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Anisotropic GPMP2: a fast continuous-time

Gaussian processes based motion planner

for unmanned surface vehicles in environments

with ocean currents
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Abstract—In the past decade, there is an increasing interest
in the deployment of unmanned surface vehicles (USVs) for
undertaking ocean missions in dynamic, complex maritime envi-
ronments. The success of these missions largely relies on motion
planning algorithms that can generate optimal navigational tra-
jectories to guide a USV. Apart from minimising the distance of
a path, when deployed a USVs’ motion planning algorithms also
need to consider other constraints such as energy consumption,
the affected of ocean currents as well as the fast collision
avoidance capability. In this paper, we propose a new algorithm
named anisotropic GPMP2 to revolutionise motion planning for
USVs based upon the fundamentals of GP (Gaussian process)
motion planning (GPMP, or its updated version GPMP2). Firstly,
we integrated the anisotropy into GPMP2 to make the generated
trajectories follow ocean currents where necessary to reduce
energy consumption on resisting ocean currents. Secondly, to
further improve the computational speed and trajectory quality,
a dynamic fast GP interpolation is integrated in the algorithm.
Finally, the new algorithm has been validated on a WAM-V
20 USV in a ROS environment to show the practicability of
anisotropic GPMP2.

Note to Practitioners: Abstract—The work reported in this ar-
ticle will be significant for USVs to conduct missions in complex,
dynamic maritime environments where various obstacles and
time-varying ocean currents exit. We develop this novel motion
planning algorithm based on Gaussian process and optimise
the trajectory using probabilistic inferences. The new algorithm
can generate collision free trajectories that also minimise the
influences caused by adverse ocean currents in a highly effi-
cient way. In addition, the planning has been undertaken in a
continuous-time domain making the generated trajectory have
a guaranteed smoothness and readily feasible for autopilots
to track. We use a coastal area with time-varying vortexes
to present a challenging practical maritime environment. The
presented algorithm integrates the available information about
a fluid field regarding energy consumption and hazard level,
along with the density of obstacles to plan a navigational route
efficiently. To increase the practical performance of the proposed
method, diverse models for generating ocean currents need to be
developed in the future to tackle unpredictable situations.

Index Terms—Unmanned surface vehicles, ocean currents,
anisotropy, continuous-time motion planning, Gaussian process.

J. Meng1, Y. Liu1,∗ and R. Bucknall1 are with the Department of Me-
chanical Engineering, University College London, Torrington Place, London
WC1E 7JE, UK (∗ Corresponding author: Yuanchang Liu, email: yuan-
chang.liu@ucl.ac.uk, tel: +44 (0)20 7679 7062).

Z. Ji2 is with the School of Engineering, Cardiff University, Cardiff CF24
3AA, UK.

W. Guo3 is with the Department of Industrial and Systems Engineering,
Rutgers University, New Jersey 08854, USA

Fig. 1. Demonstration of the Gazebo simulation environment in ROS:
WAM-V platform at the left bottom side is carrying a parcel to perform a
transportation mission.

I. INTRODUCTION

Path planning is a computational problem to find a sequence

of valid configurations that moves a robot from the source

to destination [1]. Such a capability is essential for USVs

as they are normally deployed in ocean environments, where

obstacles avoidance and energy consumption minimisation are

important [2], [3]. Available planning algorithms such as A*,

rapidly-exploring random tree (RRT), fast marching method

and evolutionary algorithms can, to some extent, be used for

USVs. However, limited capacity in solving multi-objective

planning problems in an efficient way has largely made these

algorithms unsuitable for a practical deployment [4].

In recent years, GP (Gaussian process) motion planning

(GPMP, or its updated version GPMP2) has been proposed

to deal with the motion planning problem in continuous-time

space with a very high computational speed and can generate

a path that is both short and smooth in large-scale or high-

dimensional spaces [5], [6]. Such a feature undoubtedly makes

the GP based motion planning a promising solution for USVs

motion planning. However, improvements are still needed to

enhance these algorithms with the required capability to deal

with ocean currents.

Another consideration is previous research related to motion

planning for USVs usually utilises tests in simplified simula-

tion environment under platforms such as Matlab, treating the

vehicle as an infinitely small point, operating in the configu-
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ration space. A lack of data from operational USVs can give

rise to unintended assumptions built into the algorithms that in

turn result in simulations giving erroneous or oversimplified

interpretations. This might not be ideal when transferring the

simulation results as a prediction tool to help determine the

general performance of a USV when applied to an actual USV

in a practical environment.

In this paper, we will propose a new motion planning

method based on continuous-time GP, named anisotropic

GPMP2, which can deal with time-varying ocean currents and

obstacles such as islands, reefs, buoys in marine environments

simultaneously and highly efficiently. The proposed method

is evolved initially from the maximum a posterior (MAP)

estimation of the Bayes theorem with the main contributions

can be summarised as:

• A new energy consumption likelihood model subject

to ocean currents is introduced. Ocean currents are ex-

pressed as local anisotropy to mathematically indicate

the preferred travelling direction at each location in a

planning space. Then, an energy consumption likelihood

is calculated using the anisotropic fast marching (AFM)

based upon the anisotropy and further integrated into

the GPMP2, named as anisotropic GPMP2. Generated

trajectories are proven to be able to adaptively follow

ocean currents.

• A new dynamic fast GP interpolation method is proposed

to better deal with obstacle avoidance and further improve

the computational speed. Unlike the uniform interpola-

tion process in GPMP2, a dynamic interpolation process

according to obstacles’ locations has been developed to

better optimise the trajectory.

• The developed algorithms are thoroughly tested in both

self-constructed simulation environments, and a Gazebo-

based simulation environments under ROS. A demon-

stration of the Gazebo simulation environment in ROS

is shown in Fig. 1. Augmented practicability has been

achieved by fully considering the actual dynamics of a

USV and practical obstacle configurations. Such a valida-

tion can effectively reduce the testing cost, in comparison

with the high cost of building a full-size physical USV.

In simulations, we compared anisotropic GPMP2 with mo-

tion planning algorithm benchmarks in a number of situations.

The results demonstrate the following:

• The proposed method can minimise the effect of ocean

currents in marine environments compared with state-of-

the-art GP motion planning planning algorithm, namely

the Gaussian process motion planner 2 (GPMP2).

• The proposed method requires a shorter execution time

to generate a feasible path compared with another motion

planning algorithm designed for marine environments,

namely the anisotropic fast marching method (AFM).

• The proposed method has the ability to efficiently tackle

large-scale motion planning problems with or without

ocean currents.

The rest of the paper is organised as follows. Section II

details other related works and further articulates the motiva-

tion for this research. Section III describes the mathematical

model of GP motion planning in detail. Section IV presents the

proposed method in detail. Section V presents the optimisation

tool used in the research while at the same time analysing

its structure. Section VI presents the proposed path planner’s

simulation results and then compares it with several existing

motion planning methods. Section VII demonstrates the im-

plementation of the proposed path planning method in ROS,

followed by the conclusion in Section VIII.

II. RELATED WORKS

The aim of path planning is to find an optimal path between

the start point and goal point while avoiding obstacles. Pre-

vious researchers have different perspectives on the definition

of optimality. Some indicate that the optimal trajectory should

be the one with the shortest length; whereas, others emphasise

that the optimality is subject to multiple criteria including the

path’s smoothness and dynamic constraints such as velocity

or acceleration [7], [8], [9]. Because of the inclusion of

dynamics, path planning can also be referred to as motion

planning and herein we do not explicitly distinguish these two

terminologies. In this paper, the main focus is to develop a

motion planning algorithm that can not only optimise its path

length, execution time and path smoothness, but also consider

other important factors or constraints related to the dynamic

environment, such as wind and ocean currents, simultaneously.

Previously, researchers have attempted to develop a variety

of methods to solve the path planning problem including

geometry-based methods such as Dijkstra [10], A* [11], D*

[12], FM [13] and LSM [14], intelligent methods such as PSO

[15], ACO [16], GA [17] and WPA [18], and probabilistic

sampling-based methods such as PRM [19] and RRT* [20] ac-

cording to the classifications in [21]. Geometry-based methods

[10], [11], [12], [13], [14] require a relatively strict geometry-

based or graph-based model of the map. Therefore, this type

of method always needs a relatively long execution time to

determine the path, especially for high dimensional planning

spaces. Due to the long execution time, performing re-planning

problems using such methods is difficult. Similar to geometry-

based methods, intelligent methods [16], [17], [15], [18] also

need a long execution time to determine a feasible path

making them unsuitable for re-planning. Furthermore, almost

all intelligent methods are prone to the local minima problem,

where a locally optimal solution can generated leading to a

failure in finding the global optimum upon which the final

trajectory should be calculated. The probabilistic sampling-

based method [19], [20], [22], [23], [24], [25] successfully

solves the problem of long execution time by abandoning the

concept of explicitly characterising the configuration space,

simultaneously using a sampling connection rule to replace

it. The randomness of this approach is conducive to provide

fast solutions for path planning problems in high-dimensional

configuration spaces and is suitable for re-planning problems.

