility function 

In evidence theory, the framework of discernment of each uncertainty parameter 

constitutes the joint framework of discernment, and each focal element represents a sub-interval 

combination of the uncertainty parameter intervals. The structural response is solved under each 

focal element, and then the failure domain is used to determine the response failure probability 

of the whole structure. 

Now consider the stress failure probability constraint defined by Eq. (21). If the upper 

bound of stress response 
,PN k  under focal element ck  satisfies ,PN k cons  , then it is equal 

to kc    . Therefore, Eq. (21) can be rewritten as 

 
,

,

1

Pl( ) ( ) ( )
PN k cons

M

PN kk f

k

m c I P
 

 


=

=     (23) 

where M  is the number of focal elements, 
,

,( )
PN k cons

PN kI
 




 is an indicator function: 

 
,

,

,

,

1,    
( )

0,    
PN k cons

PN k cons
PN k

PN k cons

I
 

 


 


 
= 



  (24) 

The indicator function will calculate the basic probability assignment of the focal element that 
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meets the failure condition ,PN k cons    into Pl( )  . Since the indicator function is 

discontinuous, the sensitivity required by the gradient algorithm for variable updating can’t be 

solved. Note that the indicator function is a step function, it can be smoothed by a hyperbolic 

tangent function: 

 ( )
,

, ,

1 1

1 1
Pl( )= ( ) ( ) ( ) tanh

2 2PN k cons

M M

PN k PN kk k cons

k k

m c I m c
 

    


= =

     − +   
    (25) 

where the parameter   controls the degree of approximation, and the approximation effect 

will become better as   increases. To illustrate the effect of the approximation more clearly, 

plot the image of the hyperbolic tangent function ( )  
1 1

tanh 100
2 2

y x x= +   on  10,10x −  

and  0.1,0.1x −  as shown in Fig 5(a) and Fig 5(b). Intuitively, the figure on  10,10−  is 

close to a step function. Take a tighter range of the argument (  0.1,0.1x − ) and it can be 

observed that the image changes more drastically in the interval  0.03,0.03−   while the 

function is very close to a step function beyond  0.03,0.03− . It can be seen that the function 

can achieve a satisfying approximation effect when the interval between ,PN k  and cons  is 

greater than 0.03, and it can also achieve a considerable effect within  0.03,0.03− . To reduce 

oscillation at the beginning of the iteration,   is also defined as a hyperbolic tangent function 

of the iteration steps: 

 ( )0.05 50 tanh 0.02 150 50step = +   − +     (26) 

The curve of step −  is shown in Fig 5(c). 

  

(a) (b) 
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(c) 

Fig 5 Partial curves of the hyperbolic tangent functions 

4.2 The final optimization formulation based on the length scale control method 

Small features that are not conducive to engineering often appear in the cell microstructure 

obtained by topology optimization, such as thin rods, small holes, hinges, etc. The actual 

stiffness and strength of these features often fail to meet the theoretical expectations. Therefore, 

it is often necessary to constrain the minimum length scale of the cell microstructure in the 

optimization process. 

One of the main methods of applying length scale control is the density projection method 

based on the Heaviside function. This method processes the filtered density design variables by 

a projection threshold to obtain design results that meet the length scale constraint: The micro 

design variable j  is first filtered by a certain filtering radius 
fR : 

 
,

,

( )

( )

e j

e j

m m mm

j

m mm

v

v

 








=




ς

ς
  (27) 

where 
,e j  is the neighborhood set of elements lying within the filter domain for element j , 

mv  denotes the volume of the element m  in 
,e j , ( )m ς  is the weighting function which is 

defined as 

 ( )=m f m jR − −ς ς ς   (28) 

where mς  and jς  denote the central coordinates of the design cell j  and m  respectively, 

fR   is the filter radius which is specified. It is worth mentioning that density filtering and 

sensitivity filtering are common methods in preventing the ‘checkerboard effect’ phenomenon 

in density-based topology optimization (including multi-scale cases). In this paper, sensitivity 

filtering is conducted at the macro level to avoid computational complexity, and density filtering 

is conducted at the micro level to facilitate the implementation of the length scale control 
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method based on density projection. 

The filtered density j  is then projected to a new distribution, defined as the projected 

density [56]: 

 
( ) ( )
( ) ( )

tanh tanh ( )

tanh tanh (1 )

j

j

   


  

+ −
=

+ −
  (29) 

where   and   are parameters that control the effect of the projection. The final effect of the 

projection can be expressed by the Heaviside function: 

 

0  0

( , )        

1   1

j

j j j

j

H

 

     

 

  


= = =


 

  (30) 

It is obvious that the role of the parameter    is to provide a projection threshold: After 

projection, all filtered density variables j  above the threshold   will be projected to 1 and 

those below   will be projected to 0. The parameter   controls the approximation degree of 

the projection function to the Heaviside function: The larger    is, the closer the projected 

density is to the step distribution. There is a correspondence between   and minimum length 

scale b , so a cell microstructure with a specific minimum size can be obtained by selecting   

reasonably. 

 

Fig 6 Length scale control effect of three density projection designs 
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Due to the need of controlling the length scale of the thin rod and the holes simultaneously, 

three different values of   are selected as e , i  and d . The effect of three different   in 

minimum length scale control has been shown in Fig 6. The design result obtained by e  is 

defined as the eroded design, which will eliminate the rods that are smaller than the length scale 

constraint. The design result obtained by d   is defined as the dilated design, which will 

eliminate the holes that violate the length scale constraint. i  takes a fixed value of 0.5, and 

the design result is defined as the intermediate design. The length scale of the microstructure in 

the intermediate design lays between the eroded design and the dilated design, so when all three 

designs reach stable convergence, the minimum length scale of the intermediate design will be 

controlled. 

Add the length scale control method based on the density projection to the optimization 

model, the minimum length scale will be controlled by a recessive constraint. In addition, the 

stress is less sensitive to the changes of material stiffness properties than the changes of load 

while the changes of cell microstructures mainly affect the stiffness properties. Therefore, a 

displacement constraint is added to the optimization model to assist the formation of the cell 

microstructure. Finally, the optimization formulation can be expressed as 
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  (31) 

where ku  is the displacement of the -thk  constraint point, 
,cons ku  is the -thk  displacement 
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constraint, b  is the minimum length scale of the cell microstructure, superscript e  stands for 

the eroded design, superscript i  stands for the intermediate design, superscript d  stands for 

the dilated design. Pl   represents the structural stress response failure probability under 

evidence theory, thus the relationship between Pl  and structural reliability indicator R  can 

be defined as 

 Pl=1 R−   (32) 

Similarly, structural target reliability 
argtR  is defined as 

arg =1t fR P− . 

4.3 Sensitivity analysis 

The design variables are updated by the MMA algorithm, which updates the design 

variables by the gradient information. The sensitivity of the constraint function with respect to 

the design variables will be derived in this section. 

The sensitivity of the plausibility function Pl( )   with respect to the macro design 

variable and the micro design variable can be depicted as 
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which can be rewritten utilizing the chain derivation rule as 
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where the derivative 
,
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
 can be easily calculated: 
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Therefore, the main task is to solve the derivative of ,PN k   with respect to the design 

variables: 
,PN k

iP




  and 

,PN k

j








 . Considering that the uncertainty parameters E   and P   are 

independent variables, the upper and lower bounds of the structural stress response 

corresponding to each focal element kc  are located at the apex of the hypercube. In order to 

simplify the explanation, the solution of the stress sensitivity derivation 
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
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(1) The sensitivity of PN  with respect to the macro density design variables: 
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The stress matrix kσ  of the -thk  macro element is 

 = s e

k k H kPσ D Bu   (37) 

where B  is the FE strain-displacement gradient matrix, e

ku  is the nodal displacement vector 

of the -thk  macro element, s  is the stress penalty factor. Substitute Eq. (37) into Eq. (36) 

gives 
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 . Since the second part of Eq. (38) contains all the macro elements, 

it can be simplified as  
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where 
fN  denotes the dimension of the global displacement u , ru  is the -thr  element of 

u , rh  can be calculated using Eq. (39). 

r

i

u

P




 can be solved by the adjoint method by introducing the Lagrange multiplier: 
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Since the FE equilibrium equation =Ku F  is satisfied, Eq.(40) is equal to r ru u . Therefore, 
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Since Eq.(41) holds for any T

rλ , the coefficient of 
d

d iP

u
 will be zero when T

rλ  satisfies 
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Utilizing symmetry, Eq.(42) can be rewritten as 
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Consequently, regarding 

T
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 as a load, the Lagrange multiplier rλ  can be solved by FEA. 

Since the external load is independent of the density variables, derivation 
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as 
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Therefore, the second term of Eq. (38) can be rewritten as 
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Since the displacement of the linear elastic structure can be superimposed, 
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(2) The sensitivity of PN  with respect to the micro density design variables 
j : 
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Substitute the expression of kσ , yields 
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where 
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 . The second term of Eq.(48) can be simplified by the same method 

used in the solution of the macro sensitivity: 
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where 
1
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T
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 λ  can also be obtained by imposing a virtual load column vector 
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where 
j





HD
 can be calculated by a projection method [57]: 

 ( ) ( )
T

1

0 d
j

j jj
Y

j

Y


−
= − −

 
HD

I bu D I bu   (51) 

where I  is an identity diagonal matrix, b  is the strain matrix of the elements in the micro 

design domain, ju  is the displacement matrix of the -thj  microelement, 0D  is the elastic 

matrix of the material, 
jY  is the -thj  microelement domain. Substituting Eq.(49), Eq.(50), 

and Eq.(51), into Eq.(48), the final expression of PN

j








 is 
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Since the micro design variable   has been filtered and projected to realize micro length 

scale control, the sensitivity of ( )Pl   with respect to 
j  should be 
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where the expressions of i
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The sensitivities of other constraints are 
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where 
0,e iK   is the stiffness matrix of the -thi   macro element, 

,e iu   is the nodal 

displacement vector of the -thi  macro element, T

kλ  can be solved by Eq.(43). 