However, it might also be vulnerable to the local minima

problem, although the optimal path can be found when there

is no limitation on execution time. Additionally, paths gen-

erated by probabilistic methods are not smooth and could

be sinuous, which require additional smoothing process for
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practical applications. Hence the challenges in the previous

stage of path planning research can be summarised as: 1)

improving path quality, 2) shortening execution time, and 3)

enabling an efficient re-planning capability in large-scale or

high-dimensional configuration spaces.

In recent years, another category of path planning methods,

denoted path optimisation, have attracted an increasing atten-

tion in path planning research as they are appropriate for path

planning in high-dimensional configuration spaces with paths

encoded as a sequence of states and controls. Specifically,

path optimisation is the process of designing a path that

can minimise/maximise some measure of performance while

satisfying a series of constraints [26]. Compared with the other

methods mentioned above, path optimisation methods provide

several benefits including: 1) the capability of smoothing and

shortening the path in a coupled way during the planning

process and 2) superiority in computational speed making

it suitable for online planning in environments with rapidly

changing factors [27].

Because of these two promising benefits, several popular

optimisation based path planning methods have been proposed

and developed. For example, the CHOMP [28], [9] is a seminal

work of this type, which showcased its effectiveness on a vari-

ety of robotic platforms. To be more specific, the CHOMP uses

a pre-computed signed distance field to detect collision and a

covariant gradient descent to reduce the probability of collision

and subsequently improve the smoothness of the path. Then,

the STOMP [7] is proposed based on CHOMP, which samples

several paths with noises to explore the configuration space

around an initial path. By combining all the paths that have

explored the space, an updated and better optimised path with

lower cost can be generated. The critical improvement of the

STOMP is that it is capable of dealing with non-differentiable

constraints. However, both CHOMP and STOMP are not well

suited to dealing with path planning problems with multiple

constraints. To address this problem, TrajOpt [29], [8] is

proposed to solve complex motion planning problems with few

states designed as swept volumes to ensure trajectory safety in

continuous time space. However, TrajOpt always needs post-

processing on the path’s smoothness, which could significantly

extend the execution time.

Although the above-mentioned shortcomings present con-

cerns on the development potential of path optimization meth-

ods, Gaussian Process (GP) based motion planning (GPMP)

algorithms [5], [6], [30], [31] have been developed in recent

years to successfully address these issues. First, instead of rep-

resenting trajectories as a set of planned states in configuration

space that has been unanimously used by conventional motion

planning algorithms, GPMP algorithms regard trajectories as

functions having a direct mapping from time to states in

the continuous-time space, and functions can be sampled

using a Gaussian process. Such a strategy can guarantee the

smoothness of the generated trajectory. Second, based upon the

feature of efficient structure-exploiting GP regression, GPMP

can implement a fast GP interpolation, which ensures the

feasibility of adjusting path smoothness during the planning

process. Last but not the least, trajectory optimisation based

upon the GP can be regarded as a probabilistic interference,

where an initial knowledge of a trajectory can be used as

a prior and, by considering optimisation constraints, such as

collision avoidance, as likelihood functions, the trajectory will

be optimised following maximum a posterior.

The probabilistic inference based GPMP, also named as

GPMP2, has been successfully implemented on several prac-

tical platforms including robotic arms and mobile robots

[32], [33], [34], [35]. However, no current studies report

any implementation of GPMP2 on USV platforms due to

following challenges. First, the current version of GPMP2

can only optimise a trajectory with regards to short distance

and collision avoidance. Further constraints, especially ocean

currents, should be fully taken into account for USVs when

GPMP2 is employed. The trajectory should be encouraged to

largely follow the direction of ocean currents to minimise

the energy consumption. Second, planning a trajectory for

a robotic arm is different from planning for a USV. The

former focuses on planning in a high-dimensional space but

with in a small work space; whereas the latter normally

performs on a large-scale space (e.g. a USV can be required

to travel for several kilometers) mostly in a 2D or 3D domain.

Therefore, proper modifications are required to address these

two differences to make GPMP2 more suitable for USVs.

In the following sections, we will first introduce the fun-

damental preliminaries of GPMP2 and our proposed new

algorithm, anisotropic GPMP2. The results, including the

comparative studies, are then provided to demonstrate the

capability of our newly proposed algorithm.

III. GPMP2

In this section, we explain GPMP2 algorithm in detail.

Overall, GPMP2 considers a motion planning problem as a

MAP estimation, which views the information relevant to the

start and goal points as a prior and the information relevant

to various conditional constraints such as collision and energy

consumption as likelihoods. Then GPMP2 would maximise the

posterior of the MAP estimation to obtain an optimal solution.

A. Problem formulation and GP prior

GPMP2 algorithm can be formulated as a trajectory optimi-

sation problem, and further, it applies Gaussian Processes to

optimise trajectories in an efficient manner. Formally, the tra-

jectory optimisation aims to determine the optimal trajectory

from all feasible trajectories while satisfying any user defined

constraints and minimising any user prioritised costs [23],

[36]. By considering a trajectory as a function of continuous

time t, such an optimisation process can be written as the

standard form of an optimisation problem with continuous

variables as:

minimise F [θ(t)]

subject to Gi[θ(t)] ≤ 0, i = 1, . . . ,mieq

Hi[θ(t)] = 0, i = 1, . . . ,meq.

(1)

where θ(t) is a continuous-time trajectory function mapping

a specific moment t to a specific robot state θ. F [θ(t)]
is an objective function to find the optimal trajectory by
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Fig. 2. Continues-time trajectories sampled by GP prior: Green point
represents the start point; Red point represents the goal point; θ1, θ2 and
θ3 are three continues-time trajectory samples; Dashed line represents the
mean trajectory µ(t) and shaded area represents the covariance K(t, t′).

minimising the higher-order derivatives of robot states, such

as velocity and acceleration, and collision costs. Gi[θ(t)] is a

task-dependent inequality constraint function and Hi[θ(t)] is

a task-dependent equality constraint function that contains the

desired start and goal states with specified configurations.

As stated in [5], by properly allocating the parameters of

low-resolution states (defined as support states) and interpolat-

ing high-resolution states (defined as interpolated states), the

computational cost of Gaussian Processes can be efficiently re-

duced and, as illustrated in Fig. 2, a continuous-time trajectory

function represented by a Gaussian Process can be formulated

as:

θ(t) ∼ GP(µ(t),K(t, t′)), (2)

where µ(t) is a vector-valued mean function (the dashed line

in Fig. 2) and K(t, t′) is a matrix-valued covariance function

(the shaded area in Fig. 2) that indicates the approximate area

of the trajectory samples from the Gaussian Process:

µ = [µ1...µN ]T (3)

K = [K(ti, tj)]|(0≤i,j≤N) (4)

Then we consider this vector-valued GP as generated by

a linear time-varying stochastic differential equation (LTV-

SDE). The LTV-SDE is used to describe a system dynamics

model of a robot, which, in our case, is a USV. The LTV-SDE

is stated in the following equation:

θ̇(t) = A(t)θ(t) + u(t) + F (t)w(t), (5)

where u(t) is a known system control input, A(t) and F (t)
are the time-varying matrices of the selected system dynamics

model, and w(t) represents the white process noises. w(t) is

stated in the following equation:

w(t) ∼ GP (0, Qcδ(t− t′)), (6)

where Qc is the power-spectral density matrix and δ(t− t′) is

the Dirac delta function.

Based on the LTV-SDE stated in Eq. 5, the solution of

the GP can be calculated based on the vector-valued mean

function and matrix-valued covariance function by the process

described in [37] as:

µ(t) = Φ(t, t0)µ0 +

∫ t

t0

Φ(t, s)u(s)ds (7)

Fig. 3. Signed distance field of a coastal environment: (a) is the pixel map
and (b) is the signed distance field of the map. In the signed distance field, the
point with a larger RGB value is more secure than the point with a smaller
RGB value. The value of σobs is inversely proportional to the weight of the
behaviour (staying inside safe region). The point with a larger value on the
color bar is relatively safe; on the other hand, the point with a smaller value
on the color bar is relatively dangerous.

K(t, t′) = Φ(t, t0)K0Φ(t
′, t0)

T+
∫ min(t,t′)

t0

Φ(t, s)F (s)QcF (s)TΦ(t, s)T ds,
(8)

where u0 and K0 are initial mean and covariance of the first

state, respectively. Φ(t, s) is the state transition matrix from

time t to time s.

Thus, GP prior distribution is given in terms of the mean u

and covariance K:

p(θ) ∝ exp{−1

2
||θ − u||2K} (9)

Based on the proof in [5], we know the inverse matrix-

valued covariance function K−1 is exactly sparse (or block-

tridiagonal). Such a property is extremely important as it

significantly reduces the computational complexity of solving

the inverse of a matrix and enables a fast GP interpolation.

The detailed information about fast GP interpolation will be

presented in Section III-D.