The macro and micro sensitivities of the objective function V  are 
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where iV  is the volume of the -thi  macro element. 

5 Discussions on the optimization procedure and the computational scale 

5.1 Procedure of the optimization 

The entire optimization procedure of the proposed topology optimization is described as 

follows: 

Step 1: Set the iteration step( h ) to 1. Initiate the optimization parameters: macro density 

design variables 
h

iP , micro density design variables 
h

j . Define the optimization parameters: 

density filtering radius 
fR , failure probability constraint 

fP , minimum length scale constraint 

consb , projection parameter  , the distribution of the uncertainty parameters E  and F . 

Step 2: Filter and project the micro density design variables. Determine the projection 

control parameter e , i  and d  based on the density filtering radius 
fR  and the minimum 

length scale constraint consb . Then process 
h

j  by Eq. (27) and Eq. (29) with e , i  and d  

to obtain 
h

j . 

Step 3: Combine the intervals of the uncertainty parameters to obtain the joint framework 

of discernment C , extract the combination of vertices in each focal element kc  that maximizes 

the stress plausibility function: 

 ( )   , ( , ) max ( , ) , ( , , , )k k kPN PN l l l l kk k k
e f e f e f e f e f c =    (57) 

Then utilize the homogenization theory to solve the elastic modulus of the corresponding cell 
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microstructure. 

Step 4: Utilize the vertices extracted in step 3 to solve the upper bound of PN  under 

each focal element kc  and impose the virtual load 
1

T
ndof
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r

r

u
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 to solve 
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ndof
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r r

r

h
=

 λ . 

Step 5: Solve the structural failure plausibility ( )Pl   using the structural response data 

obtained by the finite element analysis in step 4. Calculate the objective function and other 

constraint function values, and then calculate the macro and micro sensitivity by Eq.(46), 

Eq.(52), Eq.(55), and Eq.(56). 

Step 6: Update the design variables by the MMA algorithm. Input the objective function, 

the constraint function, and the corresponding sensitivity to the MMA algorithm to update 

macro and micro density design variables(
1h

iP
+

 and 
1h

j
+

). 

Step 7: Use the convergence criterion to determine whether the iteration result meets the 

convergence condition: 

 

1 1

1 1,

n N
h h h h

j j i i
j i

P P

n N

 

 

+ +

= =

− −

 

 
  (58) 

where h  denotes the step of the iteration. If the convergence criterion is satisfied, stop iterating 

and output the optimization result. If it is not satisfied, increase the number of iterations by one 

and return to step 2. 

The schematic diagram of the optimization procedure is shown in Fig 7. 
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Fig 7 Procedure of optimization iteration 

5.2 Discussions on the computational consumption 

Compared with conventional stress-constrained topology optimization, cross-scale 

topology optimization introduces an extra design domain of the cell microstructure, which 

greatly increases the computational consumption. In this paper, the length scale control of the 

cell microstructure is introduced into the cross-scale optimization, and the uncertainty factors 

in the optimization parameters are considered. The optimization model in this paper involves 

two major computational consumption problems: The first one is the multiple calculations 

under different length scale control parameters   ; the second one is the introduction of 

evidence theory for structural reliability which requires finite element analysis under each focal 

element kc . 

The minimum length scale constraint in this paper is applied by projecting the micro design 

variables 
j , and the control effect is applied by selecting the projection parameter  . This 

method theoretically requires three finite element analyses at each iteration: the dilated design, 

the intermediate design, and the eroded design, so the computational consumption will be 

directly tripled. However, although the optimization process involves three different design 
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results, the structural volume fraction of the dilated design must be the largest of the three, so 

it only needs to consider the objective function of the dilated design. Therefore, the objective 

function and the cell volume fraction constraint can be simplified as 
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  (59) 

where the superscript d   denotes the dilated design. Since the stiffness performance of the 

erode design is the lowest, the displacement constraint can be simplified as 

 , , 1,2,...,e

k cons ku u k M =   (60) 

When the displacement constraint of the erode design is satisfied, the displacement constraint 

of the other two designs can also be satisfied. As for the stress constraint, considering the 

intermediate design will be selected as the final design result, the stress reliability constraint is 

only imposed on the intermediate design: 

  Pl ( , ) 0i

PN fg C P     (61) 

It can be seen from the above analysis that it’s not necessary to perform three series of finite 

element analysis in each step of the iteration. It only requires one series of finite element 

solutions respectively when solving the stress reliability constraint and the displacement 

constraint. Therefore, the computational consumption has not been greatly increased after 

introducing the length scale control. 