B. Collision likelihood function

First, a binary event ci is defined as a distribution: ci = 0
(if there is no collision risk in a trajectory) or ci = 1 (if there

is any collision risk in a trajectory). In this solution, we are

only interested in the collision-free event (ci = 0).

Then a likelihood function is defined as a distribution in

the exponential family that can indicate the likelihood of a

collision-free trajectory:

l(θ; ci = 0) = exp{−1

2
||h(θ)||2Σobs

}, (10)

where the hyperparameter matrix Σobs is defined as:

Σobs =



σobs

...

σobs


 , (11)

where σobs is the ”obstacle cost weight” corresponds to a

specific covariance matrix and h(θ) is a vector-valued obstacle

cost function:

h(θi) = [c(d(θi))], (12)
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Fig. 4. The relationship between ∆t and ∆τ in fast GP interpolation: ∆t
is the low-resolution sample interval and ∆τ is the high-resolution sample
interval. A low-resolution sample interval is more suitable in free space
whereas a high-resolution is better used in areas with cluttered obstacles.

where c is the hinge loss function defined by the following

equation:

c(d) =

{
−d+ ϵ, if d ≤ ϵ

0, if d > ϵ
, (13)

where d is the signed distance of a point and ϵ is the

safety distance. To be more specific, ϵ indicates the obstacle

boundaries in the signed distance field. c is defined in Eq. 13

where ci = 1 indicates a collision event. Fig. 3 demonstrates

the signed distance field of a coastal environment and effects

of different signed distance field parameter σobs in the same

motion planning problem. Specifically, the value of σobs

adjusts the weight of the behaviour (staying inside the safe

region) in the motion planning problem.

C. MAP estimation

Based on the information in Section III-A and Section III-B,

now we are able to conduct a Bayesian inference to obtain a

locally optimised trajectory. To be specific, we have a GP prior

p(θ) that contains sample trajectories from a start point to a

goal point and a collision likelihood function l(θ; ci = 0) that

helps in selecting collision-free sample trajectories. Further,

the collision likelihood function can also be written as p(ci =
0|θ). Thus, the Bayesian inference of this problem can be

defined as:

θ∗ = argmax
θ

p(θ|ci = 0) = argmax
θ

p(θ)p(ci = 0|θ) (14)

After the optimisation process of Eq. 14 is completed, a

locally optimised trajectory θ∗ can be found. Generally, the

MAP estimation of a GP can be converted into a least squares

problem, which has been thoroughly studied for many years.

In this paper, we use Levenberg–Marquardt algorithm to solve

the least squares problem [38].

D. Fast GP Interpolation

Based on the inference in [37], [5], [36], the posterior mean

of the trajectory at any moment τ can be approximated by

the Laplace method. It can then be expressed in terms of the

current trajectory at moment t:

θ(τ) = µ̃(τ) + K̃(τ, t)K̃−1(θ − µ̃), (15)

where µ̃ and K̃ are the mean function and covariance matrix

corresponds to the Gaussian process of the generated trajec-

tory. In general, the computational complexity of the above

equation is O(N), which increases the difficulty considerably.

Nevertheless, the computational complexity of Eq. 15 is O(1)

Fig. 5. Flow diagram of the overall algorithm.

in this case because the system dynamics model is a LTV-SDE

and K−1 is exactly sparse (or block-tridiagonal). The proof

for the computational complexity in this case is stated in [5].

Thus, we can derive the following equation as:

θ(τ) = µ̃(τ) + Λ(τ)(θi − µ̃i) + Ψ(τ)(θi+1 − µ̃i+1), (16)

where

Λ(τ) = Φ(τ, ti)−Ψ(τ)Φ(ti+1, ti),
Ψ(τ) = Qi,τΦ(ti+1, τ)

TQ−1
i,i+1

(17)

is derived by substituting

K̃(τ)K̃−1 = [0...0 Λ(τ) Ψ(τ) 0...0] (18)

The expression of Qa,b is defined by the following equation:

Qa,b =

∫ tb

ta

Φ(b, s)F (s)QcF (s)TΦ(b, s)T ds (19)

and through this we prove the feasibility of using fast GP in-

terpolation with changeable intervals under this circumstance.

In order to provide a more intuitive understanding of fast GP

interpolation, an example detailing the relationship between

∆t and ∆τ is shown in Fig. 4. In GPMP2, ∆τ specifies the

intermediate step sizes that constitute the trajectory segment

associated to the time interval ∆t. However, such a sampling

strategy leads to unnecessary redundancy on the generated

path, especially in open regions such as an ocean surface with

no obstacle.

IV. ANISOTROPIC GPMP2

In this section, we present the anisotropic GPMP2 algo-

rithm, in detail, which includes two new parts: 1) energy

consumption likelihood function and 2) dynamic fast GP inter-

polation. Also, the anisotropic fast marching (AFM), which is

used to construct the energy consumption likelihood function

is first introduced. The flow diagram of the overall algorithm

is demonstrated in Fig. 5.
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Fig. 6. Important definitions in AFM: (a) the FM method updating scheme
and (b) the schematic of calculating arrival time using AFM at neighbour
point [41].

A. Anisotropic fast marching method

In order to plan a trajectory to largely exploit ocean currents

and subsequently save energy, an appropriate metric needs

to be established to evaluate the impact of currents in an

environment. In this paper, we adopt the concept of anisotropy,

which is the existence of preferred directions in a domain,

to construct this new energy metric. Local ocean current

direction will be mathematically expressed as an anisotropy

in each place, and the energy metric will be calculated such

that in any area the direction that follows the ocean current

will be given the highest priority. This will consequently pro-

vide an energy consumption likelihood that enables GPMP2

to fast search for a trajectory that can largely exploit the

ocean current, and because of the adoption of anisotropy,

this new motion planning algorithm will be denoted as the

anisotropic GPMP2. The energy metric is calculated in this

paper using anisotropic fast marching method (AFM), which

is an updated version of the fast marching method (FM).

To give a holistic introduction of the construction of energy

metric, the mathematical fundamentals of FM and AFM will

be introduced in following subsections. Detailed algorithm

development including pseudocode can be referred to [39],

[40].

1) Fast marching method (FM): The FM method is a level-

set method introduced in image processing [39]. It aims to

generate an arrival time map U in order to satisfy the Eikonal

equation, which describes a wave front propagation scenario.

The Eikonal equation can be expressed in the form of:

|| ▽ U(−→p )||τ(−→p ) = 1, (20)

where τ(−→p ) is the wave propagation speed that is related to

position −→p = (x, y). The solution U(−→p ) is the wave arrival

time at −→p . Note that U(−→p ) can be interpreted as the distance

cost from the start point to −→p , if the wave propagation speed

is constant.

As shown in Fig. 6 (a), if the optimal path to −→p arrives

from northeast and intersects −→pi−→pj at
−→
M , the arrival time at

−→p can be computed from −→pi and −→pj , denoted as u−→pi
−→pj
(−→p ),

and expressed as:

u−→pi
−→pj
(−→p ) = min

t1t2

(
t1u−→pi

+ t2u−→pj
+

√
t2
1
+t2

2

τ(−→p )

)
, (21)

where u−→pi
and u−→pj

are the arrival time at −→pi and −→pj respec-

tively. t1 and t2 satisfy the following conditions: t1 + t2 = 1
and t1, t2 > 0.

2) Anisotropic fast marching method (AFM): From Eq. 21,

it can be observed that the conventional FM method only takes

the distance cost into account. To integrate the orientation

information, the conventional FM method was improved in

[42], to a new algorithm denoted as the ‘anisotropic fast

marching algorithm’ (AFM) and the Eikonal equation can be

rewritten as:

u−→pi
−→pj
(−→p ) = min

t∈[0,1]

(
tu−→pi

+ (1− t)u−→pj
+ ||

−→
θ (t)||

τ(
−→
θ (t))

)
. (22)

Here
−→
θ (t) = −→p − (t−→pi + (1− t)−→pj ) is a vector that indicates

the direction of the cost/speed profile. ||−→θ (t)|| is the distance

between −→p and the intersection point between −→pi and −→pj . The

wave propagation speed is now dependent on orientation as

denoted as τ(
−→
θ (t)). To simplify the notation,

−→
θ (t) is replaced

by
−→
θ in the following sections. In contrast to the conventional

FM method, the local cost/speed characteristic of the AFM

method is no longer circular.