In terms of the computational consumption of structural stress failure probability function 

based on evidence theory, considering that the components of the focal element are independent 

of each other and the structural response is monotonous with respect to the uncertainty 

parameters, the upper and lower bound of stress under each focal element can be solved using 

the vertex method. However, although the vertex method initially reduces the computational 

consumption, as the number of uncertainty parameters increases, the number of vertex 

combinations will also increase exponentially. Note that only the upper bound of 
,PN k  is used 

in the expressions of Pl( )  and the sensitivity, the vertex method can be further simplified by 

extracting a combination that maximizes 
,PN k . Such a combination of vertices is easy to obtain 

when the uncertainty parameters are monotonically related to the structural response. Therefore, 

when calculating the failure probability, one finite element analysis equivalent to the number 
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of focal elements of the joint identification frame is required, and most of the parameters 

required for sensitivity analysis can be obtained during this process. In addition, when solving 

the stress upper bound corresponding to each focal element, the external load vector needs to 

be replaced by the virtual load 
1

T
ndof
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r

r

u
h

=
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r r
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 λ   required by sensitivity 

analysis. 

Table 1 The computational consumption in each stage of iteration 

Object of solution Number of FEA in each iteration 

Density projection ( ) ( ), , 3 times 1 time
e i d e

   →   

Plausibility Pl( )  Each vertex of kc  （4 times）→One vertex of kc  

Sensitivity of Pl( )  One time under the virtual load 
1

T
ndof

j

r

r

u
h

=

  
  

   


u
 

Displacement ku  M  times 

Sensitivity of ku  M  times 

 

In summary, in each iteration step, the number of the finite element analysis that needs to 

be conducted to solve the stress reliability constraint is twice the number of the focal element 

kc  . The number of FEA to solve the displacement constraint is twice the number of the 

displacement constraints in each iteration step. The number of FEA in each iteration is shown 

in Table 1. In addition, it is worth mentioning that the homogenization process of the 

microstructure will incur a large amount of computational consumption if the microstructures 

are macro-spatially varying. In this study, the computational consumption of homogenization 

is relatively small because of the assumption of macro-spatially uniform microstructures. 

6 Numerical examples 

In this chapter, three numerical examples are presented to illustrate the applicability of the 

proposed cross-scale topology optimization strategy. Due to the particularity of the micro 

sensitivity expressions, the values of the micro sensitivities will be the same under an average 

micro density distribution. Therefore, a preset initial cell material distribution is utilized in each 

example to provide a direction for the gradient algorithm. The computational environment of 
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the hardware is a computer with 16G RAM (Inter(R) Corel(TM) i7-8700K 3.70GHz), and it 

takes about 4 mins for one iteration step in the following examples. 

6.1 Optimization of a cantilever beam 

The macro design domain in this example is a rectangular cantilever beam fixed on the 

left side with a thickness of 1mm as shown in Fig 8. Two concentrated forces are imposed on 

the bottom left corner and the middle of the left side respectively. The micro design domain is 

an element of the macro design domain with the geometrical measure of 1mm 1mm  and the 

thickness of 1mm. The optimization objective is minimizing the entire structural volume 

fraction. The macro and micro design domains are divided into 3200 and 1600 elements 

respectively by four-node plane elements. The uncertainty of the material Young’s modulus and 

the external loads are considered. Assuming that there exists a normal distribution and another 

preset distribution for all the uncertainty parameters, which are synthesized by Eq.(13). The 

normal distribution parameters are defined as: 70e3 MPaE =  , 4E =  , 
1

120NF =  , 

1
12F =  , 

2
100NF =  , and 

2
10F =  . The basic probability assignments of the preset 

distributions are shown in Table 2. The synthesized uncertainty parameters are divided into 

4 4  focal elements as shown in Fig 9. The other constraints are defined as 250MPas = , 

,1 1.4mmsu =  (displacement of load point 1F  ), ,2 1.4mmsu =  (displacement of load point 2F  ), 

and 0.5Micv  . The iteration processes are shown in Fig 10 and Fig 11. The design results are 

shown in Table 3 and Table 5. From the given results, the following points are summarized: 

(1) Design results under a settled minimum length scale constraint ( 0.05mmconsb =  ) 

different target reliabilities have been shown in Table 3. The volume fractions of the entire 

structure under arg 0.90tR = , arg 0.95tR = , and arg 0.99tR =  are 16.35%, 16.89%, and 17.60% 

respectively. The relative volume fraction becomes higher when the target reliability increases, 

which implies that higher material assumption is needed to achieve higher reliability.  

(2) The macro configurations in Table 3 show obvious differences while the micro 

configurations are similar. Since the micro sensitivities of the objective function are greater 

than the macro sensitivities, the cell configuration forms faster than the macro configuration. 

Meanwhile, the change of the cell configuration has less influence on the structural strength 

than the change of macro density, so the cell microstructures show little differences. In addition, 

the similarity of the micro configurations can also be attributed to the minimum length scale 

constraint, the cell volume constraint, and the initial material distribution. From the equivalent 

elastic matrices listed in Table 4, the values of the matrices have shown differences. 
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(3) Design results under different minimum length scale constraints and settled target 

reliability (
arg 0.95tR =  ) are shown in Table 5. All the micro results have satisfied their 

respective minimum length scale constraint and the configurations of the cell microstructures 

have shown significant differences. The relative volume fractions of the results under 

0.025mmconsb =  , 0.05mmconsb =  , and 0.1mmconsb =   are 16.43%, 16.89%, and 28.58% 

respectively. The volume fraction becomes higher as consb  increases, suggesting length scale 

control may lead to a weaker mechanical property. 

(4) Design results under different focal element allocations are shown in Table 6. The 

values of the constraints are: 
,1 1.4mmsu = , 

,2 1.4mmsu = , 0.05mmconsb = , 
arg 0.95tR = , and 

=0.5consv . The macro design results under the three focal element allocations show distinctions, 

while the microstructure results are similar. Under the same constraints, the final design result 

of microstructure is almost not affected by focal element allocations due to the length scale 

constraint, which is also in line with the above conclusions. The differences in the macro design 

results reflect that the focal element allocations can greatly affect the iterative process. The final 

volume fraction decreases with the increase of the number of kc , which indicates that more 

detailed focal element divisions can better evaluate the reliability and obtain better optimizing 

ability. The volume fractions of 4 4 (16.64%) and 5 5 (16.33%) cases are obviously less than 

that of 3   3 (17.37%), while the volume fraction of 4   4 and 5   5 show little difference. 

However, the 5 5 case takes about 1.5 times the solving time compared with 4 4. Therefore, 

it is an important issue to properly balance the solving efficiency and optimization effect when 

arranging the allocation of the focal elements. 

(5) Design results under different mesh divisions are shown in Table 7. The constraints of 

the three examples are the same as those in Table 6, and the focal element allocation is 4 4. 

The final volume fractions of the three examples are very close, the microstructures are similar 

but the macrostructures show differences. The first two examples have different mesh numbers 

in the micro design domain. Although the final microstructure configurations are similar, the 

performance difference has affected the formation of the macrostructure. In the latter two 

examples, the mesh number of the macro design domain in the third example is changed, which 

leads to the reduction of the geometric size of the microstructure. Due to the same length scale 

constraint, the differences in microstructure configuration and properties affect the formation 

of the macrostructure. Therefore, the mesh-dependent phenomenon is normal in double-scale 

topology optimization, and the macro design domain is more sensitive since it is also affected 
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by the microstructure. 

 

Fig 8 Design domains of the cantilever beam 

 

 

Fig 9 The focal elements of the synthesized uncertainty parameters 

  

(a) 
arg 0.90tR =  (b) 

arg 0.95tR =  
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(c) 
arg 0.99tR =   

Fig 10 The iteration processes under different reliability constraints 

  

(a) 0.025mmconsb =  (b) 0.05mmconsb =  

 

(c) 0.1mmconsb =  

Fig 11 The iteration processes under different minimum length scale constraints 
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Table 2 The BPA of the preset uncertainty parameter distributions 

E /MPa 1F /N 2F /N m  

[58e3,64e3] [84,102] [70,85] 0.08 

[64e3,70e3] [102,120] [85,100] 0.38 

[70e3,76e3] [120,138] [100,115] 0.44 

[76e3,82e3] [138,156] [115,130] 0.1 

 

 

Table 3 Design results under different reliability constraints 

Design 

strategies 
Macro configuration 

Periodic 

arrangement of 

cells 

The relative 

volume 

fraction 

Convergence 

steps 

arg 0.90tR =  

 

 

16.35% 221 

arg 0.95tR =  

 

 

16.89% 183 

arg 0.99tR =  

 

 

17.60% 184 
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Table 4 Equivalent elastic matrices of the cell microstructures 

argtR  
HD  

0.90 

5311.711 4001.078 677.150

4001.078 21239.865 552.254

677.150 552.254 4292.067

 
 
 
  − 

−

−

−

  

0.95 

5339.884 4025.685 665.839

4025.685 21370.826 531.529

665.839 531.529 4298.442

 
 
 
  − 

−

−

−

  

0.99 

5392.217 4031.195 607.960

4031.195 21243.665 518.255

607.960 518.255 4340.450

 
 
 
  − 

−

−

−

  

 

 

Table 5 Design results under different minimum length scale constraints 

Design 

strategies 
Macro configuration 

Periodic 

arrangement of 

cells 

The relative 

volume 

fraction 

Convergence 

steps 

0.025mmconsb =  

 

 

16.43% 195 

0.05mmconsb =  

 

 

16.89% 183 

0.1mmconsb =  

 

 

28.58% 217 
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Table 6 Design results under different focal element allocations 

Focal 

element 

allocations 

Macro configuration 
Periodic 

arrangement of cells 

The relative 

volume 

fraction 

Convergence 

steps 

3 3  

 