In [42], an elliptical shape was used to represent the local

cost/speed model as conversion to a circle is a simple process

(conventional FM case). The direction of each vector (direction

of ocean current in our case) is defined along the major axis of

the ellipse; while its minor axis is perpendicular to the vector’s

direction. In this case, the wave front travels along the major

axis as the propagation’s preferred direction. Generally, the

ellipse speed profile is described as:

x2

r2a
+

y2

r2b
= 1, (23)

where ra and rb are the major and minor radii along the X

and Y axes of the local ellipse frame. If the ellipse is along

a direction of −→n (as shown in Fig. 6 (b)), then the radius r

along
−→
θ , satisfies:

r2
(

(cos∠(
−→
θ ,−→n ))2

r2a
+ (sin∠(

−→
θ ,−→n ))2

r2
b

)
= 1, (24)

where ∠(
−→
θ ,−→n ) is the angle between

−→
θ and −→n , r is used

as the wave propagation speed along the
−→
θ direction; hence,

τ(
−→
θ ) in Eq. 22 can now be written as:

τ(
−→
θ ) =

1√
(cos∠(

−→
θ ,−→n ))2

r2a
+ (sin∠(

−→
θ ,−→n ))2

r2
b

=
||−→θ ||√

(θxcosϕ)2

r2a
+

(θysinϕ)2

r2
b

, (25)

where φ is the angle between −→n and X axis. θx and θy are

the components of
−→
θ along the X and Y axes. Therefore,

u−→pi
−→pj
(−→p ) in Eq. 22 can be rewritten as,

min
t∈[0,1]

(
tu−→pi

+ (1− t)u−→pj
+
√

(θxcosϕ)2

r2a
+

(θysinϕ)2

r2
b

)
.

(26)

Fig. 7 represents the energy consumption map created by the

AFM. In four different scenarios each with different number of
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Fig. 7. Anisotropic GPMP2 with added energy consumption function like-
lihood works in marine environments with a variety of vortexes. The energy
consumption rate at the point in the bright yellow region close to the vortex
is relatively high; on the other hand, the energy consumption rate at the point
in the dark blue region away from the vortex is relatively low. To demonstrate
the optimal performance of anisotropic GPMP2 on tracking ocean currents,
we empirically minimised σe in (a), (b), (c) and (d).

Fig. 8. The effect of σe in anisotropic GPMP2 motion planner. The energy
consumption rate at the point in the bright yellow region close to the vortex
is relatively high; on the other hand, the energy consumption rate at the point
in the dark blue region away from the vortex is relatively low.

vortexes and taking the start and goal points into consideration,

different areas have been assigned with different likelihood

levels to indicate the difficulties of following currents locally.

In Fig. 7, lower valley regions in the map, indicated with

darker colours, correspond to regions where the direction of

water currents is more uniform and consistent and where a

USV would tend to follow.

B. Anisotropic energy consumption likelihood function

The offset angle between the ocean current and the ideal di-

rection of a path can lead to additional energy consumption to

Fig. 9. The energy consumption rate at each waypoint of trajectory when
using different parameters σe on energy consumption field. The energy
consumption rate is defined by the RGB value at the point in energy
consumption field generated by AFM. In Fig. 8, the energy consumption rate
at the point in the bright yellow region close to the vortex is relatively high;
on the other hand, the energy consumption rate at the point in the dark blue
region away from the vortex is relatively low.

resist the ocean current disturbances. Hence we add an energy

consumption likelihood function to minimise this consumption

as well as avoid hazardous regions such as vortexes, which is

defined as:

l(θ; e) = exp{−1

2
||g(θ)||2Σe

}, (27)

where the definition of matrix Σe is the same as Σobs and g(θ)
is a vector-valued ocean current cost function:

g(θi) = [e(θi)], (28)

where e is an energy consumption function that can obtain the

energy consumption rate at a point based on the energy matrix

defined by AFM in Section IV-A.

Based on this energy consumption likelihood function, the

Bayesian inference of anisotropic GPMP2 is defined as:

θ∗ = argmax
θ

p(θ)[p(ci = 0|θ) p(e|θ)] (29)

To gain a more intuitive understanding of the feasibility

of the proposed energy consumption likelihood function, the

example in Fig. 7 demonstrates the influence of energy con-

sumption likelihood function in marine environments with

various vortexes. Based on the observation and measurement

of ocean currents in [43], it is clear that ocean currents within

a specific area comprise of a constant magnitude and variant

directions. We thereby decide to use vortexes to generate

ocean currents in the following simulations due to vortexes

also comprise of a constant magnitude and variant directions.

As shown in Fig. 7, the high energy consumption regions are

represented in yellow with the low energy consumption regions

in blue. The path generated by anisotropic GPMP2 with the

energy consumption likelihood function follows ocean currents

to minimise the energy consumption in blue regions and avoids

vortexes in yellow regions to maintain safety. To demonstrate

the adjustable capability of the proposed likelihood function,

Fig. 8 and Fig. 9 demonstrate the results with different values

of parameter σe, the value of which is inversely proportional

to the proposed likelihood function’s weight in the entire path

planning process.



8

Algorithm 1: Dynamic Fast GP Interpolation

Input: Start state θ0, goal state θN , maximum

sampling time tmax and search radius r

Precompute Continuous-time trajectory samples with

mean µ and covariance K

Compute the low-resolution sample interval ∆t by

using Eq. 30

for i = 1, 2, . . . , N do
Compute total sample number nj in the

corresponding sub-search region by using by Eq.

32

Compute high-resolution sample interval ∆τj by

using Eq. 31

for j = 1, 2, . . . , nj do
Perform fast GP interpolation with

high-resolution sample interval ∆τj by using

Eq. 33
end

end

Output: optimal path θ∗

C. Dynamic fast GP interpolation

GPMP2 uses uniformly distributed fast GP interpolation to

generate paths. Nevertheless, such an approach leads to a par-

ticular drawback, where the execution time would be relatively

long when the interpolation interval is relatively small. On the

contrary, increasing the interpolation interval would impair the

obstacle avoidance performances as well as compromise path

smoothness. To solve such a problem, we propose dynamic

fast GP interpolation as shown in Algorithm 1. This algorithm

determines the distribution of obstacles when initialising the

GP prior, and an adaptive ∆τ can be defined according to

the locations of obstacles for fast GP interpolation. By using

the proposed dynamic fast GP interpolation algorithm, dense

points can be sampled in areas with obstacles; while redundant

sampling points are removed from intervals in free spaces.

Such a strategy can further optimise the execution time as well

as the path length by removing redundant sampling points.

At the beginning of Algorithm 1, start state θ0, goal state

θN , maximum sampling time tmax and search radius r are

required as inputs. Based on this information, the GP prior can

be computed using Eq. 9. Then the low-resolution sampling

interval ∆t in the global search region is computed by the

following equation:

∆t =
tmax

N
, (30)

where N is the total number of sub-searching regions. In

each local sub-searching region, the high-resolution sampling

interval ∆τ is computed using the following equation:

∆τj =
∆t

nj

, (31)

where nj is the total number of sample points inside each

corresponding sub-searching region and is defined as:

nj = λ · f( sj

ssub
), (32)

where λ is the self-defined proportionality coefficient, f is

a function used to round-up to the nearest integer, sj is the

total area of obstacles inside the corresponding sub-searching

region and ssub is the area of the corresponding sub-searching

region with its dimension equal to πr2. Hence Eq. 16 can be

written as:

θ(τj) = µ̃(τj) + Λ(τj)(θi − µ̃i) + Ψ(τ)(θi+1 − µ̃i+1), (33)

where

Λ(τj) = Φ(τj , ti)−Ψ(τj)Φ(ti+1, ti),
Ψ(τj) = Qi,τjΦ(ti+1, τj)

TQ−1
i,i+1

(34)

is derived by substituting

K̃(τj)K̃
−1 = [0...0 Λ(τj) Ψ(τj) 0...0] (35)

In the following simulations, we demonstrate that a trajec-

tory with higher smoothness can be generated in obstacle-

free areas by using the dynamic GP interpolation without

compromising any collision avoidance performances.

V. FACTOR GRAPH

In the anisotropic GPMP2, a factor graph is used to deal

with MAP estimation as it offers the following advantages

[44]:

• It can simplify the modelling problem and provide better

clarity;

• It can improve computational performance.

To be more specific, a factor graph G is defined as:

G = {Θ,F , E}, (36)

where Θ = {θ0, ..., θN} is a set of variable nodes (in our case

is a set of USV’s states), F = {f0, ..., fM} is a set of factor

nodes and E are edges that connect the variable nodes and

factor nodes. The factorisation of the posterior in our problem

can be formulated as:

p(θ|c, e) ∝
M∏

m=1

fm(Θm), (37)

where fm are factors on variable subset Θm. A comprehensive

structure illustrating how these different factors are integrated

for anisotropic GPMP2 is shown in Fig. 10 with each factor

explained in following subsections.

A. Prior factor

The GP prior in our problem can be factored as:

p(θ) ∝ f
p
0 (θ0)f

p
N (θN )

N−1∏

i=0

f
gp
i (θi, θi+1), (38)

where f
p
0 (θ0) as shown in Fig. 10 (a) defines the prior

distribution on the start point and f
p
N (θN ) defines the prior

distribution on the goal point. Based on Eq. 9, we can further

derive the expression of f
p
i (θi):

f
p
i (θi) = exp{−1

2
||θi − ui||2Ki

}, i = 0 or N. (39)

Here Ki is the covariance matrix and µi is the mean vector.
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Fig. 10. The structure of the factor graph of anisotropic GPMP2: (a)
demonstrates the prior factor, (b) demonstrates the GP prior factor, (c)
demonstrates the obstacle factor, (d) demonstrates the interpolated obstacle
factor (e) demonstrates the ocean current factor and (f) demonstrates the
interpolated ocean current factor.