 

17.37% 192 

4 4  

 

 

16.64% 187 

5 5  

 

 

16.33% 211 

 

Table 7 Design results under different mesh divisions 

Mesh division Macro configuration 

Periodic 

arrangement of 

cells 

The relative 

volume 

fraction 

Macro: 40 80

Micro: 20 20



  
 

 

16.69% 

Macro: 40 80

Micro: 40 40



  
 

 

16.89% 

Macro: 50 100

Micro: 40 40



  
 

 

16.73% 
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6.2 Optimization of an L-bracket  

The optimization object in this example is an L-bracket fixed at the top side with a 

thickness of 1mm and a concentrated force F  imposed on the top right corner as shown in Fig 

12. The macro domain is divided into 3127 finite elements by 1mm 1mm  four-node plane 

elements. The micro design domain is defined as a cell of the macro domain with a geometrical 

dimension of 1mm 1mm . The micro design domain is divided into 1600 finite elements by 

0.025mm 0.025mm   four-node plane elements. The optimization aims at minimizing the 

volume fraction of the entire structure under the constraint of the global stress reliability, local 

displacement, and cell volume fraction. The external load F  and Young’s modulus E  of the 

material are defined as uncertainty parameters with normal distributions. The expectation of the 

external load F   is 100NF =   and the standard deviation is 15F =  . The expectation of 

Young’s modulus E   is 70e3 MPaE =   and the standard deviation is 4E =  . In order to 

contain more information about the distribution of the uncertainty parameters, the uncertainty 

parameter intervals are chosen as [ 3 , 3 ]   − + . The uncertainty parameters intervals are 

divided into 4 4   focal elements as shown in Fig 13. The allowable value of the global 

condensed stress PN  is 100MPa and the cell volume fraction constraint is 0.5Micv  . The 

local displacement constraint is imposed on the loading point and the constraint value is 

1.5mmconsu = . 

 

Fig 12 Design domains of the L-bracket 
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Fig 13 The focal elements of the uncertainty parameters 

The design results under different reliability constraints ( arg 0.90tR = , arg 0.95tR = , and

arg 0.99tR = ) and different minimum length scale constraints ( 0.04mmconsb = , 0.06mmconsb = , 

and 0.08mmconsb = ) are shown in Table 8 and Table 9. The iteration processes are shown in 

Fig 14 and Fig 15. According to the results presented, the following conclusions are 

summarized: 

(1) As shown in Table 8, the volume fractions of the design results under 
arg 0.90tR = , 

arg 0.95tR =  , and 
arg 0.99tR =   are 0.2079, 0.2086, and 0.2150 respectively. Higher target 

reliability will lead to a higher volume fraction, implying a larger material cost is needed to 

realize higher reliability. In addition, the final reliabilities of the three results have all achieved 

1R = . However, due to the reliability constraint effect in the optimization process, the volume 

fraction of the design result under a high reliability target tends to be higher. 

(2) The cell configurations in Table 8 show significant differences and have satisfied the 

corresponding minimum length scale constraint ( 0.04mmconsb = ). The differences in the cell 

configuration indicate that the reliability constraints may affect the formation of the cell 

microstructure. According to the periodic arrangement of the cell microstructure, the 

connectivity between the cell microstructures is well maintained, which can meet the 
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requirements of practical manufacturing. 

(3) The design results under different minimum length scale constraints and 
arg 0.99tR =  

are shown in Table 9. It can be observed that the cell microstructures have shown differences 

and have satisfied respective length scale constraints. Meanwhile, the length scale of the solid 

part and holes become larger as the minimum length scale constraint increases. The entire 

volume fractions of 0.04mmconsb = , 0.06mmconsb = , and 0.08mmconsb =  are 0.2150, 0.2083, 

and 0.2763 while the cell volume fractions are 0.4028, 0.4829, and 0.4856. An oscillating 

appears in the iteration curve in Fig 15(b). Since the stress constraint in the optimization model 

is greatly affected by the local stress, the local stress concentration is likely to lead to an abrupt 

change of the stress value. In addition, the oscillation happens at the stage when the 

microstructure changes violently. The equivalent properties also change violently at this stage, 

which may lead to a stress jump at the macro level. The iteration can jump out of the oscillation 

after the microstructure changes tend to be stable. 

(4) It can be observed in Fig 14(c) and Fig 15(a) that there are disconnected materials in 

the cell microstructures. The periodic arrangement of these microstructures reveals that these 

disconnected materials can actually be connected to adjacent cells as shown in Table 5 and 

Table 8. The periodic microstructure assumption (periodic boundary conditions) of the 

homogenization theory allows such cells. However, such suspended materials still exist at the 

edges of the macrostructure. In these cases, a small amount of auxiliary material may be needed 

to support these suspended materials for connectivity. 

(5) Table 10 lists a group of mono-scale design results under different target reliabilities. 

When the target reliabilities are taken as 0.90, 0.95, and 0.99, no convergence results are 

obtained because the stress reliability constraints cannot be satisfied throughout the iteration. 

By comparing with Table 8, it can be found that the volume fraction of mono-scale design 

results is still larger than the three examples in Table 8 even after the reliability requirement is 

relaxed to 0.5. Such a phenomenon indicates that the double-scale model is undoubtedly 

advantageous for the proposed weight-reducing optimization problem. Although the solving 

efficiency of double-scale TO is much lower than that of mono-scale TO, double-scale TO has 

a larger design space and can search for feasible solutions in a wider range. 
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(a) 
arg 0.90tR =  (b) 

arg 0.95tR =  

 

(c) 
arg 0.99tR =   

Fig 14 The iteration processes under different reliability constraints 

  

(a) 0.04mmconsb =  (b) 0.06mmconsb =  
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(c) 0.08mmconsb =  

Fig 15 The iteration processes under different minimum length scale constraints 

 

 

Table 8 Design results under different reliability constraints 

Design 

strategies 

Macro 

configuration 

Periodic 

arrangement of 

cells 

The relative 

volume fraction 

Convergence 

steps 

arg 0.90tR =  

 

 

20.79% 342 

arg 0.95tR =  

 

 

20.86% 320 

arg 0.99tR =  

 

 

21.50% 350 
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Table 9 Design results under different minimum length scale constraints 

Design 

strategies 

Macro 

configuration 

Periodic 

arrangement of 

cells 

The relative 

volume 

fraction 

Convergence 

steps 

0.04mmconsb =  

 

 

21.50% 350 

0.06mmconsb =  

 

 

20.83% 343 

0.08mmconsb =  

 

 

27.63% 339 
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Table 10 Mono-scale design results under different reliability constraints 

Design 

strategies 

Macro 

configuration 

The relative 

volume 

fraction 

Convergence 

steps 

arg 0.99tR =   Not converged 

arg 0.95tR =   Not converged 

arg 0.90tR =   Not converged 

arg 0.70tR =  

 

42.28% 277 

arg 0.60tR =  

 

41.72% 166 

arg 0.50tR =  

 

37.25% 172 

 

6.3 Optimization of an aircraft mid-wing rib 

The third example is the topological design of an aircraft mid-wing rib (NACA 23016) 

under a series of boundary and loading conditions as shown in Fig 16. The macro design domain 

is divided by 1mm1mm 4-node plane element. The micro design domain is an element of the 

macro design domain and is divided into 1600 4-node plane elements. Young’s modulus of the 

material and external loads are uncertainty parameters. It is assumed that the uncertainty 

parameters submit to normal distributions and the loads fluctuate synchronously in the 

following examples. In addition, the range of the material and loading uncertainty parameters 

are chosen as [ 3 , 3 ]   − +  and divided into 4 4  focal elements as shown in Fig 17. All 

the local displacement constraints are imposed on the loading points in the following four cases, 

and the number subscripts of consu   denote corresponding loads. Case 1 and case 3 consider 
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conventional boundary conditions of a wing rib. Case 2 and case 4 simulate the test state of a 

wing rib with attack angles. 

In the first case, the left and right sides of the rib are fixed and two multi-point constraints 

are established with the top and bottom airfoils respectively as the loading points as shown in 

Fig 16(a). The normal distribution parameters are defined as: 70e3 MPaE =  , 4E =  , 

1
600NF =  , 

1
40F =  , 

2
300NF =  , and 

2
10F =  . The allowable value of the global 

condensed stress PN  is 250MPa and the target reliability is 0.99. The other constraints are 

defined as 0.5Micv  , 0.16mmconsu = , and 0.075mmconsb = . The iteration process and design 

result are shown in Fig 18(a). 

The second case is a wing rib fixed at the left side with a concentrated force imposed on 

the top right corner as shown in Fig 16(b). The normal distribution parameters are defined as: 

70e3 MPaE =  , 4E =  , 100NF =  , and 10F =  . The allowable value of the global 

condensed stress PN  is 200MPa and the target reliability is 0.95. The other constraints are 

defined as 0.5Micv   , 6mmconsu =  , and 0.08mmconsb =  . The iteration process and design 

result are shown in Fig 18(b). 

In the third case, the left and right side of the rib is fixed and 4 concentrated forces are 

imposed on the top and bottom airfoils as shown in Fig 16(c). The normal distribution 

parameters are defined as: 70e3 MPaE = , 4E = , 
1

200NF = , 
1

40 / 3F = , 
2

100NF = , 

2
20 / 3F =  , 

3
200NF =  , 

3
40 / 3F =  , 

4
100NF =  , and 

4
20 / 3F =  . The allowable value 

of the global condensed stress PN   is 250MPa and the target reliability is 0.95. The other 

constraints are defined as 0.5Micv   , 
,1 2mmconsu =  ,

,2 2mmconsu =  ,
,3 1.8mmconsu =  , 

,4 1.8mmconsu =  and 0.05mmconsb = . The iteration process and design result are shown in Fig 

18(c). 