To connect the start node and goal node by fast GP

interpolation, GP prior factor f
gp
i (θi, θi+1) as shown in Fig.

10 (b) is formulated as:

f
gp
i (θi, θi+1) = exp{−1

2
||Φ(ti+1, ti)θi−θi+1+ui,i+1||2Qi,i+1

},
(40)

where ua,b =
∫ ta

tb
Φ(b, s)µ(s)ds, Φ(ti+1, ti) is the state tran-

sition matrix and the definition of Qi,i+1 can be found in Eq.

19.

B. Collision likelihood factor

The collision likelihood l(θ; c) can be factored by two

categories of obstacle cost factors which include: (1) a regular

obstacle factor fobs
i and (2) an interpolated obstacle factor

fobs
τi

:

l(θ; c) =

N∏

i=0

{fobs
i (θi)

nj∏

j=1

fobs
τj

(θi, θi+1)}, (41)

where nj represents the number of interpolated obstacle factor

within each low-resolution sampling interval ∆t.

The regular obstacle factor fobs
i as shown in Fig. 10 (c)

is a unary factor connected with each variable node (or each

USV’s state) and is defined as:

fobs
i (θi) = exp{−1

2
||h(θi)||2σobs

}, (42)

where h(θi) is an M-dimensional vector-valued obstacle cost

function for each state defined in Eq. 12 and σobs is a M×M

hyperparameter matrix.

The interpolated obstacle factor fobs
τj

as shown in Fig. 10

(d) is a binary factor connected with each of the two variable

nodes representing the obstacle cost at each interpolated

variable node θτi within each low-resolution interval ∆t. And

it is defined as:

fobs
τj

(θi, θi+1) = exp{−1

2
||h(θ(τj))||2σobs

}, (43)

where h(θ(τj)) can also be viewed as hτj (θi, θi+1) and this

is achieved by dynamic fast GP interpolation introduced in

Section IV-C.

C. Energy consumption likelihood factor

Similar to the previous factor, energy consumption likeli-

hood can also be factored by two categories of energy cost

factors which include: (1) a regular energy consumption factor

fe
i and (2) an interpolated energy consumption factor fe

τi
:

l(θ; e) =

N∏

i=0

{fe
i (θi)

nj∏

j=1

fe
τj
(θi, θi+1)}, (44)

where nj represents the number of interpolated energy con-

sumption factor within each low-resolution sampling interval

∆t.

The regular energy consumption factor fe
i as shown in Fig.

10 (e) is a unary factor connected with each variable node (or

each USV’s state). It is defined as:

fe
i (θi) = exp{−1

2
||g(θi)||2σe

}, (45)

where g(θi) is an M-dimensional vector-valued energy cost

function for each state defined in Eq. 28 and σe is a M×M

hyperparameter matrix.

The interpolated energy consumption factor fe
τj

as shown in

Fig. 10 (f) is a binary factor connected with each two variable

nodes. It represents the energy cost at each interpolated

variable node θτi within each low-resolution interval ∆t and

is defined as:

fe
τj
(θi, θi+1) = exp{−1

2
||g(θ(τj))||2σe

}, (46)

where g(θ(τj)) can also be viewed as gτj (θi, θi+1) and this

is also achieved by dynamic fast GP interpolation in Section

IV-C.

VI. SIMULATIONS AND DISCUSSIONS

In this section, we demonstrate the performance of

anisotropic GPMP2 in detail.

A. Simulation details

Three categories of simulations have been conducted to

evaluate the proposed method, namely the anisotropic GPMP2.

Specifically, the proposed method was quantitatively tested

against two simulation benchmarks and compared with the

state-of-the-art motion planning algorithms including GPMP2

[6], AFM [13], A* [11] and RRT* [20]. We also demonstrate

the capabilities of the proposed method in qualitative tests.

In all the simulations, GP-based methods such as GPMP2,

GPMP2-dyn-intep and anisotropic GPMP2 were always ini-

tialised with a constant-velocity straight-line trajectory. Table

I describes the realisations of the comparison motion planning

algorithms. Table II details the specifications of the parameters

used in all the motion planning algorithms. The specific

parameters of GP-based motion planning, A* and RRT* in the

following simulations in various resolutions are clarified. In

Table II, ϵ indicates the safety distance [pixel], σobs indicates
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TABLE I
DESCRIPTION OF THE COMPARISON MOTION PLANNING ALGORITHMS.

Name Description of the motion planning algorithm

A*

Based on a precomputed grid-map, it aims to find the path
with smallest cost f(n) = g(n) + h(n) from the start node
to the end node, where g(n) is the cost of the path from the
start node to n and h(n) is a heuristic function that estimates
the cost of the cheapest path from n to the goal.

RRT*

Within the configuration space, it grows a tree rooted at the
start node until reaching the end node. A series of tree branc-
-hes connecting the start and end nodes constructs a planned
path. Also, it keeps re-wiring the tree branches to shorten the
length of the planned path.

AFM

FM produces the potential field by simulating the propagation
of an electromagnetic wave. Then it performs gradient descent
to find an optimal path. AFM is an improved version of the
FM method which can consider tidal currents and has higher
computational efficiency than the level set method.

PSO

A series of particles are moved around in the configuration
space according to a pre-defined function. The movements of
the particles are guided by their own best-known position in
the configuration space and the entire swarm’s best-known
position. Improved positions will further guide the movements
of the swarm once they are discovered. By repeating this step
several times, a global / local optimal path can be found.

TABLE II
SPECIFICATION OF THE PARAMETERS USED IN THE MOTION PLANNING

ALGORITHMS.

Map [pixel] GP-based Motion Planning A* RRT*

ϵ σobs σe Tmax N l l

500x500 20 0.05 0.005 2.0 5 10.0 10.0

1000x1000 20 0.05 0.005 4.0 10 10.0 10.0

2000x2000 20 0.05 0.005 8.0 20 10.0 10.0

5000x5000 20 0.05 0.005 20.0 50 10.0 10.0

TABLE III
SPECIFICATION OF THE USED HARDWARE PLATFORM.

Name of the Device Description Quantity

Processor 2.6-GHz Intel Core i7-6700HQ 8

RAM 8 GB 1

the obstacle cost weight, σe indicates the energy cost weight,

Tmax indicates the total sampling time [s], N indicates the

low-resolution region number in Algorithm 1 and l indicates

the step size [pixel]. In the following simulations, one pixel

in the map equals one meter in the corresponding motion

planning problem. Table III is a specification of the hardware

platform used. In this section, the optimal path indicates the

path generated by a motion planning algorithm based on a

series of certain parameters and constraints.

B. System dynamics model

A constant-velocity motion model is selected in this work to

represent the system dynamics model of the USV. On an actual

voyage, a USV usually adjust its angular velocity to change

orientation, while in the meantime, maintaining its linear

velocity to maintain stability. The constant-velocity motion

model can generate an initial trajectory with constant linear

velocity on each point. Then offset would occur on each point

on initial trajectory based on the effect of factor graph. During

the deviating process, the linear velocity attribute on each point

would remain constant. After this process, a new trajectory

Fig. 11. Coastal Environment used in simulations: (a) is the map of Roadford
Lake, Devon, UK and (b) is the binary image of it. Furthermore, (a) is a
500x500 resolution map in the simulation and a 2500x2500 [m2] area in
the real-word. This means 1 [pixel] is approximately equal to 5 [m] in the
simulation.

Fig. 12. A comparison of different-resolution no-obstacle environments with
time-invariant ocean currents: (a) demonstrates the 500x500 resolution map
(an area about 2500x2500 [m2] in the real-world) with time-invariant ocean
currents and (b) demonstrates the 2000x2000 resolution map (an area about
10000x10000 [m2] in the real-world) with time-invariant ocean currents. A
high resolution map would potential require an increased computation time.

would be constructed by connecting the new points. Each point

on the new trajectory has the same linear velocity compared

with the corresponding point on the initial trajectory and the

position of each point has already been changed. To guarantee

the consistency of the new trajectory when constructing it, the

angular velocity of each point on the new trajectory would

then be inconsistent. Hence we finally obtain a new trajectory

with constant linear velocity and time-varying angular velocity,

which is consistent with an actual voyage dynamics of a

USV. This prior will minimise acceleration in motion planning,

thus reducing energy consumption and giving the physical

generated path an increased degree of smoothness. To be

more specific, the dynamics of USVs are represented with the

double integrator linear system with additional white noise on

acceleration. Hence the trajectory is generated by the LTV-

SDE in Eq. 5 with parameters:

C. Benchmark without ocean currents

A =

[
0 I

0 0

]
, x(t) =

[
r(t)
v(t)

]
, F (t) =

[
0
I

]
, u(t) = 0, (47)
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TABLE IV
A COMPARISON OF GPMP2-DYN-INTEP (GPMP2 WITH DYNAMIC FAST GP INTERPOLATION), A* AND RRT* ON AVERAGE EXECUTION TIME (T ), PATH

LENGTH (L) AND SAMPLE NUMBER K IN 20 PATH PLANNING PROBLEMS WITHOUT OCEAN CURRENTS. EACH EXPERIMENT WAS TESTED 5 TIME TO

CALCULATE THE AVERAGE VALUE.

Map [pixel] Problem GPMP2-dyn-intp A* RRT*
T [ms] L [pixel] K T [ms] L [pixel] K T [ms] L [pixel] K

1 122.6 560.8 20 2410.9 565.7 41 2939.2 624.8 61
2 137.7 688.5 37 29786.6 688.7 62 6358.2 735.6 73

500x500 3 125.3 729.2 25 16217.5 688.7 49 5095.6 683.3 67
4 102.2 783.8 26 14628.1 618.4 50 9913.1 684.2 64
5 123.2 419.5 23 8137.3 441.4 41 2251.5 451.9 44

6 272.4 1177 40 4310.5 1131.4 81 7995.4 1265.1 125
7 286.7 1405 79 110974.6 1359.8 120 9189.1 1419.3 140

1000x1000 8 276.2 1231.6 51 300677.9 1213.3 95 8410.1 1290.1 127
9 233.2 1246.9 49 42185.4 1207.5 94 76804.7 1341.5 132

10 242.6 1014.5 49 37621.2 882.8 81 5545.2 970.7 96

11 386.5 2275.9 80 5721.8 2262.3 161 15732.7 2548.7 246
12 478.5 2935.1 163 - - - 52749.1 2947.7 289

2000x2000 13 492.2 2403.3 103 - - - 49727.5 2762.9 270
14 471.9 2709 95 - - - 72163.3 2849.2 282
15 420.7 1908.7 98 - - - 8137.8 1966.2 208

16 1730.8 6655.8 200 28613.4 5656.9 401 80052.2 6296.2 609
17 1715.6 7636.2 411 - - - 157234.2 7193.5 705

5000x5000 18 1681.7 7144.4 265 - - - 71707.1 6137.1 601
19 1638.2 6547.7 240 - - - 159036.7 6692.9 652
20 1700.1 5920.5 244 - - - 74032.8 4550.8 442

Notes: GPMP2-dyn-intp only uses the proposed interpolation method (fast GP interpolation) without using anisotropy to deal with ocean currents due to
the limited working performances of RRT* and A* in ocean environments.

where r = (x, y)T is the position vector, v = (vx, vy) is the

velocity vector and given ∆ti = ti+1 − ti,

Φ(t, s) =

[
I (t− s)I
0 I

]
, Qi,i+1 =

[
1
3∆t3iQC

1
2∆t2iQC

1
2∆t2iQC ∆tiQC

]
,

(48)

Analogously, this prior is centered around a zero-acceleration

trajectory.

In this subsection, we demonstrate the improvement of

GPMP2 with only dynamic fast GP interpolation (GPMP2-

dyn-intp) over A*, RRT* in various 2D environments in-

cluding no-obstacle environment, single-obstacle environment,

multi-obstacle environment, narrow-passage environment and

coastal environment without the effect of ocean currents. All

the aforementioned motion planning methods would stop once

a feasible path has been found. The detailed information

regarding the comparison between GPMP2-dyn-intp, A* and

RRT* is shown in Table. IV. The aim of this simulation

is to show the benefits of dynamic fast GP interpolation in

various 2D environments, and that it has the shortest execution

time, highest smoothness, near-optimal path length and good

performance on avoiding obstacles compared with A* and

RRT*. The smoothness is measured by the number and degree

of the jags on path. To be more specific, a path with a small

number of jags would be considered as being smooth. In

addition, a jag with an obtuse angle would be considered as

being smooth compared with an acute angle.

Against this benchmark, GPMP2-dyn-intp has a significant

advantage on the average execution time compared with A*

and RRT* in all simulations, especially in large-scale motion

planning problems as shown in Table. IV. Based on the

results, with the increase of problem complexity, i.e. resolution

difference, GPMP2-dyn-intp has the slowest growth in its

average execution time, compared with A* and RRT*. For

instance, the average execution time of GPMP2-dyn-intp in

Fig. 13. Comparisons about the paths generated by various motion planning
algorithms: (a) compares the paths generated by GPMP2-dyn-intp, A* and
RRT* in coastal environment without the effect of ocean currents, (b)
compares the paths generated by anisotropic GPMP2 and AFM in coastal
environment with the effect of ocean currents and (c) compares the paths
generated by GPMP2-dyn-intp and PSO in multi-obstacle environment with-
out the effect of ocean currents.

the 500×500 resolution map is 122 ms and in the 5000×5000
resolution map is just 1693.1 ms. This is because GPMP2-dyn-

intp has the prior distributions of obstacles and ocean currents,

which can save lots of time by reducing the randomness of the

motion planning problem. A* was not able to deliver a feasible

solution in most of the large-scale motion planning problems

only being able to deliver a feasible solution in different-

resolution no-obstacle environments with the start and goal

points initialised on the diagonal. This is because A* always

needs to search possibles path in configuration space to obtain

the optimal path which has high dependence on the heuristic

function defined with a preferred search direction. However,

this path searching strategy led to a significant growth of

the complexity of A* when dealing with large-scale motion

planning problems. RRT* could find a feasible solution in all

2D environments with various resolutions. However, the aver-

age execution time of RRT* increase exponentially in large-

scale motion planning problems due to the randomness of
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TABLE V
A COMPARISON OF GPMP2-DYN-INTEP AND PSO ON AVERAGE

EXECUTION TIME (T ), PATH LENGTH (L) AND SAMPLE NUMBER K IN

VARIOUS PATH PLANNING SCENARIOS WITHOUT OCEAN CURRENTS. IN

EACH SCENARIO, EXPERIMENT WAS TESTED 5 TIME TO CALCULATE THE

AVERAGE VALUE.

Map [pixel] GPMP2-dyn-intp PSO
T

[ms]
L

[pixel]
K

T
[ms]

L
[pixel]

K

500x500 111.3 590.8 30 669.3 727.8 100

Notes: Similarly, GPMP2-dyn-intp only uses the proposed interpolation
method (fast GP interpolation) without using anisotropy to deal with
ocean currents due to the limited working performance of PSO in ocean
environments.

RRT* increases exponentially in large-scale motion planning

problems. To be more specific, the step length of RRT* is

constant in maps with various resolutions and the probability

of the sample point locating on a random position becomes

smaller in large-scale maps. As a result, the performance

of RRT* would be highly unsuitable for large-scale motion

planning problems.

Overall, A* could only find a valid path with a reasonable

search space size; while GPMP2-dyn-intp and RRT* were

only able to find locally optimal paths without conducting re-

planning. Although the paths generated by GPMP2-dyn-intp

and RRT* have a similar length at the different resolutions as

shown in Table. IV, GPMP2-dyn-intp has an obvious advan-

tage on path smoothness compared with RRT*. The random-

ness and uniform sampling strategy of RRT* create a number

of sparse and loose branches, which leads to redundancy on the

path. In Table. IV, the relatively large sample number of RRT*

can reflect the redundancy on the path generated by RRT*.

So the paths generated by RRT* were comparatively sinuous

and not consistent with robot motion constraints. In narrow-

passage simulation, RRT* took a very long time to locate

the position of the narrow passage due to the randomness

and uniform sampling strategy. However, GPMP2-dyn-intp can

quickly locate the position of the narrow passage because the

GP prior has determined its search direction so it only needs

to check if the narrow passage is located inside the shaded

area of GP prior.

In addition, a comparative study between the GPMP2-dyn-

intp and an evolutionary algorithm, i.e. particle swarm optimi-

sation (PSO), was conducted in a 2D environment. PSO has

been successfully applied for intelligent marine vehicles for

task allocation and motion planning [45], [46]. Herein, based

upon the work in [47], PSO is initialised with a swarm size

of 150, an inertia weight of 1, a personal learning coefficient

of 1.5, a global learning coefficient of 1.5 and a maximum

velocity of 200 as the predefined parameters.

Detailed information regarding the comparison between

GPMP2-dyn-intp and PSO is shown in Table. V. We notice

that GPMP2-dyn-intp could generate a shorter path with a

much faster speed compared with PSO. Moreover, the smooth-

ness of the path generated by PSO is not always satisfactory

in the conducted simulations. This might be caused by a

relatively small value of the maximum number of iteration.

Nevertheless, increasing the maximum number of iteration will

increase the time cost. An example that compares the paths

generated by GPMP2-dyn-intp and PSO in a multi-obstacle

environment is shown in Fig. 13 (c).