In the fourth case, the left side of the rib is fixed and two multi-point constraints are 

established with the top and bottom airfoils respectively as the loading points as shown in Fig 

16(d). The normal distribution parameters are defined as: 70e3 MPaE =  , 4E =  , 

1
300NF =  , 

1
20F =  , 

2
200NF =  , and 

2
40 / 3F =  . The allowable value of the global 

condensed stress PN  is 250MPa and the target reliability is 0.95. The other constraints are 

defined as 0.5Micv   , 
,1 5.5mmconsu =  , 

,2 5mmconsu =  , and 0.05mmconsb =  . The iteration 

process and design result are shown in Fig 18(d). 
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(a) Case 1 

 

(b) Case 2 

 

(c) Case 3 

 

(d) Case 4 

Fig 16 Boundary and loading conditions of the wing rib 
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Fig 17 Focal elements of the uncertainty parameters 

The design results of the four working conditions are shown in Table 11. The cell 

microstructures have satisfied their minimum length scale constraints and maintained good 

continuity. The results under several working conditions converge stably, which proves that the 

proposed method is suitable for different boundary and loading conditions. In some cases, gray 

units appear on the left or right sides of the macro configuration, which can be attributed to 

boundary conditions, loading mode, and the definition of the non-design domain. To reduce 

gray units, applying density projection to the macro design domain is also worth trying. 

 

  

(a) Case 1 (b) Case 2 
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(c) Case 3 (d) Case 4 

Fig 18 Iteration processes of the four working conditions 

Table 11 Design results under different working conditions 

Working 

conditio

n 

Macro configuration 

Periodic 

arrangement 

of cells 

The relative 

volume 

fraction 

Convergence 

steps 

Case 1 
 

 

11.65% 299 

Case 2 
 

 

12.26% 189 

Case 3 
 

 

10.98% 318 

Case 4 
 

 

13.46% 279 

 

7 Conclusions 

A double-scale topology optimization strategy considering minimum length scale control, 

local displacement constraint, and the global stress reliability constraint based on the evidence 

theory is proposed in this paper. In the optimization framework, the evidence theory is 
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introduced to evaluate global stress failure probability with respect to uncertainty factors, and 

a density projection method is utilized to realize length scale control of the cell microstructure. 

Besides, some simplifications of the optimization procedure are discussed to economize 

computational consumption. Three numerical examples are presented to illustrate the effect of 

the proposed optimization framework.  

In this paper, the evidence theory is introduced into the multi-scale continuum reliability 

topology optimization model, and the relative reliability index is constructed as a smoothed 

function to fit the gradient algorithm. In addition, a gradually changing smooth parameter is 

used in the reliability index to improve the iteration stability. Evidence theory may better 

evaluate structural reliability when there are multi-source uncertainty parameter inputs. 

Currently, there are few related studies on multi-scale continuum topology optimization. This 

study provides a complementary attempt in this field. 

There are still some regrets in this study: The division of the focal elements is not elaborate 

enough due to the limitation of computing capacity. In addition, the initial material distribution 

of cells affects the final configuration greatly. In fact, an appropriate initial distribution may 

greatly promote optimization convergence, and an improper one may cause divergence. In 

conclusion, there is still room for improvement for the proposed method. 
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Figure captions 

Fig 1 The Gaussian points under the local coordinate 

Fig 2 Double-scale topology optimization 

Fig 3 Stress failure domain of the joint FOD 

Fig 4 Estimation procedure of stress failure probability based on evidence theory 

Fig 5 Partial curves of the hyperbolic tangent functions 

Fig 6 Length scale control effect of three density projection designs 

Fig 7 Procedure of optimization iteration 

Fig 8 Design domains of the cantilever beam 

Fig 9 The focal elements of the synthesized uncertainty parameters 

Fig 10 The iteration processes under different reliability constraints 

Fig 11 The iteration processes under different minimum length scale constraints 

Fig 12 Design domains of the L-bracket 

Fig 13 The focal elements of the uncertainty parameters 

Fig 14 The iteration processes under different reliability constraints 

Fig 15 The iteration processes under different minimum length scale constraints 

Fig 16 Boundary and loading conditions of the wing rib 

Fig 17 Focal elements of the uncertainty parameters 

Fig 18 Iteration processes of the four working conditions 
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Table captions 

Table 1 The computational consumption in each stage of iteration 

Table 2 The BPA of the preset uncertainty parameter distributions 

Table 3 Design results under different reliability constraints 

Table 4 Equivalent elastic matrices of the cell microstructures 

Table 5 Design results under different minimum length scale constraints 

Table 6 Design results under different focal element allocations 

Table 7 Design results under different mesh divisions 

Table 8 Design results under different reliability constraints 

Table 9 Design results under different minimum length scale constraints 

Table 10 Mono-scale design results under different reliability constraints 

Table 11 Design results under different working conditions 