D. Benchmark with ocean currents

In this subsection, we demonstrate the improvement of

the proposed method, anisotropic GPMP2, over GPMP2 and

AFM in various 2D environments including no-obstacle envi-

ronment, single-obstacle environment, multi-obstacle environ-

ment, narrow-passage environment and coastal environment

with the presence of ocean currents. The detailed information

about the comparison between anisotropic GPMP2, GPMP2

and AFM is shown in Table. VI. This simulation attests to

the benefits of anisotropic GPMP2 by metrics such as energy

consumption rate, execution time, solution time, path length

and number of sample points. More specifically, solution time

represents the computational time used for determining the

path; on the other hand, execution time represents the total

computational time of the method including the solution time

and the computational time used for constructing various fields

such as a signed distance field and an energy consumption

field. We only compared them in maps with resolution ranges

from 500 × 500 to 2000 × 2000. Because the time cost for

generating energy consumption field is relatively long (> 60

s) when the map resolution changes into 5000× 5000.

First of all, we qualitatively compared GPMP2, anisotropic

GPMP2 without dynamic fast GP interpolation and anisotropic

GPMP2 with dynamic fast GP interpolation in the same

motion planning problem in coastal environment based on

different perspectives as shown in Fig. 14. We notice that

the path generated by GPMP2 only avoids obstacles and

barely follows ocean currents in Fig. 14 (a) and (b). However,

the paths generated by anisotropic GPMP2 without dynamic

fast GP interpolation and anisotropic GPMP2 follow ocean

currents and attempt to stay in low-consumption region (dark

blue region) in Fig. 14 (d), (e), (g) and (h). This demonstrates

that the proposed anisotropic energy consumption likelihood

function is effective. On the other hand, anisotropic GPMP2

with dynamic fast GP interpolation generated path with fewer

sample points, which further optimises the path. This demon-

strates that the proposed dynamic fast GP interpolation works

effectively. Moreover, the paths generated these three methods

are all inside the safe regions (purple regions) of the signed

distance field in Fig. 14 (c), (f) and (i), which demonstrate the

effectiveness of the collision likelihood function.

We then quantitatively compared anisotropic GPMP2,

GPMP2 and AFM on the average energy consumption rate,

average execution time, average solution time, average path

length and average sample point number in Table. VI and Fig.

15. As shown in Table. VI, anisotropic GPMP2 has the shortest

execution time compared with GPMP2 and AFM. This is a

result of the following reasons:

• GP-based algorithms (anisotropic GPMP2 and GPMP2)

have faster speeds compared with AFM due to solution

cost of them are smaller compared with AFM as shown in

Fig. 15. To be specific, it would seem the MAP estimation

process of GP-based algorithm has a faster convergence

speed compared with the gradient descent process of

AFM;
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TABLE VI
A COMPARISON OF ANISOTROPIC GPMP2, GPMP2 AND AFM ON AVERAGE ENERGY CONSUMPTION RATE (Pe), EXECUTION TIME (T ), PATH LENGTH

(L) AND SAMPLE NUMBER K IN 20 PATH PLANNING PROBLEMS WITH OCEAN CURRENTS. EACH EXPERIMENT WAS TESTED 5 TIME TO CALCULATE THE

AVERAGE VALUE.

Map [pixel] Problem Anisotropic GPMP2 GPMP2 AFM
Pe [%] T [ms] L [pixel] K Pe [%] T [ms] L [pixel] K Pe [%] T [ms] L [pixel] K

1 14.2 506.4 354.4 20 20.6 633.4 306.3 30 10.5 641.8 364.6 3093
2 12.4 542 503.1 21 19.3 605.2 393.8 30 11.6 653.9 541.7 4875

500x500 3 8.2 538.7 630.7 26 17.9 615.2 486.5 30 9.3 657.5 682.4 5629
4 12.7 546.2 711.2 37 17.2 558.1 724.8 45 - - - -
5 7.5 572.7 362.7 27 11.2 604.5 414.1 30 5.9 643.7 394.3 3558

6 16.4 2037.8 651.2 40 21.3 2150.4 604.7 60 10.1 2221.2 684.5 6158
7 13.7 2059.5 829.5 41 17.8 2143 781.6 60 12.8 2393.5 853.8 9574

1000x1000 8 12.5 2077.7 1522.4 42 18.5 2167.6 1108.6 60 9.2 2422.8 1567.4 11221
9 15.2 2112.2 929.7 40 16.2 2174.4 880.2 70 - - - -

10 5.1 1961 656.2 43 8.9 2024.2 521.7 60 4.3 2274.8 697.8 6337

11 7.7 9938.3 1810.9 80 10.6 9964.5 1701.9 120 6.5 10019.6 1886.4 12263
12 12.8 8823.9 2060.3 116 21.5 9031.7 1812.3 120 11.7 9673.9 2075.1 19452

2000x2000 13 14.5 10364.5 2459.4 110 23.5 10211 2726.1 120 9.1 10213.2 2511.5 22411
14 12.1 8041.1 2534.7 100 16.2 8253.6 2359.5 130 - - - -
15 4.2 8175.1 1667.2 82 9.6 8260.3 1315.4 120 3.7 9203.2 1705.3 11483

Fig. 14. A comparison between GPMP2 and anisotropic GPMP2 in the
same motion planning problem in coastal environment based on different
perspectives: (a) demonstrates GPMP2 in binary map; (b) demonstrates
GPMP2 in energy consumption field; (c) demonstrates GPMP2 in signed
distance field; (d) demonstrates anisotropic GPMP2 without dynamic fast GP
interpolation in binary map; (e) demonstrates anisotropic GPMP2 without
dynamic fast GP interpolation in energy consumption field; (f) demonstrates
anisotropic GPMP2 without dynamic fast GP interpolation in signed distance
field; (g) demonstrates anisotropic GPMP2 with dynamic fast GP interpolation
in binary map; (h) demonstrates anisotropic GPMP2 with dynamic fast GP
interpolation in energy consumption field and (i) demonstrates anisotropic
GPMP2 with dynamic fast GP interpolation in signed distance field.

• Dynamic fast GP interpolation decreased the number of

sample points, requiring the factor graph of anisotropic

GPMP2 to have fewer nodes and calculation steps com-

pared with the factor graph of GPMP2.

Fig. 15. A comparison of the average solution time cost of anisotropic GPMP2
(MAP estimation), GPMP2 (MAP estimation) and AFM (Gradient descent)
in 2D environments with different resolutions. The solution time cost specific
refers to the time cost to find an optimal solution after constructing all the
necessary fields such as signed distance field and energy consumption field.
The solution time of AFM does not exist in problem 4, 9 and 14, because it
cannot find a feasible path in narrow-passage environment with ocean currents.

As we can see in Fig. 15, with the scale of the motion plan-

ning problem increases, the advantage of GP-based algorithms

on solution cost would become more noticeable compared

with AFM. This is because the computational complexity of

gradient descent dramatically increases in large-scale or high-

dimensional motion planning problems.

In Table. VI, the path length of GPMP2 is shorter compared

with anisotropic GPMP2 and AFM. This is because the path

generated by GPMP2 does not follow ocean currents. Usually,

the path would be more sinuous and the average energy

consumption rate would be lower when the path attempts to

track ocean currents. Compared with anisotropic GPMP2, the
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Fig. 16. Re-planning for static platform with time-varying ocean currents:
From (a) to (d), the vortex moves from a position close to the platform start
point to a position close to its platform goal point. In 10 repeated tests, the
execution time of re-planning processes from (a) to (d) were 681.9 ms, 565.1
ms, 532.6 ms and 505 ms respectively.

path generated by AFM has the lower energy consumption

rate as shown in Table. VI, which means the path generated

by AFM was better at tracking ocean currents. So the path

of AFM would be more sinuous and the path length would

be longer as shown in Table. VI. In Table. VI, the number

of sample points of AFM is greater than the number of

sample points of GP-based algorithms. This is because the

paths generated by GP-based algorithms are continuous-time

functions. We can simply query a reduced number of sample

points on the path at specific moments and then use straight

lines to connect these sample points to reconstruct the path.

In Fig. 13, the path generated by AFM advantageously tracks

ocean currents at each waypoint; however, the path generated

by anisotropic GPMP2 does not track ocean currents at the

waypoints around the start and goal points. This is because

anisotropic GPMP2 has an initialised straight-line GP prior,

which locks the direction of the path at start and goal points

as shown in Fig. 2. Hence the path generated by anisotropic

GPMP2 would always be narrow on both ends and wide in

the central portion. Compared with AFM, the most significant

advantage of anisotropic GPMP2 is the influence of ocean cur-

rents on the path that can be adjusted by adjusting parameter

σe. Specifically, we can encourage the path to keep tracking

ocean currents in such a way as to reduce energy consumption

when necessary; on the other hand, we can also decrease the

influence of ocean currents so that the path can diverge from

the trend of ocean currents if the path has entered into a local

minimum. In narrow-passage simulations as detailed in Table.

Fig. 17. Re-planning for dynamic platform with time-varying ocean currents:
From (a) to (f), the vortex moves from a position close to the platform start
point to a position close to the platform goal point, at the mean time, the
platform continuously moves towards the goal point. In 10 repeated tests, the
execution time of re-planning processes from (a) to (f) were 717.6 ms, 626.1
ms, 636.5 ms, 523 ms, 554.2 ms and 491.1 ms respectively. In this simulation,
the generated path varies according to the slight variation of ocean currents
at each step; thereby the adaptivity of the proposed method is proved.

VI (problem 4, 9 and 14), the path generated by AFM cannot

find a feasible path as the trend of ocean currents did not

align with the narrow passage. However, the path generated by

anisotropic GPMP2 can pass the narrow passage based on the

guidance of the straight-line GP prior, and, in the meantime,

track ocean currents as far as possible with a suitable value

for parameter σe.

E. Re-planning with time-varying ocean currents

This subsection qualitatively demonstrates the capability of

the proposed method in re-planning problems in the coastal

environment with time-varying ocean currents. This simulation

aims to show how quickly the proposed method would react to

changes of ocean currents. Furthermore, the reaction time of

each re-planning was recorded to demonstrate the efficiency.

We used anisotropic GPMP2 to implement two types of re-

planning problems including (i) re-planning for static USV

with time-varying ocean currents and (ii) re-planning for

dynamic USV with time-varying ocean currents.

1) Re-planning for a static platform: In this re-planning

problem, the start and goal points as well as the current

position of the platform are static. The time-varying ocean

currents generate a vortex that has influence from a position

close to the platform start point to a position close to the

platform goal point as shown in Fig. 16. Once the variation

of the ocean currents is detected, anisotropic GPMP2 would

perform re-planning for the static platform so that a feasible

path is generated to adapt to the updated ocean currents. The

average execution time of this re-planning problem across 10

repeated tests was 571.2 ms, which means anisotropic GPMP2

demonstrates a relatively good performance in re-planning for

static platforms.

2) Re-planning for dynamic platform: In the re-planning

problem for dynamic platform, the start and goal points of
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Fig. 18. A comparison of the average execution time of anisotropic GPMP2
in different re-planning problems.

the platform are static, but the current position of the plat-

form would keep updating. The time-varying ocean currents

generated a vortex that has influence from a position close

to the platform start point to a position close to the platform

goal point while the platform continuously moves towards the

goal point as shown in Fig. 17. Once the variation of the

ocean currents is detected, anisotropic GPMP2 would perform

re-planning for the dynamic platform so that a feasible path

is generated to adapt to the updated ocean currents. The

average execution time of this re-planning problem across 10

repeated tests was 591.4 ms as shown in Fig. 18, which means

anisotropic GPMP2 has a relatively good performance in re-

planning for dynamic platforms.

As summarised in our previous work on testing a USV in

practical environments [48], to ensure a real-time performance,

the minimum control signal updating (trajectory replanning)

frequency for a high-speed (≥ 40 knots) USVs is 2 Hz.

Based on this, we can also infer that the minimum frequency

requirements for medium-speed (10 - 40 knots) and low-

speed (≤ 10 knots) USVs should be more than 2 Hz. In

both re-plannings for static and dynamic platforms, the average

execution times of re-planning processes of AGPMP2, with the

PC configuration listed in Table III, were less than 600 ms,

indicating that the updating frequency of the proposed method

is about 1.7 Hz. This updating frequency can evidently meet

the real-time requirement of the selected USV (WAM-V 20).

VII. IMPLEMENTATION IN ROS

This section demonstrates the proposed method in the ROS

environment to simulate autonomous transportation mission

and autonomous inspection mission in the real world. We

use these two different practical scenarios to demonstrate the

versatility of the proposed method.

The system structure of the proposed method with the

Gazebo simulation is shown in Fig. 19. The proposed method

was run on MATLAB and connected with Gazebo through

ROS nodes.

A. Autonomous transportation mission

In Gazebo, an almost real simulation world with sunlight,

wind, ocean currents, gravity and buoyancy was created and

a series of islands with different sizes and shapes as well as

WAM-V 20 USV were placed inside the simulation world.

The locations of the islands are shown in Fig. 20 (a); on the

Fig. 19. Structure of the proposed motion planning system that combines
anisotropic GPMP2 and WAM-V platform in marine environment. θ0 is the
start pose, θN is the goal pose, l(θ, e) is energy consumption likelihood
function, l(θ, ci = 0) is collision likelihood function, θ∗ is the optimal path,
vl is the rotation speed of the left thruster, vr is the rotation speed of the right
thruster, αl is the rotation angle of the left thruster and αr is the rotation
angle of the right thruster.

other hand, the start point and goal point of WAM-V 20 USV

and the dangerous region on the terrain are shown in Fig.

20 (b). Furthermore, a camera was mounted at the front of

the WAM-V 20 USV to detect obstacles and record videos.

The video stream from the front camera was transmitted

to and displayed on the Rviz interface through the WAM-

V Camera node (/wam-v/sensors/cameras/front-camera/image-

raw) as shown in the bottom right corner of Fig. 19.

In the transportation mission in Gazebo, the WAM-V 20

USV transported a parcel from the start point (50, 50) marked

by a green buoy to the goal point (250, 450) marked by a red

buoy. During this process, the USV moved along the big island

boundary and made a detour at the dangerous region (blue

region) in Fig. 20 (b) to avoid collision with the big island. Fig.

21 demonstrates the storyboards of the transportation mission

from both the first-person and third-person perspectives.

B. Autonomous inspection mission

Similarly, a high-fidelity offshore wind farm inspection

scenario was selected. Practical aspects including sunlight,

wind, ocean currents, gravity and buoyancy were incorporated

together with several wind turbines. Fig. 22 (a) details the

locations of the turbines, while Fig. 22 (b) details the start

point and goal point of WAM-V 20 USV. Again, a camera

was mounted at the front of the WAM-V 20 USV to detect

obstacles and record videos.

During the inspection mission in Gazebo, by following the

trajectory generated by AGPMP2, the WAM-V 20 USV moved

from the start point (50, 50) marked by a green buoy to the

goal point (450, 450) marked by a red buoy. As the USV

navigates, the vessel can undertake an inspection of the wind

turbine areas and monitor any damages to the turbines. Fig. 23

demonstrates the storyboards of the inspection mission from

both the first-person and third-person perspectives.

VIII. CONCLUSION

The potential impact of the work in this paper is successfully

extending GP-based motion planning into fluid environments
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Fig. 20. Transportation mission map in Gazebo: (a) demonstrates the top
view of the map and (b) demonstrates the binary image of this map, which
indicates the start point (green), goal point (red) and dangerous region (blue).

Fig. 21. The storyboards of the transportation mission based on the first-
person perspective (at the lower part of each figure) and third-person (at
the upper part of each figure) synchronously: From (a) to (f), the images
demonstrate the locations of the USV at time equals to 1 s, 6 s, 11 s, 16 s,
21 s and 26 s, respectively. To better indicate the start and goal positions,
a green buoy was placed at the start point of the USV and a red buoy was
placed at the goal point of the USV.

such as ocean surfaces. Specifically, this paper presents a

motion planning algorithm based on continuous-time GP,

which can deal with time-varying ocean currents and obsta-

cles simultaneously. By introducing (i) energy consumption

likelihood function and (ii) dynamic fast GP interpolation, we

were able to generate trajectories to avoid vortexes and follow

ocean currents while at the same time removing redundant

sample points to improve execution time and more effectively

avoid obstacles. We derived the energy consumption field by

Fig. 22. Inspection mission map in Gazebo: (a) demonstrates the top view of
the map and (b) demonstrates the binary image of this map, which indicates
the start point (green), goal point (red) and turbines (black).

Fig. 23. The storyboards of the inspection mission based on the first-person
perspective (at the lower part of each figure) and third-person (at the upper
part of each figure) synchronously: From (a) to (f), the images demonstrate
the locations of the USV at time equals to 1 s, 5 s, 10 s, 15 s, 20 s and 25 s,
respectively. To better indicate the start and goal positions, a green buoy was
placed at the start point of the USV and a red buoy was placed at the goal
point of the USV.

measuring ocean current dynamics, so it can reduce energy

consumption caused by ocean currents and assist USVs in

avoiding hazardous areas, such as vortexes. We employed the

dynamic fast GP interpolation method by taking benefits of

GPs that can be parameterised by only a sparse set of support

states, while the generated trajectory can be still queried at

any moment of interest. By adjusting the sampling interval

in each sub-search region, the proposed method can avoid

obstacles by generating smoother paths for course correction,

while reducing its execution time and path length.

The subjects of future research are: (i) further optimising

and enriching our ROS environment to enable USVs to

perform different tasks in the environment; (ii) designing a

controller to simulate the path tracking process of real USVs.
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To be specific, we aim to combine the motion planning and

control of USVs in the next step. Hence, the experimental

results of the proposed motion planning method would be

more practical and can be used in the real-world environment.
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